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Abstract

We discuss the possibility of the cosmic coincidence generating the ratio of baryon asymmetry
to dark matter in a Stueckelberg U(1) extension of the standard model and of the minimal su-
persymmetric standard model. For the U(1) we choose Lµ−Lτ which is anomaly free and can be
gauged. The dark matter candidate arising from this extension is a singlet of the standard model
gauge group but is charged under Lµ−Lτ . Solutions to the Boltzmann equations for relics in the
presence of asymmetric dark matter are discussed. It is shown that the ratio of the baryon asym-
metry to dark matter consistent with the current WMAP data, i.e., the cosmic coincidence, can
be successfully explained in this model with the depletion of the symmetric component of dark
matter from resonant annihilation via the Stueckelberg gauge boson. For the extended MSSM
model it is shown that one has a two component dark matter picture with asymmetric dark mat-
ter being the dominant component and the neutralino being the subdominant component (i.e.,
with relic density a small fraction of the WMAP cold dark matter value). Remarkably, the sub-
dominant component can be detected in direct detection experiments such as SuperCDMS and
XENON-100. Further, it is shown that the class of Stueckelberg models with a gauged Lµ −Lτ
will produce a dramatic signature at a muon collider with the σ(µ+µ− → µ+µ−, τ+τ−) showing
a detectable Z ′ resonance while σ(µ+µ− → e+e−) is devoid of this resonance. Within the above
frameworks we discuss several broad classes of models both above and below the electroweak
phase transition temperature. Asymmetric dark matter arising from a U(1)B−L Stueckelberg
extension is also briefly discussed. Finally, in the models we propose the asymmetric dark matter
does not oscillate and there is no danger of it being washed out from oscillations.
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1 Introduction

One of the outstanding puzzles in particle physics and cosmology relates to the so called cosmic
coincidence, i.e., the apparent closeness of the amount of baryon asymmetry to the amount of dark
matter in the Universe. Thus the WMAP-7 result, with RECFAST version 1.5 to calculate the
recombination history [1], gives the baryonic relic density to be 100ΩBh

2
0 = 2.255 ± 0.054 and the

dark matter relic density to be ΩDMh
2
0 = 0.1126± 0.0036, which leads to

ΩDMh
2
0

ΩBh2
0

= 4.99± 0.20 . (1)

The closeness of ΩDMh
2
0 and ΩBh

2
0 points to the possibility that the baryonic matter and dark matter

may have a common origin; a possibility that has been noted for some time [2]. In this manuscript we
analyze this issue in the framework of a Stueckelberg U(1) extension of the standard model (SM) as
well as a Stueckelberg U(1) extension of the minimal supersymmetric standard model (MSSM) [3–9].
There are two main constraints in building models with asymmetric dark matter (AsyDM). First,
we need a mechanism for transferring a B − L asymmetry produced in the early universe to dark
matter. Second, we must have a mechanism for depleting the symmetric component of dark matter
generated via thermal processes.

The above issues have been discussed in the literature in a variety of works [10–19] (for a review
see [21]). The models based on the Stueckelberg extensions we discuss in this work are different
from the ones considered previously both in terms of the mechanism for depletion of the symmetric
component of dark matter as well as regarding the implications for dark matter and signatures at
colliders. Specifically, we consider a U(1)X extension of the standard model gauge group which is
anomaly free. Further, we consider dark matter candidates which will carry lepton number but not a
baryon number, and are singlets of the standard model gauge group. Now in the leptonic sector it is
known [22] that for the standard model case we may choose one of the linear combinations Le−Lµ,
Lµ − Lτ , Le − Lτ to be anomaly free and can be gauged. The gauged Le − Lµ has been discussed
previously in the context of PAMELA positron excess and multi-component dark matter [8] and
Lµ − Lτ in the context of muon anomalous moment [23] and in the context the PAMELA positron
excess [24]. Here we consider a gauged Lµ − Lτ in the discussion of asymmetric dark matter as
this choice is the more appropriate one for the analysis here. Specifically, we will consider a U(1)X ,
X = Lµ − Lτ Stueckelberg extension of the standard model as well as of the MSSM. As is well-
known, the MSSM supplemented by supergravity soft breaking gives the neutralino as the lowest
supersymmetric particle and with R parity a candidate for dark matter. Thus for the AsyDM to
work in the MSSM extensions it is necessary to have the neutralino as a subdominant component.
This issue will be addressed as well as the question if such a subdominant component may still be
detectable in experiments for the direct detection of dark matter. It is found that the Stueckel-
berg models with a gauged Lµ − Lτ can produce dramatic signatures at a muon collider leading to
a detectable Z ′ resonance in the µ+µ− → µ+µ−, τ+τ− cross section while the µ+µ− → e+e− cross
section exhibits no such resonance. Finally we consider the possibility of an asymmetric dark matter
in the Stueckelberg extension of B − L.

An important issue regarding asymmetric dark matter concerns the possibility that such matter
can undergo oscillations [19]. Thus, for example, consider a model which allows for a Majorana
mass term L = −mMXX + h.c., where X is the dark particle. The presence of such a term along
with other mass terms allows for the oscillation of X to its anti-particle X̄. Detailed analysis show
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that in this circumstance over the age of the Universe the asymmetric dark matter would produce
a symmetric component which would lead to pair annihilation. Such processes could completely
wipe out the asymmetric dark matter generated in the early universe, and could render such models
largely invalid [19]. In the models we consider mass terms that can generate oscillations are for-
bidden because of gauge invariance, either U(1)Lµ−Lτ or U(1)B−L. Thus dark matter oscillations
are absent in the class of models we consider. However, we wish to add a further explanation here.
In general there are two alternative possibilities for the Stueckelberg mechanism to arise. One pos-
sibility is that it is a low energy remnant of a Higgs mechanism which contains a scalar field S
that would in general allow a term of the type XXSn and thus generate a Majorana mass term
for X as a consequence of VEV formation of the scalar field S. This would lead to dark matter
oscillations once again. The second possibility, which is the view point adopted in this work, is that
the Stueckelberg mechanism arises from the Green-Schwarz term in string theory (see, e.g., [20]). In
this case there is no fundamental Higgs field which develops a VEV and thus Majorana mass term
would not be generated and there would be no dark matter oscillation.

We will discuss six broad classes of models. Three of these will be anchored in extensions of
the standard model, one in extension of the two Higgs doublet model, and two in extensions of
the minimal supersymmetric standard model. We will consider cases where the asymmetry transfer
interaction may lie above or below the electroweak phase transition scale, i.e., the scale where the
Higgs boson gets its VEV. In the supersymmetric case we will consider the case where all of the
sparticles are in the thermal bath at temperatures where the asymmetry transfer takes place as well
as the case where the first two generations of squarks are heavy and are Boltzmann suppressed in
the thermal bath.

The outline of the rest of the paper is as follows: In Section 2 we give a brief introduction to
cosmic coincidence as well as asymmetric dark matter and the technique for the computation of the
ratio of dark matter density to the baryonic matter density in the Universe and of the dark matter
mass. Here we describe six broad classes of models which we will discuss in detail later. In Section 3
we carry out an explicit computation of these quantities in extensions of the standard model and of
the two Higgs doublet model. In this section we also consider the case with inclusion of right-handed
neutrinos. In Section 4 the analysis is redone for models in extensions of MSSM. In Appendix A we
give a master formula for the computation of the asymmetric dark matter mass which is valid for
temperatures above the electroweak phase transition scale. Here we show that the results of models
discussed in previous sections can be deduced as limiting cases. In Section 5 we consider an explicit
Stueckelberg extension of the standard model which generates asymmetric dark matter. We discuss
solutions to the Boltzmann equations for relics in the presence of asymmetric dark matter, and show
that the symmetric component of dark matter can be depleted from resonant annihilation via the Z ′

pole. In Section 6 we give a Stueckelberg extension of MSSM. Here a similar resonant annihilation
of the symmetric component of dark matter is valid. There are several additional particles that
arise in this case which include an extra scalar particle (the ρ) from the Stueckelberg sector. The
decay width of this particle is computed in Appendix B and it is shown that it decays rapidly and
is removed from the relativistic plasma. There are also additional neutralinos which we assume
lie above the lightest MSSM neutralino and thus the lightest MSSM neutralino continues to be
the lightest supersymmetric particle (LSP). In Section 7 we show that the MSSM neutralino is a
subdominant component and thus does not interfere with the AsyDM mechanism. It is also shown
here that the subdominant component can produce a spin-independent cross section which lies
within reach of future experiments for the direct detection of dark matter. In Section 8 we discuss
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the signatures of the models at a muon collider. A (B − L) Stueckelberg extension is discussed in
Section 9 which also produces asymmetric dark matter. Conclusions are given in Section 10. In
Appendix C, we compute the µ+µ− → e+e− at the loop level via Z ′− γ, Z ′−Z exchange and show
that the corresponding production cross section is too small to be discernible.

2 Cosmic coincidence and asymmetric dark matter

In the analysis here we assume that a B − L asymmetry has been generated in the early universe.
We do not speculate on how this asymmetry comes about as it could be by any number of different
processes such as baryogenesis or leptogenesis [25]. Thus, for example, baryon asymmetry, specif-
ically a non-vanishing B − L, can arise in the early universe by decay of super-heavy particles in
some grand unified models [26,27] consistent with experimental proton decay limits [28]. A (B−L)
asymmetry of this type will not be washed out by sphaleron processes which preserve B − L. Such
an asymmetry is then transferred to the dark sector at high temperatures via an interaction of the
form [12]

Lasy =
1

Mn
asy

ODMOasy , (2)

where Masy is the scale of this interaction,1 and Oasy is an operator constructed from SM/MSSM
fields which carries a non-vanishing B − L quantum number while ODM carries the opposite B − L
quantum number. This interaction would decouple at some temperature greater than the dark
matter mass. As the Universe cools, the dark matter asymmetry freezes on order of the baryon
asymmetry, which explains the observed relation between baryon and dark matter densities.

At the temperature where Eq. (3) is operational, and using the fact that the chemical potential
of particles and anti-particles are different, the asymmetry in the particle and antiparticle number
densities is given by

ni − n̄i =
gi

2π2

ˆ ∞
0

dq q2
[
(e(Ei(q)−µi)/T ) ± 1)−1 − (e(Ei(q)+µi)/T ) ± 1)−1

]
≡ giT

3

6
×
{
βµici(b) bosons ,

βµici(f) fermions ,
(4)

where ni and n̄i denote the equilibrium number density of particle and antiparticle respectively, gi
counts the degrees of freedom of the particle, Ei(q) =

√
q2 +m2

i where mi is the mass of particle
i, µi is the chemical potential of the particle (−µi is the chemical potential of the antiparticle),
and +1 (−1) in the denominator are for case when the particle is a fermion (boson). In the ultra
relativistic limit (T � mi) the mass of the particle can be dropped. In our analysis below we use
the approximation of a weakly interacting plasma where βµi � 1, and β ≡ 1/T and one has

ni − n̄i ∼
giT

3

6
×
{

2βµi +O
(
(βµi)

3
)

bosons ,

βµi +O
(
(βµi)

3
)

fermions .
(5)

1In the radiation-dominated era, the Hubble expansion rate is given byH ∼ T 2/MPl, whereMPl = 2.435×1018 GeV
is the reduced Plank mass. For an interaction suppressed by a factor 1/Mn

asy, the interaction rate at temperature T
is Γ(T ) ∼ T 2n+1/M2n

asy. Thus, the interaction will decouple if Γ < H, i.e., when

M2n
asy > MPlT

2n−1 . (3)
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In the limit where Eq. (5) holds we have ci(b) = 2, ci(f) = 1. This limit is a useful approximation as
it simplifies the analysis of the chemical potentials that are needed in the generation of dark matter.
However, full analysis can be easily done by using the exact expression of Eq. (4). We will discuss
inclusion of these in Appendix A. There the functions ci(b) and ci(f) introduced in Eq. (4) will be
found useful. The mass of the dark matter is constrained by the experimental ratio of dark matter
to baryonic matter given in Eq. (1). Defining B to be the total baryon number in the Universe and
X to be the total dark matter number, we obtain

ΩDM

Ωmatter
=
X ·mDM

B ·mB
≈ 5 , (6)

so that the dark particle mass is given by

mDM ≈ 5 · B
X
· 1 GeV . (7)

Applying the general thermal equilibrium method [29] (see also [11]), it is not difficult to express B
and X in terms of the chemical potentials and then find their ratio. We note one subtlety is that
while X and B−L (where by B−L we mean the B−L in the standard model sector) are conserved
after the interaction in Eq. (2) decouples, B is not. Thus, for example, the top quark would drop
out from the thermal bath at some temperature Tt and one must solve the new set of µ equations
at T < Tt which would affect the computation of B although B − L is conserved. Typically one
takes Tt to be Mt but it could be somewhat lower. Specifically, as the temperature drops below
Mt ∼ 173 GeV, the top quark becomes semi-relativistic but could still be involved in the thermal
equilibrium constraints. A precise determination of Tt is out of the scope of this paper, and here
we simply assume that Tt lies below Mt. Further, as the temperature falls below the temperature
where sphaleron processes decouple, B and L would be separately conserved down to the current
temperatures. Thus the relevant B to compute the dark matter mass in Eq. (7) would be the baryon
number below the sphaleron temperature which we label Bfinal. It is useful to express X and Bfinal

in terms of B − L so that X = x(B − L) and Bfinal = b(B − L) where b is to be determined later
(see Eqs. (28) and (61)). Thus, Eq. (7) can be rewritten as

mDM ≈ 5 · b
x
· 1 GeV . (8)

We will discuss six broad classes of models labeled Models A-F (see Table 1). Models A,B,C are
anchored in the standard model while Model D is a two Higgs doublet (2HD) model. For Models
A and D, the asymmetry transfer interaction, of the form of Eq. (2), is active only above the elec-
troweak phase transition (EWPT) scale, i.e., Tint > TEWPT (TEWPT ∼ 200 − 300 GeV where the
Higgs gets its VEV). For Model B and C, the interaction which transfers the asymmetry could be
active also below the EWPT scale, i.e., TEWPT > Tint. More specifically, in Model B we consider
the temperature regime TEWPT > Tint > Mt, and in Model C we discuss Tt > Tint > MW (MW is
the mass of W boson). Similarly, we discuss models based on extensions of the MSSM. Here we will
focus on two cases; one of which is when Tint > MSUSY (Model E) where MSUSY is the (largest)
soft breaking mass. In this case all the sparticles will be in the plasma. The second case (Model F)
corresponds to when the first two generations of sparticles (with mass M1) are heavy and drop out
of the plasma (at some temperature T1 < M1) while the third generation sparticles, the gauginos,
the Higgses and the Higgsinos (with mass M2 � M1) remain in the plasma. Thus for this case we
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Model A
SM

Tint > TEWPT

Model B TEWPT > Tint > Mt

Model C Tt > Tint > MW

Model D 2HD Tint > TEWPT

Model E MSSM Tint > MSUSY

Model F T1 > Tint > M2 > TEWPT

Table 1: A list of six models which allow for generation of asymmetric dark matter. Models A,B,C
are within the framework of the extensions of the standard model (SM) while Model D is an extension
of a two Higgs doublet model (2HD). Models E and F are in the framework of an extension of the
minimal supersymmetric standard model (MSSM).

have T1 > Tint > M2 > TEWPT.

These six cases are summarized in Table 1. There can be additional subcases for these models
corresponding to different choices of the B − L transfer in Eq. (2).

3 Analysis in non-supersymmetric framework

In this section we will determine the dark matter mass in terms of the B − L asymmetry in the
non-supersymmetric framework utilizing Eq. (8) for Models A-D. We will discuss three different
temperature regimes where the B − L transfer takes place and then deduce a general formula for
computing the asymmetric dark matter mass. We note that the dark matter mass depends only on
the (B − L)-charge of the operator Oasy that enters in Eq. (2) and not on other particulars of the
interaction. We will give several examples of the operator Oasy and compute the dark matter mass
for them.

3.1 T > TEWPT

First we consider the case when the temperature is above the electroweak phase transition scale. In
this case the following fields are in the relativistic plasma in the early universe: three generations
of left-handed lepton doublets Li and quark doublets qi, three generations of right-handed charged
leptons ei and up and down-type quarks ui and di (i = 1, 2, 3), and number λH of complex Higgs
doublets Hi = (h+

i , h
0
i )
T . Since the Z boson and the photon couple to particle and anti-particle pairs

they have a vanishing chemical potential. Further, in this temperature regime, SU(2)L symmetry is
unbroken, theW and Z are part of the same gauge multiplet which requires that the chemical poten-
tial of the W vanishes. The chemical potential of the gluon is zero and different color quarks carry
the same chemical potential. The flavor (CKM) mixing among quarks ensures that the chemical
potential of quarks in different generations are equal. However for the lepton sector, there is no such
flavor mixing in the absence of neutrino masses [30]. Thus each of the lepton numbers (Le, Lµ, Lτ )
for the three generations are separately conserved. Our notation is as follows: µLi , µei denote the
chemical potentials of left-handed and right-handed leptons while µqi , µui , µdi stand for the chemical
potential of left-handed and right-handed quarks. We assume that the chemical potential of all
generations is the same and thus drop the subscript i and use µH for the chemical potential of the
Higgs doublets (we assume all the Higgs doublets have identical chemical potential).
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The Yukawa couplings

LYukawa = geiL̄iHei + gui q̄iH
cui + gdi q̄iHdi (9)

yield the following relations among the chemical potentials

µH = µL − µe = µq − µd = µu − µq . (10)

Sphaleron processes (Osph ∼
∏
i=1,2,3 qiqiqiLi) give us one additional relation,

3µq + µL = 0 . (11)

The temperature at which sphaleron processes decouple is estimated to be TSph ∼ [80+54(mh/120 GeV)]
GeV [31]. It is very likely that TSph lies below TEWPT, and thus the sphaleron processes are always
active at T > TEWPT. Finally, the hypercharge neutrality condition requires the total hypercharge
of the Universe to be zero2

3µq + 6µu − 3µd − 3µL − 3µe + 2λHµH = 0 . (12)

Solving Eqs. (9)-(12) we can express all the chemical potentials in terms of the chemical potential
of one single field, e.g., µL. Specifically one finds for Model A with λH = 1 (suppressing a factor of
βT 3/6)

BA = 3× [2µq + (µu + µd)] = −4µL , (13)

LA = 3× (2µL + µe) =
51

7
µL , (14)

so that (B − L)A = −79
7 µL. And for Model D with λH = 2 we have

BD = −4µL , LD =
15

2
µL , (15)

and (B − L)D = −23
2 µL.

3.2 T < TEWPT

Now we consider the case when the temperature is below the EWPT scale. After the Higgs gets its
VEV, and the SU(2)L×U(1)Y symmetry is broken, one hasW±, Z, the photon and the Higgs scalar
(h) as the physical particles in the thermal bath. Again, since the Z and the photon only couple
to two particles with opposite chemical potentials, their chemical potentials are zero. For tempera-
tures above the top quark mass, the relativistic plasma includes three generations of left-handed and
right-handed up-type and down-type quarks (uiL, uiR, diL and diR), three generations of left-handed
leptons (eiL and νi) and right-handed charged leptons (eiR), i = 1, 2, 3. As in Section 3.1, we will
assume that the chemical potentials are generation independent. Thus dropping the generation in-
dex we will use µuL , µuR , µdL , µdR to denote the chemical potentials of left-handed and right-handed

2 The hypercharge of the Universe used in deducing Eq. (12) is computed as follows:

Y = 3 ×
[
2 × 3 × 1

3
µq + 3 × 4

3
µu + 3 × (− 2

3
)µd + 2 × (−1)µL + (−2)µe

]
+ 2 × 2λHµH ,

where the factor of 3 outside the first brace indicates summation over quark and lepton generations while inside the
brace the factor of 3 for quarks indicates summing over colors, the factor of 2 for q, L and H counts two fields inside
the doublets, and the additional factor of 2 for the Higgs is due to it being bosonic (see Eq. (5)).
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up-type and down-type quarks, µeL and µν for left-handed leptons, µeR for right-handed charged
leptons, µW for W+, and µh for h.

In the analysis below we make the following approximations: (1) At TEWPT > T > Mt, we still
treat the top quark as relativistic gas. (2) At Tt > T > MW , we treat theW boson as relativistic (all
other particles, which have non-vanishing chemical potentials, are very light so the limit in Eq. (5)
holds for them). (3) We assume Tt > TSph, i.e., the top quark drops out of the thermal bath before
the sphaleron processes decouple.

For T < TEWPT, the Yukawa couplings have the form

LYukawa = gei ēiLheiR + gui ūiLhuiR + gdi d̄iLhdiR + h.c. , (16)

and since the Higgs boson is a real field and can couple to, for example, both ēiLeiR and ēiReiL, we
get

0 = µh = µuL − µuR = µdL − µdR = µeL − µeR . (17)

Thus, the chemical potentials of left-handed and right-handed quarks/charged leptons are equal.
The gauge interactions involving W bosons (L ∼Wµf̄γ

µf) provide us the following relations,

µW = µuL − µdL (W+ ↔ uL + d̄L) , (18)
µW = µν − µeL (W+ ↔ νi + ēiL) . (19)

The sphaleron processes give us one additional equation,

µuL + 2µdL + µν = 0 . (20)

Since SU(2)L symmetry is broken below the EWPT scale, hypercharge is no longer a good quantum
number. Further, the neutrality of the Universe now requires the total electrical charge to be zero3

2(µuL + µuR + µW )− (µdL + µdR + µeL + µeR) = 0 . (22)

Solving the new set of equations one finds for Model B

BB = 3× [(µuL + µuR) + (µdL + µdR)] = −36

7
µe , (23)

LB = 3× (µeL + µeR + µν) =
75

7
µe , (24)

where we have expressed the results in terms of µe ≡ µeL = µeR , and (B − L)B = −111
7 µe.

When the temperature drops below Tt, the top quark drops out from the thermal bath, and
we are left with just five flavors of quarks. In this case (Tt > T > MW ) one must treat the first

3The result of Eq. (22) follows from the computation of the total charge Q which is given by

Q = 3 ×
[
3 × 2

3
(µuL + µuR) + 3 × (− 1

3
)(µdL + µdR) + (−1)(µeL + µeR)

]
+ 2 × 3µW , (21)

where again, the factors of 3 for fermions outside the big brace indicates summing over generations, the other factor
of 3 for quarks stands for summing over colors. For the W boson, 2 is the boson factor as given by Eq. (5) and 3 is
the degrees of freedom of W .
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two generations and the third generations separately. For the first two generations the analysis of
Eqs. (17)-(20) still holds. For the remaining third generation leptons, we assume as before that
the chemical potentials are identical to those for the first two generation leptons. Further, we note
that the charge current process W+ ↔ uL + b̄L provides us with the relations µW = µuL − µbL and
µbL = µdL . Thus we can treat Model C similar to Model B with only one modification to the charge
neutrality condition, which now becomes

4(µuL + µuR) + 6µW − 3(µdL + µdR + µeL + µeR) = 0 . (25)

Solving these equations we obtain for Model C

BC = 2(µuL + µuR) + 3(µdL + µdR) = −90

19
µe , (26)

LC = 3× (µeL + µeR + µν) =
201

19
µe , (27)

and (B−L)C = −291
19 µe. We note that the sphaleron processes will decouple below TSph as mentioned

already. Subsequently the baryon and lepton numbers would be separately conserved. Eqs. (17)-
(19), and (25)-(27) would remain valid at TSph > T > MW .

Following our assumptions given earlier, the top quark drops out of the thermal bath before
sphaleron processes decouple. After the sphaleron processes decouple, B and L would be separately
conserved. In other words, the ratio of B/(B − L) would freeze as soon as the sphaleron processes
are no longer active. Thus, we obtain

b =
Bfinal

B − L =

(
B

B − L

)
C

=
30

97
≈ 0.31 . (28)

3.3 The AsyDM mass: non-SUSY case

We discuss now in further detail the mechanism by which B − L is transferred from the standard
model sector to the dark matter sector and the determination of the dark matter mass. We con-
sider the most general interaction which transfers the B − L asymmetry to dark matter at a high
temperature:

LSM
asy =

1

Mn
asy

XkOSM
asy , (29)

where the operator OSM
asy is constructed from the standard model fields, has a (B−L)-charge QOSM

B−L,
and X is the dark particle and has a (B − L)-charge QDM

B−L = −QOSM

B−L/k.
4

The parameterization of the asymmetric dark matter sector by the charge QDM
B−L is useful and

we will utilize it in our analysis below. Also useful is the parameterization of the interactions in
terms of the number of doublets and singlets that enter in OSM

asy , i.e., Nq, NL, NH numbers of q, L,H
doublets and Nu, Nd, Ne numbers of uR, dR, eR singlets which are all active above the EWPT scale.
Eq. (29) leads to the following constraints [13]

Nqµq +NLµL +Nuµu +Ndµd +Neµe +NHµH + kµX = 0 , (30)
1
3Nq + 1

3Nu + 1
3Nd −NL −Ne + kQDM

B−L = 0 , (31)

4The power of X can only be 2 or greater to ensure the stability of the asymmetric dark matter.
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1
3Nq + 4

3Nu − 2
3Nd −NL − 2Ne +NH = 0 . (32)

Here Eq. (30) arises from the µ equilibrium of Eq. (29), Eq. (31) arises from the total (B−L)-charge
conservation of the interaction, and Eq. (32) arises from the hypercharge conservation and the
condition that the asymmetric dark matter must have zero hypercharge. Together with Eqs. (10)-
(12), for Model A we obtain

µA
X = −11

7
QDM
B−LµL . (33)

If X is fermionic dark matter (FDM), we find,

xA =
XA

(B − L)A
=

kµA
X

−79
7 µL

= −11

79
QO

SM

B−L . (34)

Using Eqs. (8) and (28), we obtain

mA
FDM ≈ −

11.11 GeV

QO
SM

B−L
. (35)

Similarly, for Model D with two Higgs doublets, we have

µD
X = −3

2
QDM
B−LµL , (36)

so that
mD

FDM ≈ −
11.86 GeV

QO
2HD

B−L
. (37)

If the B − L transfer interaction is also active below the EWPT scale, the treatment is simi-
lar. Assuming OSM

asy has Nu, Nd, Ne, Nν , NW numbers of u, d, e, ν,W+ fields and recalling that at
T < TEWPT, the left-handed and right-handed quarks and charged leptons have the same chemical
potentials, one finds the following constraints

Nuµu +Ndµd +Neµe +Nνµν +NWµW + kµX = 0 , (38)
1
3Nu + 1

3Nd −Ne −Nν + kQDM
B−L = 0 , (39)

2
3Nu − 1

3Nd −Ne +NW = 0 . (40)

We note that the last condition is from the charge neutrality of the operator OSM
asy . Together with

Eqs. (17)-(22), we obtain for Model B,

µB
X = −11

7
QDM
B−Lµe . (41)

The fermionic dark matter mass in this model reads

mB
FDM ≈ −

15.60 GeV

QO
SM

B−L
. (42)

For Model C where the top quark is out of the thermal bath, we find

µC
X = −29

19
QDM
B−Lµe . (43)

10



and
mC

FDM ≈ −
15.52 GeV

QO
SM

B−L
. (44)

Now we consider the simplest example of the B − L transfer interaction (QOSM

B−L = −1)

Lasy =
1

M3
asy

ψ3LH , (45)

where ψ is the fermionic dark matter (which carries a lepton number of −1/3) and ψ3 ≡ ψ̄cψψ̄c. If
this interaction is only active above the EWPT scale then the dark matter masses in Models A and
D, and more appropriately in Models A1 and D1 since the interaction of Eq. (45) is being used (see
Table 2 which also includes a list of additional interactions), are computed to be

mψ = 11.11 GeV Model A1 ; mψ = 11.86 GeV Model D1 . (46)

If this interaction is also active below the EWPT scale, the dark matter masses in Models B and C
are:

mψ = 15.60 GeV Model B1 ; mψ = 15.52 GeV Model C1 . (47)

Further, applying Eq. (3) and the bounds in Table 1 one can estimate the mass scales for these
interactions:

MA1/D1
asy & 1.2× 105 GeV , (48)

1.2× 105 GeV &MB1
asy & 0.9× 105 GeV , (49)

0.9× 105 GeV > MC1
asy & 0.4× 105 GeV . (50)

In the analysis above we focused on asymmetric fermionic dark matter. For bosonic dark matter,
the masses would be half the fermionic ones, c.f., Eq. (5). As an example, we consider now an
interaction with a higher dimensional operator OSM

asy :

Lasy =
1

Mn
asy

X2(LH)2. (51)

In this case, the dark matter could be either a fermion (X = ψ, n = 4) or a boson (X = φ, n = 3).
This interaction gives rise to Models A2-D2 and Models A3-D3. As examples, for Models A2 and A3

where Tint > TEWPT, applying Eq. (35) we find that the dark matter masses are

mψ = 5.55 GeV Model A2 ; mφ = 2.78 GeV Model A3 . (52)

We explain now briefly the equality of asymmetric dark mass for the Models A1,A4,A5,A6.
From Eq. (2) we can write

µODM
+ µOSM

asy
= 0 . (53)
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1
MnXkOSM

asy Model DM Mass Model DM Mass Model DM Mass Model DM Mass
1
M3ψ

3LH A1 11.11 GeV B1 15.60 GeV C1 15.52 GeV D1 11.86 GeV
1
M4ψ

2(LH)2 A2 5.55 GeV B2 7.80 GeV C2 7.76 GeV D2 5.93 GeV
1
M3φ

2(LH)2 A3 2.78 GeV B3 3.90 GeV C3 3.88 GeV D3 2.96 GeV
1
M5ψ

3LLec A4 11.11 GeV B4 15.60 GeV C4 15.52 GeV D4 11.86 GeV
1
M5ψ

3Lqdc A5 11.11 GeV B5 15.60 GeV C5 15.52 GeV D5 11.86 GeV
1
M5ψ

3ucdcdc A6 11.11 GeV B6 15.60 GeV C6 15.52 GeV D6 11.86 GeV

Table 2: A display of the various interactions that allow a transfer of the B − L asymmetry from
the standard model sector to the dark matter sector.

For Models A1,A4-A6 we have

LH (A1) : µOSM
asy,1

= µL + µH , (54)

LLec (A4) : µOSM
asy,4

= 2µL − µe , (55)

Lqdc (A5) : µOSM
asy,5

= µL + µq − µd , (56)

ucdcdc (A6) : µOSM
asy,6

= −µu − 2µd . (57)

From the µ equations Eqs. (10) and (11), it is easy to see that

µOSM
asy,1

= µOSM
asy,4

= µOSM
asy,5

= µOSM
asy,6

. (58)

Eq. (58) implies that the dark matter has the same mass for the Models A1,A4-A6. Similar analysis
holds for Models B1,B4-B6, C1,C4-C6 and D1,D4-D6.

We summarize all our results in Table 2, where we list the dark matter mass for the various
interactions5 that can transfer the B − L asymmetry from the standard model sector to the dark
matter sector. We note that for the first five interactions, the dark matter carries lepton number,
while for the last one, it carries a baryon number.

3.4 The AsyDM mass: including the right-handed neutrinos

In the analysis above we used the framework of the standard model where we have no right-handed
neutrinos and the neutrinos are assumed massless. The nature of neutrino masses is currently not
known, i.e., whether they are Majorana or Dirac, but in the context of a gauged Lµ−Lτ symmetry it
is more natural for the neutrinos to have Dirac masses which implies that we introduce right-handed
neutrinos, one for each generation. We discuss now the effect of this inclusion on the analysis, i.e.,
on the µ equations, on the B/(B − L) ratio and thus on the DM mass.

Since the right-handed neutrino νR has 0 hypercharge and 0 electrical charge, it does not affect
the neutrality conditions (such as Eq. (12) or Eq. (22)). νR is only involved in one interaction
L ∼ L̄iHcνiR before the electroweak phase transition (or L ∼ ν̄iLhνiR after EWPT), which gives us

5In the first column of Table 2, L,H and q stand for SU(2)L doublets as discussed in T > TEWPT regime (Model A
and D). When the temperature drops below EWPT scale (Model B and C), since SU(2)L symmetry is broken, these
interactions should be rewritten in terms of the contents of the original doublets. We omit this step for simplicity.
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1
MnXkOSM

asy Model DM Mass Model DM Mass Model DM Mass Model DM Mass
1
M3ψ

3LH A′1 12.12 GeV B′1 15.58 GeV C′1 15.52 GeV D′1 12.70 GeV
1
M4ψ

2(LH)2 A′2 6.06 GeV B′2 7.79 GeV C′2 7.76 GeV D′2 6.35 GeV
1
M3φ

2(LH)2 A′3 3.03 GeV B′3 3.90 GeV C′3 3.88 GeV D′3 3.18 GeV
1
M5ψ

3LLec A′4 12.12 GeV B′4 15.58 GeV C′4 15.52 GeV D′4 12.70 GeV
1
M5ψ

3Lqdc A′5 12.12 GeV B′5 15.58 GeV C′5 15.52 GeV D′5 12.70 GeV
1
M5ψ

3ucdcdc A′6 12.12 GeV B′6 15.58 GeV C′6 15.52 GeV D′6 12.70 GeV

Table 3: A display of the various interactions that allow a transfer of the B − L asymmetry from
the standard model sector (including the right-handed Dirac neutrinos) to the dark matter sector.

µH = µνiR − µLi before EWPT (or µνiR = µνiL after EWPT). Thus the only change would be the
total lepton number since νR carries lepton number 1. By including the right-handed neutrinos, a
reanalysis gives the following formulas

mA′
FDM ≈ −

12.12 GeV

QO
SM

B−L
, mD′

FDM ≈ −
12.70 GeV

QO
2HD

B−L
, (59)

mB′
FDM ≈ −

15.58 GeV

QO
SM

B−L
, mC′

FDM ≈ −
15.52 GeV

QO
SM

B−L
, (60)

where we use a prime to denote all the models with the right-handed neutrinos. With the inclusion
of right-handed neutrinos in the thermal bath b′ is determined to be (c.f. Eq. (8))

b′ =
Bfinal

B − L =

(
B

B − L

)
C′

=
5

21
≈ 0.24 . (61)

With above formulas, we compute the dark matter masses for the same B − L transfer interactions
displayed in Table 2, and they are collected in Table 3. We note that inclusion of right-handed
neutrinos generates less than a 10% effect at most and no effect for Model C.6

4 Analysis in supersymmetric framework

We now consider the analysis in a supersymmetric framework specifically within an extended MSSM.
Since the supersymmetric case can have its own dark matter candidate, i.e., the neutralino, the relic
abundance of the neutralino must be depleted. For this reason, we only consider the parameter
space where relic density of the neutralino is much smaller than the WMAP value for cold dark
matter (CDM) and is thus only a subdominant component. Below we discuss two regimes, one
where Tint > MSUSY and the other where T1 > Tint > M2 > TEWPT.

6The reason for this is simple, i.e., using Eq. (7) and recalling the fact that Bfinal = BC = BC′ , since the inclusion
of right-handed neutrinos does not change the total baryon number, we have

mC′
DM = 5 · Bfinal

X
· 1 GeV = 5 · BC′

X
· 1 GeV = 5 · BC

X
· 1 GeV = mC

DM .
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4.1 T > MSUSY

In this regime since the temperature is above the SUSY breaking scale all sparticle masses must be
included in the µ equations. This case is very similar to the discussion of T > TEWPT in the standard
model framework, except this time our particle spectrum includes all the standard model particles,
the extra Higgses as well as the sparticles. For brevity we will use the same symbols for the chemical
potentials, though now they stand for not only the standard model fields, but also their super-
partners. The chemical potential equations obtained from Yukawa couplings and sphaleron processes
remain the same. The only equation modified would be the hypercharge equation, which becomes7

3µq + 6µu − 3µd − 3µL − 3µe + 2µH = 0 . (62)

Solving the chemical potential equations, we find that for Model E the total baryon and lepton
numbers are given by

BE = 3× 3× [2µq + (µu + µd)] = −12µL , (63)

LE = 3× 3× (2µL + µe) =
153

7
µL , (64)

so that (B−L)E = −237
7 µL. Note that in the above equations, the extra factor of 3 = 1+2 (compare

to the standard model case) takes into account the contributions of both fermions and bosons from
the superfields, c.f. Eq. (5).

4.2 T1 > T > M2 > TEWPT

Here we consider two soft breaking mass scales M1 and M2 where M1 � M2. When temperature
drops below T1, all the super-particles with masses greater than M1 would drop out of the thermal
bath. We assume that this is the case for the first two generations of squarks and sleptons. Similar
to Model C, we simply assume here that these super-particles would drop out of the thermal bath
at M1 > T1 > M2. Thus the only super-particles remaining in the thermal bath are the third
generation sparticles, the gauginos, the Higgses and the Higgsinos. We make the approximation
that these particles are relativistic at T1 > T > M2. This case is labeled Model F. Following the
analysis of Eq. (62) we find that the vanishing of the hypercharge for Model F gives

5µq + 10µu − 5µd − 5µL − 5µe + 6µH = 0 . (65)

Solving the µ-equations, we obtain

BF = (3× 1 + 2)× [2µq + (µu + µd)] = −20

3
µL , (66)

LF = (3× 1 + 2)× (2µL + µe) =
485

39
µL , (67)

and (B − L)F = −745
39 µL.

7The hypercharge of the Universe for the case when T > TSUSY is given by

Y = 3 ×
{

3 ×
[
2 × 3 × 1

3
µq + 3 × 4

3
µu + 3 × (− 2

3
)µd + 2 × (−1)µL + (−2)µe

]
+ 2 × (µHu − µHd)

}
,

where the counting is similar to discussion in footnote 2. The Higgs mixing term in the superpotential, i.e., W =
µHuHd indicates µHu + µHd = 0, and so we define µH ≡ µHu = −µHd .
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4.3 The AsyDM mass: SUSY case

The supersymmetric interactions which transfer B − L asymmetry typically have a different form
than the ones in the non-supersymmetric case. The most general interaction that transfers B − L
to the dark sector for the MSSM case is

Wasy =
1

Mn
asy

XkOMSSM
asy , (68)

where the dark matter superfield X = (φX , ψX) with φX as the bosonic and ψX as the fermionic
component. Now the following possibilities arise in terms of dark matter. First, after soft breaking
if φX and ψX have a similar mass, both of them are stable, and could be dark matter candidates.
Next, consider the case where one of the components has a much larger mass than the other and
would decay into the lighter one. In this case we have two possibilities: either φX is heavier than
ψX so that φX → ψX + χ̃St (where χ̃St is a Stueckelberg neutralino) in which case ψX is the dark
matter candidate, or ψX is heavier than φX so that ψX → φX + χ̃St in which case φX is the dark
matter candidate (The possibility that either χ̃St or the MSSM neutralino is a dark matter candidate
is discussed in Section 6). For either of these three cases, when computing the total dark particle
number from Eq. (5), we need to multiply by an additional factor of 3, since both bosonic and
fermionic components of the dark matter superfield would contribute. But for concreteness in our
analysis we will assume that ψX is lighter than φX and thus would be the asymmetric dark matter.

Applying the same method we used in Section 3.3, we find

mE
DM ≈ −

11.11 GeV

QO
MSSM

B−L
, mF

DM ≈ −
6.51 GeV

QO
MSSM

B−L
. (69)

Thus for the B−L transfer interactions with QOMSSM

B−L = −1, where OMSSM
asy can be LHu, LLec, Lqdc,

or ucdcdc, the dark particle masses are

mX = 11.11 GeV Model E ; mX = 6.51 GeV Model F . (70)

For the caseWasy = 1
M3

asy
X2(LHu)2 with QOMSSM

B−L = −2, which we will discuss in Section 6, the dark
particle masses are

mX = 5.55 GeV Model E ; mX = 3.25 GeV Model F , (71)

and using Eq. (3) one finds
ME

asy & 3.7× 105 GeV . (72)

If we include the right-handed neutrinos in the supersymmetric framework, the analysis is similar,
and Eq. (69) becomes

mE′
DM ≈ −

12.12 GeV

QO
MSSM

B−L
, mF′

DM ≈ −
6.99 GeV

QO
MSSM

B−L
. (73)
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5 Asymmetric dark matter in a Stueckelberg extension of the SM

As discussed in the Introduction, one of the major problems for an acceptable AsyDM model is
to have an efficient mechanism for the annihilation of dark matter that is produced thermally. In
general one has

ΩDM = Ωasy
DM + Ωsym

DM , (74)

where Ωasy
DM is the relic density of asymmetric dark matter (which carries a nonzero (B−L)-charge)

and Ωsym
DM is the relic density of dark matter which is produced thermally. For the asymmetric dark

matter to be the dominant component, one must significantly deplete the symmetric component of
dark matter. Specifically we will use the criteria that Ωsym

DM /ΩDM < 0.1.8 Thus we investigate if the
symmetric component of dark matter produced by thermal processes can be annihilated efficiently.
We accomplish this via the exchange of a gauge field using the Stueckelberg formalism where the
gauge field couples to Lµ − Lτ .

For illustration let us consider Model A1, which is governed by the interaction Eq. (45) operating
at Tint > TEWPT. The corresponding dark matter mass is 11.11 GeV. Further, we require the dark
matter particles ψ to have a non-vanishing µ or τ lepton number. The total Lagrangian is given by

L = LSM + LU(1) + LSt , (75)

where LU(1) is the kinetic energy for the gauge field for the Lµ − Lτ symmetry, and for LSt we
assume the following form:

LSt = −1

2
(MCCµ + ∂µσ)2 . (76)

In the unitary gauge the massive vector boson field will be called Z ′ and its interaction with fermions
in the theory is given by

Lint =
1

2
gCQ

ψ
Cψ̄γ

µψCµ +
1

2
gCQ

f
C f̄γ

µfCµ , (77)

where f runs over µ and τ families and QµC = −QτC .

5.1 Resonant annihilation of symmetric dark matter

We discuss now the details of the annihilation of the symmetric component of dark matter. We
will show that the relic density for such dark matter can be reduced significantly below the WMAP
value with resonant annihilation via the Z ′ pole, i.e., via the process ψψ̄ → Z ′ → ff̄ .9 Thus, by
using Eq. (77) one can compute the ψψ̄ → ff̄ annihilation cross section and using the Breit-Wigner
form for a resonance one has

σψψ̄→ff̄ = aψ
∣∣(s−M2

Z′ + iΓZ′MZ′
)∣∣−2

, (78)

8The analysis of previous sections was based on the assumption Ωasy
DM /Ωmatter ≈ 5. Inclusion of a small contribution

(i.e., ≤ 10%) of symmetric component to dark matter will proportionately affect the determination of the dark matter
mass. It is straightforward to take account of this contribution but we do not carry it out explicitly as it is a relatively
small effect.

9While the thermal dark matter can annihilate into second and third generation leptons at the tree-level, such an
annihilation into the first generation leptons can come about only at the loop level involving the second and third
generation leptonic loops. Thus the annihilation of thermal dark matter into first generation leptons is significantly
suppressed relative to the annihilation into the second and the third generation leptons.
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aψ =
βf (1

2g
2
CQ

ψ
CQ

f
C)2

64πsβψ

[
s2(1 +

1

3
β2
fβ

2
ψ) + 4M2

ψ(s− 2m2
f ) + 4m2

f (s+ 2M2
ψ)

]
, (79)

where βf,ψ = (1− 4m2
f,ψ/s)

1/2. The relevant partial Z ′ decay widths are given by

Γ(Z ′ → ff̄) =

(
1

2
gCQ

f
C

)2

rf
MZ′

12π
, f = µ, νµ, τ, ντ (80)

Γ(Z ′ → ψψ̄) =

(
1

2
gCQ

ψ
C

)2 MZ′

12π

(
1 +

2M2
ψ

M2
Z′

)(
1−

4M2
ψ

M2
Z′

)1/2

Θ (MZ′ − 2Mψ) , (81)

where rf = 1 for f = µ, τ and rf = 1/2 for f = νµ, ντ . A constraint on gC comes from the
contribution of the Z ′ to gµ − 2 [32, 33], which is given by

∆(gµ − 2) =

(
1

2
gCQ

µ
C

)2 m2
µ

6π2M2
Z′

. (82)

In the analysis here we impose the constraint that the Z ′ boson contribution be less than the exper-
imental (4σ) deviation of ∆aµ ≡ ∆

(
(gµ− 2)/2

)
= (3.0± 0.8)× 10−9 [32,33], which is the constraint

commonly adopted in analysis of supergravity based models.

The relic densities of ψ and ψ̄ are governed by the Boltzmann equations and have been discussed
in several works [14, 15] for the case of asymmetric dark matter. Typically it is seen that the effect
of including the asymmetry in the Boltzmann equations lead to a significant effect on the relic
density. In these works the analysis was done in the approximation 〈σv〉 = a + bv2. Our analysis
below differs from these in that for our case annihilation via the Z ′ pole is the dominant process.
Thus in our analysis we need to carry out an explicit thermal averaging over the Breit-Wigner
pole. It is convenient to work with the Boltzmann equations for the quantities fψ ≡ nψ/(hT 3), and
fψ̄ ≡ nψ̄/(hT

3) where nψ (nψ̄) is the number density of particle ψ (ψ̄) and the combination hT 3

appears in the entropy per unit volume, i.e., s = (2π2/45)hT 3 where h is the entropy degrees of
freedom. The Boltzmann equations obeyed by fψ and fψ̄ take the form

dfψ
dx

= α〈σv〉(fψfψ̄ − f eq
ψ f

eq

ψ̄
) , (83)

dfψ̄
dx

= α〈σv〉(fψfψ̄ − f eq
ψ f

eq

ψ̄
) , (84)

where x = kBT/mψ in which kB is the Boltzmann constant and hereafter we set kB = 1, and α is
given by

α(T ) =
√

90mψMPl
h√
gπ

(
1 +

1

4

T

g

dg

dT

)
, (85)

where g is the degrees of freedom that enter in the energy per unit volume, i.e., ρ = π2

30 gT
4, where

T (t) = Tγ(t) is the photon temperature. Numerically α(T ) = 6.7 × 1020 GeV2 for g = h = 68 at
T = 0.5 GeV. 〈σv〉 is the thermally averaged cross section

〈σv〉 =

ˆ ∞
0

dv (σv)v2e−v
2/4x

ˆ ∞
0

dv v2e−v
2/4x

. (86)
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Further, in Eqs. (83) and (84) f eq
ψ and f eq

ψ̄
are values of fψ and fψ̄ at equilibrium. Now one can

obtain the result from Eqs. (83) and (84) that the difference of fψ and fψ̄, i.e.,

γ ≡ fψ − fψ̄ , (87)

is a constant. Assuming that the asymmetric dark matter currently constitutes a fraction λ of the
dark matter relic density one can evaluate γ to be

γ ' λ 5ρc
6~T 3mψ

≡ λγ0, γ0 ≈ 1.3× 10−10 (mψ ∼ 10 GeV) , (88)

where the 5/6 in γ0 is due to Eq. (1).

It is now straightforward to obtain the individual relic densities for ψ and ψ̄. Thus one integrates
Eqs. (83) and (84) from the freeze-out temperature to the current temperature of T 0

γ = 2.73 K. In
the integration we will make the following approximation which is conventionally done, i.e., we move
α out of the integral and replace it with α(xf ), i.e., by the value of α at the freeze-out temperature.
The matter density of ψ at current temperature is given by ρψ = mψnψ(x0) where x0 = T 0

γ

/
mψ and

T 0
γ is the current photon temperature of 2.73 K. The relic density then is

Ωψ = mψnψ(x0)
/
ρc , (89)

where ρc is the critical matter density so that ρc = (3 × 10−12 GeV)4h2
0 where h0 is the Hubble

parameter. The integration of Eq. (83) straightforwardly gives

Ωψh
2
0 = 2.2× 10−11

√
g(xf )h(x0, xf )

(
Tγ

2.73

)3(1

ξ
−

fψ̄(xf )

ξfψ(xf )
e−ξJ(xf )

)−1

, (90)

where

J(xf ) ≡
ˆ xf

x0

〈σv〉dx , h(x0, xf ) ≡ h(x0)

h(xf )

[
1 +

1

4

(
T

g

dg

dT

)
xf

]−1

, (91)

and ξ ≡ α(xf )γ where α(xf ) is the value of α evaluated at the freeze-out temperature, and where
g(xf ) (h(xf )) are the energy (entropy) degrees of freedom at freeze out and h(x0) is the entropy
degrees of freedom at the current temperature. The derivative term 1

4(Tg
dg
dT )xf is small and is often

dropped, while h(x0) = 3.91 [30,34] and we estimate h(xf ) ∼ g(xf ) given Tf . As discussed below xf
is typically of size ∼ 1/20 and thus Tf = mψxf ∼ 0.5 GeV formψ ∼ 10 GeV. Now for Tf ∼ 0.5 GeV,
h(xf ) ∼ 68 which gives h(x0, xf ) ∼ 1/17.5. The quantities fψ(xf ) (fψ̄(xf )) are fψ (fψ̄) evaluated
at freeze out. Analogous to the relic density for ψ, we can get the relic density of ψ̄ by integration
of ψ̄ and we obtain

Ωψ̄h
2
0 = 2.2× 10−11

√
g(xf )h(x0, xf )

(
Tγ

2.73

)3
(
fψ(xf )

ξfψ̄(xf )
eξJ(xf ) − 1

ξ

)−1

. (92)

The total dark matter relic density is

ΩDM = Ωψ + Ωψ̄ . (93)
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From Eqs. (90) and (92) one obtains the ratio of the current relic densities of ψ̄ and ψ to be

Ωψ̄h
2
0

Ωψh
2
0

=
fψ̄(xf )

fψ(xf )
e−ξJ(xf ) . (94)

The front factor fψ̄(xf )/fψ(xf ) in Eq. (94) takes into account the asymmetry that exists at the
freeze-out temperature. The size of this effect is estimated at the end of this section and could be
as much as 20%, and thus significant. Our result of Eq. (94) is in agreement with the analysis of [14].

We discuss now the evaluation of the freeze-out temperature. The definition of this quantity
differs somewhat in various works (see, for example, [35, 36]) but these differences are not very
significant. We adopt here the definition of [35] where the freeze-out temperature Tf is defined as
the temperature where the annihilation rate per unit volume equals the rate of change of the number
density. For our case this implies

df eq

ψ̄

dx
= α〈σv〉f eq

ψ f
eq

ψ̄
, at x = xf = Tf/mψ , (95)

where f eq

ψ̄
takes the form

f eq

ψ̄
(x) = aψ̄ x

−3/2e−1/x , (96)

where aψ̄ = gψ̄(2π)−3/2h−1(T ) ≈ 9.3× 10−4gψ̄ around T = 0.5 GeV, and gψ̄ denotes the degrees of
freedom of the dark particle (gψ = gψ̄ = 4 for Dirac spinors). The freeze-out temperature is then
determined by the relation

(x
−1/2
f − 3

2x
1/2
f ) e1/xf = α〈σv〉(aψ̄ + γx

3/2
f e1/xf ) . (97)

For the case of no asymmetry, i.e., in the limit γ → 0, Eq. (97) reduces down to the well-known
result [35]. One may compare the analysis of the freeze-out temperature given by Eq. (97) with the
one using the alternate criterion [36]

∆(xf ) = cf eq

ψ̄
(xf ) , (98)

where ∆(x) ≡ (fψ̄(x)− f eq

ψ̄
(x)) and c is order unity. Using Eq. (96) in Eq. (98) one gets

(x
1/2
f − 3

2x
−1/2
f − αγ〈σv〉x3/2) e1/xf = αaψ̄c(c+ 2)〈σv〉 . (99)

For γ = 0, Eq. (99) reduces to the result of [36] while γ 6= 0 gives the correction due to asymmetry.
Further, we see that Eq. (99) reduces to Eq. (97) when c =

√
2 − 1. To compute the sensitivity

of the freeze-out temperature on the asymmetry it is useful to utilize the scale factor λ defined in
Eq. (88). On using Eq. (97) we can obtain an approximate expression for dxf/dλ so that

dxf/dλ ' −a−1
ψ̄
γ0x

7/2
f e1/xf . (100)

From above we can compute the first order correction to the freeze-out temperature due to the
asymmetry. To the leading order one has

xf ' x0
f

[
1− a−1

ψ̄
γ(x0

f )5/2e1/x0
f

]
, (101)
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where x0
f is the zeroth order of the xf , i.e., when γ = 0. We note that the correction to the freeze-out

temperature due to asymmetry is independent of 〈σv〉 to leading order. Using aψ = 3.7 × 10−3,
xf = 1/17.5 and γ = γ0 = 1.3 × 10−10, one finds that the correction to xf is around a percent for
the choice of the parameters given. Further, as γ (and hence ξ)→ 0, one has fψ(xf )

fψ̄(xf ) → 1 and in this
limit one has

Ωψh
2
0 = Ωψ̄h

2
0 = 2.2× 10−11

√
g(xf )h(x0, xf )

(
Tγ

2.73

)3 1

J(xf )
. (102)

Now rapid annihilation of dark matter can occur if the sum of the dark matter masses is close to
the Z ′ pole and there is a Breit-Wigner enhancement [37,38]. Thus for the case we are considering if
the mass of the Z ′ is close to twice the mass of the dark particle, then one can get a large annihilation
cross section and correspondingly a small relic density. An analysis of the relic density arising from
the annihilation of symmetric dark matter is given in Fig. 1 and the analysis shows that the relic
density arising from the symmetric component of dark matter can easily be made negligible, i.e.,
less than 10% of the cold dark matter density given by WMAP. In Fig. 1 we give the analysis for the
case with no asymmetry, i.e., γ = 0 (left panel) and the case with asymmetry (right panel) where
γ = 1.3×10−10. A comparison of the left and the right panels shows that inclusion of the asymmetry
has a substantial effect on the relic density. Specifically it further helps deplete the relic density of
ψ̄ (the symmetric component of dark matter). For the case of gC = 1 the allowed upper bound of
the Z ′ mass increases by about ∼ 100 GeV in the presence of an asymmetry when γ = 1.3× 10−10.
It is also instructive to examine the ratio of the thermal relic density for the cases with and without
asymmetry. Here one has

R ≡
(Ωψ̄h

2
0)γ=γ0

(Ωψ̄h
2
0)γ=0

=
ξJ (xf )

fψ(xf )
fψ̄(xf )e

ξJ(xf) − 1
. (103)

As ξ → 0, fψ(xf )
fψ̄(xf ) → 1 and thus R → 1. However, if we assume that the asymmetric dark matter

is responsible for 5/6 of the total relic density, then for mψ ∼ 10 GeV, one has γ = 1.3 × 10−10

and fψ̄(xf ) = 6.8 × 10−10 which gives fψ(xf )
fψ̄(xf ) = (1 + γ0/fψ̄(xf )) ∼ 1.2. In this circumstance one

finds that R is always less than 1. Thus one finds that the inclusion of asymmetry helps deplete the
symmetric component of dark matter.

6 Asymmetric dark matter in a Stueckelberg extension of the MSSM

The analysis of dark matter in the MSSM extension is more complex in that there are now three
contributions to the dark matter relic density, i.e., from the asymmetric and symmetric components
as in Eq. (74) and from the neutralino. Thus here one has

ΩDM = Ωasy
DM + Ωsym

DM + Ωχ̃0 , (104)

where Ωχ̃0 is the relic density from the neutralino. In this case for the asymmetric dark matter
to work, one must significantly deplete not only the symmetric component of dark matter but also
the contribution from the neutralino. Thus here we take the criterion that Ωsym

DM /ΩDM < 0.1, and
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Figure 1: (color online) An exhibition of the thermal relic density of ψ̄ as a function of MZ′ in
the model with gauged Lµ − Lτ for different values of the coupling constant. The left panel shows
the case γ = 0 and the right panel shows γ = 1.3 × 10−10. In both cases, the analysis shows that
the component of dark matter that is thermally produced can be efficiently depleted by resonant
annihilation via the Z ′ pole.

Ωχ̃0 /ΩDM < 0.1. For the analysis of AsyDM in extensions of MSSM we consider the interaction

Wasy =
1

M3
asy

X2(LHu)2 . (105)

Here we note that the choice Wasy ∼ X2LHu would have allowed the decay χ̃0 → XXν · · ·
and would have required the constraint mχ̃0 < 2mX for the neutralino to be stable. Further,
while the choices Wasy ∼ X2LLec, X2Lqdc do not allow the neutralino decay at the tree-level,
such a decay can occur at the loop level since it is not forbidden by a symmetry. Additionally
Wasy ∼ X3LHu, X

3LLec, X3Lqdc can also preserve the stability of the neutralino. Here and else-
where we are assuming that the Stueckelberg neutralinos are heavier than the lightest neutralino in
the MSSM sector (see the discussion following Eq. (113)). Returning to Eq. (105), the corresponding
dark particle masses are computed to be 5.55 GeV (Model E) and 3.25 GeV (Model F). Now the
Stueckelberg extension of MSSM, is more complex than the SM extension. We exhibit the relevant
parts of this extension below.

For the Stueckelberg Lagrangian of the supersymmetric case we choose [3]

LSt =

ˆ
dθ2dθ̄2

[
MC + S + S̄

]2
, (106)

where C is the U(1)C vector multiplet, S and S̄ are chiral multiplets, and M is a mass parameter.
We define C in the Wess-Zumino gauge as C = −θσµθ̄Cµ + iθθθ̄λ̄C − iθ̄θ̄θλC + 1

2θθθ̄θ̄DC , while
S = 1

2(ρ+ ia)+θχ+ iθσµθ̄ 1
2(∂µρ+ i∂µa)+ θθF + i

2θθθ̄σ̄
µ∂µχ+ 1

8θθθ̄θ̄(�ρ+ i�a) . Its complex scalar
component contains the axionic pseudo-scalar a, which is the analogue of the real pseudo-scalar
that appears in the non-supersymmetric version in [3]. We write LSt in component notation as (see
e.g. [3])

LSt = −1

2
(MCµ + ∂µa)2 − 1

2
(∂µρ)2 − iχσµ∂µχ̄+ 2|F |2 +MρDC +Mχ̄λ̄C +MχλC . (107)
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For the gauge fields we add the kinetic terms

Lgkin = −1

4
CµνC

µν − iλCσµ∂µλ̄C +
1

2
D2
C , (108)

with Cµν ≡ ∂µCν − ∂νCµ. For the matter fields (quarks, leptons, Higgs scalars, plus hidden sector
matter) chiral superfields with components (fi, zi, Fi) are introduced and the matter Lagrangian is
given by

Lmatt = −|Dµzi|2 − ifiσµDµf̄i −
(
i
√

2gCQCzif̄iλ̄C + h.c.
)

+ gCDC(z̄iQCzi) + |Fi|2 , (109)

where (QC , gC) are the charge operator and coupling constant of U(1)C , and Dµ = ∂µ + igCQCCµ
is the gauge covariant derivative. It is convenient to replace the two-component Weyl-spinors
(χ, χ̄), (λC , λ̄C) by four-component Majorana spinors, which we label as ψS = (χα, χ̄

α̇)T , and
λC = (λCα, λ̄

α̇
C). The total Lagrangian of the MSSM then takes the form

LStMSSM = LMSSM + LU(1) + ∆LSt , (110)

with

∆LSt = −1

2
(MCµ + ∂µa)2 − 1

2
(∂µρ)2 − 1

2
M2ρ2

− i
2
ψ̄Sγ

µ∂µψS −
1

4
CµνC

µν − i

2
λ̄Cγ

µ∂µλC +Mψ̄SλC

−
∑
i

[
|Dµzi|2 − |Dµzi|2Cµ=0 + ρgCM(z̄iQCzi)

+
1

2
gCCµf̄iγ

µQCfi +
√

2gC

(
iziQC f̄iλC + h.c.

)]
− 1

2

[
gC
∑
i

z̄iQCzi

]2
. (111)

As in the SM case we assume that the U(1)C is a gauged Lµ − Lτ . Further, we assume that all
hidden sector fields while charged under U(1)C are neutral under the MSSM gauge group and some
of the MSSM particles, i.e., the second and the third generation leptons, are charged under U(1)C .
As discussed already an essential ingredient to explain the cosmic coincidence is that the symmetric
component of dark matter produced in thermal processes is significantly depleted. For the MSSM
Stueckelberg extension the analysis of annihilation is essentially identical to the case of the Stueck-
elberg extension of the standard model and we do not discuss it further.

We now discuss the fate of the extra particles that arise in the U(1)C Stueckelberg extension of
MSSM. This extension involves the following set of particles: Z ′, ρ, ψ, φ, ψS , λC . The decay of the
Z ′ has already been discussed. Next we consider the ρ. Eq. (111) gives the interaction of the ρ with
the sfermions. Specifically its couplings to the mass diagonal sfermions are given by

Lρf̃†f̃ = −gρMρ

[
cos(2θf̃i)

(
f̃ †1if̃1i − f̃ †2if̃2i

)
+ sin(2θf̃i)

(
f̃ †1if̃2i + f̃ †2if̃1i

)]
, (112)

where fi refer to µ, νµ, τ, ντ . Thus the ρ will decay via second and third generation slepton loops
into µ+µ−, νµν̄µ, τ+τ−, ντ , ν̄τ and disappear in the thermal bath quickly (see Appendix B). Next
we discuss the neutralino sector. Here in the U(1)C Stueckelberg extension of MSSM the neutralino
sector is enlarged in that one has two more fields, i.e., the gaugino, and the higgsino fields (ΨS ,ΛC)
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as mentioned earlier. In this case the neutralino mass matrix of the U(1)C extension of MSSM is
given by

Mneutralino =

( Mst 02×4

04×2 MMSSM

)
, Mst =

(
0 M

M M̃

)
, (113)

where MSt is in the basis (ΨS ,ΛC), M is the Stueckelberg mass and M̃ is the soft mass. The
neutralino mass eigenstates arising from Eq. (113) can be labeled χ̃St

1 , χ̃
St
2 . We consider the possibility

that the Stueckelberg neutralinos are heavier than the LSP of the MSSM (χ̃0
1) and decay into the

MSSM neutralino which is assumed to be stable. In this case one will have more than one dark
matter particle, i.e., the ψ from the Stueckelberg sector and χ̃0

1 from the MSSM sector. Again in the
case of AsyDM the relic density of χ̃0

1 must be much smaller than the WMAP relic density for CDM.
To this end we carry out an explicit analysis of the relic density within supergravity (SUGRA) grand
unification [39]. As we show in Fig. 2 the relic density of χ̃0

1 can be very small (see the next section
for more detail), which allows the dominant component of the dark matter observed today to be the
asymmetric dark matter.

7 Detection of dark matter

The AsyDM in the model we consider can interact with the standard model particles only via the
Z ′ and ρ bosons which couple with the second and third generation leptons. Thus the scattering
of AsyDM from nuclear targets will not produce any visible signals and the detection of AsyDM in
direct detection experiments is difficult. However, it is interesting to investigate if the subdominant
component of dark matter could still provide a detectable signature. We discuss this topic in fur-
ther detail below. First we discuss the depletion of χ̃0

1 dark matter to determine the regions of the
parameter space where the relic density of χ̃0

1 is a negligible fraction of the WMAP relic density for
CDM, and is thus indeed a subdominant component of dark matter. Later we will investigate the
possibility of detection of this subdominant component in direct detection experiments. Specifically
we investigate two classes of models: the supergravity grand unified model (mSUGRA) with uni-
versal boundary conditions on soft parameters at the GUT scale, and non-universal SUGRA model
with non-universalities in the gaugino sector (see, e.g., [43] and the references there in).

For the mSUGRA case the parameter space investigated was: m0 < 10 TeV, m1/2 < 10 TeV,
|A0/m0| < 10, 1 < tanβ < 60, and µ > 0. For the case of SUGRA models with non-universalities
in the gaugino sector the parameter space investigated was: Mi = m1/2 (1 + δi) with the same
ranges as in the mSUGRA case with |δi| < 1. After radiative breaking of the electroweak symmetry
we collected roughly 31.4 million mSUGRA models and 25.6 million non-universal (NU) gaugino
models. These models were then subjected to the experimental constraints which included the lim-
its on sparticle masses from LEP [32]: mτ̃1 > 81.9 GeV, mχ̃±1

> 103.5 GeV, mt̃1
> 95.7 GeV,

mb̃1
> 89 GeV, mẽR > 107 GeV, mµ̃R > 94 GeV, and mg̃ > 308 GeV. as well as the recent bounds

on the light CP even, SM-like, Higgs from ATLAS and CMS, i.e 115 GeV < mh0 < 131 GeV [44,45].
More recently, ATLAS has constrained the SM-like Higgs to be between (117.5− 118.5) GeV and
(122.5− 129) GeV and CMS has constrained the Higgs Mass to be between (115− 127) GeV [46].
This constraint applied to the mSUGRA parameter space has recently been discussed in [47]. As
discussed above if χ̃0

1 < χ̃St
1 then the neutralino would contribute to the relic density and for the

AsyDM model to work we require that Ωχ̃0
1
h2

0, to be less then 10% of the WMAP-7 limit [1].
Other constraints applied to the parameter points include the gµ − 2 [33] constraint discussed in
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Figure 2: (color online) Top panel: An exhibition of the depletion of the MSSM neutralino dark
matter below 10% of the WMAP relic density for cold dark matter. Parameter points are displayed
by their light CP even Higgs mass and the yellow band corresponds to 10% of the WMAP-7 observed
limit. Bottom panel: An exhibition of the neutralino-proton spin-independent cross section as a func-
tion of the neutralino mass. To account for the reduced relic density of the neutralino component of
dark matter the spin-independent cross section has been corrected by a factor R = Ωχ̃0

1
h2

0/
(
ΩDMh

2
0

)
.

The present experimental limits (solid line) [40] as well as the future projections (dashed lines) are
shown [41,42]. The left panel shows the parameter points of mSUGRA and the right panel shows the
non-universal gaugino parameter points. All parameter points shown pass the general constraints.

Section 5 and constraints from B-physics measurements [48–50] which yield flavor constraints, i.e.(
2.77× 10−4

)
≤ Br (b→ sγ) ≤

(
4.37× 10−4

)
(where this branching ratio has the NNLO correc-

tion [51]) and Br (Bs → µ+µ−) ≤ 4.5 × 10−9. As done in [52], we will refer to these constraints
as the general constraints. These constraints were done by calculating the sparticle mass spectrum
with SuSpect [53] and using micrOMEGAs [54] for the relic density as well as for the indirect
constraints.

In Fig. 2, we exhibit the mSUGRA (left panels) and the NU gaugino (right panels) parameter
points after applying the general constraints. In the top two panels we show the thermal relic density
of the neutralino. As discussed previously, one finds that there is a significant region of the parameter
space with a relic density much less than one tenth of the WMAP relic density. Thus the neutralino
is indeed a subdominant component of dark matter. There are many more NU gaugino parameter
points that satisfy the relic density compared to mSUGRA parameter points. This comes about
because of coannihilation. Thus the non-universal case allows for the light chargino to lie close to
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Figure 3: Left: Leptonic final states in a µ+µ− collider where the µ+µ− → ll̄, with l = µ, νµ, τ, ντ ,
final state arising from direct channel poles involving Z ′. The Z ′ pole does not allow for a e+e−

final state and thus the relative production cross section for µ+µ− → τ+τ− vs µ+µ− → e+e− can
be used to detect the existence of a Lµ −Lτ gauged boson. Right: A similar analysis is possible for
ρ but its production is suppressed relative to Z ′ since it must be produced at the loop level.

the LSP, i.e. (mχ̃±1
−mχ̃0

1
)/mχ̃0

1
� 1, allowing for coannihilation to occur. The relevant question

then is if such a subdominant component can be detected in dark matter experiments. This is
exhibited in the lower two panels of Fig. 2, where the corrected neutralino-proton spin-independent
cross section, i.e R×σSI

χ̃0
1p

where R = Ωχ̃0
1
h2

0/
(
ΩDMh

2
0

)
, is given as a function of the neutralino mass.

For comparison we show the current XENON-100 bound [40] and the projected bounds in future
experiments [41, 42]. The important observation is that neutralino-proton spin-independent cross
section is still detectable even when the neutralino is a subdominant component of dark matter with
a relic density less than 10% of the WMAP relic density for CDM.

8 Signatures at colliders

The AsyDM models discussed above can produce a dramatic signature at a muon collider, see Fig. 3,
which we now discussed (Signatures of a Z ′ boson in a gauged U(1)Lµ−Lτ model at a muon collider
were discussed in [23] but the analysis was only at the tree-level.). This signature arises from a Z ′

resonance. We note that Z ′ has no couplings with the first generation leptons and thus a process
such as e+e− → Z ′ → µ+µ−, τ+τ− is absent at the tree-level. This process can only arise at the
loop level which, however, is suppressed relative to the tree. This explains why such a resonance has
not been observed yet at an e+e− collider (see Appendix C). However, dramatic signals will arise
at a muon collider where we will have processes of the type

µ+µ− → Z ′ → µ+µ−, νµν̄µ, τ
+τ−, ντ ν̄τ .

Since the final states contain no e+e− this would provide a smoking gun signature for the model.
In Fig. 4 we exhibit the cross σ(µ+µ− → τ+τ−) for various values of gC when the AsyDM mass
is taken to be 11.11 GeV and the Z ′ mass is 150 GeV. For comparison σ(µ+µ− → e+e−) is also
plotted. One finds that the σ(µ+µ− → τ+τ−) exhibits a detectable Z ′ resonance and the cross
section varies dramatically as a function of

√
s relative to σ(µ+µ− → e+e−) which is a rather

smoothly falling function beyond the Z boson pole. In Appendix C it is shown that the loop
contribution to µ+µ− → e+e− is suppressed and the Z ′ resonance is not discernible in this channel
at a µ+µ− collider. We note that there is a second overlapping resonance from a spin 0 ρ state
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Figure 4: (color online) An exhibition of the relative strength of the τ+τ− vs e+e− signal at a
muon collider. The presence of a detectable Z ′ resonance in the µ+µ− → τ+τ− channel provides a
smoking gun signature for the gauged Lµ − Lτ AsyDM model. A similar resonance is also present
in the µ+µ− → µ+µ− channel while µ+µ− → e+e− cross section shows no such enhancement in the
Z ′ region.

where µ+µ− → ρ→ µ̃∗µ̃→ µ+µ−2χ̃0. However, the ρ resonance can only proceed at the loop level
and is suppressed relative to the Z ′ pole.

9 A gauged B − L model

Next we discuss briefly the case where in the Stueckelberg extension we use U(1)B−L rather than
U(1)Lµ−Lτ . Here we consider models with the right-handed neutrinos in order to gauge B − L and
focus on the model A′2 with the B − L transfer interaction Lasy = 1

M4ψ
2 (LH)2 above the EWPT

scale. By including three generations of right-handed neutrinos, the asymmetric dark matter mass
is computed to be 6.06 GeV, c.f. Table 3. In this case, there are more experimental constraints to
consider which include collider (i.e., LEP, Tevatron, LHC) constraints as well as precision constraints
(i.e., the measurements of the ρ parameter, the Υ width). Specifically the LEP constraint gives
MZ′/g

′
C & 6 TeV [55] for heavy gauge bosons. A stricter bound within a specific framework is given

in [56] whereMZ′ ≥ 10 TeV. For lighter gauge bosons, as in the case of [9,57], the UA2 cross section
bound [58] is more stringent. Our analysis here is consistent with these constraints. Now, as in the
Lµ − Lτ case, the thermal symmetric contribution to the relic density from AsyDM must still be
consistent with WMAP, i.e. it must be depleted to below 10% of the WMAP-7 value. An analysis of
this is given in Fig. 5 for the model A′2 with γ = 0 (dashed line) and γ = γ0 = 1.3×10−10 (solid line).
Here one finds that the symmetric component of AsyDM can satisfy our WMAP-7 constraint for a
range of Z ′ masses. If one wishes to keep the Z ′ mass in the Υ region, i.e. ∼ 10 GeV, then a fine-tuned
value of g′C is needed as seen in Fig. 5 to be consistent with the constraints on MZ′/g

′
C . Heavier Z

′

masses would have difficulty satisfying both the collider and WMAP-7 constraints discussed above.

26



MZ′ (GeV)

Ω
ψ̄
h
2 0

 

 

0.2×WMAP

0.1×WMAP

WMAP=0.1126± 0.0036

Mψ = 6.06 GeV

Lasy = 1
M4ψ

2(LH)2

12.5 13 13.5 14 14.5 15
0

0.05

0.1

0.15

g′C = 0.001

g′C = 0.002

g′C = 0.010

Figure 5: (color online) A display of the thermal relic density of ψ as a function ofMZ′ for the model
with a gauged B−L for different couplings with γ = 0 (dashed line) and γ = γ0 = 1.3×10−10 (solid
line). It is seen that resonant annihilation of thermal dark matter via the Z ′ pole allows the relic
density of this component to be reduced to below 10% of the WMAP value for values of Z ′ around
twice the mass of the dark particle.

10 Conclusion

In this work we have proposed models of asymmetric dark matter in the framework of Stueckel-
berg extensions of the SM, the 2HD and the MSSM. Several candidate models for asymmetric dark
matter were discussed using a variety of operators constructed out of standard model fields which
carry a non-vanishing B−L quantum number which is transferred to the dark matter sector at high
temperatures in the early universe consistent with sphaleron interactions which preserve B−L. The
analysis was done both for models where the interaction temperature at which the B − L transfer
takes place above the electroweak phase transition scale as well as below this scale. The details of
the B−L transfer determine the mass of the asymmetric dark particle. A master formula was given
which generates the asymmetric dark matter mass for a variety of models discussed in the text and
allows one to discuss new possibilities. Specific models are discussed, including those anchored in
the standard model, the two Higgs doublet model as well as the minimal supersymmetric standard
model, with or without the right-handed neutrinos.

A central ingredient in a successful asymmetric dark matter model, and an explanation of cosmic
coincidence, is an exhibition of an efficient mechanism for the annihilation of the symmetric dark
matter component which is produced by thermal processes. We accomplish this using a Stueck-
elberg extension of the standard model and of the MSSM. The Stueckelberg extension of the SM
is particularly simple and appealing in which, aside from the dark matter field, there is just one
more field, a gauge boson (Z ′) of a Lµ − Lτ gauge symmetry, which gains mass via the Stueck-
elberg mechanism. The symmetric dark matter produced by thermal processes is depleted via
resonant annihilation from the exchange of a Z ′ using a Breit-Wigner pole. This is perhaps the
simplest asymmetric dark matter model, in that there are no extra Higgs fields that appear in the
model. Moreover, the extra U(1) gauge symmetry in our models forbids the dangerous Majorana
mass terms which would generate oscillations of the dark particles and their anti-particles which
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could washout the asymmetry.

A supersymmetric extension of this model is also given where it is shown that in addition to the
Z ′ boson, there is also a spin 0 boson field along with two additional neutralino states arising from
the Stueckelberg gaugino sector. It is shown that the ρ has a rapid decay and does not participate
in the dark matter analysis. In the MSSM extension, there is an extra complication, in that, with
R parity one can have a stable neutralino which is a possible dark matter candidate, and it must be
shown that it is also depleted so does not compete with the asymmetric dark matter candidate. In
the analysis presented in this work it was shown that there exists a significant part of the parameter
space of mSUGRA where the relic density arising from the neutralino was less than one tenth of the
WMAP relic density and thus the neutralino is a subdominant component of dark matter. Inter-
estingly, however, it was shown that the subdominant neutralino is still accessible at future direct
detection experiments such as SuperCDMS and XENON-100. It was shown that definitive tests of
the model can come from a muon collider where one can produce the Z ′ which decays only into µ’s
and τ ’s (and µ, τ neutrinos).

We also discussed a gauged B − L Stueckelberg model. Again in this model the symmetric
dark matter can be efficiently depleted by annihilation near a Breit-Wigner Z ′ pole. Thus within
the Stueckelberg extensions there exist several possibilities for explaining cosmic coincidence. The
dominant dark matter in all these models will be light and lies in the range of 1− 16 GeV.
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A Master formula for computing the asymmetric dark matter mass

We have discussed various Models A-F and subcases such as A1-A6 etc, and also models with right-
handed Dirac neutrinos, which will be discussed at the end of this section. We discuss now a master
formula which allows one to take some particles in or out of thermal equilibrium. Such a formula
would generally be useful before SU(2)L breaking, i.e., T > TEWPT, when we are able to take out
some of the super-partners are suppressed in the plasma while others are not. This would allow us
to discuss the Models A,D,E,F in a unified way and also allow us to generate new models where
some other sets of super-particles are taken out of the relativistic plasma in the early Universe.
However, it is not useful to discuss such a formula below the electroweak phase transition scale since
the current experimental data indicates the sparticles to be heavy and not below the electroweak
phase transition scale.

In obtaining the master formula, we assume: (1) In supersymmetric cases, all particles in a
supermultiplet have the same chemical potential; (2) A given particle type in different generations
has the same chemical potential, e.g., µd = µs = µb; (3) All the additional Higgs doublets have
the same chemical potential as the standard model Higgs µH . Following the discussion of Sec-
tion 3.1, for all the fields in the plasma, we have the chemical potential constraints as before, i.e,
µH = µL− µe = µq − µd = µu− µq from Yukawa couplings, 3µq + µL = 0 from sphaleron processes,
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and Y = 0 from the neutrality condition.

It is useful to introduce the temperature-dependent coefficients c(i)
α for the matter fields in the

plasma. We define c(i)
α = c

(i)
α (f) + c

(i)
α (b), where c(i)

α (f) counts the contribution of ith generation
particle α (with mass mα) which is fermionic and c(i)

α (b) counts the contribution of its super-partner
α̃ (with mass mα̃) which is bosonic, where cα(f) and cα(b) are given by Eq. (4). We note that in
the limit when mα can be neglected, one has a weakly interacting plasma so that cα(f) = 1 and
cα(b) = 2. Thus we have, for T � mα̃, c

(i)
α = 1 + 2 = 3; for mα̃ � T � mα, c

(i)
α = 1 + 0 = 1; and

for T � mα, c
(i)
α = 0. For the Higgs doublets, we have cH = cH(b) = 2 in the non-supersymmetric

case, and cH = cH(b) + cH(f) = 3 for the supersymmetric case, and λH counts the number of Higgs
doublets in the model.

We can then rewrite the hypercharge neutrality condition as

2(c(1)
q + c(2)

q + c(3)
q )µq + 4(c(1)

u + c(2)
u + c(3)

u )µu − 2(c
(1)
d + c

(2)
d + c

(3)
d )µd

−2(c
(1)
L + c

(2)
L + c

(3)
L )µL − 2(c(1)

e + c(2)
e + c(3)

e )µe + 2cHλHµH = 0 . (114)

Further defining Cα =
∑

i c
(i)
α = c

(1)
α + c

(2)
α + c

(3)
α , and together with Eqs. (30)-(32), we obtain

µX = −Cq + 8Cu + 2Cd + 3CL + 6Ce + 3cHλH
6Cu + 3Cd + 3Ce + 3cHλH

QDM
B−LµL , (115)

and

B − L = −
[
Cu
(
3Cq + 6Cd + 9CL + 2Ce

)
+ Cd

(
3Cq + 9CL + 8Ce

)
+ Ce

(
Cq + 3CL

)
+ cHλH

(
2Cq + Cu + Cd + 6CL + 3Ce

)]
µL

/(
6Cu + 3Cd + 3Ce + 3cHλH

)
≡ − N µL

/(
6Cu + 3Cd + 3Ce + 3cHλH

)
. (116)

From Eqs. (8) and (28), we find the master formula for computing the dark matter mass

mDM '
N

Cq + 8Cu + 2Cd + 3CL + 6Ce + 3cHλH
· κ

−QOB−L
· 150

97
GeV , (117)

where κ is the parameter indicating the dark matter type: for the non-supersymmetric case, κ = 1
for fermionic dark matter, and κ = 2 for bosonic dark matter; for the supersymmetric case, κ = 3.
QOB−L is the (B − L)-charge of the operator Oasy in the B − L transfer interaction Eq. (2). The
operators that carry QOB−L = −1 are: Oasy = LH,LLec, Lqdc, ucdcdc. Higher dimensional operators
with a larger value of (B − L)-charge can be constructed from them.

We can extract the results for Models A,D,E,F from this master formula:

1. Model A: For matter fields we have c(i)
α = c

(i)
α (f) = 1 (so that Cα = 3); cH = cH(b) = 2 and

λH = 1. For fermionic dark matter we take κ = 1 and we recover Eq. (35).

2. Model D: Here all the parameters are the same as in Model A except that λH = 2. Setting
κ = 1 we recover Eq. (37).
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3. Model E: For matter fields, c(i)
α = c

(i)
α (f)+c

(i)
α (b) = 3 (so that Cα = 9); cH = cH(b)+cH(f) = 3

and λH = 2. Since this is a supersymmetric case, κ = 3 and we recover Eq. (69).

4. Model F: For matter fields, c(1)
α = c

(2)
α = 1, c

(3)
α = 3 (so that Cα = 5); cH = 3, λH = 2. Taking

κ = 3 we recover Eq. (69).

For Models A′,D′,E′,F′ which include three generations of right-handed Dirac neutrinos in the
thermal bath, the master formula reads,

mDM '
( N
Cq + 8Cu + 2Cd + 3CL + 6Ce + 3cHλH

+ CνR

)
· κ

−QOB−L
· 25

21
GeV , (118)

where CνR = c
(1)
νR + c

(2)
νR + c

(3)
νR . By taking CνR = 3, 3, 9, 5, we can recover the dark matter mass

formulas for Models A′,D′,E′,F′ (Eqs. (59) and (73)).

We can also obtain the dark matter mass of other models from the master formula Eq. (117) or
Eq. (118) by varying the temperature where certain heavy particles are Boltzmann suppressed in
the thermal bath.

B Decay of the ρ

Here we compute the decay of the ρ. From Eq. (112) one finds that ρ couples to smuons, staus,
muon sneutrino, and tau sneutrino. This means that the ρ decay has µ+µ−, νµν̄µ, τ

+τ−, ντ ν̄τ final
states which arise via the exchange of neutralinos and charginos in the loops (a generic diagram is
shown in Fig. 6). The amplitude of the generic diagram reads,

iM = −igρijCkiC∗kj
ˆ

d4k

(2π)4
ū(p′)

(/k − /p) +mχ̃k

(k2 −m2
i )(k

′2 −m2
j )((k − p)2 −m2

χ̃k
)
v(p) , (119)

where k′ = q− k, mi,mj are the masses of the sleptons, and mχ̃k is the mass of the neutralino or of
the chargino in the loop, while gρij , Cki are the couplings. Our purpose here is to estimate the size
of the lifetime and to that end it is sufficient to estimate the contribution for one set of diagrams.
Thus we consider the decay of the ρ to final states µ+µ− via the exchange of neutralinos. In this
case we will have the exchange of smuons and neutralinos in the loop. Further, we will ignore the
mixing between the left and the right chiral smuons so that the mixing angle θf̃i in Eq. (112) can
be set to zero. In this circumstance the off-diagonal term involving two smuons in the loop does not
contribute and the relevant loop integral takes the form

1

(k2 −m2
i )(k

′2 −m2
j )((k − p)2 −m2

χ̃k
)

=

ˆ 1

0
dxdydzδ(x+ y + z − 1)

2

D3
ik

, (120)

where Dik = l2 −∆ik + iε in which l ≡ k − (yq + zp) and

∆ik = (1− z)m2
i − xym2

ρ + zm2
χ̃k

+ (z2 − z)m2
µ . (121)

The masses in the loops are much larger than the muon mass and thus the muon mass can be
ignored. The integration on l gives

iM =
−igρijCkiC∗ki

(4π)2

ˆ 1

0
dxdydzδ(x+ y + z − 1)

ū(p′)mχ̃kv(p)

∆ik
. (122)
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k

k − p

p′
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v(p)

ū(p′)

Figure 6: A generic diagram showing the decay of the ρ to one of the final states which could be
µ+µ−, νµν̄µ, τ

+τ−, ντ ν̄τ via exchange of sleptons, charginos and neutralinos at one loop.

γ, Z

q q

p

p′ k′

k

μ ν ρ σ
Z ′

r′

r

Figure 7: Z ′ − γ and Z ′ − Z exchange via µ+µ−, νµν̄µ, τ
+τ−, ντ ν̄τ loops.

Further, an approximate evaluation of integration on the Feynman parameters gives

iM =
−igρiiCkiC∗ki

(4π)2
ū(p′)

mχ̃k

m2
i

v(p) , (123)

under the assumption m2
χ̃k

/
m2
i � 1 and m2

ρ

/
m2
i � 1. The decay width of ρ→ µ+µ− is then given

by

dΓ =
1

2mρ

ˆ
d3~p

(2π)32Eµ+

ˆ
d3~p′

(2π)32Eµ−

∣∣∣∑ iM
∣∣∣2 (2π)4δ(4)(q − p− p′) =

|∑ iM|2
8πmρ

. (124)

Next we note that gρ11 = −gρ22 = gCQCmρ and thus

∣∣∣∑ iM
∣∣∣2 ' (gCQc)

2m4
ρ

16π4

∣∣∣∣∣
6∑

k=1

2∑
i=1

(−1)i+1CkiC
∗
ki

m2
i

∣∣∣∣∣
2

. (125)

A numerical estimate using Eqs. (124) and (125) and the inputs m1 = 1 TeV, m2 � m1, mρ =
100 GeV, the lightest neutralino mass of 50 GeV gives τρ = ~/Γ ∼ 10−14±1 s. Thus the decay of the
ρ is very rapid.

C Z ′ exchange contribution to µ+µ− → e+e− at loop level

At a muon collider, e+e− final states can be created via photon exchange and via a Z boson exchange.
Since the Z ′ has no direct coupling with the first generation leptons, there is no tree-level Z ′ exchange
contribution to e+e− final states. However, at the loop level a Z ′ exchange can make a contribution
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where the second and third generation leptons are exchanged in the loop as shown in Fig. 7. We
now compute this contribution to determine its size. Thus we consider a µ+µ− → e+e− process
with a Z ′ exchange via the second and third generation leptons loops as shown in Fig. 7. In this
case the contribution to the scattering amplitude is∑

iM = iMγZ′ + iMZZ′

= v̄(p′)(
i

2
gCQµγ

µ)u(p)
−i(gµν − qµqν/m2

Z′)

q2 −m2
Z′

(iΠνρ
γZ′)
−igρσ
q2

ū(k)(−ieγσ)v(k′)

+ v̄(p′)(
i

2
gCQµγ

µ)u(p)
−i(gµν − qµqν/m2

Z′)

q2 −m2
Z′

(iΠνρ
ZZ′)

× −i(gρσ − qρqσ/m
2
Z)

q2 −m2
Z

ū(k)
−igγσ
cos θW

(gV + gAγ
5)v(k′) , (126)

where Qµ is the U(1)Lµ−Lτ charge for muon, gV = 1
2(T3)L+sin2 θW , gA = −1

2(T3)L, and the vacuum
polarization tensors iΠνρ

γZ′ and iΠ
νρ
ZZ′ are the sums of the contributions from µ+µ−, νµν̄µ, τ

+τ−, ντ ν̄τ
loops

iΠνρ = iΠνρ
µ + iΠνρ

νµ + iΠνρ
τ + iΠνρ

ντ . (127)

First we focus on iΠνρ
γZ′,µ which is the muon loop contribution to the Z ′ − γ exchange. It reads

iΠνρ
γZ′,µ = −(

i

2
gCQµ)(−ie)

ˆ
d4r

(2π)4
tr
[
γν
i(/r +mµ)

(r2 −m2
µ)
γρ
i(/r′ +mµ)

(r′2 −m2
µ)

]
=

4iegCQµ
(4π)2

(q2gνρ − qνqρ)
ˆ 1

0
dxx(1− x)

Γ(2− d
2)

∆
2− d

2
µ

=
4iegCQµ

(4π)2
(q2gνρ − qνqρ)

ˆ 1

0
dxx(1− x)

(2

ε
− log∆µ − γ + log(4π) +O(ε)

)
, (128)

where ∆µ = m2
µ − x(1 − x)q2, and in the last step we use the dimensional regularization. The

expression of iΣνρ
γZ′,τ differs from iΣνρ

γZ′,µ by only the Qτ factor, and it takes the form

iΠνρ
γZ′,τ =

4iegCQτ
(4π)2

(q2gνρ − qνqρ)
ˆ 1

0
dxx(1− x)

(2

ε
− log∆µ − γ + log(4π) +O(ε)

)
. (129)

Summing over these two terms, we find a dramatic cancellation of the divergence in the loop due to
Qµ = −Qτ = 1, making the loop finite so that

iΠνρ
γZ′,µ + iΠνρ

γZ′,τ =
4iegC
(4π)2

(q2gνρ − qνqρ)× I , (130)

where

I =

ˆ 1

0
dxx(1− x)log

∆τ

∆µ
=

ˆ 1

0
dxx(1− x)log

m2
τ − x(1− x)q2

m2
µ − x(1− x)q2

. (131)

One can also obtain the neutrino exchange contributions from the above by setting the fermion
masses to zero in the equation above (assuming neutrinos to be massless) which gives a vanishing
contribution.
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Now we want to compare the contribution of the Z ′−γ exchange loop diagram with the tree-level
process µ+µ− → γ → e+e−, whose amplitude reads

iMγ = v̄(p′)(−ieγµ)u(p)
−igµν
q2

ū(k)(−ieγν)v(k′) . (132)

With some manipulation we find

iMγZ′ = − 2g2
c I

(4π)2
· q2

q2 −m2
Z′
× iMγ ≡ f × iMγ . (133)

Thus, the total squared amplitudes involving a photon can be written as

|iMγ + iMγZ′ |2 = |1 + f |2 × |iMγ |2

= (1 + f + f∗ + ff∗)× |iMγ |2 . (134)

Our numerical analysis shows that (f + f∗ + ff∗) is smaller than ∼ 10−3 and thus the loop makes
only a tiny contribution to the total cross section in this case. The analysis of Z ′ − Z exchange is
similar and gives a very small value. Thus we conclude that a Z ′ peak will not be visible in the
µ+µ− → e+e− process at a muon collider. The above analysis also exhibits why a Z ′ in this model
would not be visible in an e+e− machine.
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