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Gauge mediated models of supersymmetry breaking often exhibit “gaugino screening,” where to
leading order in F , gaugino masses are unaffected by higher dimensional Kähler potential interactions
between the supersymmetry breaking spurion and the messengers. We provide a derivation of this
phenomenon which utilizes the gaugino counterterm originally proposed in the context of anomaly
mediation by Dine and Seiberg. We argue that this counterterm is present when there are non-zero
messenger F -terms, and can cancel the leading order Feynman diagram contribution to the gaugino
mass. We provide a nontrivial check of the regulator independence of our results by performing
the computation using both dimensional reduction and Pauli-Villars. This analysis reconciles an
apparent contradiction between diagrammatics and analytic continuation into superspace.

I. INTRODUCTION

The mediation of supersymmetry breaking (���SUSY) to
the Standard Model via gauge interactions (for a review
see [1]) still remains a viable possibility in the early LHC
era [2], and has many compelling features. First, it pro-
vides a calculable framework for coupling (dynamical)
���SUSY to the Standard Model. Additionally, the result-
ing masses are flavor blind, thereby alleviating tension
with experimental constraints. Furthermore, for a large
class of models, the sfermion and gaugino masses are of
the same parametric size. This allows one to minimize
the fine-tuning required to reproduce the Z-boson mass
in light of the LEP bound on the Higgs mass.

Unfortunately, there are still several problems with
finding realistic gauge mediated models. For example,
there are a variety of cases where gauginos can be para-
metrically lighter than sfermions. This hierarchy can oc-
cur in theories with dynamical���SUSY because of the pres-
ence of an R-symmetry, which exists in generic models
where all allowed couplings are non-vanishing [3]. The
gauginos λ have R(λ) = 1, and hence they cannot obtain
a Majorana mass if the hidden sector does not break the
R-symmetry.

There is another class of models which realize an “acci-
dental” suppression of gaugino masses, in the sense that
the suppression is not the result of a symmetry. Specif-
ically, assume the mediation is due to the presence of
messenger states with mass M charged under the Stan-
dard Model. If the ���SUSY scale is parametrized by

√
F ,

one naively expects both gaugino and scalar masses of
O(F/M). However, when this accidental cancellation
occurs, the leading contribution to the gaugino mass is
either at three or higher loop order, or at O(F 3/M5) [4].

One general set of models with such a suppression
was identified by Komargodski and Shih [5]. They per-
formed a general analysis for theories (with canonical
Kähler potentials) which could be cast as generalized

O’Raifeartaigh models. In these cases, there is always
at least one tree-level flat direction parametrized by a
pseudo-modulus. They demonstrated that in order for
the gaugino mass to be non-vanishing at leading order in
F , there must exist a tachyonic field at some point along
this flat direction. This analysis applies, for example, to
models which attempt to break the R-symmetry inher-
ent in the original metastable ���SUSY model of [6] at tree
level.

If no tree-level couplings exist between the messengers
and the���SUSY spurion, it is a logical possibility that such
couplings could be generated by loop interactions. This is
the case where the “gaugino screening” theorem applies
[7]. Specifically, this theorem states that higher dimen-
sion Kähler potential corrections to the messenger sector
do not contribute to the gaugino mass at leading order
in F . This theorem applies to many models, e.g. [8–14].

The gaugino screening theorem was first proven us-
ing analytic continuation into superspace [7], which de-
rives leading-order effects in F by promoting couplings
to superfields with non-zero F -term vevs. We review
this derivation in Sec. VI. This theorem was also demon-
strated using the language of general gauge mediation
in [4]. One feature of both of these proofs is that they
rely on arguments which avoid using Feynman diagrams.
It is then perhaps surprising that a naive diagrammatic
calculation along the lines of [15] completely misses the
gaugino screening effect. For example, it can give non-
zero leading order gaugino masses when the other tech-
niques say that they should not exist! Thus, we are left
with a natural question of how to demonstrate gaugino
screening purely from the diagrammatic point of view. In
other words, when can we trust that a diagrammatic cal-
culation gives the correct leading-order gaugino masses?

In this work, we provide the answer to this question.
In particular, we show that to give the correct answer,
one must include the gaugino counterterm first derived
by Dine and Seiberg in [16]. In that context, this term
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was encountered as an alternative derivation of anomaly
mediation; for a similar analysis in AdS space see [17].
We demonstrate that this term is exactly what is needed
to cancel the naive leading-order gaugino mass, and is
present when there are non-zero messenger F -terms. We
perform the computation using both dimensional reduc-
tion and Pauli-Villars, thus providing a non-trivial check
of regulator independence. Although many of our results
may be known in various guises to experts [4], we felt
that a detailed exploration of these ideas would make a
useful addition to the literature. For other related work
see [18–20].

The rest of this note is organized as follows. In the
next section, we argue for a simple criterion for vanishing
gaugino masses. In Sec. III we review the derivation of
the gaugino counterterm, how it is sourced by messenger
F -terms, and the connection with anomaly mediation.
In Sec. IV, we show how the cancellation proceeds in a
simple toy model, followed by Sec. V where we give our
general proof. For completeness we review the connection
with analytic continuation into superspace in Sec. VI.
Finally in Sec. VII, we give some general comments and
our conclusions.

II. A SIMPLE CRITERION

We begin with a simple criterion for vanishing gaugino
masses, Eq. 2. For the model with a single set of mes-
sengers, the leading order gaugino mass is given by the
1-loop Feynman diagram of Fig. 1, and is

mloop
λ =

g2

16π2

m2
od

M
, (1)

where m2
od is the���SUSY off-diagonal entry in the messen-

ger scalar mass-squared matrix [15].
Let Φ and Φ be vector-like messengers with a super-

symmetric mass term M . For simplicity, take the gauge
group to be U(1). We assume that there is no D-term
breaking, and the scalar messengers have a mass matrix
of the form

M2 =

(
M2 Mκ
Mκ M2

)
, (2)

where κ is a mass-dimension one soft supersymmetry
breaking parameter whose leading order dependence on
���SUSY goes as F/Λ. As will be crucial for our argument,
Λ is necessarily a scale different from M . A concrete
model of such a mass matrix will be provided in Sec. IV
below. Regulating this model using Pauli-Villars involves

adding additional fields Φ′ and Φ
′

with mass Λ and a
mass matrix identical to Eq. (2), but with M → Λ.

For the model of Eq. (2), one obtains a contribu-
tion to the gaugino mass from the messengers, given by
mΦ
λ = g2κ/(16π2). Additionally, there is a contribution

from the Pauli-Villars fields which is identical but with
the opposite sign; we will argue that this naive analysis

holds in Sec. IV B. This demonstrates that if m2
od ∼Mκ,

leading order gaugino masses vanish.
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I. INTRODUCTION

• Discuss other ways to suppress gaugino mass:
Komargadski-Shih, R-symmetry, gaugino screen-
ing.

• Emphasize that the result is not new [? ].

• What is new is the connection with the gaugino
counterterm of Dine-Seiberg derived in the context
of anomaly mediation and the non-zero messenger
F -terms.

• Emphasize that we are always only interested in
leading order in F .

II. MESSENGER F -TERMS

We begin with a simple example with vanishing
gaugino masses. Let � and � be messengers in the
(anti)fundamental representation with a supersymmetric
mass term M . Then assume a messenger mass matrix of
the form (a concrete model will be provided in section IV
below)

M2 =

✓
M2 M
M M2

◆
, (1)

where  is a soft supersymmetry breaking parameter.
Regulating this model using Pauli-Villars involves adding

additional fields �0 and �
0
with mass ⇤ and a mass ma-

trix identical to Eq. (1) with M ! ⇤.
For generic messengers, the leading order contribution

to the gaugino mass m1�loop
� = g2/(16⇡2) m2

od/M , where
m2

od is the ⇠⇠⇠SUSY o↵-diagonal entry in the messenger
scalar mass squared matrix. If one computes the 1-loop
contribution to the gaugino masses (see Fig. 1) in the
model of Eq. (1), one obtains a contribution from the
messengers m�

� ⇠ g2/(16⇡2) and a contribution from
the Pauli-Villars fields which is identical with the oppo-
site sign — the point is that since the gaugino mass is
independent of the messenger mass, there is an equal and
opposite contribution from the Pauli-Villars fields.

FIG. 1: The 1-loop contribution to the gaugino mass for mod-
els with massive messengers and m2

od 6= 0. Stolen from
Steve Martin. Need to make our own.

We see that if m2
od ⇠ (M⇥⇠⇠⇠SUSY), leading order gaug-

ino masses vanish.
It is straight forward to see how this requirement is

equivalent to non-zero “messenger F -terms” on the Higgs
branch. Given the mass matrix of Eq. (1),

L � M2�†� + M2�
†
� + M �� + h.c. (2)

Then integrating in the F -term for � gives

L � F� F †
�

+ M�F� + F †
��. (3)

Now analyze the model out on the Higgs branch M = 0
and h�i =

⌦
�
↵

= v. Then clearly F� = � v 6= 0. In the
next section we will show that messenger F -terms are
intimately tied to non-vanishing gaugino counterterms
which in turn explain the suppression of leading order
gaugino masses.

III. THE GAUGINO COUNTERTERM

Here we will review the derivation of the gaugino coun-
terterm first proposed by Dine and Seiberg in [? ]. Take
the model with massless fields � and � (later we will iden-
tify these as messengers) which are vector-like under a
gauged U(1). On the Higgs branch, h�i =

⌦
�
↵

= v, there
is a massless composite state which can be described by
the gauge invariant combination ��. Noting that there
are no interactions between the massless state and the
massive states at the level of perturbation theory, we
know that there will be no subtle behavior in the IR in
this e↵ective action. Therefore, this action must be local.
Furthermore, there is a rescaling chiral anomaly where we
transform � ! ei↵� and �̄ ! ei↵�̄ and the holomorphic

M
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III. THE GAUGINO COUNTERTERM

Here we will review the derivation of the gaugino coun-
terterm first proposed by Dine and Seiberg in [16]. Con-
sider the model with massless fields Φ and Φ which are
vector-like under a gauged U(1). These fields will even-
tually be identified as messengers. On the Higgs branch,
where 〈Φ〉 =

〈
Φ
〉

= v, there is a massless composite state
which can be described by the gauge invariant combina-
tion Φ Φ. The tree-level interaction between Φ Φ and the
(massive) gauge superfield V goes as (Φ Φ)2 V 2, so the
lowest order non-local contribution to the 1PI effective
action is at order V 4. Therefore, any contribution to the
gaugino mass must be due to local terms.

In order to derive this contribution explicitly, note
the existence of a rescaling chiral anomaly under which
Φ → eiαΦ and Φ̄ → eiαΦ̄ while the holomorphic gauge
coupling shifts by τ → τ + α

π . Thus the 1PI Lagrangian
includes a term

L ⊃ 1

16π i

∫
d2θ

(
τ +

i

2π
log ΦΦ

)
WαWα. (3)

This is the effective interaction between the gauge super-
field and the massless state.

If one constructs a model where FΦ 6= 0 on the Higgs
branch, Eq. (3) yields the counterterm contribution to
the gaugino mass:

mCT
λ = − g2

16π2

FΦ

〈Φ〉 . (4)

As we show in Sec. V, the proof of the gaugino screening
theorem follows from the presence of this counterterm in
the effective action.

We now revisit the simple criterion of the previous sec-
tion. The mass matrix of Eq. (2) can be derived from the
Lagrangian

L ⊃ FΦ F
†
Φ + (M ΦFΦ + κF †ΦΦ + h.c.), (5)
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which comes from

K = Φ†Φ(1 + θ2κ+ θ
2
κ∗) + Φ

†
Φ, (6)

W = M Φ Φ. (7)

Recall that the gaugino mass vanishes to leading order.
Now consider moving out on the Higgs branch. To do

this, we take M = 0, which opens the D-flat direction
〈Φ〉 =

〈
Φ
〉

= v. From Eq. (5), FΦ = −κ v 6= 0. Thus
FΦ/〈Φ〉 is nonzero, and the counterterm does not van-
ish. As we will see explicitly below, this counterterm
will be crucial for reconciling the dimensional reduction
(Sec. IV A) and Pauli-Villars (Sec. IV B) computations,
both of which result in vanishing gaugino masses.

There is a confusion now present for models which uti-
lize the gaugino counterterm of Eq. (3). We have demon-
strated the existence of a gaugino counterterm along the
Higgs branch. However, if M 6= 0, we are no longer al-
lowed to move away from 〈Φ〉 = 〈Φ〉 = 0. So, does this
counterterm exist at the origin of moduli space? Note
that for all relevant cases, the gaugino mass derived from
the counterterm is independent of v. However, log ΦΦ is
singular for 〈Φ〉 =

〈
Φ
〉

= 0. Therefore, one could worry
that the extrapolation to the origin is non-trivial.

One way to establish that the counterterm exists at
the origin relies on the regulator fields. As a result of
Eq. (3), which is independent of regularization scheme,
there is a gaugino mass on the Higgs branch. If regulated
with Pauli-Villars, the regulator fields give an additional
leading order gauge mediated contribution that does not
decouple as their mass is taken to infinity. Consistency
with the 1PI action requires that the Pauli-Villars fields
have a counterterm to cancel this 1-loop contribution.
Since the Pauli-Villars fields are pinned to the origin due
to their non-zero mass, the counterterm must exist at the
origin.

Finally, we discuss why we do not need to include scalar
counterterms. This differs from the supergravity case
where, from the point of view of [16], the anomaly medi-
ated scalar mass counterterms were the result of RG flow.
In models with rigid supersymmetry, RG flow leads to
gauge mediated soft masses — this is the physics of ana-
lytic continuation into superspace. However, the gaugino
counterterm is the result of an anomaly, not RG flow.
Therefore it is not seen by gauge mediation alone and
must be added by hand.

A. Relation to Anomaly Mediation

In supergravity, the effective gauge coupling constant
τeff = τ + i log ΦΦ/(2π) can give rise to a gaugino mass.
The Lagrangian contains [16]

L ⊃ 1

8π
gīi

∂τeff

∂Φi
(DiW )∗ λλ

=
〈W ∗〉

16π2M2
Pl

λλ+ · · · , (8)

where

DiW =
∂W

∂Φi
+

1

M2
Pl

∂K

∂Φi
W, (9)

and we have taken a canonical Kähler potential, gīi =
δīi. Tuning the cosmological constant to zero enforces
that 〈W 〉 = m3/2M

2
Pl, where m3/2 is the gravitino mass.

Plugging this into Eq. (8) gives the anomaly mediated
contribution to the gaugino mass [16].

IV. A TOY EXAMPLE

In this section we will show how the gaugino coun-
terterm of Eq. (4) implies the vanishing of leading order
gaugino masses in the “half-chiral model” of [4]:

K = Φ†Φ

(
1 +

X +X†

Λ

)
+ Φ

†
Φ (10)

W = M Φ Φ (11)

where Λ is the cut-off for the model and X is a ���SUSY
spurion, 〈X〉 = θ2 FX . First we will review the argument
that the gaugino mass vanishes in the canonically nor-
malized basis [4]. Performing a chiral rotation on Φ at
the superfield level

Φ→
(

1− X

Λ

)
Φ (12)

gives, to leading order in 1/Λ,

K = Φ† Φ + Φ
†

Φ (13)

W = M Φ Φ−
(
M X

Λ

)
Φ Φ (14)

L ⊃
∫

d2θ

16πi

(
τ +

i

2π
log

(
1− X

Λ

))
WαWα, (15)

where the log(1−X/Λ) term results from the anomalous
chiral rotation of Φ. The messenger mass matrix is given
by

M2
half−chiral =

(
M2 M FX

Λ
M FX

Λ M2

)
, (16)

In this basis, the off-diagonal mass appears as an inde-
pendent parameter. Therefore, even though M appears
in m2

od, there is a priori no reason for the supersymmetric
messenger mass and this parameter to be related. This is
relevant if one wishes to regulate the theory using Pauli-
Villars. The diagonal element of the Pauli-Villars mass
matrix is M2

PV →∞ while m2
od = M FX/Λ. This implies

that the Pauli-Villars fields will not make a contribution
to the gaugino mass in this basis.

Evaluating the diagram in Fig. 1 using either dimen-
sional reduction or Pauli-Villars gives a non-zero gaugino
mass contribution g2FX/(16π2Λ). Note that since K is
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canonical, FΦ = 0 and Eq. (4) does not contribute to the
gaugino mass. However, there is a contribution to mλ

from the log(1 − X/Λ) term: −g2FX/(16π2Λ). Clearly
this cancels against the 1-loop diagram. The gaugino
mass vanishes to leading order in FX .

As we now discuss, the computation is more subtle
when we do not canonically normalize Φ. As opposed to
the case just discussed, the precise way to see that the
gaugino mass vanishes at O(F ) is different for dimen-
sional reduction and Pauli-Villars.

A. Non-Canonical Basis: Dimensional Reduction

In the non-canonical basis of Eq. (10), the messenger
scalar mass-squared matrix is also given to leading order
in 1/Λ by Eq. (16). Then the 1-loop contribution, regu-
lated using dimensional reduction, to the gaugino masses
is given by −g2FX/(16π2Λ). In this basis, FΦ 6= 0 on
the Higgs branch. This gives a counterterm contribution
of g2FX/(16π2Λ), which precisely cancels the 1-loop di-
agram. We see that leading order gaugino masses vanish
in this model.

B. Non-Canonical Basis: Pauli-Villars

In order to regularize the theory we add the Pauli-

Villars fields Φ′ and Φ
′
. The Kähler interactions for these

fields are then identical to those for Φ and Φ. Their mass
is given by MPV, which will be sent to infinity at the end
of the computation.

As emphasized before, because the contribution to the
gaugino mass is independent of the mass of the parti-
cles, the Pauli-Villars fields have a contribution that is
non-vanishing as their mass is taken to infinity. However,
because the Pauli-Villars fields have opposite statistics,
they have an extra minus sign. Thus the two contribu-
tions cancel against each other.

There are counterterms for both the (Φ, Φ) and

(Φ′, Φ
′
) fields. The Pauli-Villars fields have opposite sign

F -terms, so these counterterms cancel.1 This shows that
when using the Pauli-Villars regularization scheme, the
counterterm has no effect. Hence, the naive argument
presented in Sec. II follows, and the leading order gaug-
ino masses vanish.

V. THE GENERAL ARGUMENT

So far, we have seen how the counterterm implies van-
ishing gaugino masses for a specific case. Here we will
provide an analysis relevant for a wide class of models.

1 We thank D. Shih for pointing this out to us.

Again, let Φ and Φ be messengers, and go to a basis
where all of the ���SUSY is parametrized by 〈X〉 = FX θ

2.
Then take the Kähler potential and superpotential to be

K = Φ†Φ
(
1 + fK(X,X†, . . . )

)

+ Φ
†
Φ
(
1 + fK(X,X†, . . . )

)
+ . . . , (17)

W = (M + fW (X, . . . )) Φ Φ + . . . , (18)

where fK and fK are generic real dimensionless super-
field functions and fW is a generic holomorphic superfield
function with mass dimension one. For models with mul-
tiple messengers, we take the Kähler potential to be diag-
onal.2 We only need to consider terms that are quadratic
in Φ and Φ to determine the leading order behavior of
the gaugino masses. We neglect Kähler potential terms
of the form g(X,X†, . . . )ΦΦ, since we can always absorb
the effect of such operators into a superpotential mass
term, to leading order in F [22]. In this model, the mes-
senger F -terms are given by

FΦ =
−1

1 + fK

(
ΦFX

∂fK
∂X

+
(
M† + f†W

)
Φ
†
)
, (19)

FΦ =
−1

1 + fK

(
ΦFX

∂fK
∂X

+
(
M† + f†W

)
Φ†
)
.(20)

The potential is

V =
1

1 + fK

∣∣∣∣ΦFX
∂fK
∂X

+
(
M† + f†W

)
Φ
†
∣∣∣∣
2

+
1

1 + fK

∣∣∣∣ΦFX
∂fK
∂X

+
(
M† + f†W

)
Φ†
∣∣∣∣
2

−
(
∂fW
∂X

FX Φ Φ + h.c.

)
. (21)

which, after canonically normalizing the component
fields, gives

mloop
λ = −g

2FX
16π2

(
1

1 + fK

∂fK
∂X

+
1

1 + fK

∂fK
∂X

− ∂fW
∂X

)
.

(22)
There is also the gaugino counterterm contribution which
is present due to the non-zero messenger F -terms given
in Eqs. (19) and (20):

mCT
λ =

g2FX
16π2

(
1

1 + fK

∂fK
∂X

+
1

1 + fK

∂fK
∂X

)
. (23)

2 If the model is written in a basis with a non-diagonal Kähler po-
tential, one can always go to a basis where K is diagonal by acting
with the appropriate unitary rotation matrix U , U on the messen-
ger fields Φ, Φ. This in turn rotates the superpotential couplings.
Then the gaugino mass derived from the rotated superpotential
is proportional to ∂X log detU(M+fW )U = ∂X log det(M+fW )
[21]. Hence, the gaugino masses are unaffected by non-diagonal
Kähler potential interactions and our general argument holds.
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We see that the leading order contribution from the
Kähler potential cancels regardless of the form of fK and
fK while the contribution from the superpotential sur-
vives.

This proves the gaugino screening theorem in general-
ity. If ���SUSY does not communicate with the messengers
at tree level (e.g. via a superpotential interaction X Φ Φ),
then the coupling between the messengers and the spu-
rion can be put in the form of Eqs. (17) and (18). There-
fore, Kähler potential corrections involving the messen-
gers and the hidden sector do not induce leading order
gaugino masses.

It is straightforward to see why the cancellation does
not generically hold to all orders in FX . The 1-loop di-
agram generates contributions which are higher order in
FX/M

2 while the counterterm contribution is given ex-
actly by Eq. (23).

VI. DERIVATION BY ANALYTIC
CONTINUATION INTO SUPERSPACE

Another way of computing the soft spectrum in gauge
mediated models utilizes an analytic continuation into
superspace of the running gauge coupling into super-
space. The original work [21] provided a systematic
procedure for extracting the leading order contribution
to the soft-masses. In [7] this was extended to include
higher loop effects. In particular, by including a thresh-
old correction from the wavefunction renormalization of
the messengers, they were able to prove the gaugino
screening theorem.

For completeness, we will summarize the proof of [7]
here. The gaugino mass is determined by the θ2 compo-
nent of a real superfield,

R(µ) = S(µ) + S†(µ) +
TG
8π2

log
(
S(µ) + S†(µ)

)

−
∑

r

Tr
8π2

log(Zr(µ)) + 2-loop. (24)

Zr is the wavefunction renormalization of all fields
charged under the gauge group. S(µ) is the holomorphic
gauge coupling and is determined exactly by

S(µ) = S(Λ) +
b0

16π2
log
(µ

Λ

)
− TΦ

16π2
log

(
MΦ

Λ

)
, (25)

where b0 is the one-loop beta function without the mes-
senger fields Φ, MΦ is the physical mass of the messen-
gers, and we evaluated this coupling at a scale µ < MΦ <
Λ. To leading order in g2, the X-dependent part of the
real gauge coupling constant is

R(µ) = − TΦ

8π2
log

(
MΦZΦ(MΦ)

Λ

)
+ . . . (26)

Given the superpotential messenger massM , the physical
mass is given by

MΦ =
M

ZΦ(MΦ)
. (27)

This relationship, along with Eq. (24), implies that
the dependence of the gaugino mass on the wave func-
tion of the messengers cancels at leading order in F —
any non-vanishing leading order gaugino mass is com-
pletely determined by superpotential couplings. This is
how the gaugino screening theorem manifests itself us-
ing analytic continuation methods [7]. We note that this
analysis avoids any reference to Feynman diagrams or
counterterms.

VII. COMMENTS AND CONCLUSIONS

In this note we have given an alternative derivation of
the gaugino screening theorem. As opposed to the orig-
inal result which relied on analytic continuation into su-
perspace, we have shown how this effect is realized at the
level of Feynman diagrams. In particular, the presence of
non-zero messenger F -terms necessitates the inclusion of
gaugino counterterms. These finite counterterms are re-
sponsible for the gaugino screening effect. This provides
an explicit class of models where one must be careful in
performing diagrammatic gauge mediation analyses.

We conclude with some comments on the UV inter-
pretation of the gaugino counterterm.3 Intuitively, this
non-decoupling effect is special due to its relation with
the chiral anomaly. In [13], a generic criterion for UV sen-
sitivity in models of gauge mediation was given. These
authors proposed a simple model which exhibits vanish-
ing leading order gaugino masses (their example is simi-
lar to the half-chiral model discussed in Sec. IV above).
In the IR description of their model, there are non-zero
messenger F -terms and therefore the gaugino countert-
erm is non-zero and completely cancels the leading order
gaugino mass. From the UV completion, the cancellation
for the leading order gaugino mass can be seen explicitly
utilizing a Feynman diagram computation. This provides
an explicit case where the counterterm can be understood
in terms of contact contributions from a UV threshold.
This makes it clear that one must include the gaugino
counterterm at low energies to maintain the consistency
of the model.
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