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In a recent Letter [Phys. Rev. Lett. 108, 172003 (2012)] we have reported on a lattice QCD
calculation of the heavy-hadron axial couplings g1, g2, and g3. These quantities are low-energy
constants of heavy-hadron chiral perturbation theory (HHχPT) and are related to the B∗B π,

Σ∗b Σb π, and Σ
(∗)
b Λb π couplings. In the following, we discuss important details of the calculation

and give further results. To determine the axial couplings, we explicitly match the matrix elements
of the axial current in QCD with the corresponding matrix elements in HHχPT. We construct the
ratios of correlation functions used to calculate the matrix elements in lattice QCD, and study
the contributions from excited states. We present the complete numerical results and discuss the
data analysis in depth. In particular, we demonstrate the convergence of SU(4|2) HHχPT for the
axial current matrix elements at pion masses up to about 400 MeV and show the impact of the
nonanalytic loop contributions. Finally, we present additional predictions for strong and radiative
decay widths of charm and bottom baryons.

PACS numbers: 12.38.Gc, 12.39.Fe, 12.39.Hg, 14.20.Mr

I. INTRODUCTION

Two important symmetries which allow many predictions in nonperturbative QCD are chiral symmetry [1] and
heavy-quark symmetry [2]. Both symmetries are a consequence of the large separation of scales in the quark masses,
relative to the intrinsic scale of QCD. In chiral perturbation theory, an expansion is performed around the limit where
the light quark masses vanish, and the dynamics is determined by derivatively coupled pions, associated with the
spontaneous breaking of chiral symmetry. In heavy-quark effective theory, an expansion is performed around the
static limit, where a quark mass is infinitely heavy. In that limit, the heavy quark acts as a point-like color source
with a fixed velocity, and the spin of the heavy quark decouples. Corrections to the static limit are suppressed by
powers of ΛQCD/mQ, where mQ is the heavy-quark mass. Because ΛQCD/mb is particularly small, the static limit
is a good approximation to describe the dynamics of hadrons containing a bottom quark. For charmed hadrons, the
static limit is still a reasonable first approximation.

At the hadronic level, the combination of chiral symmetry and heavy-quark symmetry into a single effective theory
leads to a framework known as heavy-hadron chiral perturbation theory (HHχPT), which describes the interactions
of heavy-light hadrons with pions and kaons [3–8]. At leading order, the HHχPT Lagrangian contains three axial
couplings g1, g2 and g3. The coupling g1 determines the strength of the interaction between heavy-light mesons and
pions, while g2 and g3 similarly determine the interaction of heavy-light baryons with pions.

In the meson sector, the strong decay B∗ → B π is kinematically forbidden. However, virtual pion loops contribute
to much of the physics of B mesons, and the coupling g1 appears in calculations of important observables such as B
meson masses, decay constants, bag parameters and form factors within chiral perturbation theory [9–11]. Precise
knowledge of these hadronic observables is needed for flavor physics, both within and beyond the Standard Model. In
this context, chiral perturbation theory is needed in particular to describe the quark-mass dependence of lattice QCD
results for such observables. Most current lattice QCD calculations are performed at unphysically large values of the
up- and down quark masses to reduce the amount of computer time needed. The results from a range of quark masses
must then be extrapolated to the physical values of the light quark masses. Chiral perturbation theory predicts the
functional form needed for this extrapolation, but the uncertainty in the final result is influenced significantly by the
uncertainty in the value of the axial coupling g1 [12].

While most of heavy-flavor physics has traditionally focused on the B mesons, measurements at the LHC and super-
B factories will extend the knowledge of flavor physics in the bottom baryon sector, which provides complementary
constraints on new physics models because of the different spin of the baryons. Therefore, lattice QCD calculations
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of bottom baryon observables such as form factors are needed, and as in the meson sector, chiral extrapolations of
the data need to be performed. For baryons, the accuracy of such extrapolations can be improved dramatically if the

values of the couplings g2 and g3 are known. The coupling g3 is related to the strong decays Σ
(∗)
b → Λb π, which are

kinematically allowed. The widths of these decays have recently been measured at Fermilab [13], but the experimental
uncertainty is still large.

The axial couplings g1, g2, and g3 are calculable from the underlying theory, QCD. The only reliable approach for
these nonperturbative observables is lattice QCD. While there are no previous lattice calculations of g2 and g3, a
number of groups have performed lattice computations of the coupling g1, both in the quenched approximation (i.e.
neglecting the vacuum-polarization effects of light quarks) [14–16] and with nf = 2 dynamical flavors [17–19]. In
these lattice calculations, one computes matrix elements of the axial current, and relates these matrix elements to the
coupling g1. To fit the data and extract g1, theoretical knowledge of the light-quark mass dependence of the axial
current matrix elements is required. The previous lattice calculations used fits that were linear or quadratic in the
pion mass, or including logarithms, but the correct chiral perturbation theory predictions were not known.

We have recently derived the expressions for the axial current matrix elements at next-to-leading order in partially
quenched heavy-hadron chiral perturbation theory, both for the mesons and the baryons [20]. We have then performed
the first complete lattice QCD calculation of the three axial couplings g1, g2, g3, controlling all systematic uncertainties
[21]. In the following, we discuss important details of the analysis that were omitted for brevity in Ref. [21], and
present some additional results.

Our calculation includes nf = 2 + 1 flavors of dynamical light quarks, and makes use of data at six different values
of the quark masses corresponding to (valence) pion masses as low as 227 MeV. Two different lattice spacings of
a = 0.112 fm and a = 0.085 fm are used to perform a continuum extrapolation. The spatial volume is (2.7 fm)3,
large enough so that finite-size effects are very small and can be removed by using finite-volume heavy-hadron chiral
perturbation theory in the p regime. Because the axial couplings g1, g2, g3 are defined in the static limit, we use the
static lattice action of Ref. [22], modified using smeared gauge links to reduce noise [23], for the heavy quark. We
implement the light quarks with a domain-wall action [24–26]. This is a five-dimensional formulation that realizes a
lattice chiral symmetry for the four-dimensional theory, which becomes exact, even at finite lattice spacing, when the
extent of the auxiliary fifth dimension is taken to infinity. As a result, the renormalization of operators is simplified
and discretization errors are small. Our calculations make use of gauge field ensembles generated by the RBC and
UKQCD collaborations [27].

This paper is organized as follows: We begin with an introduction to HHχPT in Sec. II A. We derive the matrix
elements of the axial Noether current at leading order in HHχPT using canonical quantization in Sec. II B. The
ratios of correlation functions used to calculate the corresponding matrix elements in lattice QCD are constructed
in Sec. II C, where we also show their spectral decomposition. The details of the lattice actions and parameters are
given in Sec. III. We present the numerical results for the ratios of correlation functions in Sec. IV A, and explain
our method for extracting the ground-state contributions to the matrix elements in Sec. IV B. In Sec. IV C, we then
describe the chiral fits using SU(4|2) HHχPT, including the effects of finite volume and non-zero lattice spacing. We
compare our lattice QCD results for the axial couplings to various estimates reported in the literature in Sec. V.
The calculations of heavy-baryon decay widths are presented in Sec. VI, and we conclude in Sec. VII. Appendix
A contains further plots of numerical data, and Appendix B contains a comparison of our ratio method with an
alternative approach (the summation method).

II. AXIAL COUPLINGS FROM RATIOS OF CORRELATION FUNCTIONS

A. Heavy hadron chiral perturbation theory

For hadrons containing a heavy quark (or antiquark), in the static limit mQ → ∞, the spin of the light degrees
of freedom, sl, becomes a conserved quantum number. The lowest-lying static-light mesons have sl = 1/2, and are
therefore grouped into pseudoscalar mesons, described by a field P i, and vector mesons, described by a field P ∗iµ . We
work with heavy-light mesons containing a light quark of flavor i = u, d and a heavy antiquark. The vector meson field
satisfies vµP ∗iµ = 0, where v is the four-velocity; this is a parameter of the effective theory, subject to the constraint

v2 = 1. Because of heavy-quark spin symmetry, the pseudoscalar and vector mesons are degenerate. To make the
heavy-quark symmetry manifest, the pseudoscalar and vector meson fields can be combined into a single field H,
which is 4× 4-matrix-valued and given by [3, 9]

Hi =
[
−P iγ5 + P ∗iµ γ

µ
] 1− /v

2
. (1)
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This field satisfies the constraint Hi 1−/v
2 = Hi. Next, we consider static-light baryons containing two light quarks

of flavors i and j and a heavy quark. We include both the states with sl = 0 and sl = 1. The states with sl = 1
form two multiplets with J = 1/2 and J = 3/2, and are described by a Dirac spinor field Bij and a Rarita-Schwinger
spinor field B∗ijµ . These sl = 1 fields are symmetric in flavor: Bij = Bji and B∗ijµ = B∗jiµ . For two quark flavors one
has (using the notation for bottom baryons)

B =

(
Σ+
b

1√
2
Σ0
b

1√
2
Σ0
b Σ−b

)
, (2)

and similarly for B∗µ. Again, because of heavy-quark spin symmetry, the J = 1/2 and J = 3/2 baryons with sl = 1
are degenerate, and the corresponding fields can be combined into a single field [7, 28]

Sijµ = Sjiµ =

√
1

3
(γµ + vµ)γ5B

ij +B∗ijµ , (3)

satisfying vµSijµ = 0 and
1+/v

2 Sijµ = Sijµ . The sl = 0 baryons have J = 1/2 and can be described by a Dirac spinor

field T ij , which is antisymmetric in i and j and satisfies the constraint
1+/v

2 T ij = T ij . For two quark flavors, one has

T =
1√
2

(
0 Λb
−Λb 0

)
. (4)

In SU(2) chiral perturbation theory, the pions are described by an SU(2)-valued field Σ = exp(2iΦ/f), which
transforms under global SU(2)L × SU(2)R transformations as

Σ→ L ΣR†. (5)

For the purposes of heavy-hadron chiral perturbation theory, it is convenient to also introduce the field ξ = exp(iΦ/f),
so that Σ = ξ2. The field ξ transforms as

ξ → L ξ U† = U ξ R†, (6)

where the transformation matrix U(x) is a function of L, R and Φ(x), implicitly defined through the above equations.
Under the vector subgroup L = R = V , the field ξ transforms as ξ → V ξV †. Therefore, the natural transformation
laws for the heavy-hadron fields also involve the matrix U :

Hi → U ijH
j ,

Sijµ → U ikU
j
lS
kl
µ ,

T ij → U ikU
j
lT
kl. (7)

The leading-order heavy-hadron chiral perturbation theory Lagrangian is then given by [5–8]

L =
f2

8
(∂µΣ†)ij∂µΣji − i trD

[
Hiv ·DHi

]
− iSµijv ·DSijµ + iT ijv ·DT ij

+∆S
µ

ijS
ij
µ + g1trD

[
Hi(A

µ)ijγµγ5H
j
]
− ig2εµνσλS

µ

kiv
ν(A σ)ij(S

λ)jk

+
√

2g3

[
S
µ

ki(Aµ)ijT
jk + T ki(A

µ)ijS
jk
µ

]
+ (mq terms) + (1/mQ terms), (8)

where trD denotes the trace in Dirac space, and the covariant derivatives are defined as

DµHi = ∂µHi + (V µ)ijH
j ,

DµSijν = ∂µSijν + (V µ)ikS
kj
ν + (V µ)jkS

ik
ν ,

DµT ij = ∂µT ij + (V µ)ikT
kj + (V µ)jkT

ik, (9)

with the vector and axial-vector fields

V µ=
1

2

(
ξ†∂µξ + ξ∂µξ†

)
,

A µ=
i

2

(
ξ†∂µξ − ξ∂µξ†

)
. (10)
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The H and T fields are rescaled such that their masses do not appear in the Lagrangian. The quantity ∆ is the
mass difference between the S and T baryons. This mass difference does not vanish in the chiral limit nor in the
heavy-quark limit. From experiment, one has ∆ ≈ 200 MeV [13, 29].

Our definitions of the axial couplings g1, g2, and g3 in Eq. (8) are related to the definitions of Yan et al. [5] and
Cho [7] as follows [30]:

g1 = g
(Cho)
1 = g(Yan),

g2 =− g(Cho)
2 =

3

2
g

(Yan)
1 ,

g3 = g
(Cho)
3 = −

√
3g

(Yan)
2 . (11)

We introduced the minus sign on g2 relative to the definition by Cho, so that in our conventions all three couplings
are positive.

The Lagrangian (8) has the same form for both SU(2) and SU(3) chiral perturbation theory, the only difference
being that the flavor indices run from 1 to 2 and 1 to 3, respectively. The theory can be generalized to the partially
quenched SU(4|2) or SU(6|3) cases, where the valence and sea quarks can have different masses; for more details see
[20] and the references therein.

As can be seen by expanding the field ξ = exp(iΦ/f) in Eq. (8) in terms of the pion field Φ, at lowest order the
term with the axial coupling g1 leads to an H-H-Φ vertex, the term with the coupling g2 leads to an S-S-Φ vertex,
and finally the term with the coupling g3 leads to an S-T -Φ vertex.

B. Axial current matrix elements in heavy-hadron chiral perturbation theory

The simplest quantities that depend on the axial couplings are the matrix elements of the axial currents between
single-hadron states (an alternative approach to determine the axial couplings based on static hadron-hadron potentials
is discussed in Ref. [31]). To extract g1, g2, and g3, we will calculate the matrix elements of the axial current in both
χPT and (lattice) QCD, and match the two with each other:

〈X|A(QCD)
µ |Y 〉QCD = 〈X|A(χPT)

µ |Y 〉χPT. (12)

In QCD, the axial current is simply given by

Aa(QCD)
µ = q̄

τa

2
γµγ5q. (13)

To derive the expression for the axial current in heavy-hadron chiral perturbation theory, one can use the Noether
procedure. For an infinitesimal local axial transformation,

R(x) = L†(x) = 1 + iαa(x)τa, (14)

one finds that the change in the leading-order Lagrangian is given by

δL = (∂µαa)Aa(χPT)
µ (15)

with

Aa(χPT)
µ =

if2

8

[
τaΣ†∂µΣ + τa(∂µΣ)Σ† − τaΣ∂µΣ† − τa(∂µΣ†)Σ

]i
i

− vµ trD

[
Hi(τ

a
ξ−)ijH

j
]
− vµ

[
S
ν

ij(τ
a
ξ−)ikS

kj
ν + S

ν

ij(τ
a
ξ−)jkS

ik
ν

]
+ vµ

[
T ij(τ

a
ξ−)ikT

kj + T ij(τ
a
ξ−)jkT

ik
]

+ g1 trD

[
Hi(τ

a
ξ+)ijγµγ5H

j
]
− ig2 εµνσλS

ν

kiv
σ(τaξ+)ij(S

λ)jk

+
√

2 g3

[
(Sµ)ki(τ

a
ξ+)ijT

jk + T ki(τ
a
ξ+)ij(Sµ)jk

]
, (16)

where we have introduced the quantities

τaξ− =
1

2

(
ξ†τaξ − ξτaξ†

)
,

τaξ+ =
1

2

(
ξ†τaξ + ξτaξ†

)
. (17)
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Equation (16) is the leading-order axial current in the chiral effective theory. In the following, we work with a
particular flavor of the axial current,

A−(χPT)
µ = A1(χPT)

µ − i A2(χPT)
µ , (18)

which corresponds to the QCD current d̄γµγ5u. To lowest order in the pion fields (zero pion fields), the part of the
axial current that will contribute to the matrix elements we will consider reads

Aµ−(χPT) = g1 trD

[
Hd γ

µγ5H
u
]
−ig2ε

µνσλvσ
[
(Sν)dd(Sλ)du + (Sν)du(Sλ)uu

]
+
√

2g3

[
−SµddT du − T du(Sµ)uu

]
. (19)

We will now calculate matrix elements of (19) at leading order. To this end, we canonically quantize heavy-hadron
chiral perturbation theory. The following derivation allows us to determine the correct normalization of the matrix
elements (canonical quantization cannot be performed in the partially quenched theory, but the normalizations can
be inferred). We begin with the heavy mesons. Using Eq. (1), we find that the free part of the heavy meson-kinetic
term in Eq. (8) is equal to

LH = −ivµ trD

[
Hi∂

µHi
]

= −ivµ
[
−2P †i ∂

µP i + 2P ∗ν†i ∂µ P ∗iν

]
. (20)

From this, we deduce the canonical equal-time commutation relations for the field operators (in the following, we use
sans-serif font for operators)

[Pi(x, t), P†j(x
′, t)] =

1

2v0
δijδ

3(x− x′),

[P∗iµ (x, t), P∗ν†j (x′, t)] = − 1

2v0
δij(g

ν
µ − vµvν)δ3(x− x′). (21)

The field operators of the noninteracting theory can be written as

Pi(x) =
1√
2v0

∫
d3k

(2π)3
ai(P )(k)e−ik·x,

P†i (x) =
1√
2v0

∫
d3k

(2π)3
a

(P )†
i (k)eik·x,

P∗iµ (x) =
1√
2v0

∫
d3k

(2π)3

3∑

s=1

ai(P∗)(k, s)εµ(s)e−ik·x,

P∗µ†i (x) =
1√
2v0

∫
d3k

(2π)3

3∑

s=1

a
(P∗)†
i (k, s)ε∗µ(s)eik·x, (22)

where k0 = v · k, and the basis polarization vectors satisfy the spin sum

3∑

s=1

εµ(s)ε∗ν(s) = −gµν + vµvν . (23)

Equation (21) is satisfied if the commutation relations for the creation and annihilation operators are

[ai(P )(k), a
(P )†
j (k′)] = (2π)3δijδ

3(k− k′),

[ai(P∗)(k, s), a
(P∗)†
j (k′, s′)] = (2π)3δijδss′δ

3(k− k′). (24)

We define single-particle states via

|P i(k)〉 =
√

2v0a
(P )†
i (k)|0〉,

|P ∗i(k, s)〉 =
√

2v0a
(P∗)†
i (k, s)|0〉. (25)

Note that all the heavy-hadron states and operators also depend on the velocity v, which is a parameter in the
Lagrangian. However, since v is fixed throughout this paper, we do not include a label v explicitly.
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The states (25) are normalized as

〈P i(k)|P j(k′)〉 = 2v0(2π)3δijδ3(k− k′),

〈P ∗i(k, s)|P ∗j(k′, s′)〉 = 2v0(2π)3δijδss′δ
3(k− k′). (26)

We now calculate the matrix element 〈P ∗d|Aµ−(χPT)|Pu〉. Expressing the mesonic part of the current (19) using the
P and P ∗ fields, we find

Aµ−(χPT) = g1 trD

[
Hdγ

µγ5H
u
]

+ ...

= g1 trD

[
P ∗†dνγ

νγµγ5 (−Puγ5)
1− /v

2

]
+ ...

= −2 g1 P
∗µ†
d Pu + ..., (27)

where we have only shown the piece that contributes to the matrix element considered here. By inserting the field
operators (22) into Eq. (27), we immediately obtain, at zero residual momentum,

〈P ∗d(0, s)|A−(χPT)
µ (0)|Pu(0)〉|LO = −2 g1 ε

∗
µ(s). (28)

Next, we consider the sl = 1 baryon field Sijµ , for which the free part of the kinetic term in Eq. (8) is equal to

LS = S
ν

ij [−ivµ∂µ + ∆]Sijν

=
∑

i≥j

(2− δij)S
ν

ij [−ivµ∂µ + ∆]Sijν . (29)

In the following we always assume that the flavor indices on the fields Sij and Sij are ordered as i ≥ j. We find the
canonical anticommutation relations

{Sµ ij(x, t)α, Sν kl β(x′, t)} = − 1

(2− δij)v0
δikδ

j
l

(
1 + /v

2

)

αβ

(gµν − vµvν) δ3(x− x′). (30)

The field operators can be written as

Sµ ij(x) =
1√

(2− δij)v0

∫
d3k

(2π)3

6∑

s=1

aij(S)(k, s)U
µ(s)e−ik·x,

Sµ ij(x) =
1√

(2− δij)v0

∫
d3k

(2π)3

6∑

s=1

a
(S)†
ij (k, s)Uµ(s)eik·x, (31)

where k0 = v · k + 1
v0 ∆, and the basis spinors satisfy the spin sum

6∑

s=1

Uµα (s)U
ν

β(s) = −(gµν − vµvν)

[
1 + /v

2

]

αβ

. (32)

Note that Uµ(s) is not a Rarita-Schwinger spinor, but rather contains the degrees of freedom of both spin-1/2 and
spin-3/2 baryons. The creation and annihilation operators satisfy the anticommutation relations

{aij(S)(k, s), a
(S)†
kl (k′, s′)} = (2π)3δikδ

j
lδss′δ

3(k− k′). (33)

Here we define single-particle states via

|Sij(k, s)〉 =
√
v0a

(S)†
ij (k, s)|0〉, (34)

which corresponds to the following normalization:

〈Sij(k, s)|Skl(k′, s′)〉 = v0(2π)3δikδjlδss′δ
3(k− k′). (35)

Using the expression (19) for the axial current, and the mode decomposition (31), we find the following leading-order
matrix element of the axial current:

〈Sdd(0, s)|Aµ−(χPT)(0)|Sdu(0, s′)〉|LO = − i√
2
g2 vλ ε

λµνρ Uν(s)Uρ(s
′). (36)
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Finally, we consider the sl = 0 baryon field T ij . The free part of the kinetic term in Eq. (8) is equal to

LT = ivµ T ij∂
µT ij

= 2 ivµ
∑

i>j

T ij∂
µT ij . (37)

For the T and T fields, we also assume in the following that the flavor indices are ordered (i > j). We obtain the
canonical anticommutation relations

{Tij(x, t)α, Tkl β(x′, t)} =
1

2v0
δikδ

j
l

(
1 + /v

2

)

αβ

δ3(x− x′), (38)

and the field operators can be written as

Tij(x) =
1√
2v0

∫
d3k

(2π)3

2∑

s=1

aij(T )(k, s)U(s)e−ik·x,

Tij(x) =
1√
2v0

∫
d3k

(2π)3

2∑

s=1

a
(T )†
ij (k, s)U(s)eik·x, (39)

where k0 = v · k, and the basis spinors satisfy the spin sum

2∑

s=1

Uα(s)Uβ(s) =

[
1 + /v

2

]

αβ

. (40)

The creation and annihilation operators satisfy the anticommutation relations

{aij(T )(k, s), a
(T )†
kl (k′, s′)} = (2π)3δikδ

j
lδss′δ

3(k− k′). (41)

Again, we define single-particle states via

|T ij(k, s)〉 =
√
v0a

(T )†
ij (k, s)|0〉, (42)

which are normalized as

〈T ij(k, s)|T kl(k′, s′)〉 = v0(2π)3δikδjlδss′δ
3(k− k′). (43)

Now we have all the ingredients to obtain the leading-order S-T transition matrix element of the axial current:

〈Sdd(0, s)|Aµ−(χPT)(0)|T du(0, s′)〉|LO = −g3 U
µ
(s) U(s′). (44)

To go beyond leading order, we need to replace g1, g2, g3 in Eqs. (28), (36), (44) by “effective axial couplings” (g1)eff ,
(g2)eff , and (g3)eff :

〈P ∗d(0, s)|Aµ−(χPT)(0)|Pu(0)〉 = −2 (g1)eff ε
∗µ(s)

〈Sdd(0, s)|Aµ−(χPT)(0)|Sdu(0, s′)〉 = − i√
2

(g2)eff vλ ε
λµνρ Uν(s)Uρ(s

′),

〈Sdd(0, s)|Aµ−(χPT)(0)|T du(0, s′)〉 = −(g3)eff U
µ
(s) U(s′). (45)

The next-to-leading order expressions in the partially quenched SU(4|2) theory (for m
(val)
u = m

(val)
d and m

(sea)
u =

m
(sea)
d ), calculated via the perturbative expansion of the path integral, have been derived in Ref. [20] and are given
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by

(g1)eff = g1 −
2 g1

f2
I(m(vs)

π ) +
g3

1

f2

[
4H(m(vs)

π , 0)− 4 δ2
V SHη′(m(vv)

π , 0)

]
+ (analytic terms)

(g2)eff = g2 −
2 g2

f2
I(m(vs)

π ) +
g3

2

f2

[
3

2
H(m(vs)

π , 0)− δ2
V SHη′(m(vv)

π , 0)

]

+
g2 g

2
3

f2

[
2H(m(vs)

π , −∆)−H(m(vv)
π , −∆)− 2K(m(vs)

π , −∆, 0)

]
+ (analytic terms)

(g3)eff = g3 −
2 g3

f2
I(m(vs)

π ) +
g3

3

f2

[
H(m(vs)

π , −∆)− 1

2
H(m(vv)

π , −∆)

+
3

2
H(m(vv)

π , ∆) + 3H(m(vs)
π , ∆)−K(m(vs)

π , ∆, 0)

]

+
g3 g

2
2

f2

[
−H(m(vs)

π , ∆)−H(m(vv)
π , ∆) +H(m(vs)

π , 0)− δ2
V SHη′(m(vv)

π , 0)

]
+ (analytic terms).

(46)

Here, m
(vs)
π denotes the mass of a pion consisting of a valence and a sea quark, m

(vv)
π denotes the mass of a pion

consisting of two valence quarks, and δ2
V S = [m

(vv)
π ]2 − [m

(vs)
π ]2. The functions I, H, Hη′ and K, which arise from

the chiral loops and include the leading effects of the finite spatial volume, are defined in Ref. [20]. At the order

considered here, the analytic terms in Eq. (46) are linear functions of [m
(vv)
π ]2 and [m

(vs)
π ]2.

C. Axial current matrix elements in lattice QCD

For the lattice QCD calculation, we construct interpolating fields for the heavy hadrons in terms of the quark fields
as follows:

P i = Qaα (γ5)αβ q̃
i
aβ ,

P ∗iµ = Qaα (γµ)αβ q̃
i
aβ ,

Sijµ α = εabc (Cγµ)βγ q̃
i
aβ q̃

j
bγ Qcα,

T ijα = εabc (Cγ5)βγ q̃
i
aβ q̃

j
bγ Qcα. (47)

Here, a, b, c are color indices, and α, β, γ are spinor indices. The light quark field of flavor i is denoted by qi (we will
also use the notation u = qu, d = qd), and the heavy quark (antiquark) field is denoted by Q (Q). The tilde on the
light quark fields indicates that these are smeared over multiple spatial lattice sites, in order to improve the overlap
of the interpolating fields with the corresponding ground-state hadrons and reduce excited state contamination. We
use gauge-invariant Gaussian smearing obtained by

q̃ =

(
1 +

σ2

4 nS
∆(2)

)nS

q, (48)

where ∆(2) is a three-dimensional gauge-covariant lattice Laplacian which includes gauge links, σ is the smearing
width and nS is the number of smearing iterations.

The heavy quark Q is defined in the static limit, and we set v = 0. The static heavy-quark field Q satisfies

1 + γ0

2
Q = Q. (49)

Note that the interpolating field Sijµ α couples to both the J = 1/2 and the J = 3/2 baryons with sl = 1, with exactly
the same relative amplitudes as (3).

We use the local 4-dimensional lattice axial current, where the quark and antiquark fields are evaluated at the same
lattice point. This current requires a finite renormalization factor ZA to match the continuum QCD current:

Aa(LQCD)
µ = ZA qi aα

1

2
(τa)ij(γµγ5)αβq

j
aβ . (50)
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The value of ZA depends on the lattice action used, as well as the lattice spacing. We will come back to this in
Sec. III. As before, we will work with a specific flavor of the axial current:

A−(LQCD)
µ = ZA daα(γµγ5)αβuaβ . (51)

In the following, we will omit the superscript “−(LQCD)” in the axial current (51). Next, we define the overlap
factors, which describe the overlap of the operators corresponding to the interpolating fields (47) with the relevant
ground state hadrons in QCD. Here, we use the same notation and normalization of states as in Sec. II B:

〈0|Pi(0)|P i(k)〉 = ZP i

〈0|P∗iµ (0)|P ∗i(k, s)〉 = ZP∗i εµ(s)

〈0|Sijµ α(0)|Sij(k, s)〉 = ZSij Uµ α(s)

〈0|Tijα (0)|T ij(k, s)〉 = ZT ij Uα(s). (52)

We stress that these states are now meant to be hadron states in (lattice) QCD, rather than in the chiral effective
theory.

We calculate Euclidean two-point functions of the interpolating fields (47), as well as Euclidean three-point functions
with an insertion of the axial current (51). These Euclidean correlation functions are obtained from the lattice path
integral, which is performed numerically using importance sampling. In the following, we assume that the Wick
rotation t→ −it has been performed, so that t denotes the Euclidean time.

We calculate the following three-point functions, where 〈 ... 〉 denotes the path-integral over the gauge- and fermion
fields (for the domain-wall action used in this work, there is also an additional path integral over Pauli-Villars fields
[25, 35]):

C[P ∗d A P †u]µν(t, t′) =
∑

x

∑

x′

〈 P ∗d µ(x, t)Aν(x′, t′) P †u(0) 〉,

C[SddA Sdu]µνραβ (t, t′) =
∑

x

∑

x′

〈 Sdd µα (x, t)Aν(x′, t′) S
ρ

du β(0) 〉,

C[SddA T du]µναβ(t, t′) =
∑

x

∑

x′

〈 Sdd µα (x, t)Aν(x′, t′) T du β(0) 〉,

C[T duA† Sdd]
µν
αβ(t, t′) =

∑

x

∑

x′

〈 T duα (x, t)Aµ†(x′, t′) S
ν

dd β(0) 〉. (53)

In addition, we calculate the two-point functions

C[Pu P †u](t) =
∑

x

〈 Pu(x, t) P †u(0) 〉,

C[P ∗d P ∗†d ]µν(t) =
∑

x

〈 P ∗d µ(x, t) P ∗ ν†d (0) 〉,

C[Sdd Sdd]
µν
αβ(t) =

∑

x

〈 Sdd µα (x, t) S
ν

dd β(0) 〉,

C[Sdu Sdu]µναβ(t) =
∑

x

〈 Sdu να (x, t) S
ν

du β(0) 〉,

C[T du T du]αβ(t) =
∑

x

〈 T duα (x, t) T du β(0) 〉. (54)

As an example, we show how the two-point function C[Sdd Sdd]
µν
αβ(t) is constructed in terms of quark propagators.

The lattice calculation is performed in the isospin limit of equal up and down quark masses. Inserting the definitions
of the interpolating fields, and performing the Grassmann integrals over the fermion fields explicitly, we have

C[Sdd Sdd]
µν
αβ(t) = εabc (Cγµ)δγ εfgh (Cγν)ρσ

∑

x

〈
d̃aδ (x) d̃bγ(x)Qcα(x) d̃

g

ρ(0) d̃
f

σ(0)Q
h

β(0)

〉

= εabc (Cγµ)δγ εfgh (Cγν)ρσ
∑

x

〈
˜̃Gaf(q)δσ(x, 0) ˜̃Gbg(q)γρ(x, 0)Gch(Q)αβ(x, 0)

− ˜̃Gag(q)δρ(x, 0) ˜̃Gbf(q)γσ(x, 0)Gch(Q)αβ(x, 0)
〉
U

= 2 εabc (Cγµ)δγ εfgh (Cγν)ρσ
∑

x

〈
˜̃Gaf(q)δσ(x, 0) ˜̃Gbg(q)γρ(x, 0)Gch(Q)αβ(x, 0)

〉
U
. (55)
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Here, ˜̃G(q) denotes a smeared-source smeared-sink light-quark propagator and G(Q) a heavy-quark propagator. The
notation 〈 ... 〉U indicates the path integral over the gauge fields U only. In the last step in Eq. (55) we have used
the symmetry of (Cγµ) and the antisymmetry of εabc to equate the two Wick contractions. Note that the two-point

function C[Sdu Sdu]µναβ(t) contains only one Wick contraction, because the two light quarks have different flavors.
Therefore, in the isospin limit,

C[Sdu Sdu]µναβ(t) =
1

2
C[Sdd Sdd]

µν
αβ(t). (56)

For the static lattice action we are using, the heavy quark propagator is equal to

G(Q)αβ(x, 0) = δx,0

[
1 + γ0

2

]

αβ

Ũ†0 (x, t− a) Ũ†0 (x, t− 2a) ... Ũ†0 (x, 0), (57)

where Ũ0 is a spatially smeared gauge link in the temporal direction (more details will be given in Sec. III). Because the
static heavy-quark propagator (57) contains the Kronecker delta δx,0, the sums over x in all the correlation functions,
Eqs. (53) and (54), are eliminated. To calculate the three-point functions (53) in terms of quark propagators, we use
pairs of light-quark propagators with smeared sources at (0, 0) and (0, t). This means that new inversions are needed
for each value of t.

By using the Hamiltonian and the momentum operator to shift the left interpolating operator from x to 0 and the
axial current from x′ to 0, and inserting complete sets of states, we can show that

C[P ∗d A P †u]µν(t, t′) =
1

4
ZP∗d Z

∗
Pu

3∑

s=1

εµ(s) 〈P ∗d(0, s)|Aν(0)|Pu(0)〉 e−EP∗d (t−t′) e−EPu t′ + ... ,

C[SddA Sdu]µνραβ (t, t′) = ZSddZ∗Sdu

6∑

s=1

6∑

s′=1

Uµα (s) 〈Sdd(0, s)|Aν(0)|Sdu(0, s′)〉 Uρβ(s′) e−ESdd (t−t′) e−ESdu t
′
+ ... ,

C[SddA T du]µναβ(t, t′) = ZSddZ∗Tdu

6∑

s=1

2∑

s′=1

Uµα (s) 〈Sdd(0, s)|Aµ(0)|T du(0, s′)〉 Uβ(s′) e−ESdd (t−t′) e−ETdu t
′
+ ... ,

C[T duA† Sdd]
µν
αβ(t, t′) = ZTduZ∗Sdd

2∑

s=1

6∑

s′=1

Uα(s) 〈T du(0, s)|Aµ†(0)|Sdd(0, s′)〉 Uνβ(s′) e−ETdu (t−t′) e−ESdd t
′
+ ...

(58)

and

C[Pu P †u](t) =
1

2
|ZPu |2 e−EPu t + ... ,

C[P ∗d P ∗†d ]µν(t) =
1

2
|ZP∗d |2

3∑

s=1

εµ(s)ε∗ν(s) e−EP∗d t + ... ,

C[Sdd Sdd]
µν
αβ(t) =

6∑

s=1

Uµα (s)U
ν

β(s) |ZSdd |2 e−ESdd t + ... ,

C[Sdu Sdu]µναβ(t) =

6∑

s=1

Uµα (s)U
ν

β(s) |ZSdu |2 e−ESdu t + ... ,

C[T du T du]αβ(t) =

2∑

s=1

Uα(s)Uβ(s) |ZTdu |2 e−ETdu t + ... , (59)

where the ellipsis indicates contributions from excited states, whose contribution relative to the ground-state contri-
bution shown here vanishes exponentially for t → ∞, t′ → ∞, t − t′ → ∞ (here and in the following we assume an
infinite temporal extent of the lattice). We will return to the discussion of excited states at the end of this section.
Using the relations (23), (32), and (40) to perform the spin sums (recall that here we have v = 0) and Eq. (45) to
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express the axial-current matrix elements in terms of the effective axial couplings (g1)eff , (g2)eff , (g3)eff , we obtain

C[P ∗d A P †u]µν(t, t′) = −1

2
(g1)eff (vµvν − gµν) ZP∗d Z

∗
Pu e−EP∗d (t−t′) e−EPu t′ + ... ,

C[SddA Sdu]µνραβ (t, t′) =
i√
2

(g2)eff vλε
λµνρ

[
1 + γ0

2

]

αβ

ZSddZ∗Sdu e
−E

Sdd (t−t′) e−ESdu t
′
+ ... ,

C[SddA T du]µναβ(t, t′) = −(g3)eff (vµvν − gµν)

[
1 + γ0

2

]

αβ

ZSddZ∗Tdu e
−E

Sdd (t−t′) e−ETdu t
′
+ ... ,

C[T duA† Sdd]
µν
αβ(t, t′) = −(g3)eff (vµvν − gµν)

[
1 + γ0

2

]

αβ

ZTduZ∗Sdd e
−E

Tdu (t−t′) e−ESdd t
′
+ ... (60)

and

C[Pu P †u](t) =
1

2
|ZPu |2 e−EPu t + ... ,

C[P ∗d P ∗†d ]µν(t) =
1

2
(vµvν − gµν) |ZP∗d |2 e−EP∗d t + ... ,

C[Sdd Sdd]
µν
αβ(t) = (vµvν − gµν)

[
1 + γ0

2

]

αβ

|ZSdd |2 e−ESdd t + ... ,

C[Sdu Sdu]µναβ(t) = (vµvν − gµν)

[
1 + γ0

2

]

αβ

|ZSdu |2 e−ESdu t + ... ,

C[T du T du]αβ(t) =

[
1 + γ0

2

]

αβ

|ZTdu |2 e−ETdu t + ... . (61)

In the following, we remove the trivial spin-structure
[

1+γ0
2

]
αβ

, which comes purely from the heavy-quark propagator

(57), from all baryon correlation functions.
Because the lattice calculation is performed in the isospin limit (and in the static limit for the heavy quark), we

have the relations

EPu = EPd∗ ,

ZPu = ZPd∗ ,

ESdd = ESdu ,

ZSdd =
√

2 ZSdu (62)

[the factor of
√

2 in the last line comes from Eq. (56)]. As a consequence of the equality of energies, the t′-dependence
of the ground-state contribution in the three point functions C[P ∗d A P †u]µν(t, t′) and C[SddA Sdu]µνρ(t, t′) cancels
completely. For these three-point functions, the t-dependence as well as the Z factors in the ground state contribution
can be canceled by forming the ratios

R1(t, t′) = −
1
3

∑3
µ=1 C[P ∗d A P †u]µµ(t, t′)

C[Pu P †u](t)
(63)

= (g1)eff + ... ,

and

R2(t, t′) = 2
i
6

∑3
µ,ν,ρ=1 ε0µνρ C[SddA Sdu]µνρ(t, t′)

1
3

∑3
µ=1 C[Sdd Sdd]µµ(t)

(64)

= (g2)eff + ... ,

where, as before, the ellipsis indicates contributions from excited states that vanish exponentially when all Euclidean
time separations are taken to infinity. To extract (g3)eff , we use the double ratio

R3(t, t′) =

√√√√√

[
1
3

∑3
µ=1 C[SddA T du]µµ(t, t′)

] [
1
3

∑3
µ=1 C[T duA† Sdd]µµ(t, t′)

]

[
1
3

∑3
µ=1 C[Sdd Sdd]µµ(t)

] [
C[T du T du](t)

] (65)

= (g3)eff + ... .
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The numerical results for (63), (64), and (65) and the subsequent analysis will be described in Sec. IV. In the
following, we discuss the contributions from excited states to the ratios. Again, we assume an infinite temporal extent
of the lattice; with a finite temporal extent T this means that the following discussion is only valid for source-sink
separations t that are smaller than T/2 by a sufficient distance (which is the case in our numerical calculations). We
begin with R1, and define

〈0|Pu(0)|Pun 〉 = ZP,n,

〈0|P∗dµ (0)|P ∗dn (ε)〉 = ZP,n εµ,

〈P ∗dn |Aµ(0)|Pum(ε)〉 = −2A(PP∗)
nm ε∗µ, (66)

where |Pun 〉 denotes the n-th excited state with a non-zero overlap 〈0|Pu(0)|Pun 〉, and similarly for |P ∗dn (ε)〉. Because
of heavy-quark symmetry and isospin symmetry, all energies and Z-factors in the Pu sector are equal to those in the

P ∗d sector, and A
(PP∗)
nm = A

∗(PP∗)
mn . Note that

A
(PP∗)
11 = (g1)eff . (67)

The complete spectral decomposition of R1 reads

R1(t, t′) =

∑∞
n=1

∑∞
m=1 ZP,n Z

∗
P,m A

(PP∗)
nm e−EP,n t e−EP,m(t−t′)

∑∞
n=1

∣∣ZP,n
∣∣2e−EP,n t

. (68)

Showing only the contributions from the ground states and first excited states, we find that

R1(t, t′) = A
(PP∗)
11 +

∣∣ZP,2

ZP,1

∣∣2(A
(PP∗)
22 −A(PP∗)

11 ) e−δP t +
ZP,1Z

∗
P,2

|ZP,1|2 A
(PP∗)
12 e−δP t

′
+

ZP,2Z
∗
P,1

|ZP,1|2 A
∗(PP∗)
12 e−δP (t−t′)

1 +
∣∣ZP,2

ZP,1

∣∣2e−δP t
+ ... ,

(69)
with the energy gap δP = EP,2 − EP,1. For a given value of t, the smallest contamination from excited states is
obtained at the mid-point t′ = t/2. Evaluating (69) at t′ = t/2, we get

R1(t, t/2) = A
(PP∗)
11 +

∣∣ZP,2

ZP,1

∣∣2(A
(PP∗)
22 −A(PP∗)

11 ) e−δP t + 2 <
[
ZP,1Z

∗
P,2

|ZP,1|2 A
(PP∗)
12

]
e−

1
2 δP t

1 +
∣∣ZP,2

ZP,1

∣∣2e−δP t
+ ... , (70)

where < denotes the real part. By using the Taylor expansion 1/(1 +
∣∣ZP,2

ZP,1

∣∣2e−δP t) = 1−
∣∣ZP,2

ZP,1

∣∣2e−δP t+ ..., we obtain

R1(t, t/2) = A
(PP∗)
11 +

∣∣∣∣
ZP,2
ZP,1

∣∣∣∣
2

(A
(PP∗)
22 −A(PP∗)

11 ) e−δP t + 2 <
[
ZP,1Z

∗
P,2

|ZP,1|2
A

(PP∗)
12

]
e−

1
2 δP t + ... , (71)

where we have omitted terms that decay like e−
3
2 δP t or faster, and are therefore exponentially suppressed relative

to the terms shown in (71) at large t. The result for R2(t, t/2) has the same form (with suitable definitions of the
overlap factors and matrix elements):

R2(t, t/2) = A
(SS)
11 +

∣∣∣∣
ZS,2
ZS,1

∣∣∣∣
2

(A
(SS)
22 −A(SS)

11 ) e−δS t + 2 <
[
ZS,1Z

∗
S,2

|ZS,1|2
A

(SS)
12

]
e−

1
2 δS t + ... , (72)

with A
(SS)
11 = (g2)eff and δS = ES,2 − ES,1. For the double ratio R3(t, t/2) we obtain, after Taylor-expanding the

square root and omitting terms that decay faster than e−δS t or e−δT t,

R3(t, t/2) = A
(ST )
11 − A

(ST )
11 |ZS,2|2e−δS t

2|ZS,1|2
− A

(ST )
11 |ZT,2|2e−δT t

2|ZT,1|2

+<
[
A

(ST )
21

ZS,2
ZS,1

]
e−

1
2 δS t + <

[
A

(ST )
12

ZT,2
ZT,1

]
e−

1
2 δT t

+<
[
A

(ST )
22

ZT,2Z
∗
S,2

ZT,1Z∗S,1

]
e−

1
2 (δS+δT )t + ... , (73)

with A
(ST )
11 = (g3)eff and δS = ES,2 − ES,1, δT = ET,2 − ET,1. The t-dependent terms in the right-hand-sides of Eqs.

(71), (72), and (73) are the leading excited-state contributions to the extraction of (gi)eff from the ratio method.
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III. LATTICE ACTIONS AND PARAMETERS

Our calculations are based on gauge field ensembles generated by the RBC/UKQCD collaboration. These ensem-
bles include 2 + 1 dynamical light quark flavors, implemented with a domain wall action [24–26]. The gluons are
implemented with the Iwasaki action [32, 33], which is known to reduce the residual chiral symmetry breaking of the
domain wall action [34].

The details of the actions used in generating the ensembles can be found in Ref. [35]. Our analysis includes the
ensembles of size 243 × 64 and 323 × 64, which are described in Ref. [27]. These ensembles have lattice spacings of
approximately 0.112 and 0.085 fm, respectively, so that the spatial volume is about (2.7 fm)3 in both cases.

At the coarse lattice spacing, we used only the ensemble with am
(sea)
u,d = 0.005, which is the lightest available

mass. At the fine lattice spacing, we used the ensemble with the lightest two available values of the sea quark mass,

am
(sea)
u,d = 0.004 and am

(sea)
u,d = 0.006. The values for the residual quark mass, which is the additive quark-mass

renormalization coming from the residual chiral symmetry breaking at finite extent of the fifth dimension Ls, are
approximately amres = 0.0032 at the coarse lattice spacing and amres = 0.00067 at the fine lattice spacing. The
sea-strange-quark masses are about 10% above the physical value [27], and we assign a 1.5% systematic uncertainty
to our final results for the axial couplings to account for this, based on the size of the effect on similar axial-current
observables as determined using mass reweighting in Ref. [27].

We calculated light quark propagators using exactly the same domain-wall action that was used by the RBC/UKQCD
collaboration for the sea quarks, with the same domain-wall height of aM5 = 1.8 and extent of the fifth dimension
Ls = 16. We used propagator sources smeared according to Eq. (48), with σ = 4.35 and nS = 30. As summarized

in Table I, we calculated propagators for valence quark masses am
(val)
u,d both equal to and lighter than the sea quark

masses. The data with m
(val)
u,d < m

(sea)
u,d are referred to as “partially quenched”. Also shown in Table I, and plotted

in Fig. 1, are the corresponding masses of pions composed of the three different possible combinations of valence and
sea quarks. The lightest valence-valence pion mass is 227(3) MeV, at the fine lattice spacing.

L3 × T am
(sea)
s am

(sea)
u,d am

(val)
u,d a (fm) m

(ss)
π (MeV) m

(vs)
π (MeV) m

(vv)
π (MeV)

243 × 64 0.04 0.005 0.001 0.1119(17) 336(5) 294(5) 245(4)

243 × 64 0.04 0.005 0.002 0.1119(17) 336(5) 304(5) 270(4)

243 × 64 0.04 0.005 0.005 0.1119(17) 336(5) 336(5) 336(5)

323 × 64 0.03 0.004 0.002 0.0849(12) 295(4) 263(4) 227(3)

323 × 64 0.03 0.004 0.004 0.0849(12) 295(4) 295(4) 295(4)

323 × 64 0.03 0.006 0.006 0.0848(17) 352(7) 352(7) 352(7)

TABLE I. Parameters of the gauge field ensembles and quark propagators. The lattice spacing values are from Ref. [36].
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a = 0.112 fm
a = 0.085 fm

FIG. 1. The values of [m
(vv)
π ]2 and [m

(vs)
π ]2 used in our calculation. The dashed line indicates the unquenched case m

(vv)
π = m

(vs)
π .

For the heavy quark, we use a static action of the form given by Eichten and Hill [22], which corresponds to heavy-
quark propagators of the form (57). For the temporal gauge links in this action (or, equivalently, the propagators),
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we use HYP smeared links [37] with smearing parameters α1 = α2 = α3 = 0.75. This leads to an exponential
improvement in the signal-to-noise ratio [23]. The smearing procedure can be iterated nHYP times, leading to a
broader smearing and further improvement of the signal-to-noise ratio. We generated data for nHYP = 1, 2, 3, 5, 10.
While all of these actions have the same continuum limit, the dependence of the results on the lattice spacing is
expected to be different for different values of nHYP. One may naively expect large discretization effects for large
values of nHYP, which correspond to a large spatial extent of the heavy-quark-gluon interaction vertex. We will discuss
this in detail when giving the numerical results in Sec. IV. Our final axial coupling results only make use of data
generated with nHYP = 1, 2, 3.

As mentioned in Sec. II C, to perform the contractions for the three-point functions (53), we required pairs of light-
quark propagators with sources located at the same spatial point and separated by t/a steps in the time direction.
The numbers of measurements (propagator pairs) for each value of t/a are given in Table II. At the coarse lattice
spacing, our data come from typically 120 statistically independent gauge field configurations; at the fine lattice

spacing we used about 240 statistically independent gauge configurations of the am
(sea)
u,d = 0.004 ensemble and 180 for

the am
(sea)
u,d = 0.006 ensemble. In most cases, we have more measurements than configurations, because we generated

propagators from multiple spatial source points on the lattice. In those cases, we have averaged over the source
locations before the further analysis to remove possible autocorrelations.

L3 × T am
(val)
u,d t/a Nmeas (approx.)

243 × 64 0.001 10 550

243 × 64 0.001 9, 8, 7, 6 240

243 × 64 0.001 5 460

243 × 64 0.001 4 120

243 × 64 0.002 10 880

243 × 64 0.002 9, 8, 7, 6, 4 240

243 × 64 0.002 5 480

243 × 64 0.005 10 960

243 × 64 0.005 9, 8, 7, 6, 4 240

243 × 64 0.005 5 480

323 × 64 0.002 12 1200

323 × 64 0.002 9, 6 480

323 × 64 0.004 12 1200

323 × 64 0.004 9, 6 480

323 × 64 0.006 13 700

TABLE II. Number of propagator pairs used for the three-point functions for various values of the source-sink separation t/a.

Within each of the three gauge field ensembles that we used, the data from different source-sink separations,
different valence quark masses, and different values of nHYP are correlated with each other. In our analysis, we
properly took into account these correlations using the statistical bootstrap procedure. The initial averaging over
source locations mentioned above was also required to reduce all data from the same ensemble to matching ordered
sets of measurements, as necessary to calculate the covariance matrices. It turned out that the correlations between

the am
(val)
u,d = 0.001 and am

(val)
u,d = 0.002/0.005 data at the coarse lattice spacing were very weak even though the data

came from the same ensemble of gauge field configurations. The reason was that all spatial source locations used for

the am
(val)
u,d = 0.001 propagators were distinct from those used at am

(val)
u,d = 0.002/0.005. In contrast, the data from

am
(val)
u,d = 0.002 and am

(val)
u,d = 0.005 came from almost identical source locations, resulting in very strong correlations

(these correlations were advantageous in constraining the quark-mass dependence in our chiral fits). Similarly, at the

fine lattice spacing, the data from am
(val)
u,d = 0.002 and am

(val)
u,d = 0.004 came from identical source locations, leading

to strong correlations.

For the axial current renormalization parameter, we use the values obtained nonperturbatively by the RBC/UKQCD
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collaboration, which are [27]

ZA =

{
0.7019(26) for a = 0.112 fm,

0.7396(17) for a = 0.085 fm.
(74)

IV. DATA ANALYSIS

A. Ratios

Examples of numerical results for the ratios (63), (64), and (65) are shown in Fig. 2 (for a = 0.112 fm) and Fig. 3
(for a = 0.085 fm). These ratios were calculated using statistical bootstrap to take into account the strong correlations
between the three-point and two-point functions in numerator and denominator. Because of these correlations, the
statistical uncertainties in the ratios are found to be smaller than those in the three-point functions themselves. To
maximize correlations, it is essential to use the two-point functions from the source locations matching those of the
three-point functions. The figures show results at two different values of the source-sink separation t in each case, for

am
(val)
u,d = 0.002 and nHYP = 3.
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FIG. 2. Ratios R1, R2, R3 as a function of the current insertion time slice t′, for the source-sink separations t/a = 5 (left) and

t/a = 10 (right). The data shown are for a = 0.112 fm, nHYP = 3, and am
(val)
u,d = 0.002.

We observe clear plateaus of Ri(t, t
′) as a function of t′, whose extent appears to be slightly larger for the simple

ratios R1 and R2 compared to the double ratio R3. The plateaus in t′ indicate that in these regions contributions from
off-diagonal matrix elements of the axial current between a ground-state hadron and an excited state are negligible in
comparison to the statistical uncertainties, because such a transition matrix element would introduce t′-dependence
[see Eqs. (68) and (69)]. For R1, the flatness with respect to t′ has previously been observed and discussed in
Refs. [15, 18].

We averaged Ri(t, t
′) over a symmetric range of t′ values around t/2 in a region where there was no statistically

significant t′ dependence (requiring that the χ2/d.o.f. of correlated constant fits be of order 1). These regions and the
extracted values, which we denote as Ri(t), are indicated in Figs. 2 and 3 for representative data sets. The averaging
in the plateau region is essentially equivalent to using

Ri(t, t/2). (75)

Indeed, because of the strong corrrelation between neighboring t′ points, we found that the averaging over t′ in the
plateau region (which is again performed using bootstrap) gives almost the same result and uncertainty as Ri(t, t/2).
An alternative method for defining Ri(t) is discussed in Appendix B.

Summary plots of all the extracted values for R1(t), R2(t), and R3(t) at the different quark masses, lattice spacings,
and numbers of heavy-quark smearing iterations nHYP are given in the appendix in Fig. 18. Note that the numbers
of measurements vary (see Table II). The statistical uncertainties are found to grow quickly when t is increased or
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FIG. 3. Ratios R1, R2, R3 as a function of the current insertion time slice t′, for the source-sink separations t/a = 9 (left) and

t/a = 12 (right). The data shown here are for a = 0.085 fm and nHYP = 3, and am
(val)
u,d = 0.002.

am
(val)
u,d is decreased, as expected [38]. Furthermore, the statistical uncertainties are reduced with every iteration of

HYP smearing in the static heavy-quark action, which is also expected [23]. While the results for (gi)eff = limt→∞Ri(t)
from all fixed values of nHYP will become equal when the lattice spacing is taken to zero, at non-zero lattice spacing
different values of nHYP will have different discretization errors. Indeed, R1 and R2 are seen to increase with nHYP.
Remarkably, the results for R3 are almost independent of nHYP within the statistical uncertainties even at non-zero
lattice spacing. See also Fig. 6 in Sec. IV B for the nHYP-dependence of (gi)eff = limt→∞Ri(t).

B. Extrapolation to infinite source-sink separation

The effective axial couplings (gi)eff at given values of the lattice spacing, the quark masses, and nHYP, are defined
as the infinite-time limits of Ri(t):

(gi)eff = lim
t→∞

Ri(t). (76)

The t-dependence of Ri(t) is caused by excited states, and at sufficiently large t, the contributions from the first
relevant excitation dominates. The expected functional form of R1(t), R2(t), and R3(t) in this regime is shown
in equations (71), (72), and (73), respectively. As can be seen in these equations, the “diagonal” contributions
proportional to the matrix elements A11 and A22 decay exponentially like

e−δ t, (77)

where δ is the energy gap to the first excited state that has a non-zero overlap with the corresponding interpolating
field as defined in Eq. (47); δ = δP for R1, δ = δS for R2, and δ = min(δS , δT ) for R3. Additionally, there are
“off-diagonal” contributions proportional to the matrix elements A12 and A21, which decay only like

e−
1
2 δ t. (78)

However, as discussed in Sec. IV A and Ref. [18], these off-diagonal contributions appear to be small, because the
numerical results for R(t, t′) show plateaus as a function of t′.

We performed correlated fits to the lattice data for Ri(t, a,m, nHYP), which depends on the source-sink separation
t, the lattice spacing a, the quark masses (here denoted generically as m), and nHYP, using the following functions:

R1(t, a,m, nHYP) = (g1)eff(a,m, nHYP)−A1(a,m, nHYP) e−δ1(a,m,nHYP) t,

R2(t, a,m, nHYP) = (g2)eff(a,m, nHYP)−A2(a,m, nHYP) e−δ2(a,m,nHYP) t,

R3(t, a,m, nHYP) = (g3)eff(a,m, nHYP)−A3(a,m, nHYP) e−δ3(a,m,nHYP) t. (79)
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Here δi is the energy gap to the dominant excitation in Ri. Because δi is not constrained, it does not matter whether
or not we include a factor of 1/2 in the exponent. Since the energy gap δi is positive by definition, we choose to
parametrize it as

a δi(a,m, nHYP) = eli(a,m,nHYP), (80)

using the logarithm li(a,m, nHYP) as the fit parameter.
Because the statistical uncertainties in Ri grow exponentially as t is increased, we were only able to perform the

lattice QCD calculations in the range t <∼ 1.1 fm. As can be seen in Table II, at the coarse lattice spacing (a = 0.112
fm) we have data for t/a = 4, 5, 6, 7, 8, 9, 10. We found that the functions (79) described the data from the coarse

lattice spacing well for all these values of t/a. The smallest statistical uncertainties are obtained for am
(val)
u,d = 0.005

and nHYP = 10, and therefore we first performed unconstrained fits to this data set, obtaining the following fit results
(li converted to δi = eli/a):

(g1)eff = 0.5264± 0.0090, A1 = 0.53± 0.39, δ1 = (1.08± 0.38) GeV, χ2/d.o.f. = 1.07,

(g2)eff = 1.037 ± 0.033, A2 = 0.73± 0.35, δ2 = (0.75± 0.29) GeV, χ2/d.o.f. = 0.31,

(g3)eff = 0.827 ± 0.032, A3 = 0.98± 0.25, δ3 = (0.66± 0.16) GeV, χ2/d.o.f. = 0.41. (81)

The corresponding fits and the data points are shown in the left-hand side of Fig. 4. Notice that the fit to R1 gives an
energy gap consistent with recent lattice QCD results for the 2S radial excitation energy of about 0.75 GeV [39, 40].
This is expected, because our interpolating fields (47) for the heavy-light mesons have S-wave-type smearing and
therefore do not couple to the lower-lying 1P state. The fit result (and the flatness of the plateau as a function of t′)
indicates that the data for R1 are dominated by

R1(t) ≈ (g1)eff +

∣∣∣∣
ZP (2S)

ZP (1S)

∣∣∣∣
2

(A
(PP∗)
2S,2S −A

(PP∗)
1S,1S ) e−δP t, (82)

with a negligible off-diagonal matrix element A
(PP∗)
2S,1S ≈ 0.
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FIG. 4. Fits of the t-dependence of R1(t), R2(t), R3(t), for nHYP = 10, using the functions defined in Eq. (79). The left-hand

side shows unconstrained fits of the a = 0.112 fm, am
(val)
u,d = 0.005 data; the right-hand side shows fits of the a = 0.085 fm,

am
(val)
u,d = 0.004 data, where the energy gap was constrained using information from (81).

At the fine lattice spacing, we only have data for t/a = 6, 9, 12 (for am
(val)
u,d = 0.002, 0.004) or t/a = 13 (for

am
(val)
u,d = 0.006). Because the energy gap in physical units is not expected to have an a-dependence that is larger

than the statistical uncertainties in (81), it is possible to use the fit results for li from the coarse lattice spacing to
constrain the parameters li at the fine lattice spacing (at similar pion masses). As a first step, we performed fits to the

data from the fine lattice spacing with am
(val)
u,d = 0.004 and nHYP = 10, where only the parameters li were constrained

using an augmented χ2 with a Gaussian prior for li,

χ2 → χ2 +
(li − l̃i)2

σ̃2
li

. (83)
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Here, l̃i and σ̃li are the central values and uncertainties of the (scaled) energy gap parameters from the fit to the coarse

am
(val)
u,d = 0.005, nHYP = 10 data, Eq. (81). The fits to the data from the fine lattice spacing with am

(val)
u,d = 0.004

and nHYP = 10 then gave

(g1)eff = 0.510± 0.011, A1 = 2.7± 3.6, δ1 = (1.08± 0.38) GeV,

(g2)eff = 0.998± 0.041, A2 = 1.8± 1.7, δ2 = (0.75± 0.29) GeV,

(g3)eff = 0.805± 0.034, A3 = 2.0± 1.0, δ3 = (0.66± 0.16) GeV. (84)

At the fine lattice spacing, it was necessary to remove the data points with the shortest separation t/a = 6 to obtain
acceptable single-exponential fits. Therefore, the resulting gap parameter matches exactly the prior, and χ2/d.o.f.
is undefined. The central values of the overlap parameters Ai in (84) are larger than in (81), indicating a stronger
overlap of the interpolating fields with excited states at the fine lattice spacing. Different overlap factors were expected
here, because the smearing width of the light quark fields in physical units was different (we used the same smearing
width in lattice units for both lattice spacings). The fit curves are shown in the right-hand side of Fig. 4.

We then performed new fits to the data for all values of the quark masses and nHYP. For those fits, the parameters
(gi)eff(a,m, nHYP) were left unconstrained, but Gaussian priors were used for both li and Ai, with central values and
widths as taken from the initial fits (81) for the coarse lattice spacing and (84) for the fine lattice spacing. Examples
of these fits are shown in Fig. 5. The only assumption made by using the priors is that the dependence of li and Ai on
nHYP and on the quark masses is smaller than the width of the priors as determined by the statistical uncertainties
in (81) and (84). Given that these widths were 25 percent or larger in all cases, this appears to be a reasonable
assumption. As a test, we also performed unconstrained fits where possible, which gave consistent result but were less
stable. The results for (gi)eff(a,m, nHYP) are given in Tables III and IV, and plotted in Fig. 6. The central values
and uncertainties shown there are bootstrap averages and 68% widths, respectively, from repeated correlated fits of
the t-dependence for a bootstrap ensemble of data.
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FIG. 5. Fits of the t-dependence of R1(t), R2(t), R3(t), for nHYP = 3, using the functions defined in Eq. (79). The left-hand

side shows the a = 0.112 fm, am
(val)
u,d = 0.002 data, and the right-hand side shows the a = 0.085 fm, am

(val)
u,d = 0.002 data. In

both cases, the overlap parameters Ai and energy gaps δi were constrained using information from (81) and (84).

To estimate the systematic uncertainties caused by higher excited states, we calculated the shifts in (gi)eff for a

representative data set at the coarse lattice spacing (am
(val)
u,d = 0.002, nHYP = 3) when removing one or two data

points with the smallest t/a (= 4, 5) from the fits, or adding a second exponential to the fit function,

Ri(t) = (gi)eff −Ai e−δi t −Bi Ai e−(δi+δ
(2)
i ) t. (85)

Because the available data was not sufficient to determine the new parameters Bi and δ
(2)
i , we used Gaussian priors

to constrain these parameters to physically reasonable values. The parameters Bi describe the amplitudes of the
second-excited-state contribution, relative to the first-excited-state contribution, and we set B̃i = 0, σ̃Bi

= 2. For the

energy gaps aδ
(2)
i = el

(2)
i we used priors with central values equal to 2/3 times the fit results for δi in (81), and widths

of 100%. The fitted parameters (gi)eff and the corresponding shifts δ(gi)eff for the different cases are shown in Table
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am
(sea)
u,d am

(val)
u,d nHYP (g1)eff (g2)eff (g3)eff

0.005 0.001 1 0.463(28) 1.14(16) . . .

0.005 0.001 2 0.473(20) 1.094(92) . . .

0.005 0.001 3 0.479(18) 1.077(74) 0.843(68)

0.005 0.001 5 0.488(15) 1.063(62) 0.822(50)

0.005 0.001 10 0.514(15) 1.075(54) 0.828(40)

0.005 0.002 1 0.499(17) 0.984(42) 0.815(51)

0.005 0.002 2 0.496(13) 0.996(35) 0.816(41)

0.005 0.002 3 0.499(11) 0.993(29) 0.810(37)

0.005 0.002 5 0.5059(96) 1.001(27) 0.814(35)

0.005 0.002 10 0.5230(89) 1.039(35) 0.828(36)

0.005 0.005 1 0.496(13) 0.986(36) 0.831(43)

0.005 0.005 2 0.4950(94) 0.986(25) 0.820(34)

0.005 0.005 3 0.4987(80) 0.990(23) 0.812(30)

0.005 0.005 5 0.5080(74) 1.006(21) 0.814(28)

0.005 0.005 10 0.5270(71) 1.039(25) 0.828(27)

TABLE III. Effective axial couplings (gi)eff at a = 0.112 fm, obtained by extrapolating Ri(t) to t = ∞. At am
(val)
u,d = 0.001

we do not have results for nHYP = 1, 2, because the statistical fluctuations were too large to calculate the square root of the
double ratio, Eq. (65).

am
(sea)
u,d am

(val)
u,d nHYP (g1)eff (g2)eff (g3)eff

0.004 0.002 1 0.496(52) 0.95(11) 0.78(14)

0.004 0.002 2 0.507(31) 0.920(75) 0.788(85)

0.004 0.002 3 0.505(24) 0.940(66) 0.778(64)

0.004 0.002 5 0.501(17) 0.946(59) 0.762(49)

0.004 0.002 10 0.505(13) 0.962(50) 0.772(41)

0.004 0.004 1 0.488(38) 0.939(82) 0.799(85)

0.004 0.004 2 0.498(23) 0.948(65) 0.795(62)

0.004 0.004 3 0.502(18) 0.982(66) 0.803(49)

0.004 0.004 5 0.503(14) 0.995(53) 0.799(39)

0.004 0.004 10 0.511(10) 1.001(41) 0.807(33)

0.006 0.006 1 0.412(49) 0.86(16) 0.79(12)

0.006 0.006 2 0.452(33) 0.905(95) 0.807(73)

0.006 0.006 3 0.465(29) 0.925(81) 0.797(64)

0.006 0.006 5 0.481(26) 0.974(72) 0.805(60)

0.006 0.006 10 0.508(23) 1.030(68) 0.824(56)

TABLE IV. Effective axial couplings (gi)eff at a = 0.085 fm, obtained by extrapolating Ri(t) to t =∞.

V. Since the shifts δ(gi)eff themselves have statistical uncertainties σδ(gi)eff , we choose to quote the maximum value
of

√
[δ(gi)eff ]2 + [σδ(gi)eff ]2 (86)

from the three different methods (removing t/a = 4, removing t/a = 4, 5, or adding a second exponential) as our
estimate of the systematic uncertainties in (gi)eff caused by higher excited states. The final estimates are 1.7%, 2.8%,
and 4.9% for g1, g2, and g3, respectively.

Because the shifts δ(gi)eff in Table V are consistent with zero in most cases, an alternative way of estimating the
systematics is to consider only the increase (calculated with quadrature) in the uncertainties of the fitted parameters
when the fits are modified by removing data points or including higher-order terms. We will use that method for the
chiral fits at the end of Sec. IV C, see Eq. (96). The two different methods (86) and (96) for calculating the size of
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FIG. 6. Plot of the results for (gi)eff from Tables III and IV. For each combination of a and am
(val)
u,d , results from up to five

different values of nHYP are shown (from left to right: nHYP = 1, 2, 3, 5, 10; points offset horizontally for legibility).

the systematic uncertainties give consistent values.

Fit (g1)eff δ(g1)eff (g2)eff δ(g2)eff (g3)eff δ(g3)eff

Original 0.499(11) 0 0.993(29) 0 0.810(36) 0

t/a = 4 removed 0.496(13) 0.0030(76) 0.975(35) 0.016(19) 0.783(43) 0.026(15)

t/a = 4, 5 removed 0.494(12) 0.0041(76) 0.984(41) 0.009(26) 0.807(54) 0.003(30)

Second exponential added 0.498(11) 0.0009(77) 0.988(30) 0.005(21) 0.796(40) 0.014(36)

TABLE V. Fits used to estimate systematic uncertainties from higher excited states. Data for a = 0.112 fm, am
(val)
u,d = 0.002,

nHYP = 3. Shown are the fit results for (gi)eff , as well as the differences δ(gi)eff to the original fit result, calculated using
bootstrap.
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C. Extraction of the axial couplings g1, g2, and g3 using HHχPT fits of the data

In the previous section, we obtained results for the effective axial couplings (gi)eff(a,m, nHYP) at two different

lattice spacings a, multiple values for the quark masses am
(sea)
u,d and am

(val)
u,d , and multiple values for the heavy-quark

gauge-link smearing parameter nHYP (corresponding to multiple heavy-quark lattice discretizations). All data are for
a finite spatial volume of about (2.7 fm)3. In the following, we discuss how we extracted the axial couplings g1, g2, g3,
which are the parameters of the continuum heavy-hadron chiral perturbation theory Lagrangian (8), from the data
for (gi)eff(a,m, nHYP).

To fit the quark-mass and volume dependence of (gi)eff we use the next-to-leading order predictions from HHχPT
[20], which were already shown in Eq. (46). Here, we extend these formulae to include the leading effects of the
non-zero lattice spacing a. These leading effects are quadratic in a, with coefficients di, nHYP

that depend on nHYP.
We do not expect O(a) errors because of the chiral symmetry of the domain-wall action used for the light quarks
(neglecting the small effects caused by the residual chiral symmetry breaking at finite Ls [27]) and the automatic
O(a) improvement of the static heavy-quark action. Higher-order effects in the a- and mπ-dependence of (gi)eff are
discussed at the end of this section.

For (g1)eff , the fit function is given by

(g1)eff(a,m, nHYP) = g1

[
1− 2

f2
I(m(vs)

π ) +
g2

1

f2

{
4H(m(vs)

π , 0)− 4 δ2
V SHη′(m(vv)

π , 0)
}

+ c
(vv)
1 [m(vv)

π ]2 + c
(vs)
1 [m(vs)

π ]2 + d1, nHYP
a2

]
. (87)

Similarly, for (g2)eff and (g3)eff , we use

(g2)eff(a,m, nHYP) = g2

[
1− 2

f2
I(m(vs)

π ) +
g2

2

f2

{3

2
H(m(vs)

π , 0)− δ2
V SHη′(m(vv)

π , 0)
}

+
g2

3

f2

{
2H(m(vs)

π , −∆)−H(m(vv)
π , −∆)− 2K(m(vs)

π , −∆, 0)
}

+ c
(vv)
2 [m(vv)

π ]2 + c
(vs)
2 [m(vs)

π ]2 + d2, nHYP
a2

]
, (88)

(g3)eff(a,m, nHYP) = g3

[
1− 2

f2
I(m(vs)

π ) +
g2

3

f2

{
H(m(vs)

π , −∆)− 1

2
H(m(vv)

π , −∆)

+
3

2
H(m(vv)

π , ∆) + 3H(m(vs)
π , ∆)−K(m(vs)

π , ∆, 0)
}

+
g2

2

f2

{
−H(m(vs)

π , ∆)−H(m(vv)
π , ∆) +H(m(vs)

π , 0)− δ2
V SHη′(m(vv)

π , 0)
}

+ c
(vv)
3 [m(vv)

π ]2 + c
(vs)
3 [m(vs)

π ]2 + d3, nHYP
a2

]
. (89)

The functions I, H, Hη′ and K are the chiral loop corrections [20]. They include finite-volume effects and therefore
they also depend on the lattice size. Furthermore, these functions depend on the renormalization scale µ, but this

scale-dependence is absorbed by the fit parameters c
(vv)
i and c

(vs)
i , as we checked explicitly by varying µ in the fits.

We set the pion decay constant to f = 132 MeV and the S−T mass splitting in Eqs. (88) and (89) to ∆ = 200 MeV.
This value of ∆ is consistent with experiments [13, 29] and with our lattice data (we also checked that varying ∆
within a few percent does not significantly affect the results for the axial couplings). We calculated the covariances of
all correlated data points in Tables III and IV using bootstrap, and performed fully correlated fits using the inverse
of the covariance matrix in the definition of χ2. This method propagates the uncertainties and correlations of (gi)eff ,
as obtained from the fits to the ratios Ri, into the extracted parameters gi of the HHχPT Lagrangian.

Results from fits of the (g1)eff data using the function (87) are given in Table VI and Fig. 7. The fit parameters are

g1, c
(vv)
1 , c

(vs)
1 , and {d1, nHYP

} (the latter for all values of nHYP that were included in the fit). We performed fits that



22

included data with multiple values of nHYP, as well as individual fits including only data with one value of nHYP. The
fits that included multiple values of nHYP enforced a common continuum limit of the data with different nHYP, but
with separate a2-coefficients d1, nHYP

for each nHYP. While we know that the actual continuum limit for all values of
nHYP has to be the same (if we took a to zero in the numerical calculations), we only have data for two different values
of a, and one may question whether the approach of the continuum limit is described by a simple a2-dependence as
assumed in Eq. (87). In particular, one may be worried that large values of nHYP, which correspond to more spatially
extended heavy-quark actions, could lead to non-negligible contributions from higher powers of a [23]. To investigate
this, we started from a fit that included all values of nHYP (1, 2, 3, 5, 10), and then successively removed the data
with the largest values of nHYP. As can be seen in Table VI and Fig. 7, the fit including the data from all values of
nHYP had a poor quality, Q = 0.17, and gave a somewhat low value for g1. After excluding nHYP = 10 and nHYP = 5,
the fits had a good quality and the results for g1 were stable under further exclusions of the largest nHYP-values. The
fit including nHYP = 1, 2, 3, which has Q = 0.70, gave the result

g1 = 0.449± 0.047 stat. (90)

Estimates of the systematic uncertainties in (90) will be given at the end of this section. The results from the fits
including only one value of nHYP were all consistent with (90), even for nHYP = 10. This suggests that higher powers
of a2 are actually negligible for the values of the lattice spacings considered here (a = 0.085 fm and a = 0.112 fm).
The deviating value of g1 as well as the poor Q for the fit that included all values of nHYP simultaneously are likely
caused by technical issues with the covariance-fitting of highly correlated data, associated with small eigenvalues of
the data correlation matrix [41]. We will return to the discussion of higher-order discretization effects at the end of
this section.

nHYP g1 d.o.f. χ2/d.o.f. Q

1, 2, 3, 5, 10 0.371(28) 30− 8 1.3 0.17

1, 2, 3, 5 0.401(39) 24− 7 1.2 0.29

1, 2, 3 0.449(47) 18− 6 0.75 0.70

1, 2 0.440(60) 12− 5 0.85 0.54

10 0.450(38) 6− 4 0.09 0.91

5 0.468(47) 6− 4 0.61 0.55

3 0.482(55) 6− 4 0.73 0.49

2 0.465(66) 6− 4 1.0 0.36

1 0.49(10) 6− 4 0.72 0.49

TABLE VI. Results for the mesonic axial coupling g1, obtained by fitting the data for (g1)eff using the function (87). The first
four rows show the results from fits which include data with multiple values of the heavy-quark smearing parameter nHYP.
The remaining rows show the results from fits with only one value of nHYP. The number of degrees of freedom (d.o.f.) is given
in the form (number of data points)−(number of fit parameters). The last column of the table gives the quality of the fit
Q = Γ

(
d.o.f./2, χ2/2

)
.

For the baryonic axial couplings, we performed simultaneous, fully correlated fits to the data for (g2)eff and (g3)eff

using the functions (88) and (89), with the fit parameters g2, g3, c
(vv)
2 , c

(vv)
3 , c

(vs)
2 , c

(vs)
3 and {d2, nHYP , d3, nHYP} (the

latter for all values of nHYP that were included in the fit). As already discussed in the fits for (g1)eff , we performed
fits that included data with multiple values of nHYP, as well as individual fits including only data with one value of
nHYP. The results are shown in Table VII and Fig. 8. Again, we select the fit that includes nHYP = 1, 2, 3, which
gives

g2 = 0.84± 0.20 stat,

g3 = 0.71± 0.12 stat. (91)

This fit also had the highest value of the quality of fit, Q = 0.92. Estimates of the systematic uncertainties in (91)
will be given at the end of this section. As can be seen in Fig. 8, the results (91) are in fact consistent with the results
from all other fits within the statistical uncertainties, demonstrating that heavy-quark discretization errors are under
good control. The covariance matrix for g2 and g3 is

Cov =

(
0.040 0.011

0.011 0.014

)
. (92)
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FIG. 7. Graphical representation of the fit results for g1 from Table VI. The horizontal axis corresponds to the different fits,
ordered (from left to right) in the same way as the rows in the table (from top to bottom). The line and shaded region in the
upper plot indicate the selected result and its uncertainty, which is taken from the third fit (the fit that includes data with
nHYP = 1, 2, 3).

nHYP g2 g3 d.o.f. χ2/d.o.f. Q

1, 2, 3, 5, 10 0.72(12) 0.635(90) 58− 16 0.94 0.57

1, 2, 3, 5 0.73(13) 0.61(11) 46− 14 1.1 0.31

1, 2, 3 0.84(20) 0.71(12) 34− 12 0.61 0.92

1, 2 0.81(22) 0.57(17) 22− 10 0.50 0.91

10 0.90(15) 0.75(11) 12− 8 0.64 0.64

5 0.98(19) 0.76(13) 12− 8 0.74 0.57

3 0.98(23) 0.74(15) 12− 8 0.54 0.71

2 0.91(23) 0.66(18) 12− 8 0.51 0.67

1 0.79(29) 0.61(27) 12− 8 0.42 0.74

TABLE VII. Results for the baryonic axial couplings g2 and g3, obtained by simultaneously fitting the data for (g2)eff and
(g3)eff using the functions (88) and (89). The first four rows show the results from fits which include data with multiple values
of the heavy-quark smearing parameter nHYP. The remaining rows show the results from fits with only one value of nHYP.
The number of degrees of freedom (d.o.f.) is given in the form (number of data points)−(number of fit parameters). The last
column of the table gives the quality of the fit Q = Γ

(
d.o.f./2, χ2/2

)
.

The corresponding likelihood function is plotted in Fig. 9.
As another check, we performed fits of (gi)eff where we excluded all the partially quenched data (i.e keeping only

the unitary data with m
(vv)
π = m

(vs)
π ). In that case, only one analytic counterterm is needed for each coupling, and

we removed the terms c
(vs)
i [m

(vs)
π ]2 from Eqs. (87), (88), and (89). These fits, again using nHYP = 1, 2, 3, then gave

g1 = 0.467 ± 0.056, g2 = 0.92 ± 0.22, and g3 = 0.72 ± 0.14, in full agreement with (90) and (91) and with slightly
larger uncertainties.

Plots of the functions (g1)eff , (g2)eff , and (g3)eff , with the parameters from the fits including the complete data
with nHYP = 1, 2, 3 [i.e. the fit that gives the results (90) and (91)] are shown in Figs. 10, 11, and 12. For the
figures, the functions were evaluated in infinite volume, for the lattice spacings a = 0.112 fm, a = 0.085 fm, and
a = 0. The right-hand sides of the figures show the values and uncertainties of the fitted functions for the unitary case

m
(vv)
π = m

(vs)
π , while the left-hand sides show the dependence on both m

(vv)
π and m

(vs)
π . At the two non-zero values

of a, the functions were evaluated for nHYP = 3 and the corresponding data points are also shown (in the continuum
limit, the functions for nHYP = 1, 2, 3 are all equal). To allow the inclusion in these plots, the data points were shifted
to infinite volume using

(gi)eff,data(m,L =∞) = (gi)eff,data(m,L = 2.7 fm) + [(gi)eff,fit(m,L =∞)− (gi)eff,fit(m,L = 2.7 fm)] , (93)

where we use the notation m = (m
(vv)
π ,m

(vs)
π ). The numerical values of the volume shifts are given in Table VIII.
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FIG. 8. Graphical representation of the fit results for g2 and g3 from Table VII. The horizontal axis corresponds to the different
fits, ordered (from left to right) in the same way as the rows in the table (from top to bottom). The lines and shaded regions in
the upper two plots indicate the selected results and their uncertainties, which are taken from the third fit (the fit that includes
data with nHYP = 1, 2, 3).
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FIG. 9. Likelihood function for g2 and g3, equal to L(g2, g3) = (2π)−1 det(Cov)−1/2 exp
{
− 1

2
(gi − g(0)

i )[Cov−1]ij(gj − g(0)
j )
}

where g
(0)
i are the central values of our fit results (91) and Cov is the covariance matrix (92). The dashed curve indicates the

standard error ellipse.

The largest volume shift (2.8 percent) occurred for (g2)eff at m
(vv)
π = 227 MeV.

m
(vs)
π (MeV) m

(vv)
π (MeV)

(g1)
(∞)
eff
−(g1)

(L)
eff

(g1)
(∞)
eff

(g2)
(∞)
eff
−(g2)

(L)
eff

(g2)
(∞)
eff

(g3)
(∞)
eff
−(g3)

(L)
eff

(g3)
(∞)
eff

294 245 0.0057 0.015 0.0074

304 270 0.0040 0.0070 0.0027

336 336 0.0016 0.00037 −0.00079

263 227 0.0072 0.028 0.013

295 295 0.0031 0.00027 −0.0012

352 352 0.0013 0.00033 −0.00071

TABLE VIII. Size of the finite-volume corrections for the pion masses where we have data.
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The functions (g2)eff and (g3)eff develop small imaginary parts for pion masses below the S → Tπ threshold at
mπ = ∆ [20] (the lattice data are all above the threshold). The extracted parameters g1,2,3 are real. Figures 11, and
12 show the real parts of (g2)eff and (g3)eff only, which have kinks at the thresholds.

The fit results for the parameters c
(vv)
i , c

(vs)
i , which describe the analytic contributions, were natural-sized, i.e. of

order 1/Λ2
χ with Λχ ≈ 4πfπ, for the renormalization scale µ = 4πfπ. The fit results for the parameters di, nHYP , which

describe the lattices-spacing dependence, were also of natural size and consistent with zero within the statistical
uncertainties. The absence of significant a-dependence can also be seen in Figs. 10, 11, and 12.

The individual contributions from different classes of Feynman diagrams in HHχPT [20] to the fitted functions

(g1)eff , <[(g2)eff ], and <[(g3)eff ] (evaluated for a = 0, L =∞, and m
(vv)
π = m

(vs)
π ) are shown in Figs. 13, 14. Note that

while the sum of all contributions (including the analytic terms) is independent of the renormalization scale µ, the
individual contributions are not, and the figures are based on the natural scale µ = 4πfπ. For the range of pion masses
considered here, the NLO contributions are significantly smaller than the LO contribution (which is equal to gi). This,

and the natural size of the fitted coefficients c
(vv)
i , c

(vs)
i , indicates that the chiral expansion of the axial-current matrix

elements is well-behaved here.
To estimate the size of systematic uncertainties caused by the missing NNLO terms in the fits to the quark-mass

and lattice-spacing dependence, we performed fits to the data using modified functions (gi)
(NLO+HO)
eff that include

higher-order analytic terms:

(gi)
(NLO+HO)
eff (a,m, nHYP) = (gi)

(NLO)
eff (a,m, nHYP)

+gi

[
c
(vv,vv)
i [m(vv)

π ]4 + c
(vs,vs)
i [m(vs)

π ]4 + c
(vv,vs)
i [m(vv)

π ]2[m(vs)
π ]2

+ d
(vv)
i, nHYP

a2 [m(vv)
π ]2 + d

(vs)
i, nHYP

a2 [m(vs)
π ]2 + hi, nHYP

a4

]
. (94)

Here, the functions (gi)
(NLO)
eff are as defined in Eqs. (87), (88), and (89). Because we do not have enough data to fit all

the parameters in Eq. (94), we constrained the parameters corresponding to the higher-order terms using Gaussian
priors centered around zero and with widths equal to some dimensionless factor w times the relevant natural scales:

c
(vv,vv)
i = 0 ± w/Λ4

χ,

c
(vs,vs)
i = 0 ± w/Λ4

χ,

c
(vv,vs)
i = 0 ± w/Λ4

χ,

d
(vv)
i, nHYP

= 0 ± w Λ2
QCD/Λ

2
χ,

d
(vs)
i, nHYP

= 0 ± w Λ2
QCD/Λ

2
χ,

hi, nHYP
= 0 ± w Λ4

QCD. (95)

Here we used Λχ = 4πfπ with fπ = 132 MeV, and ΛQCD = 300 MeV. The fit results for the axial couplings gi as a
function of the width factor w are given in Table IX. While the case w = 0 corresponds to the original NLO fits, in
the limit w →∞ the new parameters would become unconstrained (because we have insufficient data, we are unable
to perform fits in this limit).

w g1 δσ(g1) g2 δσ(g2) g3 δσ(g3)

0 0.449(47) 0 0.84(20) 0 0.71(12) 0

1 0.449(47) 0.0020 0.84(20) 0.0023 0.71(12) 0.0045

5 0.452(48) 0.0089 0.84(20) 0.014 0.70(12) 0.017

10 0.455(50) 0.016 0.84(20) 0.024 0.70(12) 0.026

50 0.464(72) 0.054 0.82(22) 0.099 0.68(15) 0.094

100 0.452(94) 0.082 0.78(26) 0.17 0.63(21) 0.17

TABLE IX. Results of higher-order fits using Eq. (94) as a function of the width factor w defined in Eq. (95).

As can be seen in Table IX, the shifts in the central values of the axial couplings are smaller than the statistical
errors up to the very large width w = 100. This is a consequence of the smallness of the quantities m4

π/(4πfπ)4,
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a2Λ2
QCDm

2
π/(4πfπ)2, and a4Λ4

QCD for the pion masses and lattice spacings where we have data. The shifts in the

central values fluctuate statistically and can be close to zero even for large w (at least for g1). However, including the
higher-order terms leads to a systematic increase in the uncertainties of the fit parameters gi (as calculated from the
Hessian of χ2), as expected. Also shown in the table is the quantity

δσ(gi) =
√
σ2(gi)(NLO+HO) − σ2(gi)(NLO), (96)

where σ(gi)
(NLO) is the original uncertainty of gi from the NLO fit, and σ(gi)

(NLO+HO) is the new uncertainty of gi
from the higher-order fit (95). To calculate (96) we used more digits for σ(gi)

(NLO) and σ(gi)
(NLO+HO) than shown

in Table IX. Equation (96) gives the additional uncertainty in gi, calculated using quadrature, that results from the
higher-order terms. This additional uncertainty δσ(gi) scales roughly linearly with the width parameter w. For a
reasonable choice of w, the quantity δσ(gi) can be considered to be the systematic uncertainty in gi from the NLO
fit due to the missing NNLO terms. Here we choose the conservative value of w = 10 for this purpose. The resulting
estimates of relative systematic uncertainties can be found in Table X. There, we also show the estimates of the other
relevant sources of uncertainties: effects of higher excited states in the fits to Ri(t) as discussed in Sec. IV B, and the
effects the sea-strange-quark mass being about 10% above the physical value, as discussed in Sec. III. Including the
estimates of the total systematic uncertainties, our final results for the axial couplings, based on (90) and (91), are
then

g1 = 0.449± 0.047 stat ± 0.019 syst = 0.449± 0.051,

g2 = 0.84 ± 0.20 stat ± 0.04 syst = 0.84 ± 0.20,

g3 = 0.71 ± 0.12 stat ± 0.04 syst = 0.71 ± 0.13. (97)

Source g1 g2 g3

NNLO terms in fits of mπ- and a-dependence 3.6% 2.8% 3.7%

Higher excited states in fits to Ri(t) 1.7% 2.8% 4.9%

Unphysical value of m
(sea)
s 1.5% 1.5% 1.5%

Total 4.2% 4.3% 6.3%

TABLE X. Estimates of systematic uncertainties in the axial couplings gi.
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FIG. 10. The fitted function (g1)eff , evaluated in infinite volume, for nHYP = 3, at different lattice spacings (from top to
bottom: a = 0.112 fm, a = 0.085 fm, a = 0), along with the data points (shifted to infinite volume). The left-hand side shows

the dependence on both m
(vv)
π and m

(vs)
π . The right-hand side shows the function (and its statistical uncertainty) evaluated at

m
(vv)
π = m

(vs)
π . In the plots on the right-hand side, the partially quenched data points, which have m

(vv)
π < m

(vs)
π , are indicated

with open symbols. They are shown at mπ = m
(vv)
π , even though the fitted function (g1)eff actually has slightly different values

for these points.
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FIG. 11. Like Fig. 10, but for the real part of (g2)eff .
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FIG. 12. Like Fig. 10, but for the real part of (g3)eff .
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FIG. 13. Contributions from individual classes of Feynman diagrams in HHχPT (see Ref. [20]) to the fitted function (g1)eff ,
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V. COMPARISON WITH PREVIOUS RESULTS FOR THE AXIAL COUPLINGS

We begin this section by discussing previous lattice calculations of the heavy-meson axial current matrix elements
and the corresponding extractions of g1. A summary of results is shown in Table XI. All of the past works used an
order-a improved Wilson action [42] for the light quarks, and variants of the Eichten-Hill action [22, 23] for the static
heavy quark. The first lattice estimate for g1 was obtained in the pioneering work of Ref. [14], using a 123×24 lattice
and quenched gauge fields, where the fermion determinants in the path integral weight are set to 1, which means
that the vacuum-polarization effects of the light quarks are neglected. In Ref. [14], the average of (g1)eff from two
different valence pion masses (760 MeV, 900 MeV) was taken as the result for g1. Quenched calculations of g1 were
also reported in Refs. [15] and [16]. The results for g1 in these works were obtained by extrapolating data for (g1)eff ,

at pion masses in the range of about 550 to 850 MeV, linearly in [m
(vv)
π ]2 to m

(vv)
π = 0.

Reference nf , action [m
(vv)
π ]2 (GeV2) g1

De Divitiis et al., 1998 [14] 0, clover 0.58 - 0.81 0.42± 0.04± 0.08

Abada et al., 2004 [15] 0, clover 0.30 - 0.71 0.48± 0.03± 0.11

Negishi et al., 2007 [16] 0, clover 0.43 - 0.72 0.517± 0.016

Ohki et al., 2008 [17] 2, clover 0.24 - 1.2 0.516± 0.005± 0.033± 0.028± 0.028

Bećirević et al., 2009 [18] 2, clover 0.16 - 1.2 0.44± 0.03+0.07
−0.00

Bulava et al., 2010 [19] 2, clover 0.063 - 0.49 0.51± 0.02

This work 2 + 1, domain wall 0.052 - 0.12 0.449± 0.047 stat ± 0.019 syst

TABLE XI. Comparison of lattice QCD results for the mesonic axial coupling g1. Also shown are the numbers of dynamical
light-quark flavors nf , the fermion lattice action, and the range of valence pion masses used in the calculation.

Since calculations without sea quarks have uncontrolled systematic errors, more recent lattice calculations of g1

have been performed with dynamical flavors, albeit only for nf = 2. The first of these was done in Ref. [17], using
two different lattices of sizes 123×24 and 163×32, and pion masses in the range 490 - 1100 MeV. Stochastic all-to-all
propagators were used to reduce the statistical uncertainties. In Ref. [17], the data for the axial-current matrix elements
(g1)eff was fitted using different approaches: linear in m2

π, linear+quadratic in m2
π, or linear+quadratic+logarithmic

in m2
π, using the average of g1 from the linear and the linear+quadratic+logarithmic fits as the final result. A second

unquenched calculation was published in Ref. [18], using three different lattice spacings and pion masses in the range
from 400 to 1100 MeV. In Ref. [18], the coupling g1 was obtained from a linear+logarithmic fit of (g1)eff . Recently,
the axial couplings of orbitally excited heavy-light mesons were also included [43]. Another nf = 2 calculation of g1

was reported in Ref. [19], with three different lattice spacings and pion masses down to 250 MeV. In Ref. [19], the
result of an extrapolation of (g1)eff linear in m2

π was given as the value of g1.
The coefficient of the chiral logarithm used in the fits of the axial-current matrix elements (g1)eff in Refs. [17]

and [18] was set equal to that of the strong decay P ∗ → P π in SU(2) HHχPT [44], because the corresponding
loop contributions for the axial current matrix elements were not known at that time. The NLO expression for the
strong-decay amplitude in SU(2) HHχPT is proportional to

M(P ∗ → P π) ∝ g1

[
1− 4g2

1

m2
π

(4πfπ)2
log

m2
π

µ2
+ c̃ m2

π

]
. (98)

We have recently derived the NLO expressions for the axial-current matrix elements in SU(2), SU(3), SU(4|2), and
SU(6|3) HHχPT [20]. As discussed in Ref. [20], the chiral expansion of the axial-current matrix elements contains an
additional tadpole loop contribution, which modifies the coefficient of the logarithm. In the SU(2) case, one has

(g1)eff = g1

[
1− (2 + 4g2

1)
m2
π

(4πfπ)2
log

m2
π

µ2
+ c m2

π

]
. (99)

Because g1 ≈ 0.5, the coefficient of the logarithm in Eq. (99) is numerically about 3 times larger than the coefficient
of the logarithm in Eq. (98). The logarithm makes (g1)eff as a function of m2

π curve downward when m2
π is decreased

(see Fig. 10). The results for g1 from the previous unquenched lattice calculations, which incorrectly used Eq. (98)
or did not include any logarithm in the fits, would be significantly lower if the correct HHχPT formula (99) had been
used instead. We have attempted fits to the data of [17–19] using Eq. (99), obtaining values of g1 that are about 10
to 20% lower than what is published in these works. Note, however, that HHχPT is not expected to converge in the
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upper range of the pion masses in [17, 18]. For the data used in the present work, incorrect fits linear in m2
π or using

Eq. (98) give values for g1 that are higher than the correct result, Eq. (90), by 12% and 8%, respectively.
Next, we move to the discussion of various theoretical estimates of the axial couplings g1, g2, g3 based on approxi-

mations, models, and experimental data. A comparison of these estimates to our QCD results is shown in Table XII.
The nonrelativistic quark model (NRQM) predicts g1 = gudA , g2 = 2gudA and g3 =

√
2gudA [5], where gudA = 1 is the axial

coupling of the single-quark transition u → d. Interestingly, if gudA is set to 0.75, the value needed to reproduce the
experimental value of the nucleon axial charge, one obtains g1 = 0.75, g2 = 1.5, g3 = 1.06, still significantly larger than
our QCD results. The predicted ratios of the axial couplings in the NRQM are, however, consistent with our lattice
determination. The relativistic quark models of Refs. [45] and [46] give g1 = 1/3 and g1 = 0.6± 0.1, respectively.

Reference Method g1 g2 g3

Yan et al., 1992 [5] Nonrelativistic quark model 1 2
√

2

Colangelo et al., 1994 [45] Relativistic quark model 1/3 . . . . . .

Bećirević, 1999 [46] Quark model with Dirac eq. 0.6± 0.1 . . . . . .

Guralnik et al., 1992 [47] Skyrme model . . . 1.6 1.3

Colangelo et al., 1994 [48] Sum rules 0.15 - 0.55 . . . . . .

Belyaev et al., 1994 [49] Sum rules 0.32± 0.02 . . . . . .

Dosch and Narison, 1995 [50] Sum rules 0.15± 0.03 . . . . . .

Colangelo and Fazio, 1997 [51] Sum rules 0.09 - 0.44 . . . . . .

Pirjol and Yan, 1997 [52] Sum rules . . . <
√

6− g2
3 <

√
2

Zhu and Dai, 1998 [53] Sum rules . . . 1.56± 0.30± 0.30 0.94± 0.06± 0.20

Cho and Georgi, 1992 [54] B[D∗ → D π], B[D∗ → D γ] 0.34± 0.48 . . . . . .

Arnesen et al., 2005 [55] B[D∗(s)→D(s)π], B[D∗(s)→D(s)γ], Γ[D∗] 0.51 . . . . . .

Li et al., 2010 [56] dΓ[B → π`ν] < 0.87 . . . . . .

Cheng, 1997 [30] Γ[Σ∗c → Λc π], NRQM 0.70± 0.12 1.40± 0.24 0.99± 0.17

This work Lattice QCD 0.449± 0.051 0.84± 0.20 0.71± 0.13

TABLE XII. Comparison of our lattice QCD results for the axial couplings g1, g2, and g3 with other determinations as reported
in the literature [all results are shown in our normalization, see Eq. (11)]. Here, NRQM stands for nonrelativistic quark model.
Where decay widths or branching fractions are listed under “Method”, these are experimental inputs. As discussed in the
main text, the axial couplings extracted from experimental data are defined away from the static limit in some cases. When
a reference contained multiple results for the same coupling and did not specify which one is the most reliable, we quote here
the range from the lowest result minus its uncertainty up to the highest result plus its uncertainty.

Another theoretical approach for estimating the axial couplings is the large-Nc limit of QCD, where Nc is the
number of colors. In the limit Nc →∞, one finds that the baryonic couplings satisfy the relation [47, 57]

g2

g3

∣∣∣∣
Nc=∞

=

√
3

2
≈ 1.22. (100)

For comparison, our lattice QCD result for this ratio is

g2

g3
= 1.19(26), (101)

and the nonrelativistic quark model predicts g2/g3 =
√

2 ≈ 1.41.
The axial couplings have also been estimated using sum rules [48–53], with results as shown in Table XII. For the

heavy-meson coupling g1, most sum rule determinations are smaller than our lattice QCD result, and much smaller
than the NRQM value. In contrast, the values of g2 and g3 obtained using sum rules in Ref. [53] are larger than our
lattice results.

Experimental data for various heavy-hadron decay processes has also been used to determine the axial couplings.
In Ref. [54], electromagnetic interactions were included in HHχPT, and the coupling g1 was extracted from the
measured branching fractions B[D∗ → D π] and B[D∗ → D γ] at tree level, finding g1 = 0.43 ± 0.61 for mc = 1.5
GeV and g1 = 0.34± 0.48 for mc = 1.7 GeV. Note that these values for g1 are not defined in the static limit; they are
effective values corresponding to the D∗Dπ coupling. A similar calculation, which additionally included the leading
nonanalytic effects in the radiative decays, is reported in Ref. [58]. The complete 1/mQ and loop corrections in both
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the strong and radiative decays were included in the analysis of Ref. [59]. There, the fit to experimental data for the
branching fractions B[D∗(s) → D(s) π] and B[D∗(s) → D(s) γ] gave two possible solutions for g1. The fit of Ref. [59] was

updated later by including experimental results for Γ[D∗] [60], leading to g1 ' 0.51 [55], where (unlike in Ref. [59])
g1 is defined in the static limit.

Recently, g1 was also extracted from data for the B → π`ν form factors, giving results for g1 in the range from
0.02± 0.32 up to 0.73+0.14

−0.12 depending on the parametrizations of the form factor shape [56]. The measured widths of
the baryonic decays Σ∗c → Λc π were used in Refs. [52] and [30] to estimate g3, with the result 0.99±0.17. The NRQM

relations then give g1 = g3/
√

2 = 0.70 ± 0.12 and g2 = g3/2 = 1.40 ± 0.24 [30]. However, as discussed in Sec. VI,
the value of “g3” extracted directly from Γ[Σ∗c → Λc π] should really be considered as an effective value of the decay
coupling constant at mQ = mc, deviating from the static-limit axial coupling by corrections of order ΛQCD/mc ∼
30%.

VI. CALCULATION OF DECAY WIDTHS

In this section, we use our lattice QCD results for the axial couplings g2 and g3 to calculate various decay widths
of heavy baryons. At leading order in the chiral expansion, the widths for the strong decays S → T π are

Γ[S → T π] = c2f
1

6πf2
π

(
g3 +

κJ
mQ

)2
MT

MS
|pπ|3, (102)

where S and T now denote physical sl = 1 and sl = 0 heavy baryon states such as Σb and Λb, |pπ| is the magnitude
of the pion momentum in the S rest frame,

|pπ| =
√

[(MS −MT )2 −m2
π][(MS +MT )2 −m2

π]

2MS
, (103)

and cf is a flavor factor [61],

cf =





1 for Σ
(∗)
Q → ΛQ π

±,

1 for Σ
(∗)
Q → ΛQ π

0,

1/
√

2 for Ξ
′(∗)
Q → ΞQ π

±,

1/2 for Ξ
′(∗)
Q → ΞQ π

0.

(104)

The mQ =∞ expression for Γ can be found for example in [52]. In Eq. (102), we included the term κJ/mQ to account
for the first-order corrections for a finite heavy-quark mass. The parameters κJ are related to the additional couplings
in the order-1/mQ HHχPT Lagrangian [62]. Terms suppressed by (mπ/Λχ)2 and (ΛQCD/mQ)2, which are omitted
from (102), lead to small systematic uncertainties in Γ.

To determine κ1/2 and κ3/2, we performed fits of experimental data [63] for the widths of the Σ++
c , Σ0

c (J = 1/2) and

the Σ∗++
c , Σ∗0c (J = 3/2) using (102), where we constrained g3 to our lattice QCD result (97) and set mQ = 1

2MJ/ψ.
These fits are shown in Fig. 15 and gave the results

κ1/2 = 0.55(21) GeV, Cov(κ1/2, g3) = −0.025 GeV,

κ3/2 = 0.47(21) GeV, Cov(κ3/2, g3) = −0.025 GeV. (105)

The fit parameters κJ are correlated with g3, and therefore we also show the covariances in Eq. (105). The value of
the sum g3 + κJ

mQ
in Eq. (102) is plotted as a function of 1/mQ in Fig. 16. For mQ = 1

2MJ/ψ, the values of g3 + κJ

mQ

are determined dominantly by the experimental input used to fit κJ :

g3 +
κ1/2

1
2mJ/ψ

= 1.059(49),

g3 +
κ3/2

1
2mJ/ψ

= 1.008(46). (106)

Using the masses of the Ξ∗c and Ξc baryons from Ref. [63], we obtain predictions for Γ[Ξ∗+c → Ξ+
c π

0, Ξ0
c π

+] and
Γ[Ξ∗0c → Ξ0

cπ
0, Ξ+

c π
−] as shown in Table XIII. There, we also show other predictions from the literature, as well as

upper limits from experiments [71, 72]. Our results for Γ[Ξ∗+c ] and Γ[Ξ∗0c ] are compatible with these limits.
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FIG. 15. Experimental data for Γ[Σ
(∗)
c → Λc π

±] from Ref. [63], along with fits using Eq. (102), for J = 1/2 (solid curve) and
J = 3/2 (dashed curve).
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FIG. 16. Value and uncertainty of the quantity (g3 + κJ/mQ), which enters in the strong decay width (102), as a function of
the inverse heavy-quark mass m−1

Q , for J = 1/2 (solid curve) and J = 3/2 (dashed curve). At m−1
Q = 0 the function is equal

to g3, which is given by our lattice QCD result (97). The vertical lines indicate our choices for the inverse bottom and charm
quark masses.

We can also make predictions for the radiative decay Ξ∗0c → Ξ0
c γ, which is forbidden at tree level but can be

mediated by loops because of flavor-SU(3) breaking. Using HHχPT, it has been shown that the branching fraction
of this decay is related to the axial coupling g2 as follows [73]:

B[Ξ∗0c → Ξ0
cγ] = (1.0± 0.3)× 10−3 g2

2 . (107)

Combining this with our lattice QCD result for g2, Eq. (97), and our calculated strong decay width Γ[Ξ∗0c →
Ξ0
cπ

0, Ξ+
c π
−] = 2.78(29) MeV, we obtain

B[Ξ∗0c → Ξ0
cγ] = (7± 4)× 10−4,

Γ[Ξ∗0c → Ξ0
cγ] = (2.0± 1.1) keV. (108)

Next, we discuss the strong decays of bottom baryons. To calculate these widths, we evaluated (102) for mQ = 1
2MΥ.
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In this case the values of g3 + κJ

mQ
are determined dominantly by the lattice result (97) for g3:

g3 +
κ1/2

1
2mΥ

= 0.822(87),

g3 +
κ3/2

1
2mΥ

= 0.805(87). (109)

Our calculated widths Γ[Σ
(∗)
b → Λbπ

±] as functions of the Σ
(∗)
b −Λb mass difference are shown as the curves in Fig. 17.

Using the experimental values of the baryon masses [13, 63], we obtain the results for Γ[Σ
(∗)
b → Λb π

±] shown in Table
XIII, in agreement with the widths measured by the CDF collaboration [13].
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FIG. 17. Widths of the decays Σ
(∗)±
b → Λb π

± as functions of the Σ
(∗)
b − Λb mass difference. The curves (solid: Σb, dashed:

Σ∗b) and shaded regions show our predictions and their uncertainties. The experimental data points are from CDF [13].

Hadron Ref. [52] Ref. [64] Ref. [61] Ref. [65, 66] Ref. [67] Ref. [68] Ref. [69] This work Experiment

Σ+
b . . . . . . . . . 6.0 . . . 4.35 3.5 4.2(1.0) 9.7+3.8+1.2

−2.8−1.1 [13]

Σ−b . . . . . . . . . 7.7 . . . 5.77 4.7 4.8(1.1) 4.9+3.1
−2.1 ± 1.1 [13]

Σ∗+b . . . . . . . . . 11.0 . . . 8.50 7.5 7.3(1.6) 11.5+2.7+1.0
−2.2−1.5 [13]

Σ∗−b . . . . . . . . . 13.2 . . . 10.44 9.2 7.8(1.8) 7.5+2.2+0.9
−1.8−1.4 [13]

Ξ∗0b . . . . . . . . . . . . . . . . . . 0.85 0.51(16) 2.1± 1.7 [70]

Ξ∗+c 1.2 - 4.1 1.81 3.04(37) 3.18(10) 2.7(2) . . . 1.13 2.44(26) < 3.1 (CL=90%) [71]

Ξ∗0c 1.2 - 4.0 1.88 3.12(33) 3.03(10) 2.8(2) . . . 1.08 2.78(29) < 5.5 (CL=90%) [72]

TABLE XIII. Results in MeV for the total strong decay widths of charm and bottom baryons.

In our previous work [21] we predicted that the widths of the Ξ′b and Ξ∗b are less than 1.1 and 2.8 MeV, respectively.
Very recently, the CMS collaboration has observed the Ξ∗0b , finding a width of 2.1±1.7 MeV [70]1. The mass difference
to the Ξ−b was measured to be

MΞ∗0b
−MΞ−b

= 154.41± 0.79 MeV. (110)

The Ξ∗0b can decay into Ξ−b π
+ (seen by CMS) and into Ξ0

b π
0. Taking MΞ−b

−MΞ0
b

= 3.1 ± 5.6 ± 1.3 MeV from the

CDF measurement reported in Ref. [74], we have

MΞ∗0b
−MΞ0

b
= 157.5± 5.8 MeV. (111)

1 Without a spin identification, there is a small possibility that the state observed by CMS is the Ξ′0b instead. We do not consider this
further.
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Using the results (110) and (111), we can update our calculation of the Ξ∗0b width and find

Γ[Ξ∗0b → Ξ−b π
+, Ξ0

b π
0] = 0.51± 0.16 MeV. (112)

Given the observed mass difference (110), and assuming that MΞ∗b
−MΞ′b

≈MΣ∗b
−MΣb

= 21±2 MeV [29], it is likely

that the decay Ξ′0b → Ξ−b π
+ is kinematically forbidden.

VII. CONCLUSIONS

The chiral dynamics of mesons and baryons containing a heavy quark is controlled at leading order by three axial
couplings g1, g2, and g3. Knowledge of the values of these couplings is an essential ingredient for precision QCD
calculations in flavor physics. In this paper, we have discussed in detail the first complete lattice QCD determination
of g1, g2, and g3. We have extracted the axial couplings by fitting numerical data for matrix elements of the axial
current using the quark-mass and volume dependence calculated in SU(4|2) heavy-hadron chiral perturbation theory.
Our final results are

g1 = 0.449± 0.047 stat ± 0.019 syst,

g2 = 0.84 ± 0.20 stat ± 0.04 syst,

g3 = 0.71 ± 0.12 stat ± 0.04 syst. (113)

The systematic uncertainties in (113) are very small, because our analysis is based on data at low pion masses, with
a large volume, and at two different lattice spacings. We have also carefully removed the excited-state contamination
in the matrix elements by extrapolating the ratios of correlation functions to infinite source-sink separation.

Previous lattice calculations of heavy-hadron axial couplings had only considered the mesonic coupling g1. The
early calculations of g1 did not include dynamical quarks and hence are contaminated by uncontrolled systematic
errors. The nf = 2 calculations typically used large quark masses and the fits to the quark-mass-dependence were
performed either linearly in m2

π or with an incorrect coefficient of the chiral logarithm. Had the correct coefficient
been used, significantly lower values of g1 would have been obtained in these previous studies.

For the range of pion masses considered in our work (230 MeV <∼ mπ
<∼ 350 MeV), the chiral expansion of the

axial-current matrix elements between heavy-light hadron states is found to be well-behaved. The next-to-leading
order contributions are small compared to the leading-order contributions, and NNLO contributions are negligible.
The rapid convergence of the chiral expansion is also a consequence of the smallness of the static-light axial couplings
(113). It is interesting to compare the chiral dynamics of hadrons containing a heavy quark with that of light baryons.
Being particularly light, the interactions of virtual pions (and other pseudo-Goldstone bosons) produce significant
contributions to many properties of baryons, and generically these effects scale quadratically with the strength with
which a given baryon sources pions. This, in turn, is determined by the relevant axial coupling, g1,2,3 in the case of
heavy hadrons, and gA ≈ 1.26, |gN∆| ∼ 1.6 and g∆∆ ∼ −1.9 in the case of light baryons [75, 76]. From the numerical
values of these couplings, it is apparent that chiral dynamics is more perturbative for heavy-light hadrons than that
for light baryons.

Our results for the heavy-light axial couplings, Eq. (113), are significantly smaller than the values one obtains in

the nonrelativistic quark model, g1 = gudA , g2 = 2gudA and g3 =
√

2gudA , where gudA = 1 is the axial coupling of the
single-quark transition u→ d. Even if gudA is set to 0.75, as needed to reproduce the experimental value of the nucleon
axial charge, the corresponding quark-model values of g1,2,3 are still significantly smaller than the results (113) from
first-principles lattice QCD.

We have used our results for g2 and g3 to calculate strong and radiative decay widths of charm and bottom baryons.
For the strong decays, we have taken into account the order-1/mQ corrections, which we have constrained by combining
experimental data for charmed baryon decay rates with our lattice determination of g3. We found that the 1/mQ

corrections are significant (their effect on the amplitudes for Σ
(∗)
Q → ΛQ π decays is about 40 percent at mQ = mc and

about 13 percent at mQ = mb). As a consequence, the coupling g3 cannot be reliably extracted from experimental
data for charmed baryon decays alone, and our lattice calculation in the static limit is crucial to calculate the widths

of bottom baryons. Our results for the widths of the Σ
(∗)
b baryons are in agreement with recent measurements at

Fermilab.
Our determination of the axial couplings can also improve the precision of future lattice QCD calculations of other

heavy-hadron properties such as masses, decay constants, and form factors, because the axial couplings control the
dependence of these properties on the light-quark masses. Therefore, the calculation of the axial couplings from first
principles also has an impact on searches for beyond-the-Standard-Model physics at the LHC and the planned SuperB
experiment. Importantly, our results include the baryonic couplings g2 and g3. Heavy baryons may offer additional
opportunities for probing the structure of new physics as a consequence of the different spin quantum numbers.
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Matt Wingate for helpful discussions. We are indebted to the RBC and UKQCD collaborations for access to the gauge
field configurations used in this work and to Robert Edwards and Balint Joó for the development of the chroma library
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Appendix A: Plots of raw data
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FIG. 18. Summary of all data points for R1(t), R2(t) and R3(t). At each value of t/a, results from up to five different values
of nHYP are shown (from left to right: nHYP = 1, 2, 3, 5, 10; points offset horizontally for legibility; in some cases there are no
results for R3 for the lowest values of nHYP, because the statistical fluctuations were too large to calculate the square root of
the double ratio). In physical units, the range of the horizontal axis in all plots is from t = 0.336 fm to t = 1.23 fm.
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Appendix B: Comparison of standard ratio method and summation method

To extract the effective axial couplings from the ratios Ri(t, t
′) defined in equations (63), (64), and (65), we defined

Ri(t) to be the average of Ri(t, t
′) over a symmetric range of t′ values around t/2 in a region where there was no

discernible t′ dependence, which essentially amounts to using

Ri(t, t/2). (B1)

An alternative approach for extracting geff is the summation method [19, 78–81]. In the following, we only consider
the case of the simple ratios (63) and (64) for degenerate spectra. One defines the summed ratio Si(t) by summing
Ri(t, t

′) over all values of t′,

Si(t) = a

t∑

t′=0

Ri(t, t
′). (B2)

For large t, one expects [78, 79]

Si(t) ≈ ci + (gi)eff t, (B3)

with some constant ci. Thus, the coupling (gi)eff can be extracted by taking the derivative [19, 81],

Rsum
i (t) =

d

dt
Si(t), (B4)

which is approximated by a finite difference on the lattice. Assuming that there is a non-vanishing off-diagonal matrix
element of the axial current between the ground-state hadron and an excited state with an energy gap δ (for our data,
contamination from off-diagonal matrix elements actually appears to be very small, as discussed in Secs. IV A and
IV B), one expects that the systematic uncertainties of (B1) and (B4) due to this excited state are of order [81]

Ri(t)− (gi)eff = O(e−
1
2 δi t),

Rsum
i (t)− (gi)eff = O(t e−δi t) (B5)

[see Eq. (71) for the spectral decomposition of Ri(t)]. Thus, the excited-state contamination in Rsummed
i (t) decays

effectively with twice the energy gap relevant for (gi)eff(t), but at the cost of an additional factor of t in front of the
exponential, which may be important at intermediate values of t.

Alternatively to taking the derivative as in Eq. (B4), one may fit Si(t) using the linear function (B3) with parameters
ci and (gi)eff . In Fig. 19, we show numerical results for Si(t), along with such fits. In Fig. 20, we compare numerical
results for the standard ratio (B1), the derivative of the summed ratio (B4), and the results for (gi)eff from linear
fits to Si(t) using Eq. (B3). For our data, the results from the summation method, especially for the derivative of
the summed ratio, are seen to suffer from much larger statistical uncertainties than the standard ratio. This was
also found in Ref. [81] and is not unexpected, because the relative statistical uncertainty in the difference of two
similarly-sized observables (the discrete derivative used here) is much larger than the relative statistical uncertainty
in the individual observables. Of course there are correlations which can improve the situation, and we did take these
into account when calculating (B4), but because of the way that our lattice calculation was set up (data at successive
values of t did not always have neighboring source locations), the correlations were not optimal.

It appears that the systematic errors of the results from the summation method at short t are similar in magnitude
to the systematic errors of the results from the standard ratio method at the same t, but the deviations from (gi)eff
have the opposite sign. This shows that valuable information about systematic errors can be obtained by comparing
both methods. For the present data, our process of extrapolating the results from the standard ratio to infinite t is
superior because of the much smaller statistical uncertainty.

Similarly to the work done in Ref. [81], we also studied models for the three-point and two-point functions with
excited states. We found that at intermediate values of t, the systematic uncertainties of (B1) and (B4) were strongly
dependent on the assumptions made in the model. For some models, the standard ratio showed an adantage while for
others the summation method showed an advantage, so that again we were not able to draw definitive conclusions.

Further methods for the calculation of hadron-to-hadron matrix elements are based on the Generalized Eigenvalue
Problem [81] and the “Generalized Pencil-of-Function” [82]. These techniques use matrices of correlation functions
with multiple interpolating fields to reduce the excited-state contamination at finite t. Because we only have data
from one interpolating field for each hadron, we cannot test these methods here.
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FIG. 19. Fits to the summed ratios S1(t) and S2(t), in the range t/a = 8, 9, 10. The data are for a = 0.112 fm, and a heavy

quark mass of m
(val)
u,d = 0.04 (close to the physical strange quark mass; the large mass was chosen here for the smaller statistical

uncertainties) and nHYP = 3.

0.5 1.0 1.5 2.0

t (fm)

0.45

0.50

0.55

0.60

0.65

R
1
(t

)

a = 0.112 fm, am
(val)
u,d = 0.04, nHYP = 3

Standard ratio method
Summ. method (derivative)
Summ. method (fit)

0.5 1.0 1.5 2.0

t (fm)

0.9

1.0

1.1

1.2

1.3

1.4

R
2
(t

)

a = 0.112 fm, am
(val)
u,d = 0.04, nHYP = 3

Standard ratio method
Summ. method (derivative)
Summ. method (fit)
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4
a. For the data from the standard ratio method (circles), the curves indicate the results

of fits with the form Ri(t) = (gi)eff −Ai e−δi t with free parameters (gi)eff , Ai, and δi [see Sec. IV B].
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