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We show that supersymmetric models with a large Dirac gluino mass can evade much of the jets
plus missing energy searches at LHC. Dirac gaugino masses arise from “supersoft” operators that
lead to finite one-loop suppressed contributions to the scalar masses. A little hierarchy between
the Dirac gluino mass 5 → 10 times heavier than the squark masses is automatic and technically
natural, in stark contrast to supersymmetric models with Majorana gaugino masses. At the LHC,
colored sparticle production is suppressed not only by the absence of gluino pair (or associated)
production, but also because several of the largest squark pair production channels are suppressed
or absent. We recast the null results from the present jets plus missing energy searches at LHC
for supersymmetry onto a supersoft supersymmetric simplified model (SSSM). Assuming a massless
LSP, we find the strongest bounds are: 748 GeV from a 2j + /ET search at ATLAS (4.7 fb−1),
and 684 GeV from a combined jets plus missing energy search using αT at CMS (1.1 fb−1). In
the absence of a future observation, we estimate the bounds on the squark masses to improve only
modestly with increased luminosity. We also briefly consider the further weakening in the bounds
as the LSP mass is increased.

I. INTRODUCTION

The parameter space of the minimal supersymmetric
standard model (MSSM) is significantly constrained by
impressive searches at the LHC. The strongest limits oc-
cur on the mass of colored superpartners, well over 1 TeV
in simplified models in which the squark or gluino de-
cays to a quark or gluon and a (nearly) massless lightest
supersymmetric particle (LSP). These limits are driven
by several search strategies for large missing energy and
large amounts of hadronic activity, which we abbreviate
nj + /ET .

The strong constraints from nj + /ET searches have
(re-)motivated three basic approaches to weak-scale su-
persymmetry:

1. Discard superpartners that are not directly relevant
to electroweak symmetry breaking, including the
first and second generation squarks. Well known
examples are more minimal supersymmetry [1, 2]
and split supersymmetry [3]. The extent to which
these approaches successfully retain a light third
generation with heavy first and second generations
have been explored recently in several scenarios [4–
10].

2. Keep superpartners roughly in the sub-TeV region,
while removing most or all of the missing energy,
thereby rendering nj+ /ET searches moot. The clas-
sic example is R-parity violation (for a review, see
[11]) through the baryon number violating ucdcdc

term in the superpotential, which allows the LSP to
decay into jets (for a recent discussion see [12–15]).

3. Keep superpartners roughly in the sub-TeV re-
gion, while removing most or all of the visible en-
ergy, which significantly weakens the effectiveness
of nj + /ET searches. This approach includes com-

pressed supersymmetry [16], stealth supersymme-
try [17] (which is a hybrid between approaches 2
and 3) and others.

In this paper, we propose a fourth alternative:

4. Keep most superpartners in the sub-TeV region,
while removing much of the production cross sec-
tion, thereby significantly weakening the effective-
ness of nj + /ET searches. We demonstrate that
this alternative allows first and second generation
squarks to be as light as ∼ 650 − 750 GeV with a
massless LSP, and potentially even lighter if there is
modest compression by either raising the LSP mass
or allowing a cascade decay through intermediate
mass superpartners. The key to this alternative is
to assume the gluino acquires a large Dirac mass.

Reducing the production cross section of colored super-
partners “merely” by raising the Majorana gluino mass in
the MSSM would seem to be just as sufficient. However,
the squark masses receive substantial log-enhanced con-
tributions to their masses through renormalization group
evolution. This includes the stop masses, which in turn
feed into the Higgs soft masses through the top Yukawa.
Since the Higgs soft masses directly determine the fine-
tuning of the electroweak symmetry breaking scale, this
implies the stops as well as the gluino should not far
exceed the electroweak scale without causing excessive
unnaturalness.

A heavy Dirac gluino, by contrast, is completely natu-
ral [18–21]. Dirac gaugino masses induce one-loop finite
contributions to squark, slepton and Higgs soft masses
from “supersoft” operators [21]. The finiteness implies
renormalization group evolution of squark masses is in-
sensitive to the gaugino masses, preserving the little hi-
erarchy M3 ' (5 → 10) ×Mq̃. The only price we pay
is minimality – the matter content must be extended by
three gauge adjoint superfields, one for each gauge group.
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FIG. 1. The spectra for the simplified models considered in this paper. The left-most pane illustrates our primary interest – the
supersoft supersymmetric simplified model (SSSM). It contains a gluino with a large Dirac mass M3 = 5 TeV, first and second
generation squarks that are roughly 5→ 10 times lighter than gluino, and an LSP that is generally assumed to be much lighter
than the squarks. The three right-most panes illustrate the three simplified models of the MSSM to which we compare. We
write the gluino Dirac mass as M3 to be distinguished from a Majorana mass written as M̃3. Two of the comparison simplified
models of the MSSM (“equal MSSM” and “intermediate MSSM”) are designed to provide comparisons between typical MSSM
spectra and the SSSM. The third comparison model, “heavy MSSM”, directly compares the results for a Dirac gluino versus a
Majorana gluino of the same mass. Generally the LSP mass is taken to be kinematically negligible, however we also comment
on the relaxation of the bounds on the SSSM when the LSP is heavier.

II. SIMPLIFIED MODELS AND THE SSSM

We are interested in calculating the bounds on su-
persymmetric models with Dirac gaugino masses. Our
approach is to first construct a supersoft supersymmet-
ric simplified model (SSSM) on which we can apply the
nj + /ET limits from LHC. This is completely analogous
to the construction of simplified models of the MSSM
[22, 23], which are now widely used in presenting the re-
sults from LHC searches for supersymmetry. The SSSM,
illustrated in the far left pane of Fig. 1, has a gluino with
a large, purely Dirac mass, degenerate first and second
generation squarks (of both handedness), and the light-
est supersymmetric particle (LSP) at the bottom of the
spectrum. In defining the SSSM, we have explicitly cho-
sen the Dirac gluino mass to have a fixed large value,
M3 = 5 TeV. The large gluino mass implies gluino pair
production is kinematically forbidden while associated
gluino/squark production is highly suppressed, leaving
squark production as the only potentially viable colored
sparticle production at the LHC. Squarks decay through
q̃ → q + LSP, where the quark flavor and chirality de-
pends on the initial squark.

To perform an apples-for-apples comparison of the con-
straints on supersoft supersymmetry versus the MSSM,
we calculate the bounds not only on the SSSM, but also
three other simplified models of the MSSM. In all of
the simplified models, the first and second generation
squarks are degenerate and the LSP is massless. The
spectra of the three comparison simplified models of the
MSSM are shown in the three right-most panes of Fig. 1.
The purpose of the comparison models is to both vali-
date our analysis against the actual bounds from exper-
imental analyses (where available), as well as to directly
show the weakness of the bounds on the SSSM in direct

contrast to the MSSM. The “equal MSSM” and “inter-
mediate MSSM” simplified models are chosen to provide
a comparison with typical MSSM spectra. The “heavy
MSSM” simplified model is highly unnatural within the
usual MSSM as we have already discussed. Nevertheless,
it illustrates the differences in squark mass bounds that
remain between a heavy Majorana gluino versus a heavy
Dirac gluino even when they have the same mass.

Our analyses generally assume the LSP has a kine-
matically negligible mass. In the Discussion we also con-
sider the weakening of the bounds as the LSP mass is
increased. The LSP could be light gravitino, or could
instead be some other light neutral superpartner, so long
as the squark decay proceeds directly to the LSP in the
one step process q̃ → q+LSP. We also assume all decays
into the LSP are prompt. The assumption of short decay
chains from heavy squarks to a massless LSP implies the
bounds we obtain are the most optimistic possible using
the jets plus missing energy searches with no leptons in
the final state.

Mapping the bounds from the SSSM onto theories
with Dirac gaugino masses is straightforward in princi-
ple, though model-dependent in practice. In particular,
we do not include electroweak gauginos or Higgsinos in
our spectrum. The supersoft supersymmetric model has
heavy Dirac gaugino masses, with an ordinary MSSM
µ-term for the Higgs sector [21]. Several other models
incorporate Dirac gauginos [24–38]. In several cases, the
gaugino sector approximately preserves a U(1)R symme-
try, while the Higgs sector does not. In [30] a fully R-
symmetric supersymmetric model was constructed that
incorporated not only Dirac gaugino masses but also R-
symmetric Higgsino masses. In this model, additional R-
symmetric contributions to the soft masses were allowed,
and notably, could be nearly arbitrary in flavor-space.
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Several phenomenological implications of Dirac gauginos
as well as fully R-symmetric supersymmetry have been
explored in [39–60].

In this study we do not consider bounds on the third
generation squarks. Third generation squarks receive
modifications to their masses through their interactions
with the Higgs supermultiplets. Given that supersoft su-
persymmetry has a suppressed D-term for the Higgs po-
tential, typically this requires heavier stop masses as well
as separating the scalar masses of the adjoint superfields
from the corresponding Dirac gaugino masses. This could
be accomplished through additional R-symmetric F -term
contributions to their masses. In any case, third genera-
tion squarks have distinct signals involving heavy flavor
(with or without leptons), and thus require incorporating
a much larger class of LHC search strategies. We believe
there are interesting differences between the third gen-
eration phenomenology of a supersoft model versus the
MSSM, but we leave this for future work.

We also do not consider potentially large flavor-
violation in the squark-gaugino (or squark-gravitino) in-
teractions, as could occur in an R-symmetric model [30].
This would add to the heavy flavor component of signals
while subtracting from the nj + /ET signals that concern
us in this paper. In the interests of demonstrating the
differences between the SSSM and the simplified models
of the MSSM, the latter of which cannot have large fla-
vor violation, we do not consider flavor-violation in the
squark interactions of the SSSM.

III. ASPECTS OF DIRAC GAUGINO MASSES

A. Supersoftness

A supersoft supersymmetric model contains chiral su-
perfields in the adjoint representation of each gauge
group of the SM in addition to the superfields of
the MSSM. Supersymmetry breaking communicated
through a D-term spurion leads to Dirac gaugino masses
that pair up the fermionic component from each field
strength with the fermionic component of the corre-
sponding adjoint superfield. The adjoint superfields also
contain a complex scalar, whose real and imaginary com-
ponent masses are not uniquely determined in terms of
the Dirac gaugino mass. The Lagrangian for this setup,
in terms of four component spinors, is given in Ap-
pendix A.

The scalar components of chiral superfields receive one-
loop finite contributions to their soft masses from gaug-
inos and adjoint scalars, as was shown clearly by [21]

M2
f̃

=
∑
i

Ci(f)αiM
2
i

π
log

m̃2
i

M2
i

. (1)

The sum runs over the three SM gauge groups where
Ci(f) is quadratic Casimir of the fermion f under the
gauge group i. The m̃i are the soft masses for the real

scalar components of the adjoint superfields. The Mi

are the Dirac masses for the gauginos. Assuming the
contribution to the squark masses is dominated by the
Dirac gluino,

M2
q̃ ' (700 GeV)2

(
M3

5 TeV

)2
log r̃3
log 1.5

(2)

where r̃i ≡ m̃2
i /M

2
i . Somewhat smaller or larger soft

masses can be achieved by adjusting the ratio r̃3, since
we hold the Dirac gluino mass M3 = 5 TeV fixed in the
SSSM.

B. Naturalness

The up-type Higgs mass-squared m2
Hu

receives positive
one-loop finite contributions from the Dirac electroweak
gauginos as well as negative one-loop contributions from
the stops. As was emphasized in Ref. [21], the latter
contribution can easily overwhelm the former, leading to
a negative Higgs mass-squared and thus radiative elec-
troweak symmetry breaking. Unlike the MSSM, however,
the usual logarithmic divergence from the stop contribu-
tions to the Higgs mass is cutoff by the Dirac gluino mass,
giving

δm2
Hu = −3λ2t

8π2
M2
t̃ log

M2
3

M2
t̃

. (3)

Using Eq. (1), and approximating log[M2
3 /M

2
t̃

] '
log[3π/(4αs)], we obtain

δm2
Hu |SSSM ' −

(
M3

22

)2
log r̃3
log 1.5

. (4)

Contrast this expression with the analogous one from the
MSSM [7]

δm2
Hu |MSSM ' −

(
M̃3

4

)2(
log Λ/M̃3

3

)2

. (5)

where M̃3 corresponds to the Majorana gluino mass.
This makes it clear that a Dirac gluino can be several
times larger than a Majorana gluino in an MSSM-type
model and yet be just as natural, even when compar-
ing against an MSSM model with a mediation scale that
is as low as conceivable, Λ ' 20M̃3. Our choice of
Dirac gluino mass M3 = 5 TeV with r̃3 ' 1.5 is thus
roughly equivalent, in the degree of naturalness, to a low-
scale mediation MSSM model with Majorana gluino mass
M̃3 ' 900 GeV.

C. Colored Sparticle Production

For LHC phenomenology, there are several impli-
cations of a heavy Dirac gluino. First, gluino pair
production and associated gluino/squark production is
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completely negligible due to the kinematic suppression.
Squark–anti-squark production can proceed at tree-level
through gg, qq̄ → q̃Lq̃

∗
L, q̃Rq̃

∗
R, while the t-channel Dirac

gluino exchange diagrams are suppressed by a factor
1/M2

3 . There are also mixed-handedness production pro-
cesses pp → q̃Lq̃R, q̃

∗
Lq̃
∗
R through t-channel gluino ex-

change, but again suppressed by 1/M2
3 in the ampli-

tude. The contribution of these Dirac gluino exchange
diagrams with M3 = 5 TeV are at the level of a few per-
cent – far smaller than the NLO QCD corrections – and
thus negligible. The remaining tree-level unsuppressed
Feynman diagrams that contribute to squark production
are shown in Fig. 2. We emphasize that all of these sub-
processes require sea quarks or gluons to initiate at the
LHC.

The MSSM also contains the same-handedness pro-
cesses pp → q̃Lq̃L, q̃Rq̃R through t-channel Majorana
gluino exchange, leading to contributions suppressed by
just one power of the gluino mass, 1/M̃3. These pro-
cesses, as well as the mixed-handedness ones (pp →
q̃Lq̃R, q̃

∗
Lq̃
∗
R) are initiated by two valence quarks, and

can lead to a large fraction of the total pp → (colored
superpartner) cross section. In the SSSM, the same-
handedness processes are simply absent (no chirality-
flipping Majorana mass) while the mixed-handedness

processes are more suppressed by 1/M2
3 instead of 1/M̃3.

This means the cross section for squark production in the
SSSM can thus be smaller by a factor of 3 or more even
when comparing the SSSM (M3 = 5 TeV) against the

“heavy MSSM” simplified model (M̃3 = 5 TeV). Also,
the difference between the SSSM and the MSSM grows
as the squark mass increases, because the final state re-
quires more energy, and thus higher partonic x, where
valence quark distributions dominate over gluons or sea
quark distributions.

D. Electroweak inos

The SSSM, by definition, does not include the effects of
the Higgsinos or electroweak gauginos. For general elec-
troweakino masses, there are two potential effects on our
results: squark cross sections could change due to virtual
Higgsino or electroweak gaugino exchange; squark decay
chains could change due to cascades through Higgsinos
or electroweak gauginos.

Higgsino exchange contributions to first and second
generation squark production is negligible, due to the
small Yukawa couplings. Electroweak gaugino exchange
is suppressed by the smaller electroweak couplings, and
thus not relevant unless the electroweak gauginos are sig-
nificantly lighter than the squarks. We thus do not expect
that our squark production cross section calculations to
be significantly affected by the Higgsino and electroweak
gaugino spectrum.

Moreover, while the masses of the electroweak gaug-
inos are model-dependent, a supersoft supersymmetric
model would predict the electroweak gauginos to be

q̃∗
L,R

q̃L,R

q̃∗
L,R

q̃L,R

q̃∗
L,R

q̃L,R

FIG. 2. The dominant tree level Feynman diagrams for squark
production at the LHC in the SSSM. Dirac gluino t-channel
exchange diagrams (not shown) are suppressed by 1/M2

3 and
thus negligible. In the MSSM, by contrast, Majorana gluino
exchange is suppressed by 1/M̃3, and thus relevant even when

M̃3 is large, as shown in Fig. 3.

' 4π/g heavier than sleptons. Imposing the LEP II
bound on slepton masses implies the electroweak gaugi-
nos are generically heavier than the masses of the squarks
we consider in this paper. Thus, squark cascade decay
through electroweak gauginos is kinematically forbidden
in supersoft models, and thus we do not need to consider
it further.

Higgsinos, however, may be lighter than both the
squarks and the electroweak gauginos. Naturalness – ob-
taining the right electroweak symmetry breaking vacuum
without significant tuning – certainly favors lighter Hig-
gsinos. Squark cascade decay through Higgsinos would
lead to changes in the energies of the decay products, as
well as the potential addition of charged leptons or neu-
trinos in the final state. Detailed simulation of these cases
is highly model-dependent. Nevertheless, the jets plus
missing energy bounds on models with lighter Higgsi-
nos could be substantially weaker if the average hadronic
activity is reduced. On the other hand, the bounds
from other supersymmetric searches could be substan-
tially stronger if the squark cascade through Higgsinos
results in hard leptons or photons. We note however
that searches more specific to models with Majorana

4



neutralinos, such as same-sign lepton final states, may
not yield strong bounds if the model is approximately R-
symmetric, and so again we are left to model-dependent
investigations to make quantitative statements.

IV. RECASTING LHC LIMITS

To recast LHC limits on colored superparticle produc-
tion into the SSSM, we follow the analyses searching for
supersymmetry through nj + /ET signals performed by
ATLAS [61] and CMS [62–64]. Of the existing supersym-
metry searches, jets plus missing energy is the simplest,
and involves the fewest assumptions about the spectrum.

To simulate the supersymmetric signal, we use
PYTHIA6.4 [65]; the first and second generation squarks
are set to have equal mass, the gravitino is chosen to be
the LSP, and all other superpartners are decoupled (set
to 5 TeV). We use CTEQ6L1 parton distribution func-
tions, generating a sufficient number of events such that
statistical fluctuations have negligible effect on our re-
sults. To incorporate detector effects into our signal sim-
ulations, all events are passed through the Delphes [66]
program using ATLAS or CMS detector options and
adopting the corresponding experiment’s jet definitions:
anti-kT , R = 0.4 for the ATLAS search [61], and anti-
kT , R = 0.5 for the CMS searches [62–64]. We repeat the
same steps for the three simplified models of the MSSM
(c.f. Fig. 1) allowing all combinations of q̃q̃, q̃∗q̃∗, q̃q̃∗ as
well as gluino pair production and associated squark plus
gluino production. Note that our “heavy MSSM” simpli-
fied model is an existing CMS simplified model, “T2”
[67].

Colored superpartner production cross sections receive
sizable next-to-leading order (NLO) corrections. To in-
corporate these corrections, we feed the spectra into
PROSPINO [68], restricting the processes appropriately
for each simplified model (i.e., just pp → q̃q̃∗ for the
SSSM). The cross sections are shown in Fig. 3 for each of
the simplified models as a function of squark mass. De-
pending on the scale choice and the squark mass, we find
the K-factor ranges from 1.7-2.1. This takes into account
the increased rate at NLO, through not the kinematic
distribution of events.

The analyses we are interested in [61–64], are broken
up into several channels. For some analyses the channels
are orthogonal, while in other analyses one event can
fall into multiple channels. To set limits we begin by
counting the number of supersymmetry events in each
analysis channel for several squark masses. The number
of supersymmetric events passing cuts is translated into
a mass-dependent acceptance for each channel. We then
form the 95% CL limit, using the likelihood ratio test
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FIG. 3. Cross sections at the 7 TeV LHC for colored super-
partner production. The four lines correspond to the four
simplified models shown in Fig. 1, where the first and second
generation squarks are degenerate with mass Mq̃. The solid
line shows the cross section for the SSSM where the cross
section is dominated by q̃q̃∗ final states, while the dashed
lines show cross sections for the three simplified models of the
MSSM. All cross sections are calculated to next-to-leading or-
der using PROSPINOv2.1 [68], CTEQ6L1 parton distribution
functions, and default scale choices. For event generation, we
use PYTHIA6.4 [65] and rescale the cross section to match
those shown here.

statistic [69]:

0.05 =

∫∞
0
db′
∑Ni,obs

0
(µi,b+µi,s)

Ni,obse−(µi,b+µi,s)

(Ni,obs)!
G(µb, b

′)∫∞
0
db′
∑Ni,obs

0
µ
Ni,obs
b e−µb

(Ni,obs)!
G(µb, b′)

.

(6)

Here µi,b ≡ Ni,exp is the number of expected SM back-
ground events and µi,s ≡ Ni,SUSY is the number of signal
events. To estimate the effects of systematic errors, the
number of SM events is modulated by a Gaussian weight-
ing factor [70]. Specifically, we shift µb → µb(1 + fb),
where fb is drawn from a Gaussian distribution centered
at zero and with standard deviation σf = σi,SM/Ni,exp,
where σi,SM is the quoted systematic uncertainty (taken
directly from [61–64]). Whenever the systematic error is
asymmetric, we use the larger (in absolute value) num-
ber. To combine channels (when appropriate), we simply
replace the right-hand side of Eq. (6) with the product
over all channels.

The number of supersymmetry events in a particular
channel is the product of the cross section, luminosity,
acceptance and efficiency,

Ni,SUSY = L ·K(Mq̃)σ(Mq̃) ·A(Mq̃) · ε, (7)

where K(Mq̃) is the mass-dependent K-factor to account
for the larger rate at NLO. Within our simplified setup,
the only parameter the cross section and acceptance de-
pend upon is the mass of the squark – thus Eq. (6) is
simply a limit on the squark mass.
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While the likelihood ratio test statistic is particularly
well suited to analyses with low event counts, it is just
one possibility. To test that our results do not depend
on this choice, we have also computed limits using the
sum-χ2 test statistic,

chan∑
i=1

(Ni,obs − (Ni,exp +Ni,SUSY ))2

Ni,exp +Ni,SUSY + σ2
i,SM

. (8)

We find our results using different test statistics are
broadly consistent, with the biggest differences being,
as expected, when the number of events in a particular
channel is low.

The constructions in Eq. (6) and (8) are only approx-
imate. Both formulations assume a Gaussian treatment
of the systematics is appropriate, and correlations among
uncertainties when combining channels are completely
neglected. A more complete treatment of the correlated
experimental uncertainties may be possible through RE-
CAST [71], which we leave for future work.

The exact limits we can place from the experimental
analyses depend on several factors. The luminosity and
the systematic uncertainties on the background are ex-
amples of factors that evolve with time, while the signal
cross section and acceptance (for a given analysis) are
fixed. To make our study as general as possible, we show
our derived acceptances as a function of squark mass in
a series of Figures in Appendix B. These numbers al-
low us to estimate limits as the luminosity increases, at
least for a fixed analysis strategy. Nevertheless, we do
calculate the squark mass limits using the experiments’
quoted luminosities and background uncertainties in Ta-
ble I. Both the limits from individual channels, as well as
combined limits (in cases where the channels are distinct
and nonoverlapping) are given. The cross sections have
already been shown in Fig. 3, leaving the derived accep-
tance times efficiency as the only undetermined factor in
Eq. (7).

In the following subsections we present the set of anal-
yses used to bound the parameter space of our SSSM.
The details of the analyses cuts can be found in Refs. [61–
64]. For ease of comparison, all of the bounds we obtain
for each analysis strategy from each experiment are pre-
sented in Table I. The table provides the bounds on
the SSSM, as well as the three simplified models of the
MSSM shown in Fig. 1. In the following, we discuss the
important observables for each analysis, then describe
our extracted limits.

A. ATLAS Limits with 4.7 fb−1

The first analysis we consider is the ATLAS jets plus
missing energy search performed in Ref. [61]. Events
with no leptons and large missing energy are subjected
to several subanalyses, each with a different jet multi-
plicity requirement (2-6 jets). Within each multiplic-
ity subanalysis, cuts are then placed on the individual

jet transverse momenta, the effective mass for a given

multiplicity: meff (N) =
∑N
i=1 pT,i + /ET , and the ratio

of missing energy to effective mass. To further reduce
backgrounds from poorly measured QCD jets, a cut is
also placed on the minimum azimuthal angle between the
missing momenta vector and any (sufficiently hard) jet.
Surviving events are then classified according to their in-
clusive meff (inc.), which differs from meff (N) in that
all jets with pT > 40 GeV are included in the sum.
The meff (inc.) classifications are referred to as “loose”,
“medium” and “tight”. There are eleven total channels,
since not every jet multiplicity has all three meff (inc.)
classifications.

The derived A(Mq̃) · ε for the 11 different channels in
the ATLAS jets plus missing energy search [61] are shown
in Fig. B.1 in Appendix B. We show the acceptance times
efficiency as a function of squark mass both in the SSSM
as well as the simplified models of the MSSM.

We emphasize that Fig. B.1 only gives a piece of the
limit calculation – a large efficiency does not necessar-
ily mean a good limit, as the background may also be
large. Applying Eq. (8) using the observed event counts
from Ref. [61], we find the 2-jet (A, A′) channels have
the best sensitivity: Mq̃ > 737 GeV and Mq̃ > 748 GeV
respectively (95% CL, see Table I for full details). For
the simplified models of the MSSM, we find the bounds
range from Mq̃ > 1063 GeV (for the “heavy MSSM” sim-
plified model) to Mq̃ > 1453 GeV (for the “equal MSSM”
simplified model). The acceptance/efficiency factors for
the different scenarios are similar, as shown in Fig. B.1
in Appendix B, and thus the difference in the limits is
driven by the larger cross sections in the simplified mod-
els of the MSSM.

There is a another ATLAS supersymmetry search fo-
cusing on very high jet multiplicity, ≥ 6 jets [72]. This
search is most sensitive to supersymmetric events with
long decay chains, such as from gluino pair production.
For events dominated by short decay chains, i.e., the
SSSM, we expect the high-multiplicity tails are not large
enough to be seen over the background uncertainty. We
verified this by passing the SSSM through the analysis
strategy following Ref. [72], where we find the limits are
indeed poor in comparison to the other strategies, and so
we do not present them.

B. CMS Limits with ∼ 1-5 fb−1

We now turn to supersymmetry searches performed
by the CMS collaboration. We follow three different jets
plus /ET search strategies. The first, in Ref. [62], uses
the αT variable to distinguish signal – events with real
missing energy – from background events where the miss-
ing energy comes from mismeasurement. The second,
Ref [63] relies on large /ET and HT to suppress back-
ground, while the third uses the so-called razor variables
developed in [73]. We follow the same procedure as in
Sec. IV A; we derive A(Mq̃) · ε for each analysis using
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SSSM “equal MSSM” “intermediate MSSM” “heavy MSSM”

search channel (M3 = 5 TeV) (M̃3 = Mq̃) (M̃3 = 2×Mq̃) (M̃3 = 5 TeV)

ATLAS jets + /ET

4.7 fb−1

SRA (2j) medium 737 GeV 1245 GeV 1096 GeV 890 GeV
SRA (2j) tight 634 GeV 1453 GeV 1305 GeV 1063 GeV
SRA′ (2j) tight 748 GeV 1189 GeV 1061 GeV 861 GeV
SRB (3j) tight 537 GeV 1342 GeV 1202 GeV 848 GeV
SRC (4j) loose 566 GeV 973 GeV 770 GeV 584 GeV

SRC (4j) medium 634 GeV 1095 GeV 894 GeV 670 GeV
SRC (4j) tight ** 1082 GeV 831 GeV 431 GeV
SRD (5j) tight 383 GeV 1076 GeV 803 GeV 484 GeV
SRE (6j) loose ** 731 GeV 500 GeV 328 GeV

SRE (6j) medium 491 GeV 979 GeV 712 GeV 521 GeV
SRE (6j) tight ** 933 GeV 634 GeV 388 GeV

CMS αT

1.14 fb−1

HT ∈ [275, 325) GeV 396 GeV 528 GeV 489 GeV 399 GeV
HT ∈ [325, 375) GeV 454 GeV 594 GeV 533 GeV 473 GeV
HT ∈ [375, 475) GeV 509 GeV 698 GeV 631 GeV 548 GeV
HT ∈ [475, 575) GeV 540 GeV 786 GeV 694 GeV 570 GeV
HT ∈ [575, 675) GeV 487 GeV 859 GeV 770 GeV 565 GeV
HT ∈ [675, 775) GeV 373 GeV 932 GeV 833 GeV 460 GeV
HT ∈ [775, 875) GeV ** 960 GeV 806 GeV **
HT ≥ 875 GeV ** 1160 GeV 968 GeV **

combined 684 GeV 1178 GeV 1032 GeV 786 GeV

CMS jets + MHT
1.1 fb−1

/ET > 350 GeV, HT > 500 GeV 593 GeV 989 GeV 844 GeV 648 GeV
HT > 500 GeV 500 GeV 989 GeV 799 GeV 563 GeV

/ET > 500 GeV, HT > 800 GeV 416 GeV 1154 GeV 981 GeV 661 GeV

CMS razor,
4.4 fb−1

0 `, S1 ** 639 GeV ** **
0 `, S2 ** ** ** **
0 `, S3 ** 960 GeV 783 GeV 434 GeV
0 `, S4 ** 1082 GeV 898 GeV 349 GeV
0 `, S5 485 GeV 779 GeV 653 GeV 514 GeV
0 `, S6 505 GeV 794 GeV 690 GeV 556 GeV

combined 588 GeV 1137 GeV 961 GeV 677 GeV

TABLE I. Channel-by-channel and combined observed limits on the simplified models illustrated in Fig. 1 using the likelihood
ratio test statistic. Channels marked with an asterisk have limits lower than 300 GeV, while the strongest channel for a given
analysis is shown in bold. Combined limits are shown for analyses where the individual channels are orthogonal.

Monte-Carlo events, then follow Eq. (6) to set limits on
the squark masses. The A(Mq̃) · ε curves depend only
on the analysis cuts and can be applied unchanged to
future data sets with increased luminosity or improved
background modeling.

1. Search based on αT , 1.1 fb−1

In addition to basic identification cuts, this analysis
requires that the leading two jets have pT > 100 GeV
and that the leading jet lies within the tracker. Af-
ter vetoing events with leptons or photons, events are

binned according to their overall HT =
∑jets
i ET,i, start-

ing with HT = 275 GeV: two 50 GeV bins spanning up
to 375 GeV, four 100 GeV bins, then one bin containing
all events with HT > 875 GeV.

The hadronic activity in each event is massaged into
two pseudojets1 which are used to calculate αT , defined
as

αT =
ET,2
MT,jj

. (9)

1 For events with only two jets this massaging is trivial. For events
with multiple jets, the jets are combined until the event contains
only two ’pseudojets;. The choice of how the jets are added is
determined by minimizing the difference between the scalar sum
of the jet ET between the two pseudojets. See Ref. [62].
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Cutting at αT > 0.55, the pure QCD contribution to the
background becomes highly suppressed.

The acceptance times efficiency derived for each chan-
nel of this analysis is shown in Fig. B.2 in Appendix B.
The squark mass directly sets the net transverse energy
in an event, so the peak efficiency in a particular HT bin
simply tracks the squark mass.

As before, the channel-by-channel limits from this
search are shown in Table I. For the SSSM and the
“heavy MSSM” simplified model, the most sensitive
channels are for mid-range HT where the signal rate is
still large and the background uncertainties are falling.
In comparison, the cross section for the other two simpli-
fied models of the MSSM falls much slower with increas-
ing squark mass, propped up by the lighter Majorana
gluinos, leading to the highest HT bins being the most
constraining. As the different HT channels are orthogo-
nal, it is straightforward to combine them, resulting in
a better limit. Forming the product of likelihood ratios
over all channels, we find an observed 95% CL limit of
Mq̃ & 684 GeV for the SSSM, and Mq̃ & 786 GeV for
the “heavy MSSM” simplified model. The latter limit
is in good agreement with the observed limit shown for
the “T2” simplified model in Ref. [67], giving confidence
that we have successfully reproduced their analysis. For
the other cases, the combined limits are much higher:
Mq̃ & 1160 GeV for the “equal MSSM” simplified model,
and Mq̃ > 1032 GeV for the “intermediate MSSM” sim-
plified model.

2. Search based on /ET , HT , 1.1 fb−1

The second CMS search strategy we consider is more
traditional in that it is based simply on large multiplicity
of high-pT jets and large missing energy (see Ref. [63]).
At least three jets of pT > 50 GeV, |η| < 2.5 are required
and no leptons (pT > 10 GeV, |η| < 2.5) are permit-
ted. Selected events require a minimum /ET or 200 GeV
sufficiently separated from the jets2 and a minimum
HT = 350 GeV. Passing events are piled into three fur-
ther categories depending on /ET , HT : i.) /ET > 350 GeV,
HT > 500 GeV, ii.) HT > 800 GeV, iii.) /ET > 500 GeV,
HT > 800 GeV.

The acceptance/efficiency factors we find for the three
channels are shown in Fig. B.3 in Appendix B. This anal-
ysis gives has a similar trends to the previous search. The
channel with lowest /ET and HT are most constraining for
the supersoft and heavy-gluino MSSM, while the chan-
nel with the tightest cuts are more stringent for the light
gluino MSSM scenarios. The strongest individual chan-
nel limits are quite similar to the αT case. As the chan-
nels are not orthogonal we do not combine and simply

2 All jets pT > 30 GeV, |η| < 5.0 are used in the /ET calculation,
and the minimum separation is ∆φ(ji, /ET ) > 0.5 for the hardest
two jets and 0.3 for the third hardest jet.

quote the strongest individual channel: Mq̃ > 593 GeV
(SSSM); Mq̃ > 1154 GeV (“light MSSM” simplified
model); Mq̃ > 981 GeV (“intermediate MSSM” simpli-
fied model); Mq̃ > 661 GeV (“heavy MSSM” simplified
model).

3. Search based on razor variables

The final CMS search strategy we consider from
Ref. [64] utilizes the razor variables to discriminate sig-
nal from background. For the razor analysis, all objects
passing basic identification and selection cuts are grouped
into two “mega-jets”. The division of particles into mega-
jets is determined by which combination yields mega-jets
that are closest in invariant mass. Once the mega-jets are
formed, one boosts longitudinally to the frame where the
two mega-jets have equal and opposite momenta along
the beam direction (pz). In this special frame, one cal-
culates MR

T and MR defined as:

(MR
T )2 =

1

2

(
/ET (pT,j1 + pT,j2)− ~/ET · (~pT,j1 + ~pT,j2)

)
,

MR =
√

(Ej1 + Ej2)2 − (pz,j1 + pz,j2)2. (10)

The magnitude of MR and the ratio R2 = (MR
T /MR)2

are then used to differentiate signal and background. The
cut values for R2 and MR depend on whether the event
contains any isolated electrons or muons. For our sig-
nal, events with isolated leptons are rare, so we focus on
the hadronic channel. The events in each channel are
divided up into several bins then compared to the back-
ground, which has been extrapolated from a signal-free
“fit-region”.

To set limits, we considered the six analysis regions
defined by Ref. [64]:

S1 : R2 ∈ [0.18, 0.3],MR ∈ [2.0 TeV, 3.5 TeV]

S2 : R2 ∈ [0.3, 0.5],MR ∈ [2.0 TeV, 3.5 TeV]

S3 : R2 ∈ [0.18, 0.5],MR ∈ [1.0 TeV, 2.0 TeV]

S4 : R2 ∈ [0.3, 0.5],MR ∈ [1.0 TeV, 2.0 TeV]

S5 : R2 ∈ [0.2, 0.3],MR ∈ [650 GeV, 1.0 TeV]

S6 : R2 ∈ [0.4, 0.5],MR ∈ [400 GeV, 1.0 TeV]

The acceptance times efficiency factor for each channel
as a function of squark mass is shown in Fig. B.4 in Ap-
pendix B.

Since the six regions are orthogonal, we can combine
channels, leading to the limits: Mq̃ > 588 GeV (SSSM),
Mq̃ > 677 GeV (“heavy MSSM” simplified model), and
Mq̃ & 1 TeV for the “equal MSSM” and “intermediate
MSSM” simplified models with lighter Majorana gluinos.
For the simplified models with heavy gluinos, the col-
ored superpartner cross section falls fastest with increas-
ing Mq̃, and thus the bounds are dominated by the the
lowest MR bins. As the gluino mass decreases, the su-
perpartner cross section falls less precipitously, and the
larger MR bins provide stronger constraints.
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The limits we set with the 6-bin approach are conser-
vative estimates. Utilizing an unbinned likelihood ap-
proach (as done in Ref. [64]), our limits may improve.
However, the unbinned approach requires a complete,
smooth description of the background (and signal) in the
two-dimensional (R,MR) plane and makes our limit more
sensitive to details of the detector modeling and correla-
tions among systematics.

V. LUMINOSITY EXTRAPOLATION

It is interesting to extrapolate the squark mass lim-
its set in the previous section out to higher luminosity.
Since we do not have the observed data from the future,
we extrapolate using the expected limit, meaning Ni,obs
is set equal to Ni,exp in Eq. (6). As we want to vary the
luminosity, the background number of events is actually
Ni,ex× (L/L0) where L0 is the luminosity used to derive
efficiencies (the luminosity in [61–64]), and L is the pro-
jection luminosity. This extrapolation is conservative in
that it assumes there is no re-optimization of the anal-
ysis cuts and that the systematic uncertainties remain
unchanged.

We perform an extrapolation using the individual
channel with the strongest limits from the various anal-
yses, as well as the combined channels for the CMS αT
strategy and the CMS razor strategy. These extrapola-
tions are shown in Fig. 4. As the luminosity increases,
we find the limits on the squark mass do not improve
dramatically. The CMS αT search appears to be the
best performing future search on the SSSM, with im-
provements on the squark mass bounds of expected to
be roughly 15-25%. The limits asymptote fairly quickly
once the analyses become dominated by systematic un-
certainties rather than by statistical uncertainties. If the
background systematics improve in the future, these pro-
jections could easily be redone using the signal accep-
tance times efficiency curves shown earlier.

VI. DISCUSSION

We have shown that our simplified model of supersoft
supersymmetry is clearly much less constrained by LHC
searches for supersymmetry than comparable simplified
models of the MSSM. We find the bounds on first and
second generation squark masses in the SSSM to be be-
tween 680 to 750 GeV, depending on the experiment, the
particular search strategy, and the amount of integrated
luminosity analyzed. This is fully consistent with the
one-loop finite mass generated from a 5 TeV Dirac gluino
(with r̃3 ' 1.5), as we showed in detail in Sec. III. Impor-
tantly, these bounds are only modestly improved with the
increased luminosity of the LHC. We emphasize that our
luminosity extrapolation was done assuming the search
strategies were unchanged, and applied to more luminos-
ity at

√
s = 7 TeV. Nevertheless, the clear conclusion
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FIG. 4. Projection of the expected limits to larger inte-
grated luminosity holding the analysis strategy fixed as well
as
√
s = 7 TeV. For each detector analysis strategy, the

strongest individual channel is shown, while for the αT and ra-
zor analyses we show the projection of the combined channel
limit as well. The red line corresponds to CMS jets plus /ET ,
the blue corresponds to CMS αT (solid is the single channel
limit, dashed is the combined limit), green (solid and dashed)
shows CMS razor, and purple is ATLAS jets + /ET . We em-
phasize that we have plotted only the expected limits, to be
distinguished from the observed limits that we show in Table I.
The small differences between the expected and observed lim-
its are at roughly the 10% level, characteristic of background
fluctuations.

from the extrapolation is that the SSSM with a kinemat-
ically inaccessible Dirac gluino production remains safe
from LHC bounds now and into the near future.

One of the more striking results is that the CMS αT
analysis provided the strongest bound on the squark
masses of the SSSM at 1 fb−1. The ATLAS jets plus
missing energy search strategy, despite the considerable
integrated luminosity 4.7 fb−1, resulted in only a slightly
better bound. Our interpretation of these results is the
αT search, which was designed to maximize signal over
background with 2 jets plus missing energy, provides an
ideal search strategy for the SSSM. This is due in large
part because the αT strategy implements a wide range
of search channels at intermediate values of HT that are
precisely within the range expected for ∼ 600→ 800 GeV
squarks of the SSSM. This is also borne out by the best
bound from the CMS MHT strategy being the lower miss-
ing energy, lower HT channel (distinctly different from
the simplified models of the MSSM with lighter gluinos).
Examining the expected limits from Fig. 4, we see that
the 1 fb−1 CMS αT strategy is expected to yield the same
bound on squarks in the SSSM as about a 4 fb−1 jets plus
missing energy ATLAS analysis. This appears to be be-
cause the 2 jet search strategies done by ATLAS require
very large meff . Indeed, the ATLAS channel with the
best bound on the SSSM (SRA′) had the least restric-
tive cut on meff (greater than 1200 GeV). Similarly, the
CMS razor analysis appears to be best optimized for very
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high mass superpartner searches.
Our study focused on a nearly massless LSP, so that

we could perform an apples-for-apples comparison be-
tween the LHC bounds on simplified models of the MSSM
versus the SSSM. It is interesting to consider how the
bounds change as the LSP mass is increased. Since
the strongest expected bound on the squark masses in
the SSSM comes from the CMS αT analysis, we ex-
plored a variation of the SSSM where we allowed the
LSP mass within the range 0 ≤ mLSP ≤ 300 GeV. We
find CMS αT limits for mLSP = 100 GeV are roughly
equal to those of a massless LSP. Raising the LSP mass
to mLSP = 200 GeV, the squark mass limit drops from
680 GeV to 651 GeV, and we find there is no limit for
mLSP = 300 GeV. This is consistent with the “T2” sim-
plified model studied by CMS [67].

There are many other search strategies for supersym-
metry that may be sensitive to more specific models of su-
persymmetry that have Dirac gaugino masses. One of the
often-touted searches for supersymmetry are same-sign
dilepton searches, since in the MSSM it is straightfor-
ward to obtain a significant same-sign dilepton signature
resulting from the chirality-flip of a gaugino due to its
Majorana mass. In scenarios with Dirac gaugino masses,
this source of same-sign dileptons is completely absent.
Depending on the implementation of the Higgsino sec-
tor, models with Dirac gaugino masses may or may not
have effectively small Majorana masses and therefore a
suppressed same-sign dilepton signal. It would certainly
be interesting to follow up on the SSSM with another
simplified model of the electroweak gaugino sector and
determine the relative weakness of the LHC bounds. We
leave this to future work.
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Appendix A: Supersoft Supersymmetric Simplified
Model (SSSM)

The supersoft supersymmetric simplified model La-
grangian we are considering can be expressed as:

L = Lkin + Lyuk + Ldecay, (A.1)

where Lkin contains the usual squark and gluino kinetic
terms, gauge interactions and masses, Lyuk contains the
gluino-squark-quark interactions, and Ldecay contains the
squark-quark-gravitino interactions through which the

squarks decay. The kinetic term for the squarks is un-
changed from the MSSM, while the gluino is slightly mod-
ified to account for the Dirac character of its mass:

Lkin ⊃ i λ̄aγµ (∂µδac + gsf
abcGbµ)λc −M3λ̄

a λa, (A.2)

where λa is a four-component Dirac bi-spinor. Schemat-
ically

λa =

(
φa
g̃∗a

)
, (A.3)

where g̃a is usual gluino, in the sense that it is the super-
partner of the gluon, and φa is the fermionic component
of a color-adjoint superfield introduced to get a mass with
g̃a.

The Yukawa terms are the same as in the MSSM, how-
ever if we want to write them in terms of four-component
spinors we need to be careful since matter (squarks and
quarks) couples only to g̃a and not to φa:

Lyuk = −
√

2gs (ũ∗L,i t
aλ̄a PL ui + d̃∗L,i t

aλ̄a PL di−
ũ∗R,i t

aλ̄ca PR ui − d̃∗R,i taλ̄ca PR di) + h.c.,

(A.4)

where ta are the SU(3) generators, PL,R are the usual
chiral projection matrices and i labels the flavor index.

The gravitino interactions in the SSSM are exactly the
same as in the MSSM. Approximating interactions with
the gravitino by interactions with its goldstino longitu-
dinal component, we have

Ldecay =
i√

3MP m3/2

q̄ω,i γ
µ Pωγ

ν Dν q̃ω,i (∂µG̃) + h.c.

(A.5)
for quark q with helicity ω and flavor i.

In practice, the SSSM contains only two free param-
eters, the mass of the (Dirac) gluino and the common
mass for the first and second generation squarks (both
left- and right-handed). The gravitino interaction pa-
rameters are irrelevant as we assume the branching frac-
tion of squark to quark plus gravitino to be 100% and
the decay is prompt. The Lorentz form of the interac-
tions is important as it determines the kinematics of the
final jets, which in turn sets the acceptance for a given
analysis.

Appendix B: Acceptances for the Analyses

In this Appendix we collect the series of Figures show-
ing the acceptances for the various analyses discussed
in detail in Sec. IV. Fig. B.1 shows the acceptance for
the ATLAS jets plus missing energy search described in
Sec. IV A; Fig. B.2 shows the acceptance for the CMS
αT search described in Sec. IV B 1; Fig. B.3 shows the
acceptance for the CMS jets plus missing energy search
described in Sec. IV B 2; Fig. B.4 shows the acceptance
for the CMS razor search described in Sec. IV B 3.
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FIG. B.1. Acceptance times efficiency for the eleven channels
of the ATLAS analysis. The top panel shows A · ε for the
lower multiplicity channels: 2j (A) medium in red, 2j (A)
tight in blue, 2j (A′) medium in green, and 3j (B) tight in
purple. The middle multiplicity (4j) channels are shown in
the middle panel: loose meff (inc.) in red, medium in blue,
tight in green. Finally, the highest multiplicity channels are
shown in the bottom panel: 5j (D) tight in red, 6j (E) loose
in blue, 6j (E) medium in green, and 6j (E) tight in purple.
In all panels, the solid lines correspond to the acceptance
times efficiency within the SSSM, the dotted lines correspond
to the “equal MSSM” simplified model with M̃3 = Mq̃, and
the dashed lines correspond to the “heavy MSSM” simplified
model with M̃3 = 5 TeV.
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FIG. B.2. Acceptance times efficiency for the SSSM (solid),

“equal MSSM” simplified model (M̃3 = Mq̃) (dotted), and

“heavy MSSM” simplified model (M̃3 = 5 TeV) (dashed)
models using the CMS αT analysis. The color indicates
the which HT bin was used. In the top panel, red shows
HT = 275-325 GeV, blue shows 325-375 GeV, green for 375-
475 GeV and purple for 475-575 GeV. Similarly, in the bot-
tom panel red shows 575-675 GeV, blue is 675-775 GeV, green
is 775-875 GeV and purple is > 875 GeV.
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FIG. B.3. Acceptance × efficiency factors for the CMS search
based on HT , /ET . The line hatching follows the same conven-
tion as Fig. B.2. Red shows the limits from baseline selection
plus /ET > 350 GeV, HT > 500 GeV, blue is baseline plus
HT > 800 GeV and green shows baseline + /ET > 500 GeV,
HT > 800 GeV.
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FIG. B.4. Acceptance times efficiency for the CMS search
based on the hadronic channel of the razor analysis. The line
hatching follows the same convention as Fig. B.2. The six
groups of lines correspond to analyses regions S1 (red), S2
(blue), S3 (green), S4 (purple), S4 (black) and S6 (cyan).
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