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We investigate the effect of modified gravity with screening mechanisms, such as the chameleon or
symmetron models, upon the structure of main sequence stars. We find that unscreened stars can
be significantly more luminous and ephemeral than their screened doppelgangers. By embedding
these stars into dwarf galaxies, which can be unscreened for values of the parameters not yet ruled
out observationally, we show that the cumulative effect of their increased luminosity can enhance
the total galactic luminosity. We estimate this enhancement and find that it can be considerable
given model parameters that are still under experimental scrutiny. By looking for systematic offsets
between screened dwarf galaxies in clusters and unscreened galaxies in voids, these effects could form
the basis of an independent observational test that can potentially lower the current experimental
bounds on the model independent parameters of these theories by and order of magnitude or more.

PACS numbers:

I. INTRODUCTION

Over the last decade or so, there has been a plethora of
evidence that the universe is accelerating (see, for exam-
ple [1] and references therein). It is well known that all
observed matter that interacts via gravity as described
by general relativity (GR) feels an attractive force. This
should cause the universe to decelerate, or at least re-
main stationary. Many of the attempts to explain this
phenomena have tried either to introduce some exotic
form of matter in the form of dark energy or to propose
a modified theory of gravity. Many of these new forms of
matter take the form of a scalar field and Weinberg [2]
showed that any modification to general relativity neces-
sarily introduces a new degree of freedom and so these
two different approaches are, on some level, equivalent.
One would generically expect any new scalar degree of
freedom to couple to ordinary matter, which invariably
leads to the introduction of an additional, or fifth, force
which alters the strength of the gravitational attraction.
These forces are absent in general relativity, whose pre-
dictions have been tested to high precision over the years
in both the laboratory and the solar system (see [3] for
some examples). In particular, these tests have placed
very stringent constraints on any additional forces. Ei-
ther they must be short ranged ( < 0.1 mm) or their
strength must be weak compared to gravity. One is then
naively led to conclude that these experiments rule out
any theories of modified gravity that predict any non-
negligible modifications to gravity.

It has recently been realised, however, that these ex-
periments have all been performed in the neighbourhood
of our solar system and hence they do not rule out modi-
fications to gravity where fifth forces are active over large
distances but are suppressed on small scales so that these
local constraints are satisfied. Theories such as this are
said to possess screening mechanisms and regions where
these mechanisms act to suppress the force are referred
to as being screened. Such a mechanism was proposed
by Khoury and Weltman in 2004 [4] in the form of a

scalar-tensor theory with a specific form of the scalar-
gravity coupling. This chameleon mechanism, which is
also present in F'(R) theories [5], includes a coupling of
the scalar to matter resulting in its properties becoming
dependent on the ambient density. Ultimately, this has
the effect of screening the force in high density regions of
space-time (such as our solar system) and recovering the
force predicted by general relativity. Since then, a num-
ber of different mechanisms based on similar principles
have emerged in the context of the symmetron [6] and the
environmentally dependent dilaton [7]. There has been
an intense amount of work developing these theories and
in looking for observational tests. This has proved dif-
ficult since the very mechanism that makes the theory
viable and evades solar system constraints tends to sup-
press any interesting observational features. Nonetheless,
these theories can lead to subtle astrophysical effects such
as modifications to galactic dynamics [8, 9].

In this paper, we present a new, model independent
observational effect of modified gravity with screening
mechanisms. Dwarf galaxies in voids can be unscreened
in theories with values of the parameters not yet ruled out
by observation whereas those in clusters are screened by
the presence of their companions. It is possible then, that
the stars within these galaxies are partially unscreened
and so feel a stronger gravitational force in their outer
layers. In order to support themselves against this in-
creased gravitational force they must burn their fuel at a
faster rate and hence radiate more energy in a given time
period. As a result, their luminosity is greater and their
lifetime is reduced. These dwarf galaxies are then more
luminous than their screened counterparts in clusters due
to cumulative effect of this increased luminosity in their
constituent stars. We would then expect that one could
construct a statistically based observational test of these
theories by looking for systematic offsets between dwarf
galaxies situated in voids and those in clusters. Recently,
the effect of chameleon theories upon the structure and
properties of red giant (RG) stars, which can be resolved
in other galaxies, has been investigated numerically by



[10].

We analytically investigate this effect in order to gain
physical insight into the the effects these theories can
have on both stars and dwarf galaxies. For this reason,
we consider only main sequence (MS) stars since they are
far simpler in their structure and dynamical processes
than their post MS counterparts, postponing a full nu-
merical investigation for future work [11]. These theories
can be described in a model independent manner using
two parameters and there is currently some debate as
to the observational constraints on these parameters de-
pending on whether one demands that the galaxy is self
screened or whether it is screened by other galaxies in the
local group. Importantly, the effect presented here dif-
fers from those used to place these current bounds and
so could form the basis for an independent constraint on
values of these parameters that may not yet be ruled out
observationally. We have hence consider the entire range
of parameters that are currently under debate.

Main sequence stars are more readily screened than
larger stars that have evolved off the MS and therefore
an analysis including the effects on these stars could be
used to probe parameters and order of magnitude (or
even more) lower than have currently been tested and
this is investigated in a followup work [11].

This paper is organised as follows. In section II we
present the model and derive the screening mechanism,
elucidating this with common examples for the unfamil-
iar reader in appendix A. In section III we calculate the
effects of modified gravity on stellar structure and cal-
culate the luminosity enhancement alluded to above and
estimate the reduction in the main sequence life time.
We also present some numerical calculations in order to
reinforce these results although we shall not use them
further in this work. We then go on to embed these stars
in dwarf galaxies in section IV and estimate the galactic
enhancement in unscreened galaxies due to this increased
luminosity and shorter lifetime. We discuss our results in
section V and speculate on other effects related to these
phenomena that may provide additional tests of these
theories. Throughout this work we use units such that
h = ¢ =1 and use the metric signature (—, +,+,+). The
reduced Planck mass is M,;* = 1/87G.

II. MODIFIED GRAVITY WITH SCREENING
MECHANISMS
A. The Model

Theories of modified gravity where the extra degrees of
freedom are “screened” on small scales may arise through
the scalar-tensor action

§ = [diary=g [ R~ L0000 - V(8)] ()
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where ¢ is a scalar field with self-interactions given by the
potential V(¢). Here, Sy, is the matter action, ¥; are the
matter fields, which are minimally coupled to the confor-
mally rescaled metric g, = A?(¢)g,,. The metric g, is
known as the Einstein frame metric whilst g, is referred
to as the Jordan frame metric[26]. Quantities (such as
the covariant derivatives, energy-momentum tensor etc.)
associated with each metric are distinguished by the use
of tildes, with the indices raised and lowered using their
respective metrics. The function A is known as the cou-
pling function and is assumed to be a weak function of ¢,
ie. A(¢p) = 1+ O(¢/Mp1) so that metric perturbations
in each frame are small.

Matter fields couple minimally to the Jordan frame
metric and hence it is the energy-momentum tensor in
this frame, T = —2(—§) /205w /0§, Which is con-
served @#Tr’r‘l” =0.

In the Einstein frame the energy-momentum tensor is
given by

2 69
T = - Z_ "M _ 4
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Since TH" is explicitly sourced by the scalar field, the
energy-momentum tensor in the Einstein frame is not
conserved

dln A(¢)
do
where T}, denotes the trace (with respect to g,,) of the

energy-momentum tensor. The relation between the Ein-
stein and Jordan frame energy-momentum tensor is

V/LT#}V = ng'uy ,u¢; (3)

T 5 = A4(¢)§(¥VT#OL- (4)

In this paper, we will work exclusively in the Einstein
frame. In this frame there is an explicit coupling of the
fifth force carrier ¢ to the matter tensor in its equation
of motion [27]

dv dA
_ dVeg
= 3 (61T o)

Meanwhile, varying the action eqn. (1) with respect g,
gives the modified Einstein equation

1
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where the scalar energy-momentum tensor is
1
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From this, it is clear that the scalar field ¢ experi-
ences an effective potential Vig(¢p; —T,,) which depends
not only on ¢ but also the trace of the matter energy-
momentum tensor Ty,. In this work, we will assume that



the matter is non-relativistic dust as in most astrophys-
ical systems. The usual practice is to define the matter
density via T, = —p, however, as we have seen above,
this quantity is not conserved in the Einstein frame.
Now if matter is non-relativistic in the Jordan frame,
p = —guw T}y, then it can be shown that the quantity
T = AS(¢)TH is covariantly conserved in the Ein-
stein frame provided that it is also non-relativistic in that
frame[28]. If one then defines the energy density in the

Jordan frame, p = —T,,,, which is covariantly conserved
in this frame, then one can show[12] that the ’density’
associated with 7, = —A3(¢)p is (non-relativistically)

conserved in the Einstein frame. For this reason, we shall
work with this quantity as the density and not the one
defined using 7},,. From here on we shall use the symbol
p to denote this quantity and refer to it as the matter
density. Since, to leading order, A(¢) =~ 1 these two
quantities do not differ from each other significantly, al-
though one should bear in mind the discussion above.
With this definition, the effective potential is

Vet (05 0) = V() + pA(0). (®)

The geodesic equation for a test particle made up of
¥, in the Einstein Frame then gives us the modified force
law in the non-relativistic weak field and static limit[12]

B(o)
My,

p

|Fy| =

Vo, (9)

where the ¢ field explicitly appears as a source term as
expected. The quantity

dA(¢)
d¢
then characterises the strength of this force and should

only be weakly dependent on ¢ if A(¢) is not to differ
too greatly from 1.

B(d) = My (10)

B. The Screening Mechanism

In this section, we review the physics behind the
screening mechanism and derive an estimate for decid-
ing whether an object is screened or not.

The qualitative features of the screening mechanism
are as follows: Suppose that the effective potential 8 pos-
sesses a minimum. The density dependence of the poten-
tial has the effect that this minimum occurs at different
values of ¢ in regions of differing densities. If the field
value in high densities is such that the additional force
(9) is negligible then any fifth forces will be screened.
The form of eqn. (9) reveals that there are two possible
methods of accomplishing this. Firstly, the mass of small
oscillations about the minimum is proportional to the
density. If the density is high enough such that this mass
is large compared with the inverse of the length scale as-
sociated with the high density region then the field will

only vary from its minimum by a small amount over the
entire region and so the fieled gradient will be negligible.
This can equivalently be thought of as a Yukawa sup-
pression. This is the mechanism employed by chameleon
theories[4]. Secondly, if 5(¢) is close to zero in high
density regions then the additional force will again be
negligible. This is the mechanism employed by the sym-
metron [13] and the environmentally dependent dilaton
[7].In principle, one could construct a theory where both
of these effects are present but, to date, only theories
where one of the effects are at play have been consid-
ered. Of course none of these mechanisms can operate if
the field cannot reach the value which minimises the ef-
fective potential and so only regions where this is possible
can effectively screen the fifth force. We thus require the
field to minimise its effective potential throughout the in-
terior of any high density region if the screening is to be
effecient; this is illistrated in fig. (IIB). In appendix A
we provide a brief overview of each of these mechanisms
for the unfamiliar reader.

With the above considerations in mind, we proceed to
elucidate the screening mechanism in detail. We consider
a homogeneous cosmological background with density pg
and assume that sufficient time has passed such that the
scalar field has relaxed to the minimum of the effective
potential ¢y in such a background. The scalar in this
case possess no dynamics, and hence carries no fifth force
while its potential Vg (dg) can act as a cosmological con-
stant term which is small. We will use the subscript 0
to define quantities in the cosmological background, i.e.
Bo = B(¢o) and mgy = d?V (¢o)/d¢? from now on.

Next, consider a small spherically symmetric overden-
sity perturbation dp(r) of radius R in the matter density
around this background, which induces a perturbation in
the field

¢ = ¢o + 09 (11)

The field inside the overdensity then attempts to relax to
its new minimum and the resulting field gradient gener-
ates a fifth force f, on a test particle (see eqn. (9)). If the
perturbation is sufficiently large however, the field would
reach its new minimum inside the perturbation resulting
in a constant radial profile towards the centre and hence
no extra fifth force is felt in this region. This central idea
behind the screening mechanism: if the perturbation is
large enough that the field can reach its new minimum
(where, as discussed above, the fifth force is negligible)
efficiently then there is only a small field gradient due
to the interpolation between the two minima. If, on the
other hand, the perturbation is small then the field will
not differ significantly from its value in the background
and the resulting field gradients will give rise to appre-
ciable fifth forces. Let us investigate under which the
perturbation is large enough to screen any fifth forces.

The same over-density dp sources a perturbation in the
Newtonian potential, @y, which produces a gravitational
force

Fipay = VOy. (12)
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FIG. 1: The field profile inside a spherical overdensity embed-
ded in a homogeneous background. The field minimises its
effective potential at a distance rs from the centre. Far from
the overdensity, the field asemptotically aproaches the value
which minimises the effective potential in the background, ¢g.
The region r > rg is known as the unscreened region and here
the fifth force is O(1). In the region interior to rs the fifth
force is negligible and this region is said to be screened.

The Newtonian potential, in turn, obeys the Poisson
equation

V20 = 4nGop(r) + ... (13)

where we have added the ellipses ... = O(Mp;2(V$)?) +
1V (¢) to remind the reader that, although in the Ein-
stein frame the scalar field does source the Newtonian
potential, we neglect them since the gradient terms are
second order (recall that we have assume that ¢ is small)
and its potential is small by construction. [29]

In the static limit, where the dynamical time scale of
the perturbation is far greater than the time scale on
which the field relaxes to its minimum (this will always
be the case in this work), the equation of motion, eqn.

4

(5), for ¢ is V2¢ = dVeg/d. Inserting the perturbation
eqn. (11) into this equation gives

o A% 1)
V(o + 6¢) = %((ﬁo +09) + W(Po +dp)(14)

There are now two limits depending on the amplitude of
the perturbation. In the presence of a small perturbation,
we intuitively expect the field perturbation to be small
|0p] < ¢. We can then linearise Eq. (14) to give:

Bo_s

=2¢ 2 _Po
V260 ~ mioo + 11-0p(0) (15)

where we have dropped terms proportional to d3/ d¢ as
we have argued earlier that 8 is only weakly dependent
on ¢. Furthermore on scales longer than the Compton
wavelength of the scalar R < 1/myg, the effective mass
term is negligible leaving us with

250~ DO
Va0 R - oe(r). (16)

In the other limit when the perturbation §p is large, the
field will be able to attain it’s new minimum and so the
perturbation is also large. In typical theories of interest
the field value at the minimum in high density regions
is much less than that low densities and so |d@| =~ ¢o.
At distances deep enough in the interior of the pertur-
bation such that the field reaches its new minimum the
derivative of the effective potential vanishes and (see for
example [9])

av B
a6~ p(r) (17)
so that
V26 ~ 0 (18)

i.e. the field gets trapped inside the new minimum at
some screening radius v < rs. The field profile be-
comes constant if r is decreased further leading to no
fifth forces. We say that the region inside a sphere of
radius rs is screened. In general, 5 can be zero (fully
screened), 0 < rs < R (partially screened) or undefined
(unscreened). Unscreened objects will feel the full effect
of the modified gravity, while fully screened objects are
blind to its existence.

Combining these two limits gives an approximation for
66 valid for r < mg*:

626¢ ~ { Bodp(r)/ My rs <r< mal (19)
0 r<Tg ’

By noting that the density perturbation dp is related
to the Newtonian potential via the Poisson equation eqn.
(13), this equation for d¢ can easily be integrated to find
the field profile in terms of the Newtonian potential ®y.

For rg > 0, this is



56(r) ~ — o + 260 Myt | Dx(r) — Dx(r) + 120l () (i - 1)] H(r— 1), (20)

where H(z > 0) =1 and H(xz < 0) = 0 is the Heaviside
function. Taking the limit of the above as r/ry — oo
(and hence BoMpi®n(r) = d¢(r) — 0) we can find an
expression for the screening radius, which is defined im-
plicitly by a function of the constants and the Newtonian
potential,

Xo = L
280 My,

= _(I)N(Ts) - qu)i\I(TS) > 0. (21)

In principle, we can use the Poisson equation eqn. (13)
in conjunction with some density profile p to solve for ry.
Notice however, that since ® > 0, s > 0 and &x < 0,
it is clear that there exist no solutions (i.e. 75 < 0) when

bo
280 M,

|Pn(rs — 0)] < (22)

In this case, the object is fully unscreened. It is impor-
tant to note that xg is completely defined by the param-
eters of the theory in question. It follows then that if
the surface Newtonian potential ® > xo, the screen-
ing radius ry > 0 and the object will become gradually
screened. This result gives us a rough guide on whether
an object is fully screened or not, simply estimate the
depth of the gravitational potential at the surface of this
object (including the mass from the surroundings and its
own) and see if eqn. (22) is satisfied. Note that if r¢ = R
then the fifth force is completely suppressed and ﬁ¢ =0
everywhere.

Now that we have the complete field profile we can calcu-
late the fifth force explicitly. For spherically symmetric
bodies we have

doy _ GM(r) (23)

dr rz

where M(r) is the mass enclosed within a shell of ra-
dius r, and so differentiating eqn. (20) we find the total
force per unit mass (gravity and modification) in the un-
screened region is

FZFN+F¢
_ ey By do
~dr My dr (24)
GM M (s
=5 [”% (1 - M(<:>))]’

where a(¢) = 2%(¢), which defines and effective gravi-
tational force

(25)

T's

(

The effect of modified gravity is then to produce an ef-
fective change in the gravitational constant G — G(r) =
G(1 + aeg(r)) in the unscreened region, where

)

aer (1) = (o (1 - (26)

One can think of the quantity 1— M (rs)/M(r) as a scalar
charge, the existence of which is the source of equiva-
lence principle violation in such theories. We can see
that completely unscreened objects will feel a fifth force
that is a factor ag that of the Newtonian force. We may
then describe all theories with screening mechanisms in
a model independent manner using two parameters: «q
and xg. g specifies the strength of the fifth force whiley
(known as fro in the context of F(R) models) controls
the extent of the screening and can take on a range of
different values in any one specific class of models, de-
pending on both the position of the minimum and the
coupling. Currently, there is some debate on the value
of xo that is consistent with local observations. If one
demands that the solar system is screened by the poten-
tial of the local group galaxies then the lowest bounds
come from cluster abundance statistics [14], which yield
Xo ~ O(107%). If, on the other hand, one demands
that the sun is self-screening then, as explained above,
we must take xo ~ ®n(Re) ~ O(107°) [15].

III. THE EFFECT OF MODIFIED GRAVITY
UPON STELLAR STRUCTURE

In this section we describe how these theories with
screening mechanisms alter the structure of stars com-
pared with standard gravity. Before examining the de-
tails, it is instructive to first consider the effects in a
heuristic manner. If the star is self-screening then we
expect any effects to be negligible (or at least unobserv-
able). If, on the other hand, the star is at least partially
unscreened then in some part of its outer layers, the grav-
ity will be stronger than the standard case. Stars support
themselves against gravitational collapse by hydrogen fu-
sion in their core to release energy and provide an out-
ward pressure. We would then expect these reactions to
proceed at a faster rate in order to combat the increased
gravity. This will have two effects. Firstly, the star is
more luminous and secondly, it will deplete its fuel sup-
ply at a faster rate and will hence have a shorter lifetime.

This effect was first noted by previous work by Chang
and Hui [10] who found that solar mass M = M, stars
in the Red Giant Branch (RGB) phase of their life have a
large increase in its stellar envelope reduces the depth of



its self gravity potential, resulting in its outer “mantle”
layers becoming unscreened. In this section, we show
that even in stars on the main sequence, a substantial
part of the star’s interior can be unscreened. Indeed, we
will show that r;/Rg =~ 0.3 for in solar mass stars if
Xo ~ 1076, We emphasise that these are O(1) effects,
however, they are also highly degenerate with other stel-
lar properties such as metallicity and other environmen-
tal effects. In this paper, we will argue that while it is
hard to disentangle these effects in individual star sys-
tems, the gross effects of such modified gravity stars on
galaxies may be observable.

A. The Theory Stellar Structure in Modified
Gravity

The standard approach to stellar structure is to con-
sider static, spherically symmetric stars of mass M and
radius R. In order for the star to remain static, the out-
ward force due to the pressure generated by the nuclear
reactions must balance the gravitational force F(r) (per
unit mass). This condition is expressed through the hy-
drostatic equilibrium equation (HSE)

S~ F)otr) (21)

where p(r) is the density at a distance r from the centre.
The radius R is defined to be the value of r at which the
pressure becomes zero, although this can be ambiguous
and in more realistic models a definition involving the op-
tical depth is more appropriate. The mass M (r) enclosed
by a shell of radius r (so that M = m(R)) may be found
by integrating the density over the volume enclosed by 7,
which leads to the continuity equation,

— = 4mr?p. 28
I p (28)
By considering photon propagation in the interior of the
star, we obtain the radiative transfer equation,
dT 3 k(r) p(r)L(r) (29)
dr  4a T3 4mr2
where L(r) and T'(r) are the luminosity and temperature
respectively at coordinate r. The quantity x is known as
the opacity and represents the cross section per unit mass
for radiation absorption; it is generally a function of the
temperature and density. Finally, if energy is generated
at a rate ¢(r) per unit volume by nuclear (or possibly
other) processes then the luminosity gradient is deter-
mined by the energy generation equation,
dL
— =Adnr?pq(r). 30
3 = dmripa(r) (30)
These are the equations of stellar structure, which de-
scribe the relationships between the various thermody-
namic and physical quantities which are required in or-
der for the star to remain in a static configuration. As

it stands, these equations do not close and so we require
an equation of state for both the opacity and the pres-
sure. We shall specify these later when we discuss scaling
solutions and the Eddington standard model.

Note that since Newton’s constant, G, only appears in
the HSE equation, the presence of modified gravity only
changes that particular equation and not the others [30].
In other words, the total force acting on the star is the
gravitational force and the fifth force given by eqn. (24).
Eqn. (27) then requires that

ar@r) _ {GM(’") {1 + a0 <1 - M(TS))” p(r).
3

dr r2 M(r)

To find the gravitational force, we integrate the Poisson
equation eqn. (13) and use the continuity equation eqn.
(28) to obtain the solution to the gravitational potential
as a function of mass M(r),

GM(r)

d‘I)N T /2 ’ ’
= —" M =4 . (32
= M) “/o r2dr p(r'). (32)

Finally, in order to close the system of equations, we find
rs from Eq. (21), which after integrating by parts and
using the Poisson eqn. (13) yields an implicit solution
for ry

o
280 My

R
47TG/ rp(r)dr = xo = (33)

The implicity of the solution for ry means that we have
to iterate to find the complete solution. We will do this
in the next section for a polytropic star.

B. Scaling Relations

In the next section we shall derive the structure of
partially screened stars but before doing so we can ex-
tract all of the essential physics by considering the sim-
pler case of completely unscreened stars where the effect
of modified gravity is to change the value of Newton’s
constant by a constant factor G — G(1 + «p). In this
case, we can use dimensional analysis to find the scal-
ing of the stellar luminosity with the gravitational con-
stant at fixed mass. By replacing each quantity Y; where
Y = {M(r), P(r),p(r), T(r), L(r)} by its characteristic
value (say stellar mass or central density) in the equa-
tions of stellar structure and replacing the derivatives
by ratios (remembering to account for the correct sign
depending on whether a quantity increases towards the
centre or surface) we can obtain scaling relations between
these variables. For example, the hydrostatic equilibrium
equation eqn. (27) becomes

GMp.
F. ; 4
O (34)

where P, and p. are the central pressure and density
respectively. This process may be repeated for the other



equations to find the complete set of scaling relations.
In order to complete this analysis we need to specify the
form of the pressure. We consider two different sources
of pressure, namely that due to radiation,

1
Proq = gaT4 (35)

and that due to the gas, which we take to be ideal:

kBpT
Paos = , 36
s = (36)

where pmy is the mean molecular mass, which we take
to be constant. Low mass stars are supported mainly
by gas pressure and in this case the luminosity scales
as L o< G*M?3. More massive stars are hotter and are
therefore supported predominantly by radiation pressure
with a mass-luminosity relation L o< GM. Physically,
stars supported by radiation pressure absorb radiation
in their interior to prove the outward force needed to
prevent gravitational collapse and less reaches the sur-
face. If we then consider two stars of equal mass, one
screened and the other completely unscreened we find a
luminosity enhancement of

L [ (1+a)
14+ ap

Low mass stars
High mass stars

(37)

LX(J=0

in unscreened stars. Clearly for typical values of ay,
which is 1/3 for F(R) gravity [5], this increase is of order
1 and so this effect could constitute a potential observa-
tional test of these theories.

C. The Eddington Standard Model and Partially
Screened Stars

Stars on the main sequence are in general supported
by a combination of radiation and gas pressures P(r) =
Prad+ Pgas. The set of equations eqn. (27)-(30), combine
with a set of equations of state (and modified gravity)
represent a highly complicated set of differential equa-
tions which are difficult to solve in general. A complete
description of stellar structure will require a numerical
method, which we will present in the section after this.

In this section, we will instead solve these set of equa-
tions in a particularly simple approximation known as
the Eddington Standard model. While this model does
not describe true stars, it is a fair approximation to main
sequence stars. More importantly, it captures the essen-
tial physics and we can gain a lot of intuition and under-
standing of the physics underlying such systems under
the influence of modified gravity.

In the Eddington Standard model, we make the as-
sumption that the radiation entropy per unit mass is con-
stant throughout Sy.q = 4a1?/3p = const. This greatly
simplifies the equations by decoupling the HSE from both
the radiative transfer eqn. (29) and the energy generation
eqn. (30). This assumption constrains 7' to be a function

of p alone and therefore reduces the number of indepen-
dent degrees of freedom in the system. Furthermore, by
writing Praq = (1 — b)P, Psas = bP where b measures
the fraction of gas pressure support and assuming that
P, is given by the ideal gas law, the equation of state
becomes polytropic i.e. P = Kp*/3 [31], as follows

P = Prad+Pgas:gT4+ kB PT
3 Wmiy
= K(b)p*?, (38)
1/3
3/ k \'(1-b)
K = |- .
0 [ () S (39)

Hence we simply need to solve the HSE to obtain P(r)
and p(r) which would then fully describe the star. In ad-
dition, the power law dependence of p means that the so-
lution, in general without modified gravity, is self-similar
(i.e. one can describe using dimensionless coordinates).
The rescaled equations in this case is called the Lane-
Emden equation. On the other hand, the presence of a
screening radius rs weakly breaks this self-similarity, re-
sulting in a modified form of Lane-Emden equation which
we will solve below. Note that while b depends on the
properties of the star (and modified gravity), it is a con-
stant for a given star in the Eddington Standard mode,
hence the space of Eddington Standard model solutions
is spanned by this single family of parameters, b.

Once a solution p(r) and P(r) is obtained (and hence
T'(r) by the assumption of constant entropy density), we
substitute it back into the radiative transfer eqn. (29) to
obtain the total luminosity at the star surface where r =
R. Further assuming that the opacity is a constant and
given by the electron scattering opacity taking kop(R) ~
Kes We obtain the luminosity in terms of agut = Qe (R)
and M:

_Ame(1 =) (1 + aguet) GM

L 40
Kes ’ (40)

where
Osurf = @Q |:1 - %} = Oéeff(M). (41)

Before proceeding to solve the Lane-Emden equation,
we pause to discuss the nature of these approximations.
The decoupling of the energy generation and radiative
transfer equations from the mechanical structure equa-
tions have allowed us to close the equations. This means
that we do not include any information about the nuclear
processes occurring in the core, nor do we account for any
chemical composition or gradient which may change over
time. We have also used a constant opacity, which in
general has a temperature and density dependence and
have therefore ignored the effects of bound-bound and
bound-free transitions, as well as H™ effects in the outer
layers.

Finally, we have not included the effects of convec-
tion, which tends to be important in the outer layers of



stars. Nonetheless, the Lane-Emden solution is a good
approximation to stars near the zero age main sequence
(ZAMS). For this reason, we will not include the radial
dependence of the fifth force in the following, but will
model it by scaling Newton’s constant by a constant fac-
tor, G — G(1+ag). When we come to the full numerical
problem in later sections we will include the full radial
dependence as well as a complete theory of chemical evo-
lution and convection and so will be able to make far
more realistic predictions for any evolutionary stage in
the stars life.

Let us now solve the equations. What follows is a tech-
nical derivation, which the reader may not be interested
in and is not required to understand the rest of the paper.
Those who are not can safely skip to the next section.

Since polytropic solutions are spanned by b, our goal is
to solve for b given «g and the stellar mass M. The Lane-
Emden equation can be obtained by first defining a set of
dimensionless variables — define P, p and T at » = 0 to
be P, p. and T respectively as the central values. Then
we can define a dimensionless radial coordinate £ by:

P, 1/2
T (WG,O2> $ETe

where 7, is the characteristic length-scale of the star and
the dimensionless structure function

0(¢) =T(r)/Te (42)

hence P = P.0*(¢) and p = p.03(€). Inserting these
new variables into the HSE eqn. (27), ignoring the radial
dependent term M (r)/M(rs), and differentiating it then
gives the modified Lane-Emden equation for 6(§):

ii 5219 _ _(1"‘040)93(5)7
2de > de] | -9

rs <r <R,
r<rs,

(43)
where the boundary conditions are the stellar radius R
is defined by P(R) = 0 and therefore (¢g) = 0 where
&r = R/r¢. Since we have scaled out the central pressure
and density in terms of § we have #(0) = 1 and any sen-
sible pressure profile should be smooth at the centre and
so we require df(0)/d¢ = 0. This second condition can
also be viewed as a statement that there is no mass inside
a shell of zero radius; setting M (0) = 0 in eqn. (27) gives
precisely this condition. With these two boundary con-
ditions, we can proceed to solve the equation, matching
up the solutions at r = r,.

We can similarly rescale the screening radius and the
total radius of the star by the characteristic scale & =
rs/re and £p = R/re; €r is determined by the require-
ment that (£g) = 0 i.e. p(R) = 0. The first derivative
of the boundary condition is specified by

dé

wp = —ER e (44)

§=¢r

Integrating this equation once (keeping rs and hence &
fixed for the moment) and imposing continuity at & re-
quires us to further specify the matching condition

, o)
A€,

rs (and hence &) generally depend on both the mass and
the radius of the star. It will turn out, however, that
the Lane-Emden scaling constrains rg to depend on the
combination xo/(GM/R). It then follows that to fully
integrate the Lane-Emden equation we will need to find
this quantity.

Consider the case of standard GR (o = 0), we have
wgr = wgr =~ 2.02. If on the other hand, the star is fully
unscreened (rs = 0), then wy = 0 and by rescaling & we
have wr =~ 2.02(1 + ag)~'/2. Between these two limits,
we can define a function that interpolates between ay €

(O,Cko)ﬁ
o 2/3
L)
WR + apws

Wy = _§ (45)

14+ ap= <(1+ao)

such that when ry, = R, wg = ws = w; we have a; =
0, while when ry = 0 the star is fully unscreened and
ap = ag. The quantity «; is the analog of aeg in Lane-
Emden rescaled variables and is a function of b hence the
its subscript.

We can then find the mass of the star in terms of these
variables:

R &1
M = in / r2p(r) dr = dmper / £26%(¢) de,
0 0

N @+ aows (47)
’/TG 1 + (67} '
Inverting this gives b as a function of M through a mod-
ified form of Eddington’s quartic equation

1-0 M \?
— =1+ a)? 4
b4 (1+aw) (Medd> ’ (48)

(M)

= 47K (b)

with the Eddington mass

CLRAEN 0 R IR RS
G320, \a pmy )

which is defined in terms of fundamental constants and
hence (Meqq = 18.3u72My,) is independent of ag. Fi-
nally, to close this set of equations we must specify & as
a function of the modified gravity parameters ¢y and (.
Using eqn. (19) we have

Mega =

7(T)H(r —7y), (50)

from which, using our knowledge that ¢ — 0 as r — oo,
we find that ¢s = ¢(rs) is given by

s 4 Gr} c
60¢ ~ il T()p %0 |:95 + WR — é—Rw:g:| )
Mpl fR 1+ o ES
. agGM §rbs +wr — %:Ws
R WR + agws ’




The scaled screening radius, &, is then determined by
¢s = —¢o and
ér

[gRos +wr — 5Sws‘| _ b0 R ~Xo (51)
WR + Qows

" 26oMy GM ~ GM/R’

This is the analog of the implicit solution for 7y, eqn.
(33), in Lane-Emden coordinates, and requires a similar
iterative method to solve. If eqn. (51) has no solutions
then ry = & = ws = 0 and the fifth force is unsuppressed.
This requires

xo o, dlng
GM/R = a0

~ 4.417, (52)
§=¢r

for all ap. The numerical value 4.417 is a property of n =
3 self-similar (i.e. completely screened) polytropes. Thus
if GM/R > 0.226xo the fifth force is at least partially
suppressed. Finally, we can then find agy., which gives
us the modification to the luminosity:

sur M s - Ws
(o)) M wWRr + Qo

The procedure to find the luminosity increase is the
following: we first solve the Lane-Emden equation nu-
merically for a set of test matching radii ws. We then use
this function 6(§; &) in conjunction with eqn. (45) to it-
eratively find & using Eqn (47) and Eqn (51), and hence
ap and agyf- By repeating this for a range of different
masses M and values of xo we numerically fit the lumi-
nosity as a function of mass and . Since the screening
radius is degenerate in xo and M/R, it is convenient to
scan through the quantity X = x0/(4.417GM/R) such
that 0 < X < 1. The relation between «ap and «g can
then be recast as ap(1 4+ ap) = ao(l + ao) f(X; ) and
that asur/c0 = g(X;ap) where the fitting functions f
and g take values between 0 and 1. In doing this, we
find f(X;a0) and g(X;ap) are independent of «p for
ag ~ O(1) and smaller and are respectively well fitted
by the following functional forms

flx) = 2*(1.94+0.79z — 2.912% + 1.182%),
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In principle, one could vary «q to find the luminosity
increase as a function of ay however in this work we con-
sider only oy = 1/3, corresponding to F'(R) gravity and
the low background density limit of the environmentally
dependent dilaton. The luminosity increase compared to
the GR predictions is shown in fig 2. We can see that the
enhancement is much greater in low mass stars in agree-
ment with the simple scaling arguments presented above.
Numerically, (1 4+ ag)* = (4/3)* ~ 3.16 and so we can
see that for xo =107° and 10~* the lowest mass stars are
entirely unscreened. We also note that at 5x107° there

is an appreciable enhancement but at 1075 we see that
there is no significant effect. This is due to the fact that
main sequence stars typically have Newtonian potential
of order 1079 and so, according the the arguments above,
are almost entirely screened. After going off the main se-
quence, the stars become red giants which have radii of
10 to 100 times that of their main sequence phase and
so even if they are screened in the main sequence, they
can become unscreened in the red giant phase and show
appreciable differences from GR [10].
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FIG. 2: The ratio of the stellar luminosity of a partially
screened star compared with one that is completely screened
as a function of stellar mass M. Lgiq is the luminosity of
a completely screened (general relativity) star. From top to
bottom: xo = (107%,107°,5 x 107%,107°).

There is another important consequence of this in-
creased luminosity. Although we have not included the
effects of nuclear burning in our model, if the luminos-
ity of a star in modified gravity is higher than the stan-
dard case then the extra energy being radiated must come
from an increased rate of nuclear fusion in the core. The
main sequence lifetime is then shorter. The main se-
quence lifetime can be well approximated by

M L

and hence we can see that a fully unscreened star in F'(R)
gravity will go off the main sequence more than three
times as quickly as one in general relativity. Ultimately,
as we shall see below, this effect limits the luminosity en-
hancement in unscreened galaxies since stars go off the
main sequence before their enhanced luminosity can con-
tribute significantly. This has important observational
consequences since we then expect unscreened galaxies to
have hosted many more generations of stars and therefore
be more metal enriched than their screened counterparts.



D. Numerical Simulations of Modified Gravity

The assumptions of the previous subsection are a
good approximation to intermediate main sequence
stars. However, as alluded to in the introduction to this
section, making further progress and understanding the
many degeneracies in stellar systems, requires accurate
modelling of the stellar processes and knowledge of
the complete evolution of the star from the pre-main
sequence until its death. In practice, stellar evolution
is determined using numerical evolution codes. In
this section, we will take this approach for the case
of modified gravity. As we have mentioned, modified
gravity only changes the gravitational part of systems of
equations, and hence we simply need to modify existing
stellar evolution codes to make progress. We have chosen
to implement the screening mechanism into the publicly
available code MESA-star [16].

MESA is a one dimensional (in that it assumes spher-
ical symmetry) stellar evolution code that numerically
calculates the structure and evolution of stars by solving
the stellar structure equations in conjunction with
a fully consistent implementation of varying opacity
laws, nuclear reaction networks, atmospheric models,
convective theories, mass loss schemes and rotational
dynamics. We refer the interested reader to the instru-
ment paper [16]. We will describe our implementation
of the screening mechanism into MESA and present
some simple results in order to justify the analysis above.

We start by noting that, given a density profile, the
screening radius can be found using eqn. (33) given a
specific value of yg. Using this result, we implement the
modification of gravity into MESA using the following
procedure. MESA divides the star into cells of unequal
radius and assigns each cell a set of quantities such as
radius, density, opacity etc. and we first integrate the
quantity p from the surface of the star, cell by cell, until
the condition 33 is satisfied. The radius of the cell where
this is the case is marked as the screening radius. Next,
we update the value of G in each cell using eqn. (26).
The star is then allowed to evolve in time to the next
model where this process is repeated. This process is
accurate provided that the timescale over which the star
evolves is not longer than the timescale on which the
effective gravitational constant varies due to a change
in the stellar structure. MESA automatically selects a
timestep to reduce such numerical errors however it also
has controls that allow the user to set the timestep and
the number of cells and so an arbitrarily good precision
can be achieved.

In fig. (3) we show the Hertsprung-Russell (HR) di-
agram for stars of one solar mass with initial metal-
licity Z = 0.02 (solar metallicity) evolving from the
ZAMS to the tip of the red giant branch for xo, =
5x 1076,1075,1077 and the standard, unmodified case.
It is clear from the tracks that stars that are less screened
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are indeed hotter and more luminous. We can also see
that for xo = 1077 the tracks are identical along the
main sequence but separate in the red-giant phase cor-
responding to the Newtonian potential dropping due to
the increased radius and the star becoming less screened.
It appears that the red giant tracks all converge to a
similar track. This is due to the fact that the Newto-
nian potential of these stars is so shallow such that at
the mantle they are unscreened to a very high degree,
even at yo = 1077. In fact, if one examines the tracks
in detail then small differences can be discerned. Note
that while the HR tracks for stars of similar masses may
possess similar shapes, this does not mean that the other
stellar properties are simply a translation in luminosity
axis at the same age.

To show this explicitly, we show the star’s age and
radius at three identical points along the stars main se-
quence. Notice that it is clear that unscreened stars do
indeed have shorter lives than their screened counter-
parts. It also shows that the radii at the same evolu-
tionary stage tend to be smaller as well. Physically, the
extra pressure needed to support the star in modified
gravity is produced by increased densities and tempera-
tures over the standard case, demanding a more compact
star. We have not shown the values for yo = 10~7 since
these stars are almost entirely screened on the main se-
quence and hence have nearly identical properties to the
unmodified stars. Nor have we shown any information
about the red giant phase stars. This is because the red
giant phase is far shorter than the main sequence and so
comparing quantities between stars that are screened to
different extents is misleading. Despite the assumptions,
it is clear that the luminosity increase described above is
still present when more realistic models are used and the
missing physics is accounted for.

IV. GALACTIC PROBES OF MODIFIED
GRAVITY WITH SCREENING MECHANISMS

In this subsection we consider a fully unscreened
galaxy composed of main sequence stars and calculate
the luminosity compared with an identical unscreened
galaxy.

We have seen how the Newtonian potential determines
the extent to which an object is screened. Ultimately, we
would like to calculate the contribution from the stars to
the galactic luminosity in the presence of modified gravity
in unscreened galaxies. Treating an individual galaxy as
a sphere of mass Mx and radius Ry, the characteristic
potential is

|| ~ (56)

Rx
Now, dwarf galaxies typically have rotational velocities of
the order 50-100 Kms~! and hence, using the virial the-
orem we have |GMx /Rx| ~ 1078-10~7. Dwarf galaxies
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FIG. 3: The Hertsprung-Russell diagram for stars of one solar mass with initial metallicity Z = 0.02. The black line shows
the tracks for stars in general relativity while the red, blue and green tracks correspond to stars in modified gravity with
Xo = 1077,107% and 5 x 107° respectively. The radius and age at the point where the central hydrogen mass fraction has fallen
to 0.5, 0.1 and 107 is shown for each star except the yo = 10~7 case.

are therefore an excellent probe of modified gravity theo-
ries with yg >1078, at least one order of magnitude lower
than current experimental bounds. Whereas these dwarf
galaxies will not be self-screened, it is entirely possible
that dwarf galaxies in clusters may be screened by the
Newtonian potential of their neighbours. This will form
the basis of any observational method of searching for
these theories using stellar effects.

The number of stars born with mass M within a galaxy
is given by the initial mass function (IMF) ®(M) =
dN/dM, i.e. the number of stars dN within mass range
dM. In many stellar populations of, where we can re-
solve individual stars, this relation is empirically found
to be roughly universal [32]. For simplicity, in this work
we use the Salpeter IMF [17], ®(M) o M %35 with
0.08 < M < 100M; leaving aside questions of whether
this function is valid at very high and very low masses.
We can then estimate the luminosity increase for an un-

screened dwarf galaxy by integrating luminosity (40) us-
ing the fitting functions (54) over the IMF.

Before doing so however, we must account for the stars
that have gone off the main sequence as the IMF only
gives the number of stars born. We do this by making
use of eqn. (55). If the age of the galaxy is Tage then
we assume that all stars with myvg > Tage contribute in
their entirety to the luminosity whereas stars whose main
sequence lifetimes are less than the age of the galaxy con-
tribute a fraction Tvs/Tage Of their luminosity. We note
that stars that have gone off the main sequence still have
a luminosity enhancement in the red giant phase (and
beyond), however we do not account for their contribu-
tion here. This effect is accounted for in our analysis by
including a factor fo(M; Tage) Where

™S > Tage
™S < Tage

5 =

(57)

Jo(M;; Tage) :{

Tage



so that the galactic luminosity is
Lgal(Tag67X(]) = (58)

100M ¢ AN
/ dM fo(M, Tage) L(M; Xo)d—M. (59)
0.08 M

We can then immediately see that stars whose main se-
quence lifetime are shorter than the age of the galaxy do
not contribute to the luminosity enhancement since the
factor of L(M)~! in the main sequence lifetime exactly
cancels the factor in the integral. Normalising the in-
tegrals so that the total luminous mass of screened and
unscreened galaxies are identical (this is required in or-
der to account for the fact that more stars have gone
off the main sequence in the unscreened case), we have
performed the integral (58) for dwarf galaxies of mass
Mgar =10'"M, and age Tage =13 Gyt for x¢ in the range
1076-10~%, a range which, as explained above, is not yet
be ruled out observationally. Our results are summarised
in table (I). Table I reveals that the enhancement is

xo |Luminosity Enhancement
1x10~* 42%
1x10~° 42%
5x10~° 29%
1x10~° 3%

TABLE I: The luminosity enhancement in unscreened relative
to screened dwarf galaxies as a function of xo. All values were
computed using oo = 1/3.

significant for yo 2 1079, which, as argued above, we
would expect. The saturation around yo ~107° is due
to the effect of the decreased main sequence lifetime. If
Xo is around this value then, as seen in fig. (2), the
low mass stars are all completely unscreened and so in-
creasing its value further cannot make them any more
luminous. Hence, the luminosity enhancement saturates
around this value. As noted earlier, red giant stars are
still unscreened if xg < 10~% and these stars tend to be
far more luminous than those on the main sequence, see
fig. (3) and so even at these low values of xq it is possible
that there will be a significant effect, for example, galax-
ies that have partially unscreened post main sequence
stars and screened main sequence stars will produce dif-
ferent spectra from those where all stars are partially
screened. This may then allow observational bounds to
be brought down by another order of magnitude or even
further.

It is clear that this analysis is only a first approxima-
tion. We have not included the contribution from stars in
any post main sequence evolutionary phase, nor have we
accounted for any galactic effects such as outflows, dust
obscuration and supernova feedback. In addition to this,
the Eddington standard morel of main sequence stars do
not account for important effects such as convection and
metallicities.
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Despite these shortcomings, we argue that dwarf galax-
ies located in intergalactic voids, which are not subject to
the gravitational potential of nearby galaxies, should be
unscreened whereas those in clusters are not and should
therefore exhibit all of the effects described above. Of
course one cannot hope to observe two identical galaxies,
one screened, the other not, and simply measure the dif-
ference in their luminosity. We would, however, expect
there to be systematic differences between galaxies lo-
cated in clusters and those in voids, of which the extent of
screening can be estimated, which can be used as a test of
these modified theories. By looking for these systematic
differences independent constraints on yg in the range
107%-107% (or possibly lower) can be found. As men-
tioned above, we also expect the unscreened galaxies to
be more metal enriched, and so we expect there to be dif-
ferences in other galactic properties such as the spectra,
colour and magnitude. All of these possibilities are inves-
tigated in a future work [11] using a complete numerical
implementation of both stellar and galactic physics.

V. CONCLUSION

Scalar-tensor theories of modified gravity with screen-
ing mechanisms are an appealing method of accounting
for dark energy and the currently unexplained acceler-
ation of the universe whilst still satisfying solar system
tests of GR. These theories may be described by two
model independent parameters, the enhancement factor
of the additional force ay and xo, which parametrises
how effectively objects can self-screen. In general, if the
Newtonian potential is less than x( then it will be at least
partially unscreened. «ag is of O(1) in any physically in-
teresting theory and most experimental bounds on the
theory come from looking at the values of y( that can be
tolerated by experimental searches for fifth forces.

If one demands that the Galaxy is self-screening then
one must take a value ~ 1076 but it is possible that our
Galaxy is screened by the Local Group and in this case
the bound is relaxed to 10~*. Dwarf galaxies have New-
tonian potentials in the range 10~7 — 10~% so that they
are unscreened in all models satisfying these bounds; they
are hence excellent probes of modified gravity theories.
These rough estimates are based on the notion that main
sequence stars are sufficiently dense to be self-screened.
In the case where the galaxy is screened by the local
group the bound of 10~* does not come directly from this
requirement but from cluster abundances and so tests us-
ing astrophysical effects such as those presented in this
work could improve this bound.

In this work, we point out that main sequence stars
are actually not fully self-screened; sufficiently low mass
stars (and stars in the Giant branches) can and do feel
the effect of modified gravity, provided that their envi-
ronment is not screened. Hence, most stars in unscreened
galaxies evolved very differently from those in screened
galaxies. This means that we can use entire galaxies as



probes of modified gravity. This is a particularly crucial
point — galaxies are many orders of magnitude brighter
than stars and hence probe a much larger domain of space
than stars, opening up the window for testing modified
gravity to much greater length scales and allowing us to
access available large data sets on galaxy spectra.

Using a simple analytic model, we have calculated the
effect of modified gravity with screening mechanisms on
the structure of main sequence stars. There is a sig-
nificant enhancement in the luminosity in models with
Xo = 5 x 1076, In addition to this, the star’s lifetime
can be severely reduced, with unscreened stars going off
the main sequence more than three times as quickly than
an identical screened star. An unscreened dwarf galaxy
should then be far more luminous than one which is iden-
tical but screened. While this is an idealised situation,
there should be systematic offsets between the properties
of unscreened dwarf galaxies in voids and those in clus-
ters who are screened by the potential of other galaxies in
close proximity. It may then be possible to use this offset
as the basis for an observational test of these theories.

We have estimated this enhancement by summing the
luminosity enhancement of the constituent stars in the
galaxy, appropriately weighted by the IMF and account-
ing for stars that have gone off the main sequence since
the galaxy was formed. In the most extreme cases, the
total enhancement can be up to 40%. We have not inves-
tigated the other effects of the reduced stellar lifetime.
Stars that go off the main sequence faster inevitably die
faster and so one would expect unscreened dwarf galaxies
to have hosted many more generations of stars than iden-
tical screened ones of the same age. We therefore expect
systematic differences between the spectra and colour [33]
in addition to the effects described here. These effects
cannot be calculated in our analytic model and we inves-
tigate them computationally in a followup work.

In our analytic treatment, we have made several simpli-
fying assumptions. Firstly, our stellar model does not in-
clude the effects of metallicity or nuclear fusion. The stel-
lar luminosity is degenerate with the metallicity and so
a full analysis should account for stars of varying metal-
licity within the galaxy. The lack of nuclear burning pre-
vents us from calculating the dynamical evolution of the
model and we therefore do not include the effects of dif-
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ferent reaction networks. Since the central temperature
rises in order to combat the increased gravitational force,
these networks may become significant in stars where
they are usually negligible and this has a non-linear ef-
fect on the stellar lifetime that we have not accounted for
here. Other stellar processes such as convection may be
important, however, they are too complicated to include
in any analytic model.

Secondly, our galactic model has not included non-
stellar effects such as outflows and dust obscuration,
which are likely to be important in determining the
luminosity. Nor have we included the effect of post-
main sequence stars, which are often more luminous
than those on the MS. Since we expect these to be
less screened than main sequence stars the effect of
neglecting these is, in fact, to underestimate the galactic
luminosity. In a follow up work, we shall numerically
implement the screening mechanism into computa-
tional models that fully account for the effects we have
neglected here, some of which we have already presented.

To check that our assumptions do reproduce the
gross effects of modified gravity, we implemented the
screening mechanism in a full numerical stellar evolu-
tion code MESA. The results validated our assumptions
and demonstrated the key features of modified gravity
in stellar evolution : higher luminosity, shorter lifetimes,
smaller radii, and higher effective temperatures. Using
these numerical results of stellar evolution, we are con-
structing realistic galaxies and their spectra with the goal
of using them as precision probes of modified gravity.
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[26] Our convention differs from that of [9] (HNS) by g/i2® =
guvs A%(9) = Qp) ™ and Mypp = ¢.

[27] The presence of the trace of the Einstein frame energy-
momentum tensor Ty, = g, T}, comes from a functional
chain rule when we vary the action with respect with ¢. It
is clear since radiation is conformally coupled, T = 0
and hence do not enter into the equation of motion of ¢.

[28] Such “conservation laws” are not true in general, for ex-
ample, if the matter is slightly relativistic or when ob-
servers are highly boosted.

[29] The innocuous nature of this equation tends to hide some
important subtleties. Firstly, the Poisson equation in the
Jordan frame possesses similar additional terms which
can be neglected. In other words, the Poisson equation is
approximately identical in both frames. This is a conse-
quence of our imposition that A(¢) ~ 1. Whilst in gen-
eral this approximation does not have to be true for the
screening mechanism to work, in practice its imposition
allows us to treat non-relativistic matter fields in a sim-
ilar way in both frames. In other words, dust behaves
more or less like dust in both frames etc. although they
are, of course, sourced differently by the energy density
defined in their respective frames. Secondly, as an aside,
note that second order terms with time derivatives do
not appear in this equation due to our assumption that
the system is static.

[30] One can also imagine non-trivial couplings of the scalar
to other degrees of freedom such as ¢F,,, F*¥ where F},,
is the electromagnetic field strength tensor, which would
then change the other equations. We will not consider
such couplings in this work although such couplings do
indeed exist [25].

[31] This is a polytrope of index n = 3 which usually is a
very good description of a radiation supported star. In
addition, standard stellar structure notation uses § for
fractional gas pressure support. Here, we use b instead in
order not to confuse it with the modified gravity force
coupling function. Other polytropic indices have been
considered in the literature and our method and results
generalise in a straight forward manner to these cases,
however, for simplicity we present only the specialised
case of n =3
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[32] In principle, since the physics of gravitational collapse is
expected to be encoded in the IMF, modified gravity may
change its functional form. However, we do not attempt
to investigate this here since the IMF is empirical and
there is no known successful derivation either analytically
or numerically of this function from known principles.

[33] One could say that chameleons change the colour of
galaxies.

Appendix A: Specific Screening Mechanisms
1. Chameleons

First proposed by Khoury and Weltman in 2003 [15],
chameleon fields typically have a run-away potential such
that V' — 0 as ¢ — oo (one standard paradigm being
V(¢) = M**t™/¢™) and a monotonically increasing cou-
pling function of the form

A(p) = P (@) Mpr (A1)
3 is usually assumed to be of O(M,,), corresponding to a
gravitational strength force however 5 > 1 is not neces-
sarily ruled out by current experimental bounds [18, 19].
In the standard case B(¢) = B¢ where [ is a constant,
however more complicated couplings have been consid-
ered [20-22].

With this choice of potential and coupling function, the
field value that minimises the effective potential shifts to
smaller field values in high density regions as shown in fig.
(A'1). The chameleon screening mechanism relies on the
effective mass being much larger in high density environ-
ments compared with the cosmological value and hence
the fifth force being incredibly short ranged. This can
be seen to be the case in fig. (A 1). It is this “blending
in with its environment” that gives rise to the particles
name. In practice, this screening requires the chameleon
to sit at the minimum of its effective potential through-
out the majority of the interior of the over density and
varying only in a thin shell near the surface. This is hence
known as the thin shell effect.

2. Symmetrons

Symmetron fields [13] rely on local symmetry restora-
tion as a method of screening and avoiding fifth force
constraints. They are characterised by a Z, invariant,
symmetry breaking potential

1 1
V(6) = — i+ 1A 1O, (A2)
with © > 0 and a coupling (also Zg invariant)
A@) =1+ 5356" + O(6") (43)
2M?2 ’

which are both invariant under the symmetry transfor-
mation ¢ — —¢. We note that the potential and coupling
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FIG. 4: The chameleon effective potential (solid line) for small
and large local densities. The dashed lines show the contri-
bution from the potential and the dotted lines show the con-
tribution from the coupling.

need only take this form in the vicinity of the minimum,
and may have a more complicated general form at field
values far away from this region. The potential eqn. (A2)
should hence be viewed as an effective field theory valid
at low energies. The requirement that the symmetron
force be comparable with that due to gravity in vacuum
tunes the parameter A ~107% and so the effective field
theory is valid for all regimes of interest. The effective
potential is then

1/ p 1
Vg _ - (7 _ 2) A 4
and thus the symmetry is restored in sufficiently dense
regions such that p > p2M?2. In high density regions of
space-time the field’s vacuum expectation value (VEV),

¢vev = 0 whilst in low density regions (i.e. cosmologi-
cally), we have

(A4)

PVEV R +t

o (A5)
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The coupling function A3 then gives the leading order
coupling of small perturbations around this VEV to mat-
ter as

Mpiovev

B(pvev) = 2

(A6)

Evidently, the coupling is proportional the local VEV and
is hence zero in dense enough regions such that the sym-
metry is restored but is strong when the density is small
enough that the symmetry is broken. The symmetron
parameters are chosen such that the symmetry is broken
in our recent history in order to enter the epoch of dark
energy domination at a similar time and avoid the coin-
cidence problem. This requires fine-tuning of the mass
scales M and y such that H3Mp,?> ~ p?M?. In addition
to this we require M < 10_4Mp1 in order to satisfy local
gravity constraints. Unlike the chameleon and the en-
vironmentally dependent dilaton (described below), the
symmetron cannot account for the vacuum energy den-
sity today. The vacuum energy at the symmetry broken
minimum is of order HZ M? < HZM,? and so it is nec-
essary to add a constant vacuum energy to the potential
in order to reproduce the correct cosmic history.

3. The Environmentally Dependent Dilaton

The environmentally dependent dilaton[7], is an en-
vironmentally dependent generalisation of the Darmour-
Polyakov mechanism[23] that arises from string theory
in the strong coupling limit. The starting point is the
four dimensional low energy effective action in the string
frame

MpIQR + Z(¢)

Al 2= 5

V. oVhe —V(0)

S:/d‘ix\/fg

+ Sm W)u g,ul/a gi ((b)]v

(A7)

where ¢ is the dilaton, I, is the string length scale (I ~
M; ! with M; the string scale), and we have allowed the
coupling constants to contain some dilaton dependence
not induced by the coupling function A. It has been
argued [24] that the functions appearing in A7 take the
following form in the strong coupling limit:

V(g) ~ Voe™® + O(e??) (A8)
2 2
Z(@) ~ =3 +bze 0 +O0(),  (A9)
12 ~ _i2 +bie=? 4+ O(e™%), (A10)
9; 9;

with ¢i = M,/Mp > 1 and A ~ O(1)-O(c1). Ap-
plying this and making the conformal transformation



Gy = A?%($)g, we obtain the Einstein frame action

2
- [ ateg[MR

+ Sm[\pia gul/a gl((b)]a

M2k (9)V .0V b — V(9)

(A11)

where

dlnA
89) =35

and V(¢) = A*V(¢). Note that the field is dimension-
less in this model, forcing us to change the definition of
[ relative to the standard case. The non-canonical ki-
netic term modifies the equations of motion, which (if
the contribution from the coupling constants is small) is

K(6) ~ — +38%(8);

~ (A12)

% = s V@) AOA Vo)
_ 1 dVeg
B 2Mp12 d(p
(A13)

which then defines the effective potential

Verr(p) = VoA e™® + pA(9). (A14)
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We assume that the coupling function has a minimum at
some ¢ = ¢q so that near ¢y we have

A
A(¢) =~ 1+ 7@5 — ¢0)* (A15)
with Ay > 1 but A2(¢ — ¢0)?/2 < 1. These conditions
are required in order to satisfy experimental constraints
[7]. Minimising the effective potential and setting A(¢) ~

1, we have

V067¢min

B(Gmin) = A2(dmin — o) = DT AVye B

(A16)

and thus in high density environments, the coupling func-
tion tends to zero, whilst in low density environments
B — 1/4. Next, we must worry about the strength of the
fifth force, which, using the non-canonical expression for
the force enhancement is

X*B%(¢)

a(p) = Wy

(A17)

where we have used eqn. (A12). In this case, the theory
is screened in high density environments, a(dmin) — 0
whilst in the opposite limit a(¢) — 1/3 for p — 0 where
minimising the effective potential is equivalent to min-
imising the potential alone.



