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We describe a general approach to detection of transienitgtianal-wave signals in the presence of non-
Gaussian background noise. We prove that under quite deoaditions, the ratio of the likelihood of observed
data to contain a signal to the likelihood of it being a noisetfiation provides optimal ranking for the candi-
date events found in an experiment. The likelihood-ratitkiag allows us to combine different kinds of data
into a single analysis. We apply the general framework topttedlem of unifying the results of independent
experiments and the problem of accounting for non-Gausasitifiacts in the searches for gravitational waves
from compact binary coalescence in LIGO data. We show analiyt and confirm through simulations that in
both cases applying the likelihood-ratio ranking resuitan improved analysis.

I. INTRODUCTION magnetic effects, can lead to artifacts in the time seria$ th
are neither gravitational waves nor stationary, Gaussisen
The detection of gravitational waves from astrophysicalMPerfectionsin hardware can lead to unwanted signalssin th
sources is a long-standing problem in physics. Over the paé'ﬂ“e series that originate from auxiliary control systems.
decade, the experimental emphasis has been on the construcTo help identify and remove these unwanted signals, instru-
tion and operation of kilometer-scale interferometriceget Ments have been constructed at geographically separégsd si
tors such as Laser Interferometer Gravitational-wave Gbseand the data are analyzed together. A plethora of diagnos-
vatory (LIGO) [1]_ The instruments measure the straift), tics have also been developed to characterize the quality of
by monitoring light at the interferometer’s output port,iath  the datal[5H7]. Searches for gravitational waves use more
varies as test masses that are suspended in vacuum at the eHti just the filtered output of the time-seriegt), to sepa-
of orthogonal arms differentially approach and recede by mirate gravitational-wave signals from noise. Moreover,rae
nuscule amounts. The strain signg(), is a combination of ~sponses from various filters indicate that the underlyingao
noise,n(t), and gravitational-wave signai(t). sources are nqt C_;aussian, even after substantial datf_iyquali
There is a well established literature describing the analyfiltéring and coincidence requirements have been applied.
sis of time-series data for signals of various types [2]séhe  In this paper, we discuss using likelihood-ratio ranking as
methods have been extended to address gravitational-vgave @ unified approach to gravitational-wave data analysis. The
tection [3]. This approach usually begins with the assumpapproach foregoes the stationary, Gaussian model of the de-
tion that the detector noise(t), is stationary and Gaussian. tector noise. The output of the filters derived under that as-
Then one proceeds to derive a set of filters that are tuned tsumption becomes one element in a list of parameters that
detect the particular signals in this time-series data. fEae characterize a gravitational-wave detection candidéte. dle-
sult is both elegant and powerful: whitened detector noisdection problem is then couched in terms of the statistiozhp
is correlated with a whitened version of the expected signagrties of am-tuple of derived quantities, leading directly to a
The approach has been used to develop techniques to seatielihood-ratio ranking for detection candidates. Théuple
for gravitational waves from compact binary coalescersme, i can include more information than simply the signal-toseoi
lated neutron stars, stochastic sources, and generishuitht  ratio (SNR) measured in each instrument of the network. It
certain time-frequency characteristics [4]. can include measures of data quality, the physical paramete
This approach takes the important first step of designof the gravitational-wave candidate, the SNR from the coher
ing filters that properly suppress the dominant, frequencyent and null combinations of the detector si_gnals; _it can in-
dependent noise sources in the instrument. The simplicitglude nearly any measure of detector behavior or signatqual
of the filters is due to the fact that the power-spectral denty-
sity fully characterizes the statistical properties ofistzary, This approach was already used to develop ranking or de-
Gaussian noise. However, interferometric detectors aneepr tection statistics for compact binary coalescence sigjgas
to non-Gaussian and non-stationary noise sources. Envirdh0] and is at the core of a powerful coincidence test devel-
mental disturbances, including seismic, acoustic, anctrele  oped for burst searches [11]. See alsd [12] for discussion of



Monte-Carlo simulations and Bayesian techniques in search which is non-informative, can be interpreted as reduced,dat
for gravitational-wave bursts. ¢ = (p,m1,m2). At the next stages, other quantities are
This work presents a general framework for the likelihood-computed for these candidate events, e.g. chi-squareotest f
ratio ranking in the context of gravitational-wave detenti consistency with the signal waveform, difference in estada
We explore its analytical properties and illustrate itscticaal ~ time of arrival of the signal at different detectors etc.d dime
value by applying it to two data analysis problems arising indata vector¢, can be extended. All of these parameters char-
real-life searches for gravitational waves in LIGO data. acterize candidate events and provide information thabean
used to distinguish genuine gravitational-wave signadenfr
non-Gaussian noise artifacts.
Il.  GENERAL DERIVATION OF LIKELIHOOD-RATIO Some of the key questions one faces when trying to make
RANKING use of this information are: What is the most optimal way of
using the vector of parameters of the candidate evgrfor
Let then-tuplec denote the observable data related to onesignal detection? Can one construct the optimal rankirigsta
candidate event in some experiment that aims to detect a sige for  ? Could detection efficiency of the search be reduced
nal denoted byh. This signal can usually be parametrized if one were to increase the mass range covered by the template
by several continuous parameters that may be unknown, fagaveforms or add another parameter characterizing catedida
example distance to the source of gravitational waves and itevent and thus increase dimensionality of the detectioh-pro
location on the sky. We impose no restriction on the nature ofem? What if some parametersdnare useless for detection
the observable dat&,. In particular, it can include readings purpose, does using them imply less efficient search? If the
from different detectors, information about the qualitydata  noise or sensitivity of detector varies with time, what wbul
and the environment etc. The purpose of the experiment is tge the optimal detection strategy in this case? Can one com-
identify the signal. Depending on whether a Bayesian or frepare significance of the candidate events identified atrdiffie
guentist statistical approach is taken, this is statedrimgenf periods or experiments and combine their results?

either the probability that the signal is present in the @ata | what follows we show that these questions can be made
the probability that the observed data are a noise fluctuatio \ye|| defined and be answered within the likelihood-ratio
In this section, we show that both approaches lead to rankyamework. We should highlight, though, some of the subtle

ing candidate signals according to the likelihood ratio issues and often implicit assumptions that are commordgari
(@ h. Dok | 1) dh in practical .appllcatlons and that are already co.ntamennm
A(@) = Jp(@]b, H)p( D , (1) example. First, note that the mass parameters, in our exampl
p(€10) appear in both the signdh, and the observed data, In the

wherep(¢ | h, 1) is the probability of observing in the pres- €ase of the signa_l, they are masses of compact objects in the
ence of the signa, p(h | 1) is the prior probability to receive b!nary, whereas in the case of the observed data or the can-
that signal, ang(¢ | 0) is the probability of observing inthe ~ didate event, they are masses of the template waveform that
absence of any signal. The higher a candidatei@lue, the ~Matched the data time serie¢t), with high SNR. Itis impor-
more likely it is a real signal. tant to distinguish betw_eer_l the two sets of masses, _beoause i
We consider the most general case. As a consequence, WENeral they do not coincide. The same logic applies to any
use an abstract notation for the key quantities, the obbkrva Other parameters that may appear in botndc’. The space
data,Z, and a signal, without specifying their precise nature. ©f Signal parameters and the space of candidate event parame
For clarity, it is worth to illustrate how they can be consted  t€rs are disjoined. Mapping between the spaces is induced by
using a real-life example. For this purpose we consider thé1€ conditional probability distribution(e | h, 1).
problem of searching for a gravitational-wave signal from Another important point to be aware of is that optimization
compact binary coalescence. The sigigld., \;), in this  is performed within the constraints set by the choice of the
case, is described by a set of intrinsic paramefers: masses Observed data;, and of the targeted signdl, The ideal data
and spins of the compact objects, and a set of extrinsic paramset would consist of all data points in the time series reedrd
ters,\. — luminosity distance, location on the sky, orientation by the detector and all other auxiliary data describing taes
of the binary and time of coalescence. The starting poiriteft Of the detector and the environment. In practice, one has to
search for such a signal is to match-filter the time-seri¢s, da work with a reduced data set which inevitably results in some
s(t), with a bank of template waveforms which typically de-information loss. One of the tasks of a data analyst is to find
scribe inspiral stage of coalescence of non-spinning Ccmpathe best possible reduced data set. One, then, can construct
objects and cover a range of masses expected to contain tRgtimal ranking for the given reduced data that makes use of
targeted signal. The filters are derived using Gaussian modéll available information.
for the detector noisey(t), and include analytical maximiza-  Similarly, the choice of the targeted signals specified by
tion over the unknown extrinsic signal parametexs, The p(h|1) constrains the process of optimization. The ideal
times when one of the template waveforms produce appreciahoice forp(h | 1) is the one that corresponds to the true astro-
ble SNR,p, (usually exceeding a predefined threshold valuephysical distribution of the parameters of the sources afgr
are recorded together with masses of the template waveforntational waves (e.g. compact binary coalescence) in tlie un
(m1, m2), and constitute an initial list of the candidate eventsverse,p.«iro(h|1). Only in this case the ranking defined by
Parameters of these candidate events, with exception ef tinthe likelihood-ratio, Eq[{1), is optimal. In the absenceef-
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fect knowledge op.sro(h | 1) One has to rely on an approxi-  As before, let the:w-tuple & denote the observable data for
mate model or a guesg.ode1(h | 1). Thus, strictly speaking, a candidate event arld the signal that is the object of the
optimality is achieved only for the population of sourceatth search. Without loss of generality, any decision-makimgpal
match the model distributiop,,.qc1(h | 1), used to define the rithm can be mapped into a real functigif¢), of the data that
likelihood-ratio ranking. If the model distribution doestn signifies detection whenever its value is greater than oalequ
match the astrophysical one, the ranking is sub-optimal- Ne to a threshold valuef™. Thus, using the Neyman-Pearson
ertheless, unless the model distribution is completelyngro formalism, an optimal detector is realized by finding a func-
or internally inconsistent, this is the most reasonabldista  tion, f(¢), that maximizes the probability of detection at a
point for data analysis. The model fpr0qc1(h|1) can be  fixed value of the probability of false alarm. The probailit
corrected as more knowledge about astrophysical disioibut of detection,P, is

is acquired. Everywhere in this paper, we assume that tkee tru

signal distribution is faithfully represented by the mode-  p _ O (f(&) — F*)p(¢ | h,1)p(h|1)p(1) dhde
tribution. Va W @

and the probability of false alarth Py, is
A. Bayesian Analysis
_ N _ Py= [ ©(f(¢) = F*)p(c|0)p(0) de, (%)
In this approach, we compute the probability that a signal Va
is present given the observed candidate evg(it| ¢). By a

straightforward application of Bayes theorem, we write wherelj, identifies the subset of signals targeted by the search,

V4 denotes the subset of accessible data and integrationis per
. p(@]1)p(1) formed over all signalsh, and data points7, within these
p(l]¢c) = @ D)p(1) + p(@]0)p(0) subsets. Treating’, and P as functionals off (¢), we find
P ?p(g “f 1)p(]f| 1)p(1) dh that for an optimal detector, the variation of

~ Jp(@ [0, D)p(h [ 1)p(1) dh + p(Z [0)p(0) S[f(@)] = Alf(@)] = lo (Rlf(E)] - PT) (6)

wherep(0) is theprior probability that the signal is absentand should vanish. Herg denotes a Lagrange multiplier aftiis
p(1) is theprior probability that there is a signal (of any kind). a constant that sets the value of the probability of falsevala
These two outcomes are assumed to be mutually exclusive arthe variation of Eq.[{6) with respect (&) gives
exhaustivep(0) + p(1) = 1. The denominator re-expresses

, (2

p(¢) in terms of the two possible independent outcomes: the., oy ~
signal is present or the signal is absent. Upon successiire di "~ Vf (f(e) = F7)of(c)
sion of numerator and denominator pg¢ | 0) andp(1), we
find | [ ot pml o)~ 1@ 010) ac.
Vh
S A(e
p(1]8) = 1) @) Y

A(€) +p(0)/p(1) - _ , ,
o ) ) ) . o Variationsd f (¢) at different data points are independent, thus
which is a monotonically increasing function of the likeltd  jmplying that after integration ovet, the condition
ratio A defined by Eq.[(]lm. Hence, the larger the likelihood
ratio, the more probable it is that a signal is present. *
P gnalis p [p(é [, Dpb | Db lop(0) _ o g
p(c[0) p(1)

B. Frequentist Approach must be satisfied at all point$ for which the argument of the

) delta function satisfies the condition
The process of detection can always be reduced to a bi-

nary “yes” or “no” question—does the observed data contain f(*) —F*=0. (9)

the signal? An optimal detection scheme should achieve the

maximum rate of successful detections—correctly givers®ye This latter condition defines the detection surface sejparat
answers—with some fixed, preferably low, rate of false atarm the detection and non-detection regions. Note thaf @9

or false positives—incorrectly given “yes” answers. Tlgs i varies, the shape of this surface changes accordingly.eTher
the essence of the Neyman-Pearson optimality criteriader d fore, Eq. [8) implies that the optimal detection surface bas
tection, which states that an optimal detector should maxihe surface of the constant likelihood ratio defined by tlie le
mize the probability of detection at a fixed probability ofsfa

alarm [13].

2 This is similar, but not exactly equal, to tfase-alarm probabilityor Type
I error, which assumes the case where no signal is present, thateks ot
1 This ratio of likelihoods is also known as tBayes factor include the ternp(0).



4

hand side of the equation. This result is known as Neymarsurfaces of constant likelihood rati§,. Functionals for the
Pearson Lemma [13] for simple hypothesis testing (e.g. sigprobabilities of detection, Eqf](4), and of false alarm, {&).
nal with all its parameters known) and is generalizing itte t can be written as
case of composite hypotheses (e.g. signal which parameters )
are not known or uncertain). It was also found earlief ir [12] P = /
where a proof, albeit very different from ours, is outlingd. 0
Eqg. (8) is the only condition on the functional form $fc). and
Variation with respect td#* does not give a new condition, oo
whereas variation with respect to the Lagrange multipligr, Py = / dA/ OA—A)p(C|0)p(0)dSr, (13)
simply sets the probability of a false alarm to Be.A 0 Sa

A natural way to satisfy the optimality criteria is to use the where, for brevity, we absorbed explicit integration in the

A [ O(A-A)pE | p()dSy,  (12)
Sa

likelihood ratio space of signald/,, in the producp(c | 1)p(1). Py is a func-
- tional of Vg and A*. Since the latter is determined by the

A(E) = Jp(@]h, E)p(h 1) dh (10)  value chosen for false alarm probabili, = P*, and the

p(c]0) probability of false alarm also depends &, variations of

Va andA* are not independent. To find the relation, we vary

or any monotonic functiorf (A(¢)) for ranking the candidate the probability of false alarm

signals. With this choice, the optimality condition EQ] (8)
satisfied for any threshold#*. The latter is determined by the e
choice of an admissible value of the probability of falserala 0Py = — /0

P*, through

dA | 6 (A—=A")p(c|0)p(0)6A" dSy
N (14)
+ O (A —A")p(@|0)p(0)dSx dA.

Bolf(A(@))] =P (11) /0 ( JPElomo)

We consider non-negative variations of surfaces of comstan

likelihood ratio,d.S,, that correspond only to the addition of

new data points td/y, and therefore correspond only to an

extension of surfacesy,, without an overall translation or
The likelihood ratio defined by E4.](1) is guaranteed to maxchange of shape.

imize the probability of signal detection for a given search The probability of false alarm should stay constant, there-

Because optimization is performed for a fixed regitiy, in  fore its variation should vanish, providing the relation

Eq. (4) and Eq.[{5), defined by all allowed values of a candi- - =

date’s parameters;, in the search, it is unclear whether in- SAF = Jo © (A —A")p(e]0)4Sx dA (15)

creasing the volume of available data (e.g. extension of the fSA*p(é |0)dSa~

bank of template waveforms) would not result in an overall . . .
decrease of probability to detect signals. For example, onblext, we vary the functional for the detection probability

C. \Variation of efficiency with volume of search space

may be apprehensive of the potential increase in the rate of . .

false alarms solely due to extension of the searched parame- 9F1 = — A*/ p(¢[0)p(1)6A™ dSa-

ter space}/y. Do not confuse this with possible expansion of OOSA* (16)
the set of targeted signalsj,, on the space of signal param- +/ O (A — A*) Ap(Z|0)p(1)55, dA

eters. Here we keef, fixed and vary onlyj. Intuitively, 0

having more available information should not negatively af;yere we use(@ | 1) = A()p( | 0), which follows from the

fect the detection probability or efficiency if the inform@at  yafinition of the likelihood ratio. EliminatingA* by means
is processed correctly. In what follows, we prove that this i ¢ Eq. [I5) and re-arranging terms we get

true if the likelihood ratio is used for making the detection -
decision. . N
To prove that the detection efficiency does not decrease 0P = p(l)/o O (A=A (A= A7) p(@[0)55n dA,
when the range of candidate’s parametérss increased, we (17)
must show that the variation 6, /6V; at a fixedP, is non-  which is non-negative for all positivéS, by virtue of
negative. Consider a foliation of the space of dafa, by © (A — A*) (A — A*) > 0. This proves that if the likelihood-
ratio ranking is used in the detection process, the proibabil
of detection can never decrease during an extension of the vo
ume of available data.
3 We thank the referee for bringing to our attention this wdrittwe have
not been aware of at the time of working on the manuscript.

4 In the case of the mixed data, whérincludes continuous as well as dis- D. Variation of efficiency with dimensionality of search spae
crete parameters, integration in the expressiong”joand Py should be
replaced by summation wherever it is appropriate. This doésffect the ) . )
derivation or the main result. The notion of optimal detattsurface de- Another way of changing the space of dala, is by in-
fined by Eq.[(B) is straightforward to generalize to includéhicontinuous  cluding a new parameter describing a candidate event to-the n

and discrete data. tuple. This changes the dimensionality\df fromn ton+1.
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A new parameter may carry very important extra informationon disjoint times. In Section IlIB, we demonstrate how the
about the candidate events which can help to distinguigh trulikelihood-ratio ranking can improve analysis efficiency b
signals from noise artifacts, or it may be completelyivale  accounting for non-Gaussian features in the distributioins
in the context of detection. Whatever the case might be, onparameters of the candidate events.
can show that incorporation of new data dimensions in the
analysis, can never result in decrease of efficiency as leng a
the likelihood-ratio ranking is properly constructed arsgd. A. Combining disjoint experiments
This statement agrees with the intuitive notion that hawag
cess to more data dimensions and, therefore, to more informa One complexity that arises in real-world applications is th
tion should only improve the analysis. necessity to combine results from multiple independeneexp
Suppose the data tuple is extended by addingew param- iments. For example, gravitational-wave searches are ofte
eters¢’ = (€, Tn+1, Tnt2, - - - Tnem)- The conditional prob-  thought of in terms of times when a fixed number of interfer-
ability distributions for observing in presence or absence of ometers are operating. If a network consists of instruments
a signal can be expressed in terms of corresponding prebabihat are not identical and located at different places, eaoit
ity distributions for¢’ marginalized over the added parame-bination of operating interferometers may have very differ
ters: ent combined sensitivity and background noise. Times when
three interferometers are recording data may be treatéat-dif
p(¢|1) = /p(é",xn+1,xn+2, cTpgm | 1)d™E, (18a)  ently from those when any pair is operating. Ideally, these
experiments would be treated together accounting for diffe
p(Z]0) = /p(E’,xn+1,wn+2, .. Tnam |0)d™Z. (18b)  €nces in detectors’ sensitivities and background noisben t
ranking of the candidate signals, but it is often not pradtic

Using Eqgs. [(IB) the original probabilities of detection,(See how this problem was addressedLir [10]). In this sec-

Eq. (@), and of false alarm, Ed.](5) for detection problem intloln,tyve sthcl\;]v.that tgf Ilkellhr?_oﬁ—.ratlo rankltng ﬁﬁe(s a_llura:
n-dimensional space of data can be written as integrals ovet> U1on 1o this problem, which IS conceptually simiiar o a

i : . simplified approach taken i [11.0].
extendedn +m)-dimensional data space: Consider a situation in which the data is written@as=

(cf,j), wherej = 0,1, 2,... indicates that the data arose from

_ N AR\ (= S an experiment covering some time inter%al Note thatZ; N
= V,G (A(@) =AY p(e’[Dp(1)de”, (19) T; = 0if j # . The probability that a signal is present given
‘ the data is
and >
p(1]d ) = Jp(d, j|h, p(h|1)p(1) dh _
Po= [ ©(A@) —A)p@'[0)p(0)de’,  (20) Jp(d; 0, 1)p(h | 1)p(1) dh + p(d. j REON
Vi

. . " The conditional probabilities for the observed data caruipe f
whereV; is extension o¥/y by addition of the new parameters. o, expanded as

Note thatA(¢) = p(¢'|1)/p(¢ | 0) is a function of¢’ only. In- . .

terpretingP; and P, as probabilities of detection and of false p(d,jh,1) =p(d]j,h,1)p(j|h,1), (22)
alarm for the search that uses+ m)-dimensional data vec- PN T .

tor, ¢’, and invoking the regflts of optimization analysis of p(d,j]0) = p(d]3,0)p(7]0), (23)
Sectior1IB, we conclude that(¢) is either sub-optimal or where we introduce(j | h, 1) andp(j | 0)—the probabilities

at best matches performance of the optimal ranking statistifor a candidate event to belong to t}i¢ experiment in pres-

in (n + m)-dimensional space\’(¢’), in some special cases. ence or absence of a signal respectively. It is reasonable to
This in turn implies that addition of new data dimensions canassurmé that p(j | h,1) = p(j|0), which implies that the
either improve the search, via applying more optimal ragkin time intervals for experiment§,;, were defined without prior
A’(¢") in higher dimensional data space, or has no effect ofknowledge of when a signal is to occur. In this case, both
efficiency. One of the special cases when addition of new pgrobabilities drop out of Eq[(21), and the expression fer th
rameters has no effect is situation whet{c’) = A(¢). In  probability of a signal to be present in the data can be writte
other words, when thén + m)-dimensional likelihood-ratio, as

A’, does not vary with respect to any of the new parameters. It - Ay 4)
can happen when these parameters are either completély irre p(1]d,j) = S— , (24)
evant to the detection problem or are functions of some (all) Aj(d) +p(0)/p(1)

of the parameters id.

5 This is not strict equality. Gravitational-wave events atiar the amount of
. APPLICATIONS live time in experiments to detect them. For example, art atgrmds |n_the
LIGO and Virgo control rooms when gamma-ray bursts are giedieavhich
sometimes accompany CBCs. The alert prompts operator®io @wutine
In Sectior 1T A, we apply the formalism of Sectibi Il when  maintenance and hardware injections, with their assatidéadtimes, for

assessing the significance of triggers between experimentsthe following forty minutes.
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with the likelihood ratioA ; (d) given by

A, (CZ) _ fp(fﬂ J,h, p(h)dh . (25)

p(d]J,0)

Comparing Eq[(24) with Eq[13), we conclude that the like-
lihood ratioAj(cf), evaluated independently for each experi- p(p,x[0) =B
ment, provides optimal unified ranking. In terms of theiehk
lihood ratios, data samples from different experimentstmzan "o 1
compared directly, with differences in experiments’ stvisi
ties and noise levels being accounted forgy | j, h, 1) and

p(p,x[0) = Ap exp(—p?)

1o [N

p(d|34,0). FIG. 1. Graphi i i

. . . . L1 phic representation of the model backgroundibligton
Following the s_teps outllned n S.ectllﬁ_[l B, the same re_su"of Eq. [27) fora = 2.0. Shaded areas define the regions of non-zero

can also be attained by direct optimization of the combineggpapiity.

probability of detection at the fixed probability of falseah.
Optimality guarantees that the results of the less sengitiv

periment can be combined with the results of the more sensi- | this section, we consider a toy problem that mimics the
tive experiment without loss of efficiency. In this approach properties of the compact binary search but demonstrates ho
a unified scale provided by the likelihood ratid;(d ), is ex-  the likelihood-ratio ranking matches our intuition. Feliog

plicit because, by construction, the same threshbidjs ap-  that example, we present the results of a simulated compact
plied to all data sampled\* is determined by the value of the binary search and demonstrate that the ranking statissiecba
probability of false alarm for the combined experimentggiv  on the likelihood ratio accounts for non-Gaussian featires

by background distribution and improves search efficiency.
Po= Y [© (As(d)~ &) i@ 5.000(i | 0}p(0) 4,
; 1. Toy Problem
(26)
which makes the whole process less trivial. Notice tiat 0) Consider an experiment in which the data that define a can-

(that can be approximated &/ >, T;) appears in the ex- didate areZ = (p, z), wherep is the SNR and: is the extra
pression forP, however it does not appear in the expressiorparameter describing the data sample (e.g. the chirp mass of
for the likelihood ratio given in EQL{(25). Singg&; |0) is pro-  the template waveform). Suppose the distribution of the dat
portional to the experiment duratioffy, each experimentis in the absence of a signal is

weighted appropriately in the total probability of falserah.

In a similar fashion, experiment durations appear in theesq p(p,z|0) =Apexp(—p*)O(2)O(1 — )

sion for the combined efficiency or the probability of deieiat + BO(z +1)0(—2)0(p)O(a — p) .
for the combined experiment.

(27)

Figureld provides a graphic representation of this distigipu
o Notice thatp(p,z|0) = 0 for z < 0 andp > «, therefore
B.  Combining search spaces data(p, z) in this region of the plane indicates the presence of
a signal with unit probability. This intuition is clearly bwe
Sophisticated searches for gravitational-wave signaisifr out in the above analysis since
compact binary coalescentel[10, 14-16] have been developed
over the past decade. The non-Gaussian and non-stationary (h|p,z) = p(p; x| h)p(h) -1 (28)
noise is substantially suppressed by the application @ftins PRLA p(p,z|h)p(h) +0
mental and environmental vetoe5[[5—7], coincidence batwee
detectors, and numerous other checks on the quality of pdier {(p,z) |z < 0andp > «}, compare this equation with
tative gravitational-wave signals. Nevertheless, the mem Eq. (2). The likelihood ratio for these data points is infnit
of background triggers as a function of SNR depends on théeflecting complete certainty that the data samples fros thi
masses of the binaries targeted in a search. For this reasd@gion are signals.
triggers have been divided into categories based on thp chir
mass, M, of the filter's template waveform that produced the

trigger (whereM = ((mym2)3/(m1 + mz))'/® andm, and 2. Simulated compact binary search
meo are the masses of the compact objects in the binary). The
background is a slowly varying function o1, falling off For the purpose of simulating a real-life search we use data

more rapidly, as a function of SNR, for smaller values\df ~ from LIGO’s fourth science run, February 24—March 24, 2005.
This is a manifestation of non-Gaussianities still presetitie = The data was collected by three detectors: the H1 and H2 co-
data. It is desirable to account for this dependence whéa ranlocated detectors in Hanford, WA, and the L1 detector in Liv-
ing candidates found in the search. ingston, LA.



The search targets three types of binaries: neutrois normalized by2p — 2, the number of degrees of freedom for
star—neutron star (BNS), neutron star—black hole (NSBHjhis test.

and black hole-black hole (BBH)._ To model 5|gnalls from  pj steps in the analysis beyond calculation of the SR,
these systems, we use non-spinning, post-Newtonian wavgre designed to remove non-Gaussian noise artifacts. Exper
forms ETJE_ZV] that are Newtonian order in amplitude and seGapce has shown that if properly tuned, these extra stepi§-sign
ond order '”ﬁgase' calculated using the stationary phase gpantly reduce the number of false alarms [28]. Yet typigall
proximation [18[ 25, 26] with the upper cut-off frequency se the resulting output of the analysis is still not complefiege

by the Schwarzschild innermost stable circular orbit. We-ge of instrumental artifacts. Triggers that survived the fiipes
erate three sets of simulated signals, one for each type of Qi) tests include unsuppressed noise artifacts. Thege
nary. The neutron star masses are chosen randomly in thgrmalism developed in Sectidd Il can be applied to further
range 1-3V/, vyhlle the blagk hole masses are restricted §ucrb|assify these triggers with the aim of optimally sepamgiy-

that the total binary mass is between 2-8%. The maxi- a5 from the noise artifacts. Each trigger is charactdrize
mum allowed distance for the source systems is set to 20 Mpg vector of parameters which, in addition to the combined ef-
for BNS, 25 Mpc for NSBH and 60 Mpc for BBH. These factive SNR ., may include the chirp masa/, difference in
distances roughly correspond to the sensitivity range ef thine time of arrivals at different detectors etc. Such infation
detectors in this science run. All other parameters, inolid = 55 which detectors detected the signal and what was the data
the location of the source on the sky, are randomly samplegyyality at the time of detection can be also folded in as a dis-
The simulated signals are dlstnbuted_umformly in dls'&mn crete trigger parameter. For such parametrized data, tie pr
order to representrealistic astrophysical populatiohwiob-  apjjity distributions in the presence and absence of a signa
ability density function scaling as distance squared, e S can pe estimated via direct Monte-Carlo simulations. These
ulated signals are appropriately re-weighted and are edunt yjstriputions, if estimated correctly, include a non-Gsias
according to their weights. The simulated signals from eaCQomponent. The triggers are ranked by their likelihoocsati

set are injected into non-overlapping 2048-second blo€ks OEq. 1), which results in the optimized search in the paramet
data and analyzed independently. space of triggers.

Analysis of the data is performed using the low-mass

L . Extra efficiency gained by additional processing of the-tri
CBC pipeline [1D] 14-16, 28]. It consists of several stages. Y9 y pre 9 9
First, Itohr(; time-series data recl)rded by each interferm’aeﬁaeg gers depends strongly on the extent to which the non-Gaussia

match-filtered with the bank of non-spinning, post-Ne i features of the background noise are reflected in the distrib

template waveforms covering all possible binary mass cembpon of t_he trigger parameters. In the context of the searc_h
nations with total mass in the range 2—B5,. The template or gravitational waves from compact binary coalescence in
waveforms come from the same family as the simulated sigﬁIGO data, the chirp mass of a trigger's template waveform

nal waveforms previously described. When the SNR time s sone Of the parameters that exhibits a non-trivial baokgcp
ries for a particular template crosses the threshold of &.5, distribution. For a given\, the number of background trig-

single-interferometer trigger is recorded. This triggethien gers falls off with increasing combined effective SR, of

subjected to waveform consistency tests, followed by ansi thhehtrlgghe_r. The rateﬂof Igllog]sfsl(ivtvhertfor tegplatgs with
tency testing with triggers from the other interferometdis Igher chirp mass, refiecting the fact that non-Laussiasenol

be promoted to a gravitational-wave candidate, a signa-is rar_tifacts are more I_iker to generate a trigg_er for t‘?mmate
' with smaller bandwidth. Another important piece of informa

quired to produce triggers with similar mass parameters in a. . X
least two interferometers within a very short time windoet (s at|on about_a trigger is the number a_nd type of.detec.t_o.rs that
Vproduced it. Generally, detectors differ by their seniitg

by the light travel time between the detectors). The survi d level of noi In th th. two d
ing coincident triggers are ranked according to the combine 3N¢ '€VE! 0T NOISE. 1N € case we are concern with, two de-
tectors, H1 and L1, have comparable sensitivities which are

effective SNR statistic given by a factor of two higher than the sensitivity of the smaller H2
N detector. This configuration implies that the signals wittie
Pt = Z pgm , (29)  sensitivity range of the H2 detector are likely to be detgate
i=1 all three instruments forming a set of triple triggers, H1H2

where the sum is taken over the triggers from different de-—rhe signals beyond the reach of the H2 detector can only be

tectors that were identified to be in coincidence and the ph detected in two instruments forming a set of double triggers

i : . . %1L1. Detection of a true signal by another two detector com-
Er(])ggjeggloglcally constructeaffective SNRor a trigger is de- binations, H1H2 and H2L1, is very unlikely, therefore such

triggers are discarded in the search. The number density of
9 p° astrophysical sources grows as distance squared. As a con-
Peft = S N (30) sequence, it is more likely that a gravitational-wave signa
\/(2;(2) (1 + %) detected as an H1L1 double trigger. On the other hand, back-
ground of H1H2L1 triggers is much cleaner due to the fact
wherep is the SNR, the phenomenological denominator factothat instrumental artifacts are less likely to occur in hiee
r = 250, andp is the number of bins used in thé test, which  detectors simultaneously. These competing factors shueuld
is a measure of how much the signal in the data matches thiacluded in the ranking of the candidate events in order to op
template waveforn [29]. In the denominator of Hg.](3¢3, timize probability of detection.




It is natural to expect that inclusion of such information

about the triggers in the ranking, in addition to the comdine e o ' ‘ ’.-’
effective SNR, should help distinguishing signals fromseoi — A, (L,L1) prior K
artifacts. The f|r_st step is to estimate distribution of geg _ 09 wa AL (1.0,0) prior K
parameters for signals and background. For background esti

mation, we use the time-shifted data—the standard teckniqu o0zl

employed in the searches for transient gravitational-veaye
nals in LIGO data[10, 14—16, 28]. We perform 200 time shifts
of the time-series data recorded by L1 with respect to the-tim
series data taken by the H1 and H2 detectors. The time lags
are multiples of 5 seconds.

Analysis of time-shifted data provides us with a sample of
the background distribution of the combined effective SNRs
for H1L1 and H1H2L1 triggers with various chirp masses. We
find that all triggers can be subdivided into three chirp mass
bins: 0.87 < M./Mg < 348, 348 < M /Mg < 7.4, 0.4 Fpe . ‘ ‘
and7.4 < M./Mgs < 15.24. These correspond to equal 10° 10' 102
mass binaries with total masses of 248, 8—17M, and 17— False Alarm Rate (1/yr)

35 M. These same bins were used in the analyses of the data

from LIGO's S5 and Virgo's VSR1 science runs[10] 15, 16].

Within each bin, the background distributions depend weakl FIG. 2. Efficiency in detecFing BNS sign.als versus falseralaate
on chirp mass, thus there is no need for finer resolution. @t th OMPuted for various rankings. The solid curve correspdadbe
same time, the distributions of the combined effective SNR i likelihood-ratio ranking A, with uniform priorps(S;) = (1,1,1).

different bins show proaressivelv lonaer tails with incs The dashed curve is the likelihood-ratio ranking, with the prior
! : W prog Ively long IS with InGeeg ps(S;) = (1,0,0), singling out BNS binaries for detection. The dot-

chirpmass. ) o _ ted curve represents the standard search with the combifestie
The distribution of triggers for gravitational-wave sid;a gsnR ranking pes:.

is simulated by injecting model waveforms into the data and
analyzing them with the pipeline. This is done independgent!
for each source type: BNS, NSBH and BBH.
Following the prescription for optimal ranking outlined in
Section[l, we treat each trigger as a vector of déta=
(pe, a,m), wherea denotes the type of the trigger, double 1o

Efficiency
=}
3

o
=

0.5}

H1L1 or triple HIH2L1, andn is a discrete index labeling || ™" P ,
the chirp mass bins. We construct the likelihood-ratio rank - 2 ((')‘:’(')) prior =
ing, A(pe, o, m | S;) for each binary type, whet$; stands for 09 > (0.1.0) prior -]

BNS, NSBH or BBH. Note that the likelihood ratio has strong
dependence on the binary type;. To simplify calculations,
we approximate the likelihood ratio by

o

Efficiency

n|Jn] (pCa a, m)

A S ~
(pe; cv,m [ 55) Nslide( pe, ¢, )

, (31)

wheren?’ 06

Inj(pc, a,m) is the fraction of injected signals of;
type that produce a trigger of typewith p.. > p. in the chirp
mass binn, andn;qe (pefr, ¢, m) is the fraction of time shifts
of the data that produce a trigger of typevith p/. > p. in the , ‘ ‘
same chirp mass bin. This approximation is equivalent to us- ']‘;" ] 10! 102
. . - Lh . K - alse Alarm Rate (1/yr)

ing cumulative probability distributions instead of proiday

densities. It is expected to be reasonably good for the déils

probability distributions that fall off as a power law or fas

The case we consider here falls into this category. . . :
We compute the likelihood ratios given by EGX31) for c_om_puted for various rankln_gs. T_he solld_ curve correspaadbe
likelihood-ratio ranking,A, with uniform priorp.(S;) = (1,1, 1).

all triggers: background and signals. Each trigger hasthrere gashed curve is the likelihood-ratio rankirg, with the prior
likelihood ratios, one for each binary type. We introduce a,_ (s;) = (0,1,0), singling out NSBH binaries for detection. The
prior distribution for binary typesp.(S;). It can either en- dotted curve represents the standard search with the cethbifec-
code our knowledge about astrophysical populations of bitive SNR ranking pes.

naries or relative “importance” of different types of birear
to the search. In what follows we consider four alternatives

0.5

FIG. 3. Efficiency in detecting NSBH signals versus falseraleate



9

that are likely to be the targeted signal as oppose to noise.

...... P. In order to assess the improvement attained by the new rank-
ooll — A (1,1,1) prior e ing, we compute efficiency in recovering simulated signals
== A.(00.1) prior from the data as a function of the rate of false alarms. For
o8 N | a given rate of false alarms we find the corresponding value
. of the ranking and define efficiency as ratio of injected sig-

nals ranked above this value to the total number of signals
that passed initial cuts of the analysis pipeline. This is\eat

lent to computing the standard receiver operating characte
istic curve P, (P,) defined by Eqs.[{4)E5). The efficiency
curves are computed for BNS, NSBH and BBH binaries. In
each case we evaluate efficiency of both likelihood-ratiikfa
ings, the one that targets only that type of binary and the one
that applies the uniform priop,(S;) = (1,1,1). We com-
pare the resulting curves to the efficiency curve for the-stan
031 N dard analysis pipeline that uses the combined effective,SNR

160 16' 10 i isti i ia-
False Alarm Rate (1/y1) ﬁ;easla Sae ranking statistic. These curves are shown in Fig

They reveal that the searches targeting single type ofyinar
FIG. 4. Efficiency in detecting BBH signals versus false ralaate represented by the dashed curves, afe .more sensitive #an th
computed for various rankings. The solid curve correspdadse ~ Uniform search, the solid curve. This is expected, because
likelihood-ratio ranking,A, with uniform priorp,(S;) = (1,1,1).  harrowing down the space of signals typically allows one to
The dashed curve is the likelihood-ratio ranking, with the prior ~ discard the triggers that mismatch the signal's paramegers
ps(S;) = (0,0,1), singling out BBH binaries for detection. The ducing the rate of false alarms without loss of efficiency in
dotted curve represents the standard search with the cethbifec-  recovering these signals. For instance, the search taggeti
tive SNR ranking pes. BNS only signals discards all triggers from the high chirp-
mass binsm = 2,3, without discarding the BNS signals.
This reduces the rate of false alarms, although at the poices
ps(S5) = (1,0,0), ps(S;) = (0,1,0), ps(S;) = (0,0,1) and  missing possible gravitational-wave signals from othgety
ps(S;) = (1,1,1). Thefirst three singles out one of the binary of binaries, NSBH and BBH. Still, one could justify such
types, whereas the last one treats all binaries on equahfpot search if it was known that NSBH and BBH binaries do not
Finally, the ranking statistic is defined as exist or are very rare. The uniform search, despite beirg les
sensitive to BNS signals, allows one to detect the signats fr
A(pe, o, m) = IHS&PXA(Pm a,m| S;)ps(5;) - (32)  all kinds of binaries. Such search still gains in efficienggio
! the standard search, the dotted curve, for BNS and NSBH sys-
Here we use maximization instead of marginalization ovéer di tems, Figuregl2 anfl] 3. At the same time, Figdre 4 shows that
ferent types of signalsS;, prescribed by the general form of such search does worse in comparison to the standard search
the likelihood ratio, Eq.[{1). This is a good approximatibn i in detecting BBH signals. This is an unavoidable consegeienc
signals of different types can be distinguished from eahkot  Of re-weighting of triggers by the likelihood ratio, Eq. 32
by the analysis pipeline with high degree of confidence. Mathbased on their type and chirp mass. It ranks triggers from the
ematically, it can be expressed as requirement that in tee pr lower chirp-mass bins higher, because these triggers sse le
ence of a signal in the date(p., o, m | S;) is always strongly likely to be a noise artifact. This leads to some loss of sensi
peaked on the correct type of signal. This is true in our casdivity to BBH signals, but gains sensitivity to BNS and NSBH
because binary of different types produce triggers atwdiffe ~ signals. The role of the likelihood ratio is to provide opaim
chirp-mass binspn. Note though, that we do marginalize over re-weighting of triggers that results in the highest ovezti-
signal parameters when computing likelihood ratio for eactfiency. In the case of the uniform search, it should provide i
type of binary,S;, in Eq. [31) by using population of simu- crease in the total number of detected sources of all types. T
lated signals that samples the region in the parameter spage€monstrate that this is indeed the case, we plotted the com-
pertained to the specific type of binary. bined efficiency of the uniform search for BNS, NSBH and
The four alternative choices for (S;) define four different  BBH signals and compared it to the efficiency of the standard
searches. For example,(S;) = (1,0,0) corresponds to the Search, Figurgl5.
search targeting only gravitational-wave signal from BN&-c The combined efficiency of the uniform search on Figure
lescence. Similarlyy,(S;) = (0,1,0) andps(S;) = (0,0, 1) is higher than that of the standard search because triggers
define the searches for gravitational waves from NSBH andire re-weighted by the likelihood ratio which properly ac-
BBH. The uniform prior,ps(S;) = (1,1,1), allows one to  counts for the probability distributions of noise and signa
detect all signals without giving priority to one type ovhet To gain further insight in this process we pick a particular
others. In each of the searches, the likelihood-ratio ramki point on the efficiency curve that corresponds to the rate of
Eq. (32), re-weights triggers giving higher priority to @ false alarms, x-axes, df25 events per year. We find the cor-
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FIG. 6. The detection surfaces for the combined effectiv& Sy,
and the likelihood-ratioA, rankings at the false alarm rate of 1.25
events per year. The y-axes labels different types and -chags
bins of the triggers. The dashed line is the line of constanthined
= — — gﬁeptive SNR,p;‘ :*11.34. The solid line is the line of constant
False Alarm Rate (1/yr) I|l_<eI|hood ratio, In A (pc_, a,m) = 9.11. The _'slgnal pr_odL_Jcmg a
trigger that falls to the right of the dashed/solid curvedssidered
to be detected in the search with combined effective SN&itikod-
ratio ranking. Those triggers that fall to the left are miss@he
FIG. 5. Efficiency in detecting signals from any binary (BN\&BH  shaded region is the difference between the detectionndgiathe
or BBH) versus the false alarm rate computed for variousirgs Jikelihood-ratio and the combined effective SNR rankinge sig-
The solid curve corresponds to the likelihood-ratio ragkif, with nals that produce trigger with parameters in the shadedmeda-
uniform priorps(S;) = (1,1,1). The dotted curve represents the beled by(+) are gained in the search equipped with likelihood ratio
standard search with the combined effective SNR ranking, but missed by the search with the combined effective SNRimgnk
Those signals that produce a trigger in the shaded regi@iediby
(—) are missed by the likelihood-ratio ranking but detected sy t
responding to this rate threshold for combined effectivdRSN combined effective SNR ranking.
in the standard search to b¢ = 11.34. Next, we find the

corresponding threshold for logarithm of the likelihootioa ) .
InA*(pe,,m) = 9.11. For each(a, m) combination this ~do not change the rate of false alarms. The optimal detection

value can be mapped f@ which will be different for each surface, as was shown in Sectlon1I B, Eg. (8), is the surface
type of trigger. Bothp; = 11.34 andIn A*(p., o, m) = 9.11 of constant likelihood ratio. This is the essence of liketd
define detection surfaces ip., o, m) space of trigger param- ratio method. - _ _
eters. We depicted them on Figuiré (6). The power of the likelihood-ratio ranking depends strongly
The signals falling to the right of¢ = 11.34, the dashed ©ON the input data. For demonstration purpose, in the sim-
line, are considered to be detected in the standard sedroh. S ulation we restricted our attention to a subset of trigger
ilarly, the signals that happen to produce a trigger to thetri Parametersp., a, m). We expect that inclusion of other pa-
of In A*(pe, a,m) = 9.11, the solid line, are considered to rameters such as difference in arrival times of the signal at
be detected in the uniform search with the likelihood-ratiodifferent detectors, ratios of recovered amplitudes ¢touk
ranking. The line of constant likelihood-ratio rankingsset- drastically improve the search. We leave this to future work

ferent thresholds for combined effective spg, of the trig-

gers depending on their type. The threshold is higher than

pf = 11.34 for the H1L1 triggers from the third chirp-mass IV.. CONCLUSION

bin. The signals producing triggers in the shaded area & thi

bin, labeled by(—), are missed in the uniform search but de- In this paper, we describe a general framework for design-
tected by the standard search. These signals are typicatly c ing optimal searches for transient gravitational-waveaig
responds to BBH coalescence. The effect of this is visible omn data with non-Gaussian background noise. The principle
Figure [4), the solid curve is below the dotted curve at falsegquantity used in this method is the likelihood ratio, theaat
alarm rate of1.25 events per year. On the other hand, theof the likelihood that the observed data contain signal ® th
thresholds for other trigger types and chirp masses arerlowdikelihood that the data contain only noise. In Secfidn Il we
thanp? = 11.34. As a result, the signals producing triggers prove that the likelihood ratio leads to the optimal anaysi
with parameters in the shaded regions labeled-byare de- of data, incorporating all available information. It is b
tected in the uniform search but missed by the standard onagainst increase of the data volume, effectively ignoring-
The net gain from detecting these signals is positive, Eigur evant information. We apply the general formalism to two
The process of optimization of the searcl{#, o, m) param-  typical problems that arise in searches for gravitatiomake
eter space can be thought of as deformation of the detectiggignals in LIGO data.

curve, pi = 11.34, with the aim of maximizing efficiency First, in SectiofIlTA we show that when searching for
of the search. The deformations are constrained to those thgravitational-wave signals in the data from different expe

0.4




ments or detector configurations, it is necessary as wellfas s
ficient to rank candidates by the “local” likelihood ratiovgi

by Eq. [25), which is calculated using estimated local prob-
abilities. This provides overall optimality across the esip
ments. Candidate events from different experiments can be
compared directly in terms of their likelihood ratios. Thés
sults in complete unification of the data analysis produtts.
other significant feature of the unified analysis is that te-c
didate’s significance is independent of the duration of the e
periments. Only the detectors’ sensitivities and leveladks
ground noise contribute to the likelihood ratio of the candi
dates. The experiment’s duration, on the other hand, measur
its contribution to the total probability of detecting arséd (or
efficiency) and the total probability of a false alarm.

Second, in Sectiop IITB we aim to improve efficiency of
the search for gravitational waves from compact binary coa-
lescence by considering the issue of consistent accoufaing
non-Gaussian features of the noise in the analysis. We stigge
a practical solution to this problem. Estimate the probigbil
distributions of parameters of the candidate events (R S
and the chirp mass of the template waveform, type of trigger
etc) in the presence and absence of a signal in the data. Con-
struct the likelihood ratio that includes non-Gaussianuess
and use it to re-rank candidate events. Non-trivial infaiara
contained in the probability distributions of candidafggsam-
eters allows for a more optimal evaluation of their significa.
Indeed, as we demonstrate in the simulation, inclusion®f th
chirp mass and the type of trigger in the likelihood-ratioka
ing results in a significant increase of efficiency in detagti
signals from coalescing binaries.

We would like to stress that the approach described in this
paper is quite generic and can be applied to a wide range of
problems in analysis of data with non-Gaussian background.
Its main advantage is consistent account of statisticatiné-
tion contained in the data. It provides a unified measure, in
the form of the likelihood ratio, of the information relevaa
detection of the signal in any type of data. This allows one to
combine data of very different kind, such as the type of eixper
ment, a type of trigger, its discrete and continuous pararset
etc, into the single optimized analysis.
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