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We describe a general approach to detection of transient gravitational-wave signals in the presence of non-
Gaussian background noise. We prove that under quite general conditions, the ratio of the likelihood of observed
data to contain a signal to the likelihood of it being a noise fluctuation provides optimal ranking for the candi-
date events found in an experiment. The likelihood-ratio ranking allows us to combine different kinds of data
into a single analysis. We apply the general framework to theproblem of unifying the results of independent
experiments and the problem of accounting for non-Gaussianartifacts in the searches for gravitational waves
from compact binary coalescence in LIGO data. We show analytically and confirm through simulations that in
both cases applying the likelihood-ratio ranking results in an improved analysis.

I. INTRODUCTION

The detection of gravitational waves from astrophysical
sources is a long-standing problem in physics. Over the past
decade, the experimental emphasis has been on the construc-
tion and operation of kilometer-scale interferometric detec-
tors such as Laser Interferometer Gravitational-wave Obser-
vatory (LIGO) [1]. The instruments measure the strain,s(t),
by monitoring light at the interferometer’s output port, which
varies as test masses that are suspended in vacuum at the ends
of orthogonal arms differentially approach and recede by mi-
nuscule amounts. The strain signal,s(t), is a combination of
noise,n(t), and gravitational-wave signal,h(t).

There is a well established literature describing the analy-
sis of time-series data for signals of various types [2]; these
methods have been extended to address gravitational-wave de-
tection [3]. This approach usually begins with the assump-
tion that the detector noise,n(t), is stationary and Gaussian.
Then one proceeds to derive a set of filters that are tuned to
detect the particular signals in this time-series data. There-
sult is both elegant and powerful: whitened detector noise
is correlated with a whitened version of the expected signal.
The approach has been used to develop techniques to search
for gravitational waves from compact binary coalescence, iso-
lated neutron stars, stochastic sources, and generic bursts with
certain time-frequency characteristics [4].

This approach takes the important first step of design-
ing filters that properly suppress the dominant, frequency-
dependent noise sources in the instrument. The simplicity
of the filters is due to the fact that the power-spectral den-
sity fully characterizes the statistical properties of stationary,
Gaussian noise. However, interferometric detectors are prone
to non-Gaussian and non-stationary noise sources. Environ-
mental disturbances, including seismic, acoustic, and electro-

magnetic effects, can lead to artifacts in the time series that
are neither gravitational waves nor stationary, Gaussian noise.
Imperfections in hardware can lead to unwanted signals in the
time series that originate from auxiliary control systems.

To help identify and remove these unwanted signals, instru-
ments have been constructed at geographically separated sites
and the data are analyzed together. A plethora of diagnos-
tics have also been developed to characterize the quality of
the data [5–7]. Searches for gravitational waves use more
than just the filtered output of the time-series,s(t), to sepa-
rate gravitational-wave signals from noise. Moreover, there-
sponses from various filters indicate that the underlying noise
sources are not Gaussian, even after substantial data quality
filtering and coincidence requirements have been applied.

In this paper, we discuss using likelihood-ratio ranking as
a unified approach to gravitational-wave data analysis. The
approach foregoes the stationary, Gaussian model of the de-
tector noise. The output of the filters derived under that as-
sumption becomes one element in a list of parameters that
characterize a gravitational-wave detection candidate. The de-
tection problem is then couched in terms of the statistical prop-
erties of ann-tuple of derived quantities, leading directly to a
likelihood-ratio ranking for detection candidates. Then-tuple
can include more information than simply the signal-to-noise
ratio (SNR) measured in each instrument of the network. It
can include measures of data quality, the physical parameters
of the gravitational-wave candidate, the SNR from the coher-
ent and null combinations of the detector signals; it can in-
clude nearly any measure of detector behavior or signal qual-
ity.

This approach was already used to develop ranking or de-
tection statistics for compact binary coalescence signals[8–
10] and is at the core of a powerful coincidence test devel-
oped for burst searches [11]. See also [12] for discussion of
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Monte-Carlo simulations and Bayesian techniques in searches
for gravitational-wave bursts.

This work presents a general framework for the likelihood-
ratio ranking in the context of gravitational-wave detection.
We explore its analytical properties and illustrate its practical
value by applying it to two data analysis problems arising in
real-life searches for gravitational waves in LIGO data.

II. GENERAL DERIVATION OF LIKELIHOOD-RATIO
RANKING

Let then-tuple~c denote the observable data related to one
candidate event in some experiment that aims to detect a sig-
nal denoted byh. This signal can usually be parametrized
by several continuous parameters that may be unknown, for
example distance to the source of gravitational waves and its
location on the sky. We impose no restriction on the nature of
the observable data,~c . In particular, it can include readings
from different detectors, information about the quality ofdata
and the environment etc. The purpose of the experiment is to
identify the signal. Depending on whether a Bayesian or fre-
quentist statistical approach is taken, this is stated in terms of
either the probability that the signal is present in the dataor
the probability that the observed data are a noise fluctuation.

In this section, we show that both approaches lead to rank-
ing candidate signals according to the likelihood ratio

Λ(~c ) =

∫

p(~c |h, 1)p(h | 1) dh

p(~c | 0)
, (1)

wherep(~c |h, 1) is the probability of observing~c in the pres-
ence of the signalh, p(h | 1) is the prior probability to receive
that signal, andp(~c | 0) is the probability of observing~c in the
absence of any signal. The higher a candidate’sΛ value, the
more likely it is a real signal.

We consider the most general case. As a consequence, we
use an abstract notation for the key quantities, the observable
data,~c , and a signal,h, without specifying their precise nature.
For clarity, it is worth to illustrate how they can be constructed
using a real-life example. For this purpose we consider the
problem of searching for a gravitational-wave signal from
compact binary coalescence. The signal,h(λe,λi), in this
case, is described by a set of intrinsic parameters,λi, – masses
and spins of the compact objects, and a set of extrinsic parame-
ters,λe – luminosity distance, location on the sky, orientation
of the binary and time of coalescence. The starting point of the
search for such a signal is to match-filter the time-series data,
s(t), with a bank of template waveforms which typically de-
scribe inspiral stage of coalescence of non-spinning compact
objects and cover a range of masses expected to contain the
targeted signal. The filters are derived using Gaussian model
for the detector noise,n(t), and include analytical maximiza-
tion over the unknown extrinsic signal parameters,λe. The
times when one of the template waveforms produce apprecia-
ble SNR,ρ, (usually exceeding a predefined threshold value)
are recorded together with masses of the template waveform,
(m1,m2), and constitute an initial list of the candidate events.
Parameters of these candidate events, with exception of time

which is non-informative, can be interpreted as reduced data,
~c ≡ (ρ,m1,m2). At the next stages, other quantities are
computed for these candidate events, e.g. chi-square test for
consistency with the signal waveform, difference in estimated
time of arrival of the signal at different detectors etc., and the
data vector,~c , can be extended. All of these parameters char-
acterize candidate events and provide information that canbe
used to distinguish genuine gravitational-wave signals from
non-Gaussian noise artifacts.

Some of the key questions one faces when trying to make
use of this information are: What is the most optimal way of
using the vector of parameters of the candidate event,~c , for
signal detection? Can one construct the optimal ranking statis-
tic for ~c ? Could detection efficiency of the search be reduced
if one were to increase the mass range covered by the template
waveforms or add another parameter characterizing candidate
event and thus increase dimensionality of the detection prob-
lem? What if some parameters in~c are useless for detection
purpose, does using them imply less efficient search? If the
noise or sensitivity of detector varies with time, what would
be the optimal detection strategy in this case? Can one com-
pare significance of the candidate events identified at different
periods or experiments and combine their results?

In what follows we show that these questions can be made
well defined and be answered within the likelihood-ratio
framework. We should highlight, though, some of the subtle
issues and often implicit assumptions that are commonly arise
in practical applications and that are already contained inour
example. First, note that the mass parameters, in our example,
appear in both the signal,h, and the observed data,~c . In the
case of the signal, they are masses of compact objects in the
binary, whereas in the case of the observed data or the can-
didate event, they are masses of the template waveform that
matched the data time series,s(t), with high SNR. It is impor-
tant to distinguish between the two sets of masses, because in
general they do not coincide. The same logic applies to any
other parameters that may appear in bothh and~c . The space
of signal parameters and the space of candidate event parame-
ters are disjoined. Mapping between the spaces is induced by
the conditional probability distribution,p(~c |h, 1).

Another important point to be aware of is that optimization
is performed within the constraints set by the choice of the
observed data,~c , and of the targeted signal,h. The ideal data
set would consist of all data points in the time series recorded
by the detector and all other auxiliary data describing the state
of the detector and the environment. In practice, one has to
work with a reduced data set which inevitably results in some
information loss. One of the tasks of a data analyst is to find
the best possible reduced data set. One, then, can construct
optimal ranking for the given reduced data that makes use of
all available information.

Similarly, the choice of the targeted signals specified by
p(h | 1) constrains the process of optimization. The ideal
choice forp(h | 1) is the one that corresponds to the true astro-
physical distribution of the parameters of the sources of grav-
itational waves (e.g. compact binary coalescence) in the uni-
verse,pastro(h | 1). Only in this case the ranking defined by
the likelihood-ratio, Eq. (1), is optimal. In the absence ofper-
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fect knowledge ofpastro(h | 1) one has to rely on an approxi-
mate model or a guess,pmodel(h | 1). Thus, strictly speaking,
optimality is achieved only for the population of sources that
match the model distribution,pmodel(h | 1), used to define the
likelihood-ratio ranking. If the model distribution does not
match the astrophysical one, the ranking is sub-optimal. Nev-
ertheless, unless the model distribution is completely wrong
or internally inconsistent, this is the most reasonable starting
point for data analysis. The model forpmodel(h | 1) can be
corrected as more knowledge about astrophysical distribution
is acquired. Everywhere in this paper, we assume that the true
signal distribution is faithfully represented by the modeldis-
tribution.

A. Bayesian Analysis

In this approach, we compute the probability that a signal
is present given the observed candidate event,p(1 |~c ). By a
straightforward application of Bayes theorem, we write

p(1 |~c ) =
p(~c | 1)p(1)

p(~c | 1)p(1) + p(~c | 0)p(0)

=

∫

p(~c |h, 1)p(h | 1)p(1) dh
∫

p(~c |h, 1)p(h | 1)p(1) dh+ p(~c | 0)p(0)
, (2)

wherep(0) is theprior probability that the signal is absent and
p(1) is theprior probability that there is a signal (of any kind).
These two outcomes are assumed to be mutually exclusive and
exhaustive,p(0) + p(1) = 1. The denominator re-expresses
p(~c ) in terms of the two possible independent outcomes: the
signal is present or the signal is absent. Upon successive divi-
sion of numerator and denominator byp(~c | 0) andp(1), we
find

p(1 |~c ) =
Λ(~c )

Λ(~c ) + p(0)/p(1)
, (3)

which is a monotonically increasing function of the likelihood
ratioΛ defined by Eq. (1)1. Hence, the larger the likelihood
ratio, the more probable it is that a signal is present.

B. Frequentist Approach

The process of detection can always be reduced to a bi-
nary “yes” or “no” question—does the observed data contain
the signal? An optimal detection scheme should achieve the
maximum rate of successful detections—correctly given “yes”
answers—with some fixed, preferably low, rate of false alarms
or false positives—incorrectly given “yes” answers. This is
the essence of the Neyman-Pearson optimality criteria for de-
tection, which states that an optimal detector should maxi-
mize the probability of detection at a fixed probability of false
alarm [13].

1 This ratio of likelihoods is also known as theBayes factor.

As before, let then-tuple~c denote the observable data for
a candidate event andh the signal that is the object of the
search. Without loss of generality, any decision-making algo-
rithm can be mapped into a real function,f(~c ), of the data that
signifies detection whenever its value is greater than or equal
to a threshold value,F ∗. Thus, using the Neyman-Pearson
formalism, an optimal detector is realized by finding a func-
tion, f(~c ), that maximizes the probability of detection at a
fixed value of the probability of false alarm. The probability
of detection,P1, is

P1 =

∫

Vd

∫

Vh

Θ(f(~c )− F ∗) p(~c |h, 1)p(h | 1)p(1) dh d~c ,

(4)
and the probability of false alarm2, P0, is

P0 =

∫

Vd

Θ(f(~c )− F ∗) p(~c | 0)p(0) d~c , (5)

whereVh identifies the subset of signals targeted by the search,
Vd denotes the subset of accessible data and integration is per-
formed over all signals,h, and data points,~c , within these
subsets. TreatingP1 andP0 as functionals off(~c ), we find
that for an optimal detector, the variation of

S[f(~c )] = P1[f(~c )]− l0 (P0[f(~c )]− P ∗) (6)

should vanish. Herel0 denotes a Lagrange multiplier andP ∗is
a constant that sets the value of the probability of false alarm.
The variation of Eq. (6) with respect tof(~c ) gives

δS =

∫

Vd

δ (f(~c )− F ∗) δf(~c )

×

[
∫

Vh

p(~c |h, 1)p(h | 1)p(1) dh− l0p(~c | 0)p(0)

]

d~c .

(7)

Variationsδf(~c ) at different data points are independent, thus
implying that after integration over~c , the condition

∫

p(~c∗ |h, 1)p(h | 1) dh

p(~c∗ | 0)
=

l0p(0)

p(1)
= const (8)

must be satisfied at all points~c∗ for which the argument of the
delta function satisfies the condition

f(~c∗)− F ∗ = 0 . (9)

This latter condition defines the detection surface separating
the detection and non-detection regions. Note that asf(~c )
varies, the shape of this surface changes accordingly. There-
fore, Eq. (8) implies that the optimal detection surface must be
the surface of the constant likelihood ratio defined by the left

2 This is similar, but not exactly equal, to thefalse-alarm probabilityor Type
I error, which assumes the case where no signal is present, that is, does not
include the termp(0).
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hand side of the equation. This result is known as Neyman-
Pearson Lemma [13] for simple hypothesis testing (e.g. sig-
nal with all its parameters known) and is generalizing it to the
case of composite hypotheses (e.g. signal which parameters
are not known or uncertain). It was also found earlier in [12],
where a proof, albeit very different from ours, is outlined.3

Eq. (8) is the only condition on the functional form off(~c ).
Variation with respect toF ∗ does not give a new condition,
whereas variation with respect to the Lagrange multiplier,l0,
simply sets the probability of a false alarm to beP ∗. 4

A natural way to satisfy the optimality criteria is to use the
likelihood ratio

Λ(~c ) =

∫

p(~c |h, 1)p(h | 1) dh

p(~c | 0)
(10)

or any monotonic functionf(Λ(~c )) for ranking the candidate
signals. With this choice, the optimality condition Eq. (8)is
satisfied for any thresholdF ∗. The latter is determined by the
choice of an admissible value of the probability of false alarm,
P ∗, through

P0[f(Λ(~c ))] = P ∗ . (11)

C. Variation of efficiency with volume of search space

The likelihood ratio defined by Eq. (1) is guaranteed to max-
imize the probability of signal detection for a given search.
Because optimization is performed for a fixed region,Vd, in
Eq. (4) and Eq. (5), defined by all allowed values of a candi-
date’s parameters,~c , in the search, it is unclear whether in-
creasing the volume of available data (e.g. extension of the
bank of template waveforms) would not result in an overall
decrease of probability to detect signals. For example, one
may be apprehensive of the potential increase in the rate of
false alarms solely due to extension of the searched parame-
ter space,Vd. Do not confuse this with possible expansion of
the set of targeted signals,Vh, on the space of signal param-
eters. Here we keepVh fixed and vary onlyVd. Intuitively,
having more available information should not negatively af-
fect the detection probability or efficiency if the information
is processed correctly. In what follows, we prove that this is
true if the likelihood ratio is used for making the detection
decision.

To prove that the detection efficiency does not decrease
when the range of candidate’s parameters,~c , is increased, we
must show that the variation ofδP1/δVd at a fixedP0 is non-
negative. Consider a foliation of the space of data,Vd, by

3 We thank the referee for bringing to our attention this work that we have
not been aware of at the time of working on the manuscript.

4 In the case of the mixed data, when~c includes continuous as well as dis-
crete parameters, integration in the expressions forP1 andP0 should be
replaced by summation wherever it is appropriate. This doesnot affect the
derivation or the main result. The notion of optimal detection surface de-
fined by Eq. (8) is straightforward to generalize to include both continuous
and discrete data.

surfaces of constant likelihood ratio,SΛ. Functionals for the
probabilities of detection, Eq. (4), and of false alarm, Eq.(5)
can be written as

P1 =

∫ ∞

0

dΛ

∫

SΛ

Θ(Λ− Λ∗) p(~c | 1)p(1) dSΛ , (12)

and

P0 =

∫ ∞

0

dΛ

∫

SΛ

Θ(Λ− Λ∗) p(~c | 0)p(0) dSΛ , (13)

where, for brevity, we absorbed explicit integration in the
space of signals,Vh, in the productp(~c | 1)p(1). P1 is a func-
tional of Vd andΛ∗. Since the latter is determined by the
value chosen for false alarm probability,P0 = P ∗, and the
probability of false alarm also depends onVd, variations of
Vd andΛ∗ are not independent. To find the relation, we vary
the probability of false alarm

δP0 =−

∫ ∞

0

dΛ

∫

SΛ

δ (Λ− Λ∗) p(~c | 0)p(0)δΛ∗ dSΛ

+

∫ ∞

0

Θ(Λ− Λ∗) p(~c | 0)p(0)δSΛ dΛ .

(14)

We consider non-negative variations of surfaces of constant
likelihood ratio,δSΛ, that correspond only to the addition of
new data points toVd, and therefore correspond only to an
extension of surfaces,SΛ, without an overall translation or
change of shape.

The probability of false alarm should stay constant, there-
fore its variation should vanish, providing the relation

δΛ∗ =

∫∞

0
Θ(Λ− Λ∗) p(~c | 0)δSΛ dΛ

∫

SΛ∗

p(~c | 0) dSΛ∗

. (15)

Next, we vary the functional for the detection probability

δP1 =− Λ∗

∫

SΛ∗

p(~c | 0)p(1)δΛ∗ dSΛ∗

+

∫ ∞

0

Θ(Λ− Λ∗) Λ p(~c | 0)p(1)δSΛ dΛ ,

(16)

where we usep(~c | 1) = Λ(~c )p(~c | 0), which follows from the
definition of the likelihood ratio. EliminatingδΛ∗ by means
of Eq. (15) and re-arranging terms we get

δP1 = p(1)

∫ ∞

0

Θ(Λ− Λ∗) (Λ− Λ∗) p(~c | 0)δSΛ dΛ ,

(17)
which is non-negative for all positiveδSΛ by virtue of
Θ(Λ− Λ∗) (Λ− Λ∗) ≥ 0. This proves that if the likelihood-
ratio ranking is used in the detection process, the probability
of detection can never decrease during an extension of the vol-
ume of available data.

D. Variation of efficiency with dimensionality of search space

Another way of changing the space of data,Vd, is by in-
cluding a new parameter describing a candidate event to the n-
tuple~c . This changes the dimensionality ofVd fromn ton+1.
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A new parameter may carry very important extra information
about the candidate events which can help to distinguish true
signals from noise artifacts, or it may be completely irrelevant
in the context of detection. Whatever the case might be, one
can show that incorporation of new data dimensions in the
analysis, can never result in decrease of efficiency as long as
the likelihood-ratio ranking is properly constructed and used.
This statement agrees with the intuitive notion that havingac-
cess to more data dimensions and, therefore, to more informa-
tion should only improve the analysis.

Suppose the data tuple is extended by addingm new param-
eters,~c ′ ≡ (~c , xn+1, xn+2, . . . xn+m). The conditional prob-
ability distributions for observing~c in presence or absence of
a signal can be expressed in terms of corresponding probabil-
ity distributions for~c ′ marginalized over the added parame-
ters:

p(~c | 1) =

∫

p(~c ′, xn+1, xn+2, . . . xn+m | 1) dm~x , (18a)

p(~c | 0) =

∫

p(~c ′, xn+1, xn+2, . . . xn+m | 0) dm~x . (18b)

Using Eqs. (18) the original probabilities of detection,
Eq. (4), and of false alarm, Eq. (5) for detection problem in
n-dimensional space of data can be written as integrals over
extended(n+m)-dimensional data space:

P1 =

∫

V ′

d

Θ(Λ(~c )− Λ∗) p(~c ′ | 1)p(1) d~c ′ , (19)

and

P0 =

∫

V ′

d

Θ(Λ(~c )− Λ∗) p(~c ′ | 0)p(0) d~c ′ , (20)

whereV ′
d is extension ofVd by addition of the new parameters.

Note thatΛ(~c ) = p(~c | 1)/p(~c | 0) is a function of~c only. In-
terpretingP1 andP0 as probabilities of detection and of false
alarm for the search that uses(n+m)-dimensional data vec-
tor, ~c ′, and invoking the results of optimization analysis of
Section II B, we conclude thatΛ(~c ) is either sub-optimal or
at best matches performance of the optimal ranking statistic
in (n+m)-dimensional space,Λ′(~c ′), in some special cases.
This in turn implies that addition of new data dimensions can
either improve the search, via applying more optimal ranking
Λ′(~c ′) in higher dimensional data space, or has no effect on
efficiency. One of the special cases when addition of new pa-
rameters has no effect is situation whenΛ′(~c ′) = Λ(~c ). In
other words, when the(n+m)-dimensional likelihood-ratio,
Λ′, does not vary with respect to any of the new parameters. It
can happen when these parameters are either completely irrel-
evant to the detection problem or are functions of some (all)
of the parameters in~c .

III. APPLICATIONS

In Section III A, we apply the formalism of Section II when
assessing the significance of triggers between experiments

on disjoint times. In Section III B, we demonstrate how the
likelihood-ratio ranking can improve analysis efficiency by
accounting for non-Gaussian features in the distributionsof
parameters of the candidate events.

A. Combining disjoint experiments

One complexity that arises in real-world applications is the
necessity to combine results from multiple independent exper-
iments. For example, gravitational-wave searches are often
thought of in terms of times when a fixed number of interfer-
ometers are operating. If a network consists of instruments
that are not identical and located at different places, eachcom-
bination of operating interferometers may have very differ-
ent combined sensitivity and background noise. Times when
three interferometers are recording data may be treated differ-
ently from those when any pair is operating. Ideally, these
experiments would be treated together accounting for differ-
ences in detectors’ sensitivities and background noise in the
ranking of the candidate signals, but it is often not practical
(see how this problem was addressed in [10]). In this sec-
tion, we show that the likelihood-ratio ranking offers a natural
solution to this problem, which is conceptually similar to a
simplified approach taken in [10].

Consider a situation in which the data is written as~c =
(~d, j), wherej = 0, 1, 2, . . . indicates that the data arose from
an experiment covering some time intervalTj . Note thatTi ∩
Tj = ∅ if j 6= i. The probability that a signal is present given
the data is

p(1 | ~d, j) =

∫

p(~d, j |h, 1)p(h | 1)p(1) dh
∫

p(~d, j |h, 1)p(h | 1)p(1) dh+ p(~d, j | 0)p(0)
.

(21)
The conditional probabilities for the observed data can be fur-
ther expanded as

p(~d, j |h, 1) = p(~d | j,h, 1)p(j |h, 1) , (22)

p(~d, j | 0) = p(~d | j, 0)p(j | 0) , (23)

where we introducep(j |h, 1) andp(j | 0)—the probabilities
for a candidate event to belong to thejth experiment in pres-
ence or absence of a signal respectively. It is reasonable to
assume5 that p(j |h, 1) = p(j | 0), which implies that the
time intervals for experiments,Tj, were defined without prior
knowledge of when a signal is to occur. In this case, both
probabilities drop out of Eq. (21), and the expression for the
probability of a signal to be present in the data can be written
as

p(1 | ~d, j) =
Λj(~d )

Λj(~d ) + p(0)/p(1)
, (24)

5 This is not strict equality. Gravitational-wave events canalter the amount of
live time in experiments to detect them. For example, an alert sounds in the
LIGO and Virgo control rooms when gamma-ray bursts are detected, which
sometimes accompany CBCs. The alert prompts operators to avoid routine
maintenance and hardware injections, with their associated deadtimes, for
the following forty minutes.
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with the likelihood ratioΛj(~d ) given by

Λj(~d ) =

∫

p(~d | j,h, 1)p(h) dh

p(~d | j, 0)
. (25)

Comparing Eq. (24) with Eq. (3), we conclude that the like-
lihood ratioΛj(~d ), evaluated independently for each experi-
ment, provides optimal unified ranking. In terms of their like-
lihood ratios, data samples from different experiments canbe
compared directly, with differences in experiments’ sensitivi-
ties and noise levels being accounted for byp(~d | j,h, 1) and
p(~d | j, 0).

Following the steps outlined in Section II B, the same result
can also be attained by direct optimization of the combined
probability of detection at the fixed probability of false alarm.
Optimality guarantees that the results of the less sensitive ex-
periment can be combined with the results of the more sensi-
tive experiment without loss of efficiency. In this approach,
a unified scale provided by the likelihood ratio,Λj(~d ), is ex-
plicit because, by construction, the same threshold,Λ∗, is ap-
plied to all data samples.Λ∗ is determined by the value of the
probability of false alarm for the combined experiment, given
by

P0 =
∑

j

∫

Θ
(

Λj(~d )− Λ∗

)

p(~d | j, 0)p(j | 0)p(0) d~d ,

(26)
which makes the whole process less trivial. Notice thatp(j | 0)
(that can be approximated byTj/

∑

i Ti) appears in the ex-
pression forP0, however it does not appear in the expression
for the likelihood ratio given in Eq. (25). Sincep(j | 0) is pro-
portional to the experiment duration,Tj , each experiment is
weighted appropriately in the total probability of false alarm.
In a similar fashion, experiment durations appear in the expres-
sion for the combined efficiency or the probability of detection
for the combined experiment.

B. Combining search spaces

Sophisticated searches for gravitational-wave signals from
compact binary coalescence [10, 14–16] have been developed
over the past decade. The non-Gaussian and non-stationary
noise is substantially suppressed by the application of instru-
mental and environmental vetoes [5–7], coincidence between
detectors, and numerous other checks on the quality of pu-
tative gravitational-wave signals. Nevertheless, the number
of background triggers as a function of SNR depends on the
masses of the binaries targeted in a search. For this reason,
triggers have been divided into categories based on the chirp
mass,M, of the filter’s template waveform that produced the
trigger (whereM = ((m1m2)

3/(m1 +m2))
1/5 andm1 and

m2 are the masses of the compact objects in the binary). The
background is a slowly varying function ofM, falling off
more rapidly, as a function of SNR, for smaller values ofM.
This is a manifestation of non-Gaussianities still presentin the
data. It is desirable to account for this dependence when rank-
ing candidates found in the search.

FIG. 1. Graphic representation of the model background distribution
of Eq. (27) forα = 2.0. Shaded areas define the regions of non-zero
probability.

In this section, we consider a toy problem that mimics the
properties of the compact binary search but demonstrates how
the likelihood-ratio ranking matches our intuition. Following
that example, we present the results of a simulated compact
binary search and demonstrate that the ranking statistic based
on the likelihood ratio accounts for non-Gaussian featuresin
background distribution and improves search efficiency.

1. Toy Problem

Consider an experiment in which the data that define a can-
didate are~c = (ρ, x), whereρ is the SNR andx is the extra
parameter describing the data sample (e.g. the chirp mass of
the template waveform). Suppose the distribution of the data
in the absence of a signal is

p(ρ, x | 0) =Aρ exp(−ρ2)Θ(x)Θ(1− x)

+BΘ(x+ 1)Θ(−x)Θ(ρ)Θ(α− ρ) .
(27)

Figure 1 provides a graphic representation of this distribution.
Notice thatp(ρ, x | 0) = 0 for x < 0 andρ > α, therefore
data(ρ, x) in this region of the plane indicates the presence of
a signal with unit probability. This intuition is clearly borne
out in the above analysis since

p(h | ρ, x) =
p(ρ, x |h)p(h)

p(ρ, x |h)p(h) + 0
= 1 (28)

for {(ρ, x) |x < 0 andρ > α}, compare this equation with
Eq. (2). The likelihood ratio for these data points is infinite,
reflecting complete certainty that the data samples from this
region are signals.

2. Simulated compact binary search

For the purpose of simulating a real-life search we use data
from LIGO’s fourth science run, February 24–March 24, 2005.
The data was collected by three detectors: the H1 and H2 co-
located detectors in Hanford, WA, and the L1 detector in Liv-
ingston, LA.
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The search targets three types of binaries: neutron
star–neutron star (BNS), neutron star–black hole (NSBH)
and black hole–black hole (BBH). To model signals from
these systems, we use non-spinning, post-Newtonian wave-
forms [17–27] that are Newtonian order in amplitude and sec-
ond order in phase, calculated using the stationary phase ap-
proximation [18, 25, 26] with the upper cut-off frequency set
by the Schwarzschild innermost stable circular orbit. We gen-
erate three sets of simulated signals, one for each type of bi-
nary. The neutron star masses are chosen randomly in the
range 1–3M⊙, while the black hole masses are restricted such
that the total binary mass is between 2–35M⊙. The maxi-
mum allowed distance for the source systems is set to 20 Mpc
for BNS, 25 Mpc for NSBH and 60 Mpc for BBH. These
distances roughly correspond to the sensitivity range of the
detectors in this science run. All other parameters, including
the location of the source on the sky, are randomly sampled.
The simulated signals are distributed uniformly in distance. In
order to represent realistic astrophysical population with prob-
ability density function scaling as distance squared, the sim-
ulated signals are appropriately re-weighted and are counted
according to their weights. The simulated signals from each
set are injected into non-overlapping 2048-second blocks of
data and analyzed independently.

Analysis of the data is performed using the low-mass
CBC pipeline [10, 14–16, 28]. It consists of several stages.
First, the time-series data recorded by each interferometer are
match-filtered with the bank of non-spinning, post-Newtonian
template waveforms covering all possible binary mass combi-
nations with total mass in the range 2–35M⊙. The template
waveforms come from the same family as the simulated sig-
nal waveforms previously described. When the SNR time se-
ries for a particular template crosses the threshold of 5.5,a
single-interferometer trigger is recorded. This trigger is then
subjected to waveform consistency tests, followed by consis-
tency testing with triggers from the other interferometers. To
be promoted to a gravitational-wave candidate, a signal is re-
quired to produce triggers with similar mass parameters in at
least two interferometers within a very short time window (set
by the light travel time between the detectors). The surviv-
ing coincident triggers are ranked according to the combined
effective SNR statistic given by

ρ2c =

N
∑

i=1

ρ2eff,i , (29)

where the sum is taken over the triggers from different de-
tectors that were identified to be in coincidence and the phe-
nomenologically constructedeffective SNRfor a trigger is de-
fined as

ρ2eff =
ρ2

√

(

χ2

2p−2

)(

1 + ρ2

r

)

, (30)

whereρ is the SNR, the phenomenological denominator factor
r = 250, andp is the number of bins used in theχ2 test, which
is a measure of how much the signal in the data matches the
template waveform [29]. In the denominator of Eq. (30),χ2

is normalized by2p−2, the number of degrees of freedom for
this test.

All steps in the analysis beyond calculation of the SNR,ρ,
are designed to remove non-Gaussian noise artifacts. Experi-
ence has shown that if properly tuned, these extra steps signif-
icantly reduce the number of false alarms [28]. Yet typically,
the resulting output of the analysis is still not completelyfree
of instrumental artifacts. Triggers that survived the pipeline’s
initial tests include unsuppressed noise artifacts. The general
formalism developed in Section II can be applied to further
classify these triggers with the aim of optimally separating sig-
nals from the noise artifacts. Each trigger is characterized by
a vector of parameters which, in addition to the combined ef-
fective SNR,ρc, may include the chirp mass,M, difference in
the time of arrivals at different detectors etc. Such information
as which detectors detected the signal and what was the data
quality at the time of detection can be also folded in as a dis-
crete trigger parameter. For such parametrized data, the prob-
ability distributions in the presence and absence of a signal
can be estimated via direct Monte-Carlo simulations. These
distributions, if estimated correctly, include a non-Gaussian
component. The triggers are ranked by their likelihood ratios,
Eq. (1), which results in the optimized search in the parameter
space of triggers.

Extra efficiency gained by additional processing of the trig-
gers depends strongly on the extent to which the non-Gaussian
features of the background noise are reflected in the distribu-
tion of the trigger parameters. In the context of the search
for gravitational waves from compact binary coalescence in
LIGO data, the chirp mass of a trigger’s template waveform
is one of the parameters that exhibits a non-trivial background
distribution. For a givenM, the number of background trig-
gers falls off with increasing combined effective SNR,ρc, of
the trigger. The rate of falloff is slower for templates with
higher chirp mass, reflecting the fact that non-Gaussian noise
artifacts are more likely to generate a trigger for templates
with smaller bandwidth. Another important piece of informa-
tion about a trigger is the number and type of detectors that
produced it. Generally, detectors differ by their sensitivities
and level of noise. In the case we are concern with, two de-
tectors, H1 and L1, have comparable sensitivities which are
a factor of two higher than the sensitivity of the smaller H2
detector. This configuration implies that the signals within the
sensitivity range of the H2 detector are likely to be detected in
all three instruments forming a set of triple triggers, H1H2L1.
The signals beyond the reach of the H2 detector can only be
detected in two instruments forming a set of double triggers,
H1L1. Detection of a true signal by another two detector com-
binations, H1H2 and H2L1, is very unlikely, therefore such
triggers are discarded in the search. The number density of
astrophysical sources grows as distance squared. As a con-
sequence, it is more likely that a gravitational-wave signal is
detected as an H1L1 double trigger. On the other hand, back-
ground of H1H2L1 triggers is much cleaner due to the fact
that instrumental artifacts are less likely to occur in all three
detectors simultaneously. These competing factors shouldbe
included in the ranking of the candidate events in order to op-
timize probability of detection.
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It is natural to expect that inclusion of such information
about the triggers in the ranking, in addition to the combined
effective SNR, should help distinguishing signals from noise
artifacts. The first step is to estimate distribution of trigger
parameters for signals and background. For background esti-
mation, we use the time-shifted data—the standard technique
employed in the searches for transient gravitational-wavesig-
nals in LIGO data [10, 14–16, 28]. We perform 200 time shifts
of the time-series data recorded by L1 with respect to the time-
series data taken by the H1 and H2 detectors. The time lags
are multiples of 5 seconds.

Analysis of time-shifted data provides us with a sample of
the background distribution of the combined effective SNRs
for H1L1 and H1H2L1 triggers with various chirp masses. We
find that all triggers can be subdivided into three chirp mass
bins: 0.87 ≤ Mc/M⊙ < 3.48, 3.48 ≤ Mc/M⊙ < 7.4,
and 7.4 ≤ Mc/M⊙ < 15.24. These correspond to equal
mass binaries with total masses of 2–8M⊙, 8–17M⊙ and 17–
35M⊙. These same bins were used in the analyses of the data
from LIGO’s S5 and Virgo’s VSR1 science runs [10, 15, 16].
Within each bin, the background distributions depend weakly
on chirp mass, thus there is no need for finer resolution. At the
same time, the distributions of the combined effective SNR in
different bins show progressively longer tails with increasing
chirp mass.

The distribution of triggers for gravitational-wave signals
is simulated by injecting model waveforms into the data and
analyzing them with the pipeline. This is done independently
for each source type: BNS, NSBH and BBH.

Following the prescription for optimal ranking outlined in
Section II, we treat each trigger as a vector of data~c =
(ρc, α,m), whereα denotes the type of the trigger, double
H1L1 or triple H1H2L1, andm is a discrete index labeling
the chirp mass bins. We construct the likelihood-ratio rank-
ing,Λ(ρc, α,m |Sj) for each binary type, whereSj stands for
BNS, NSBH or BBH. Note that the likelihood ratio has strong
dependence on the binary type,Sj . To simplify calculations,
we approximate the likelihood ratio by

Λ(ρc, α,m |Sj) ≈
nj

inj(ρc, α,m)

nslide(ρc, α,m)
, (31)

wherenj
inj(ρc, α,m) is the fraction of injected signals ofSj

type that produce a trigger of typeα with ρ′c ≥ ρc in the chirp
mass binm, andnslide(ρeff , α,m) is the fraction of time shifts
of the data that produce a trigger of typeα with ρ′c ≥ ρc in the
same chirp mass bin. This approximation is equivalent to us-
ing cumulative probability distributions instead of probability
densities. It is expected to be reasonably good for the tailsof
probability distributions that fall off as a power law or faster.
The case we consider here falls into this category.

We compute the likelihood ratios given by Eq. (31) for
all triggers: background and signals. Each trigger has three
likelihood ratios, one for each binary type. We introduce a
prior distribution for binary types,ps(Sj). It can either en-
code our knowledge about astrophysical populations of bi-
naries or relative “importance” of different types of binaries
to the search. In what follows we consider four alternatives:

FIG. 2. Efficiency in detecting BNS signals versus false-alarm rate
computed for various rankings. The solid curve correspondsto the
likelihood-ratio ranking,Λ, with uniform priorps(Sj) = (1, 1, 1).
The dashed curve is the likelihood-ratio ranking,Λ, with the prior
ps(Sj) = (1, 0, 0), singling out BNS binaries for detection. The dot-
ted curve represents the standard search with the combined effective
SNR ranking,ρeff .

FIG. 3. Efficiency in detecting NSBH signals versus false alarm rate
computed for various rankings. The solid curve correspondsto the
likelihood-ratio ranking,Λ, with uniform priorps(Sj) = (1, 1, 1).
The dashed curve is the likelihood-ratio ranking,Λ, with the prior
ps(Sj) = (0, 1, 0), singling out NSBH binaries for detection. The
dotted curve represents the standard search with the combined effec-
tive SNR ranking,ρeff .
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FIG. 4. Efficiency in detecting BBH signals versus false alarm rate
computed for various rankings. The solid curve correspondsto the
likelihood-ratio ranking,Λ, with uniform priorps(Sj) = (1, 1, 1).
The dashed curve is the likelihood-ratio ranking,Λ, with the prior
ps(Sj) = (0, 0, 1), singling out BBH binaries for detection. The
dotted curve represents the standard search with the combined effec-
tive SNR ranking,ρeff .

ps(Sj) = (1, 0, 0), ps(Sj) = (0, 1, 0), ps(Sj) = (0, 0, 1) and
ps(Sj) = (1, 1, 1). The first three singles out one of the binary
types, whereas the last one treats all binaries on equal footing.
Finally, the ranking statistic is defined as

Λ(ρc, α,m) = max
Sj

Λ(ρc, α,m |Sj)ps(Sj) . (32)

Here we use maximization instead of marginalization over dif-
ferent types of signals,Sj , prescribed by the general form of
the likelihood ratio, Eq. (1). This is a good approximation if
signals of different types can be distinguished from each other
by the analysis pipeline with high degree of confidence. Math-
ematically, it can be expressed as requirement that in the pres-
ence of a signal in the dataΛ(ρc, α,m |Sj) is always strongly
peaked on the correct type of signal. This is true in our case,
because binary of different types produce triggers at different
chirp-mass bins,m. Note though, that we do marginalize over
signal parameters when computing likelihood ratio for each
type of binary,Sj , in Eq. (31) by using population of simu-
lated signals that samples the region in the parameter space
pertained to the specific type of binary.

The four alternative choices forps(Sj) define four different
searches. For example,ps(Sj) = (1, 0, 0) corresponds to the
search targeting only gravitational-wave signal from BNS coa-
lescence. Similarly,ps(Sj) = (0, 1, 0) andps(Sj) = (0, 0, 1)
define the searches for gravitational waves from NSBH and
BBH. The uniform prior,ps(Sj) = (1, 1, 1), allows one to
detect all signals without giving priority to one type over the
others. In each of the searches, the likelihood-ratio ranking,
Eq. (32), re-weights triggers giving higher priority to those

that are likely to be the targeted signal as oppose to noise.
In order to assess the improvement attained by the new rank-

ing, we compute efficiency in recovering simulated signals
from the data as a function of the rate of false alarms. For
a given rate of false alarms we find the corresponding value
of the ranking and define efficiency as ratio of injected sig-
nals ranked above this value to the total number of signals
that passed initial cuts of the analysis pipeline. This is equiva-
lent to computing the standard receiver operating character-
istic curveP1(P0) defined by Eqs. (4)–(5). The efficiency
curves are computed for BNS, NSBH and BBH binaries. In
each case we evaluate efficiency of both likelihood-ratio rank-
ings, the one that targets only that type of binary and the one
that applies the uniform prior,ps(Sj) = (1, 1, 1). We com-
pare the resulting curves to the efficiency curve for the stan-
dard analysis pipeline that uses the combined effective SNR,
ρc as the ranking statistic. These curves are shown in Fig-
ures 2–4.

They reveal that the searches targeting single type of binary,
represented by the dashed curves, are more sensitive than the
uniform search, the solid curve. This is expected, because
narrowing down the space of signals typically allows one to
discard the triggers that mismatch the signal’s parametersre-
ducing the rate of false alarms without loss of efficiency in
recovering these signals. For instance, the search targeting
BNS only signals discards all triggers from the high chirp-
mass bins,m = 2, 3, without discarding the BNS signals.
This reduces the rate of false alarms, although at the pricesof
missing possible gravitational-wave signals from other types
of binaries, NSBH and BBH. Still, one could justify such
search if it was known that NSBH and BBH binaries do not
exist or are very rare. The uniform search, despite being less
sensitive to BNS signals, allows one to detect the signals from
all kinds of binaries. Such search still gains in efficiency over
the standard search, the dotted curve, for BNS and NSBH sys-
tems, Figures 2 and 3. At the same time, Figure 4 shows that
such search does worse in comparison to the standard search
in detecting BBH signals. This is an unavoidable consequence
of re-weighting of triggers by the likelihood ratio, Eq. (32)
based on their type and chirp mass. It ranks triggers from the
lower chirp-mass bins higher, because these triggers are less
likely to be a noise artifact. This leads to some loss of sensi-
tivity to BBH signals, but gains sensitivity to BNS and NSBH
signals. The role of the likelihood ratio is to provide optimal
re-weighting of triggers that results in the highest overall effi-
ciency. In the case of the uniform search, it should provide in-
crease in the total number of detected sources of all types. To
demonstrate that this is indeed the case, we plotted the com-
bined efficiency of the uniform search for BNS, NSBH and
BBH signals and compared it to the efficiency of the standard
search, Figure 5.

The combined efficiency of the uniform search on Figure
5 is higher than that of the standard search because triggers
are re-weighted by the likelihood ratio which properly ac-
counts for the probability distributions of noise and signals.
To gain further insight in this process we pick a particular
point on the efficiency curve that corresponds to the rate of
false alarms, x-axes, of1.25 events per year. We find the cor-
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FIG. 5. Efficiency in detecting signals from any binary (BNS,NSBH
or BBH) versus the false alarm rate computed for various rankings.
The solid curve corresponds to the likelihood-ratio ranking, Λ, with
uniform prior ps(Sj) = (1, 1, 1). The dotted curve represents the
standard search with the combined effective SNR ranking,ρeff .

responding to this rate threshold for combined effective SNR
in the standard search to beρ∗c = 11.34. Next, we find the
corresponding threshold for logarithm of the likelihood ratio,
ln Λ∗(ρc, α,m) = 9.11. For each(α,m) combination this
value can be mapped toρc which will be different for each
type of trigger. Bothρ∗c = 11.34 andln Λ∗(ρc, α,m) = 9.11
define detection surfaces in(ρc, α,m) space of trigger param-
eters. We depicted them on Figure (6).

The signals falling to the right ofρ∗c = 11.34, the dashed
line, are considered to be detected in the standard search. Sim-
ilarly, the signals that happen to produce a trigger to the right
of ln Λ∗(ρc, α,m) = 9.11, the solid line, are considered to
be detected in the uniform search with the likelihood-ratio
ranking. The line of constant likelihood-ratio ranking sets dif-
ferent thresholds for combined effective snr,ρc, of the trig-
gers depending on their type. The threshold is higher than
ρ∗c = 11.34 for the H1L1 triggers from the third chirp-mass
bin. The signals producing triggers in the shaded area in this
bin, labeled by(−), are missed in the uniform search but de-
tected by the standard search. These signals are typically cor-
responds to BBH coalescence. The effect of this is visible on
Figure (4), the solid curve is below the dotted curve at false
alarm rate of1.25 events per year. On the other hand, the
thresholds for other trigger types and chirp masses are lower
thanρ∗c = 11.34. As a result, the signals producing triggers
with parameters in the shaded regions labeled by(+) are de-
tected in the uniform search but missed by the standard one.
The net gain from detecting these signals is positive, Figure 5.
The process of optimization of the search in(ρc, α,m) param-
eter space can be thought of as deformation of the detection
curve,ρ∗c = 11.34, with the aim of maximizing efficiency
of the search. The deformations are constrained to those that

FIG. 6. The detection surfaces for the combined effective SNR, ρ
c
,

and the likelihood-ratio,Λ, rankings at the false alarm rate of 1.25
events per year. The y-axes labels different types and chirp-mass
bins of the triggers. The dashed line is the line of constant combined
effective SNR,ρ∗c = 11.34. The solid line is the line of constant
likelihood ratio, ln Λ∗(ρc, α,m) = 9.11. The signal producing a
trigger that falls to the right of the dashed/solid curve is considered
to be detected in the search with combined effective SNR/likelihood-
ratio ranking. Those triggers that fall to the left are missed. The
shaded region is the difference between the detection region for the
likelihood-ratio and the combined effective SNR rankings.The sig-
nals that produce trigger with parameters in the shaded regions la-
beled by(+) are gained in the search equipped with likelihood ratio
but missed by the search with the combined effective SNR ranking.
Those signals that produce a trigger in the shaded region labeled by
(−) are missed by the likelihood-ratio ranking but detected by the
combined effective SNR ranking.

do not change the rate of false alarms. The optimal detection
surface, as was shown in Section II B, Eq. (8), is the surface
of constant likelihood ratio. This is the essence of likelihood
ratio method.

The power of the likelihood-ratio ranking depends strongly
on the input data. For demonstration purpose, in the sim-
ulation we restricted our attention to a subset of trigger
parameters,(ρc, α,m). We expect that inclusion of other pa-
rameters such as difference in arrival times of the signal at
different detectors, ratios of recovered amplitudes etc, should
drastically improve the search. We leave this to future work.

IV. CONCLUSION

In this paper, we describe a general framework for design-
ing optimal searches for transient gravitational-wave signals
in data with non-Gaussian background noise. The principle
quantity used in this method is the likelihood ratio, the ratio
of the likelihood that the observed data contain signal to the
likelihood that the data contain only noise. In Section II we
prove that the likelihood ratio leads to the optimal analysis
of data, incorporating all available information. It is robust
against increase of the data volume, effectively ignoring irrel-
evant information. We apply the general formalism to two
typical problems that arise in searches for gravitational-wave
signals in LIGO data.

First, in Section III A we show that when searching for
gravitational-wave signals in the data from different experi-
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ments or detector configurations, it is necessary as well as suf-
ficient to rank candidates by the “local” likelihood ratio given
by Eq. (25), which is calculated using estimated local prob-
abilities. This provides overall optimality across the experi-
ments. Candidate events from different experiments can be
compared directly in terms of their likelihood ratios. Thisre-
sults in complete unification of the data analysis products.An-
other significant feature of the unified analysis is that the can-
didate’s significance is independent of the duration of the ex-
periments. Only the detectors’ sensitivities and level of back-
ground noise contribute to the likelihood ratio of the candi-
dates. The experiment’s duration, on the other hand, measures
its contribution to the total probability of detecting a signal (or
efficiency) and the total probability of a false alarm.

Second, in Section III B we aim to improve efficiency of
the search for gravitational waves from compact binary coa-
lescence by considering the issue of consistent accountingfor
non-Gaussian features of the noise in the analysis. We suggest
a practical solution to this problem. Estimate the probability
distributions of parameters of the candidate events (e.g. SNR
and the chirp mass of the template waveform, type of trigger
etc) in the presence and absence of a signal in the data. Con-
struct the likelihood ratio that includes non-Gaussian features
and use it to re-rank candidate events. Non-trivial information
contained in the probability distributions of candidate’sparam-
eters allows for a more optimal evaluation of their significance.
Indeed, as we demonstrate in the simulation, inclusion of the
chirp mass and the type of trigger in the likelihood-ratio rank-
ing results in a significant increase of efficiency in detecting
signals from coalescing binaries.

We would like to stress that the approach described in this
paper is quite generic and can be applied to a wide range of
problems in analysis of data with non-Gaussian background.
Its main advantage is consistent account of statistical informa-
tion contained in the data. It provides a unified measure, in
the form of the likelihood ratio, of the information relevant to
detection of the signal in any type of data. This allows one to
combine data of very different kind, such as the type of experi-
ment, a type of trigger, its discrete and continuous parameters
etc, into the single optimized analysis.
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