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We calculate the leptonic decay constants of B(s) and D(s) mesons in lattice QCD using staggered
light quarks and Fermilab bottom and charm quarks. We compute the heavy-light meson correlation
functions on the MILC asqtad-improved staggered gauge configurations which include the effects
of three light dynamical sea quarks. We simulate with several values of the light valence- and sea-
quark masses (down to ∼ ms/10) and at three lattice spacings (a ≈ 0.15, 0.12, and 0.09 fm) and
extrapolate to the physical up and down quark masses and the continuum using expressions derived
in heavy-light meson staggered chiral perturbation theory. We renormalize the heavy-light axial
current using a mostly nonperturbative method such that only a small correction to unity must be
computed in lattice perturbation theory and higher-order terms are expected to be small. We use the
two finer lattice spacings for our central analysis and use the third to help estimate discretization
errors. We obtain fB+ = 196.9(9.1) MeV, fBs = 242.0(10.0) MeV, fD+ = 218.9(11.3) MeV,
fDs = 260.1(10.8) MeV, and the SU(3) flavor-breaking ratios fBs/fB = 1.229(26) and fDs/fD =
1.188(25), where the numbers in parentheses are the total statistical and systematic uncertainties
added in quadrature.
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I. INTRODUCTION

Leptonic decays of B and D mesons, in which the hadron annihilates weakly to a W boson, are important probes
of heavy-to-light quark flavor-changing interactions. When combined with a nonperturbative lattice QCD calculation
of the heavy-light pseudoscalar meson decay constant, fB or fD, a precise experimental measurement of the leptonic
decay width allows the determination of the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix element |Vub|
or |Vcd|. Conversely, if the relevant CKM matrix element is known from an independent process such as semileptonic
decay or from CKM-unitarity constraints, a comparison of the decay constant from lattice QCD simulations with
that measured by experiment provides a straightforward test of the Standard Model. As the lattice and experimental
determinations become more precise, this test will become more sensitive and may ultimately reveal, through the
appearance of a discrepancy, the presence of new physics in the quark flavor sector.

Improved determinations of the B meson decay constant fB are of particular importance given the current, ap-
proximately 3-σ tension in the CKM unitarity triangle that may indicate the presence of new physics in Bd-mixing or
B → τν decay [1–4]. The experimental uncertainty in the branching fraction B(B → τν) is at present ∼ 30% [5, 6],
but this error is expected to be reduced to ∼ 10% at next-generation B factories KEK-B [7] with the Belle II detec-
tor [8] and SuperB in Italy [9, 10] in as little as five or six years, at which point even modest improvements in the
determination of fB will significantly help constrain the apex of the CKM unitarity triangle and isolate the source of
new physics [11].

Because leptonic decays are “gold-plated” processes in numerical lattice QCD simulations (they have a single
stable hadron in the initial state and no hadrons in the final state [12]), they can be determined accurately using
present lattice methods. Currently all lattice calculations of fD(s)

and fB(s)
that include the effects of three light

dynamical quarks use staggered lattice fermions [13, 14] for the up, down, and strange quarks. Because staggered
fermions are computationally cheaper than other lattice fermion formulations, they allow for QCD simulations with
dynamical quarks as light as 0.05ms, several lattice spacings, down to a ≈ 0.045 fm, large physical volumes, and high
statistics. This enables lattice determinations of many light-light and heavy-light meson quantities with controlled
systematic uncertainties. The results of staggered lattice calculations are largely in excellent numerical agreement
with experimental results [12]. This includes both postdictions, such as the pion and kaon decay constants [15], and
predictions, as in the case of the Bc meson mass [16]. Such successes give confidence that further calculations using
the same methods are reliable. This is essential if lattice QCD calculations of hadronic weak matrix elements are to
be used to test the Standard Model and search for new physics.

The staggered dynamical quark simulations used here employ the fourth-root procedure (“rooting”) for eliminating
unwanted extra quark degrees of freedom that arise from lattice fermion doubling. The rooting method is not standard
quantum field theory, and at nonzero lattice spacing it leads to violations of unitarity [17–20] that can be considered
nonlocal [21]. Nevertheless, there are strong arguments [22, 23] that the desired local, unitary theory of QCD is
reproduced by the rooted staggered lattice theory in the continuum limit. Further, one can show [18, 24] that
the unitarity-violating lattice artifacts in the pseudo-Goldstone boson sector can be described, and hence removed,
using rooted staggered chiral perturbation theory (rSχPT), which is a low-energy effective description of the rooted
staggered lattice theory [25–27]. When coupled with other analytical and numerical evidence (see Refs. [28–31] for
reviews and Ref. [32] for a recent study), this gives us confidence that the rooting procedure is valid. Indeed, the
validity of the rooted staggered lattice simulations is of critical importance to flavor physics phenomenology, since a
majority of the unquenched, three-flavor lattice results for hadronic weak matrix elements used to determine CKM
matrix elements and as inputs to constraints on the CKM unitarity triangle come from such simulations [33].

In this paper, we present new results for the leptonic decay constants of heavy-light mesons containing bottom and
charm quarks. We use the “2+1” flavor asqtad-improved gauge configurations made publicly-available by the MILC
Collaboration [34]. These ensembles include the effects of three light, dynamical sea-quark flavors: one with mass mh

near ms (the physical strange-quark mass) and the other two with mass ml as small as 0.1mh. We generate light
valence quarks for the B and D mesons using the same staggered action as in the sea sector, and generate heavy
bottom and charm quarks using the clover action [35] with the Fermilab interpretation [36]. Because the Fermilab
method uses knowledge of the heavy-quark limit of QCD to systematically eliminate heavy-quark discretization errors,
exploiting ideas of Symanzik [37, 38] and of heavy-quark effective theory (HQET) [39–41], it is well-suited for both
bottom and charm quarks. We simulate with many values for the light up/down quark mass (the mass of our lightest
pion in both the sea and valence sectors is ≈ 250 MeV), and at three lattice spacings a ≈ 0.09 fm, a ≈ 0.12 fm, and
a ≈ 0.15 fm. We then extrapolate our numerical lattice data to the physical up and down quark masses and continuum
guided by expressions derived in staggered chiral perturbation theory for heavy-light mesons (HMSχPT) [42–44]. We
try several fits of this type. Our most reliable results come from the data at a ≈ 0.09 fm and a ≈ 0.12 fm only. We
use fits including all three lattices as part of our error analysis.

We match the heavy-light axial current to continuum QCD with a mostly nonperturbative approach, computing
the flavor-diagonal (heavy-heavy and light-light) renormalization factors nonperturbatively and then calculate the
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remaining flavor off-diagonal correction factor (ρA4
Qq

) in lattice perturbation theory [40, 45, 46]. This procedure has

the advantage that ρA4
Qq

is close to unity. Furthermore, tadpole diagrams cancel in the ratio needed to obtain ρA4
Qq

,

thereby improving the convergence of the perturbative series. Empirically, the size of the 1-loop contribution to ρA4
Qq

is found to be small.
Our results for the charmed-meson decay constants improve upon our published results for fD and fDs in Ref. [47]

in several ways. The coarsest lattices used in this work have a smaller lattice spacing (a ≈ 0.15 fm) than those used
in our previous work (a ≈ 0.18 fm). The number of configurations in the two most chiral ensembles with a ≈ 0.12 fm
has been increased, approximately by factors of 1.4 (sea ml = 0.1mh) and 1.7 (sea ml = 0.14mh). We have added new
data on a new a ≈ 0.09 fm sea-quark ensemble with a light quark mass of 0.1mh. We now obtain our results from a
combined analysis of our entire data set (all partially-quenched mass combinations and lattice spacings). Furthermore,
we now compute the bottom meson decay constants fB and fBs . We have presented reports on this project at several
conferences [48–52]; in our final analysis of this data set we also improve upon bottom and charm quark mass-tuning,
with increased statistics and a more sophisticated analysis of heavy-quark discretization effects.

This paper is organized as follows. In Sec. II, we present an overview of the calculation, including the gluon
and light-quark actions used in generating the gauge configurations and the light- and heavy-quark actions used in
constructing the heavy-light meson correlators. We also introduce the mostly nonperturbative method for matching
the lattice heavy-light current to the continuum, and the treatment of heavy-quark discretization errors from the
Fermilab action within our chiral-continuum extrapolation. Next, in Sec. III, we describe the details of our numerical
simulations and we present the parameters used, such as the light-quark masses and lattice spacings. We also describe
the procedure for tuning the hopping parameter in the clover action so that it corresponds to b and c quarks. In
Sec. IV, we define the two-point correlation functions used to extract the decay constant at each value of the light-
quark mass and lattice spacing. We use two different fitting procedures to obtain the decay constants that differ in
their treatment of the statistical errors, choice of fit ranges and number of states, and choice of input correlators.
We include the difference between the two in our estimate of the fitting systematic uncertainty. Next, we present
the numerical details of the calculation of the heavy-light axial-current renormalization factor in Section V. Putting
the results of the two previous sections together, in Sec. VI, we extrapolate the renormalized decay constant data at
unphysical quark masses and nonzero lattice spacing to the physical light quark masses and zero lattice spacing using
HMSχPT. In Sec. VII, we estimate the contributions of the various systematic uncertainties to the decay constants,
discussing each item in our error budget separately. We present the final results for the decay constants in Sec. VIII,
and compare them to other lattice QCD calculations and to experiment. We describe the impact of our results for
current flavor physics phenomenology and then conclude by discussing the ongoing improvements to our calculations,
and their future impact on searches for new physics in the quark flavor sector.

Appendix A applies HQET to the Fermilab action to obtain explicit expressions for heavy-quark discretization
effects. Appendix B contains the complete set of fit results for the heavy-light pseudoscalar meson mass and renor-
malized decay constant for all combinations of sea-quark mass, light valence-quark mass, and heavy-quark mass used
in the chiral-continuum extrapolation. These results will be included as an EPAPS attachment upon publication.

II. METHODOLOGY

The decay rate for a charged pseudoscalar meson H (with flavor content Q and q̄) to leptons is, in the Standard
Model,

Γ(H → `ν) =
MH

8π
f2
H

∣∣GFV ∗Qqm`

∣∣2(1− m2
`

M2
H

)2

, (2.1)

where MH is the mass of the meson H, GF is the Fermi constant, and VQq is the pertinent element of the CKM
matrix. The decay constant fH parameterizes the pseudoscalar-to-vacuum matrix element of the axial vector current,

〈0|Aµ|H(p)〉 = ipµfH , (2.2)

where pµ is the 4-momentum of the pseudoscalar meson. The flavor contents of the associated vector current and
CKM matrix element are given in Table I. Note that the neutral Bs decays to a charged lepton pair with an amplitude
proportional to fBs ; hence the CKM factor in the decay rate involves more than one CKM matrix element. Because
this process is loop-suppressed in the Standard Model, it is potentially sensitive to new physics effects. These formulas
hold for all pseudoscalar mesons; in the normalization convention used here, fπ(|Vud|/0.97425) = 130.41± 0.20 MeV
[53].
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TABLE I. Flavor content of the axial vector current and associated CKM matrix element.

H Aµ V

D d̄γµγ5c V ∗cd
Ds s̄γµγ5c V ∗cs

B b̄γµγ5u Vub

Bs b̄γµγ5s —

In Eq. (2.2), the 1-particle state assumes the relativistic normalization convention. For mesons containing a heavy
quark, however, it is more convenient to pull out factors of MH to ensure a smooth MH →∞ limit:

〈0|Aµ|H(p)〉 (MH)−1/2 = i(pµ/MH)φH . (2.3)

In lattice QCD, the normalization of states on the left-hand side falls out of correlation functions more naturally.
Thus, most of our analysis, including error analysis, focuses on φH . We then obtain fH = φH/

√
MH using the

experimentally measured value of the meson mass [54].

To compute the decay constants with lattice gauge theory, we must choose a discretization for the heavy quark, the
light quark, and the gluons. As in previous work [47, 55–58], we choose the Fermilab method for heavy quarks [36] and
staggered quarks with the asqtad action [59] for the light (valence) quark. The gauge action is Symanzik improved,
with couplings chosen to remove order αsa

2 errors from gluon loops [60], but not those from quark loops [61] (which
became available only after the gauge-field generation was well underway).

For heavy bottom and charm quarks, we use the Sheikholeslami-Wohlert (SW) clover action [35] with the Fermilab
interpretation [36], which connects to the continuum limit as amQ → 0. This is an extension of the Wilson action [62],
which retains the Wilson action’s smooth limit as amQ →∞ and also remains well behaved for mQa ≈ 1. Because this
lattice action respects heavy-quark spin-flavor symmetry, one can apply HQET to organize the discretization effects.
In essence, one uses HQET to develop the 1/mQ expansion both for continuum QCD and for lattice gauge theory
(LGT) [39–41]. Discretization effects are then captured order-by-order in the heavy-quark expansion by the difference
of the short-distance coefficients in the descriptions of QCD and LGT. Thus, in principle, the lattice heavy-quark
action can be improved to arbitrarily high orders in 1/mQ by adjusting a sufficiently large number of parameters
in the lattice action. (See Ref. [63] for details at dimension 6 and 7. In principle, the adjustment can be done
nonperturbatively, such as in the scheme of Ref. [64].) In practice, we tune the hopping parameter κ and the clover
coefficient cSW of the SW action, to remove discretization effects through order 1/mQ in the heavy-quark expansion.

The HQET analysis of cutoff effects could be applied to any lattice action with heavy-quark symmetry, such as the
action of lattice NRQCD [65]. In the latter case, it is simply a different perspective on the usual approach to lattice
NRQCD, which derives the heavy-quark Lagrangian formally, and then replaces derivatives with difference operators.
A key feature of the Wilson, SW, Fermilab and OK [63] actions is their well-behaved continuum limit, which is
especially important for charm. For mQa < 1, one can analyze the cutoff effects in a complementary way with the
Symanzik effective action [37, 38]. This two-pronged attack shows that the difference of short-distance coefficients,
mentioned above, vanishes as a suitable power of lattice spacing a. In this paper, we shall use our knowledge of
this behavior to constrain heavy-quark discretization effects in several steps of our analysis. See Secs. III B, VI, and
Appendix A for details.

The lattice and continuum currents are related by a matching factor ZAµ [40]:

ZAµA
µ .

= Aµ + O (αsaΛfi(mQa)) + O
(
a2Λ2fj(mQa)

)
, (2.4)

where
.
= denotes equality of matrix elements, and the functions fi,j that depend on mQa stem from the difference in

the HQET short-distance coefficients. In the Fermilab method, they remain of order 1 for all values of mQa [36, 63],
and they are given explicitly in Appendix A. In this work, we compute ZAµ mostly nonperturbatively [45] and
partly in one-loop perturbation theory. As shown in the analysis of Ref. [40], many of the Feynman diagrams in the
perturbative expansion of ZA4

Qq
are common or similar to those in the flavor-conserving renormalization factors ZV 4

QQ

and ZV 4
qq

, which can be computed nonperturbatively. Therefore, we define ρA4
Qq

by

ZA4
Qq

= ρA4
Qq

√
ZV 4

qq
ZV 4

QQ
, (2.5)

evaluating only ρA4
Qq

in lattice perturbation theory.
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TABLE II. The MILC three-flavor lattices and valence asqtad quark masses used in this work. All of the valence masses were
used in version II of the correlator fits (Sec IV C), while only the ones in bold print were used in version I (Sec IV B).

≈ a [fm] amh aml u0 r1/a nconf× nsrc valence amq

0.09 0.031 0.0031 0.8779 3.69 435× 4 0.0031, 0.0037, 0.0042,0.0044, 0.0052,0.0062,

0.0087,0.0124,0.0186,0.0272,0.031

0.0062 0.8782 3.70 557× 4 0.0031, 0.0037,0.0044, 0.0052,0.0062,

0.0087,0.0124,0.0186,0.0272,0.031

0.0124 0.8788 3.72 518× 4 0.0031,0.0042,0.0062,0.0087,0.0124,

0.0186,0.0272,0.031

0.12 0.05 0.005 0.8678 2.64 678× 4 0.005, 0.006,0.007, 0.0084,0.01, 0.012,0.014,

0.017,0.02, 0.024,0.03,0.0415

0.007 0.8678 2.63 833× 4 0.005, 0.006,0.007, 0.0084,0.01, 0.012,0.014,

0.017,0.02, 0.024,0.03,0.0415

0.01 0.8677 2.62 592× 4 0.005, 0.006,0.007, 0.0084,0.01, 0.012,0.014,

0.017,0.02, 0.024,0.03,0.0415

0.02 0.8688 2.65 460× 4 0.005, 0.006,0.007, 0.0084,0.01, 0.012,0.014,

0.017,0.02, 0.024,0.03,0.0415

0.03 0.8696 2.66 549× 4 0.005, 0.006,0.007, 0.0084,0.01, 0.012,0.014,

0.017,0.02, 0.024,0.03,0.0415

0.15 0.0484 0.0097 0.8604 2.13 631× 4 0.0048,0.007,0.0097, 0.013,0.0194, 0.0242,

0.029, 0.0387,0.0484

0.0194 0.8609 2.13 631× 4 0.0048,0.007,0.0097, 0.013,0.0194, 0.0242,

0.029, 0.0387,0.0484

0.029 0.8614 2.13 576× 4 0.0048,0.007,0.0097, 0.013,0.0194, 0.0242,

0.029, 0.0387,0.0484

The flavor-conserving factors account for most of the value of the heavy-light renormalization factor ZA4
Qq

. They

are obtained by enforcing the normalization condition, at zero momentum transfer,

1 = ZV 4
qq
〈Hq|V 4

qq|Hq〉, (2.6)

where Hq is a hadron containing a single quark of flavor q, and V µqq is the lattice version of the degenerate vector
current. This condition holds for all discretizations and quark masses and, hence, the heavy quark (i.e., ZV 4

QQ
) as

well. The remaining correction factor ρA4
Qq

is close to unity due to the cancellation of most of the radiative corrections

including tadpole graphs. Although such cancellations have only been explicitly shown at 1-loop in lattice perturbation
theory [40, 46], we expect similar cancellations to persist at higher orders. Therefore, the perturbative truncation
error in the heavy-light renormalization factor is subdominant.

III. LATTICE SIMULATION DETAILS

A. Parameters

Table II lists the subset of the ensembles of lattice gauge fields generated by the MILC Collaboration [31] used in
this analysis. We now describe each entry in the table.

We analyze data at three lattice spacings: a ≈ 0.15 fm, a ≈ 0.12 fm, and a ≈ 0.09 fm. The ensembles contain 2+1
flavors of sea quarks, using the asqtad-improved staggered action [59], and the square (fourth) root of the staggered
determinant for the two degenerate light sea quarks (one strange sea quark). The sea contains one flavor with mass
mh close to the physical strange quark mass and two degenerate lighter flavors of mass ml. The tadpole improvement
factor u0 is a parameter of the gauge and asqtad staggered (sea) quark action and is determined from the fourth root
of the average plaquette. We calculate the two-point correlation functions on each ensemble from an average over
four different time sources.
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TABLE III. Table of clover coefficients and κ values for charm and bottom used in heavy-light two-point simulations.

κsim

≈ a [fm] aml/amh cSW charm bottom

0.09 0.0031/0.031 1.478 0.127 0.0923

0.0062/0.031 1.476

0.0124/0.031 1.473

0.12 0.005/0.05 1.72 0.122 0.086

0.007/0.05 1.72

0.01/0.05 1.72

0.02/0.05 1.72

0.03/0.05 1.72

0.15 0.0097/0.0484 1.570 0.122 0.076

0.0194/0.0484 1.567

0.0290/0.0484 1.565

The relative lattice scale is determined by calculating r1/a on each ensemble, where r1 is related to the force between
static quarks, r2

1F (r1) = 1.0 [66, 67]. Table II lists r1/a values for each of the ensembles that result from fitting the
calculated r1/a to a smooth function [68], as explained in Eqs. (115) and (116) of Ref. [31].

In order to fix the absolute lattice scale, one must compute a physical quantity which can be compared directly
to experiment. The combination of the PDG’s value of fπ with MILC’s 2009 determination of r1fπ [69] yields
r1 = 0.3117(6)(+12

−31) fm. From an average of three methods for scale setting, including one based on Υ splittings, the
HPQCD collaboration obtains r1 = 0.3133(23)(3) fm [70], consistent with MILC. Symmetrizing MILC’s error range
gives r1 = 0.3108(21) fm, and a straightforward average with the HPQCD result then yields r1 = 0.3120(16) fm. This
average omits likely correlations, due to the use of MILC sea-quark configurations by both groups. Conservatively
assuming a 100% correlation, we inflate the error to 0.0022 fm. Finally, for convenience, we also shift the central value
slightly, back to the 2009 MILC central value. We thus take r1 = 0.3117(22) fm in this paper.

The complete list of light (asqtad) valence quark masses mq simulated in this analysis is also given in Table II. The
mass values are selected to be roughly logarithmically spaced, but to also include the set of light sea quark masses
simulated at each lattice spacing. We use a multimass solver to compute the valence quark propagators. The marginal
numerical cost of including masses heavier than our lightest mq ∼ 0.1ms is small and logarithmic spacing is designed
to constrain the chiral logarithms.

In Table III, we show the coefficient of the Sheikholeslami-Wohlert term cSW of the clover action and the κ values
used to compute heavy-light two-point functions. The coefficient of the clover term is set to the tadpole-improved
tree-level value cSW = u−3

0 . For the a ≈ 0.09 and 0.15 ensembles the tadpole coefficient is taken from the average
plaquette. We note, however, that at lattice spacing a ≈ 0.12 fm the tadpole coefficient u0 appearing in both the
valence asqtad action and the heavy quark clover action is taken from the average of the Landau link evaluated on
the aml/amh = 0.01/0.05 ensemble. Hence, in our a ≈ 0.12 fm lattice data there is a mismatch between light valence
and sea quark mass definitions. As discussed in Sec. VII, this (inadvertent) choice leads to a small error in the decay
constants. We have remedied this mismatch by using the plaquette u0 everywhere in new runs started while this
analysis was underway.

The charm and bottom kappa values listed in Table III are based on our initial kappa tuning analysis using about one
fourth of our final statistics. We then used a larger data set to refine our determination of the κ values corresponding
to bottom and charm as described in the next subsection. We adjust our data post-facto to correspond to tuned
values of κc and κb using the measured value of the derivative δφ/δκ.

B. Input quark masses mc and mb

Our method for tuning κ for charm and bottom quarks closely follows that of Ref. [58], where further details can
be found. We start with the dispersion relation for a heavy particle on the lattice [36]

E2(p) = M2
1 +

M1

M2
p2 +

1

4
A4 (ap2)2 +

1

3
A4′a

2
3∑
j=1

|pj |4 + . . . , (3.1)
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TABLE IV. Hopping-parameter values used to compute the dispersion relation.

κQ

≈ a [fm] nconf × nsrc charm bottom

0.09 1912× 4 0.1240, 0.1255, 0.1270 0.090, 0.092, 0.094

0.12 592× 4 0.114, 0.117, 0.119, 0.122, 0.124 0.074, 0.086, 0.093, 0.106

0.15 631× 8 0.100, 0.115, 0.122, 0.125 0.070, 0.076, 0.080, 0.090

TABLE V. Hopping parameter values κc and κb corresponding to charm and bottom. The outputs of the tuning are labeled
κtuned, where the first error is from statistics and the second is from r1, which enters through matching to the experimentally-
measured Ds and Bs meson masses. The derivative dφ/dκ is used to correct the values of φ obtained with the simulated values
κsim listed in Table III to the tuned values given below.

charm bottom

≈ a [fm] κtuned dφ/dκ κtuned dφ/dκ

0.09 0.12691(18)(13) −21.66 0.0959(13)(3) −7.41

0.12 0.12136(37)(19) −18.23 0.0856(19)(3) −6.82

0.15 0.12093(36)(24) −15.40 0.0788(11)(3) −6.07

where

M1 ≡ E(0) (3.2)

is called the rest mass, and the kinetic mass is given by

M−1
2 ≡ ∂E(p)

∂p2
j

∣∣∣∣∣
p=0

. (3.3)

These meson masses differ from corresponding quark masses, m1 and m2, by binding-energy effects. The bare mass
or, equivalently, the hopping parameter κ must be adjusted so that these masses reproduce an experimental charmed
or b-flavored meson mass. When they differ, as they do when mQa 6� 1, one must choose. Decay constants are
unaffected by the heavy-quark rest mass m1 [39], so it does not make sense to adjust the bare mass to M1. We
therefore focus on M2, adjusting κ to the strange pseudoscalars Ds and Bs, both because the signal degrades for
lighter spectator masses and because this avoids introducing an unnecessary systematic uncertainty due to a chiral
extrapolation.

The first step is to compute the correlator C
(S1S2)
2 (t,p) in Eq. (4.8) (below) for several 3-momenta p and several

values of κ and light quark mass, bracketing charm and bottom, and strange, respectively. We use all momenta such

that |p| ≤ 4π/L. Second, we fit the time dependence of the multichannel correlation matrix C
(S1S2)
2 to a sum of

exponentials—including the usual staggered-fermion oscillating terms—and extract the ground state energy aE(p) by
minimization of an augmented χ2 [58, 71, 72]. Third, we fit the energies to the dispersion relation given in Eq. (3.1),
through O(p4

i ). The output of this fit is aM1, M1/M2, A4, and A4′ , all as functions of κ. Fourth, we form M2(κ)
from the first two fit outputs and r1/a, propagating the error with a single-elimination jackknife. Finally, we obtain
our tuned κc and κb by interpolating in κ so that M2(κ) matches the experimentally known Ds and Bs masses. The
κ values used to compute M2 are listed in Table IV. For each of the lattice spacings listed, we used the ensemble with
light-to-strange sea-quark mass ratio aml/amh = 0.2. The resulting tuned values of κc and κb are shown with errors
in Table V.

We constrain the coefficients A4 and A4′ with Gaussian priors derived from the HQET theory of cutoff effects,
adding the contribution of the priors to the χ2 in the minimization procedure [71, 72]. (In principle, we could include
such priors for M1 and M1/M2 too, but in practice we take priors so wide that these fit parameters are solely data-
driven.) Neglecting binding energies, we have exact tree-level expressions for a4 and a4′ , the quark analogs of A4

and A4′ . The differences A4 − a
[0]
4 and A4′ − a

[0]
4′ stem from both perturbative and nonperturbative effects. The

asymptotics of the former can be estimated along the lines of Appendix A 3, and the latter can be deduced following
the methods of Refs. [39, 73]. Briefly, we constrain An(κ), n ∈ {4, 4′}, to a Gaussian with central value

a[0]
n (m0a) + αsa

[1]
n (m0a) + Λ̄aA′n(m0a). (3.4)
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Here a
[0]
n is the exact tree-level contribution, a

[1]
n is an estimate of the one-loop contribution, and A′n is an expression

for the binding-energy contribution. The width of the Gaussian is determined by combining in quadrature the chosen
widths of the separate contributions, as outlined in Appendix A 3.

The details of the κc and κb determination differ from that of Ref. [58] in two respects. First, we use the pseudoscalar
meson masses rather than the spin average of pseudoscalar and vector meson masses, leading to a modest reduction
of the statistical error. Second, we include the quartic terms in Eq. (3.1), allowing us to fold discretization effects
directly into the dispersion-relation fit. Although we consider these two changes improvements, the change in the
tuned κ values as compared to Ref. [58] stems primarily from the substantial increase in statistics on key ensembles.

The computations of the correlation functions needed to extract φD and φB have been carried out using the fiducial
values listed in Table III. These simulation κ’s were obtained near the beginning of the project, but while the runs
were in progress, we redetermined the hopping parameters utilizing increased statistics and reflecting an updated
value of r1 [69]. The resulting improved determinations of κc and κb differ slightly from the simulation values. In
order to adjust φ from the simulated value κsim to the tuned value κtuned, we write

φtuned = φsim +
dφ

dκ
(κtuned − κsim), (3.5)

where the derivatives dφ/dκ listed in Table V are obtained from tuning runs with nearby κ values. As explained in
Sec. VII, these derivatives are also used to propagate to the decay constants the statistical and scale uncertainties on
κtuned listed in Table V.

IV. TWO-POINT CORRELATOR FITS

We obtain the unrenormalized decay amplitude for every combination of heavy-quark mass, light-quark mass, and
sea-quark ensemble by fitting the heavy-light meson two-point correlation functions, described in Sec. IV A. We use
two independent fitting procedures, which we refer to as “Analysis I” and “Analysis II”. These procedures differ in
several respects. In Analysis I, we use a jackknife procedure for estimating errors, while in Analysis II, we use a
bootstrap procedure. The two analyses also differ in their methods for handling autocorrelations in the data and
in their choices of fit ranges, priors for masses and amplitudes, and numbers of states included. In the end, we use
Analysis I (Sec. IV B) to obtain central values, and use differences from fits with different distance ranges and/or
number of states included, and from Analysis II (Sec. IV C) to estimate the systematic error due to choices made in
the fit procedure.

A. Lattice correlators

The lattice axial-vector current is given by

A4
a(x) = [Ψ̄(x)γ4γ5Ω(x)]aχ(x), (4.1)

where χ(x) is the one-component field appearing in the staggered action, and Ω(x) = γ
x1/a
1 γ

x2/a
2 γ

x3/a
3 γ

x4/a
4 is the

transformation connecting naive and staggered fields [74]. The heavy-quark field Ψ is a four-component (Dirac) spinor
field, and the remaining free Dirac index is interpreted as a taste label.

To remove tree-level discretization errors in the lattice axial current, the heavy-quark field Ψ is “rotated”:

Ψ = [1 + ad1γ ·D]ψ, (4.2)

where ψ is the field appearing in the clover action. Tree-level improvement is obtained when

d1 =
1

2 +m0a
− 1

2(1 +m0a)
, (4.3)

where

m0a =
1

u0

(
1

2κ
− 1

2κcrit

)
(4.4)

is the tapdole-improved bare mass. The critical hopping parameter κcrit is the one for which the clover-clover pion
mass vanishes.
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As usual in lattice gauge theory, we obtain the matrix element in (2.3) from two-point correlation functions. We
introduce pseudoscalar operators

O(S)
a (x) =

∑
y

[ψ̄(y)S(y, x)γ5Ω(x)]aχ(x), (4.5)

depending on a “smearing” function S. In this work, we use two functions, the local (or unsmeared) source S(x, y) =
δxy, and the smeared source (in Coulomb gauge)

S(x, y) = δx4y4S(x− y), (4.6)

where S(r) is the 1S solution of the Richardson potential for the quarkonium systems [75]. We obtain S(x − y) by
scaling the radial Richardson wavefunction to lattice units, interpolating it to lattice sites, and then using it as the
spatial source for the heavy-quark propagators [76].

We introduce two-point correlation functions

Φ
(S)
2 (t) =

4∑
a=1

∑
x

〈
A4
a
†
(t,x)O(S)

a (0)
〉
, (4.7)

C
(S1S2)
2 (t,p) =

4∑
a=1

∑
x

eip·x
〈
O(S1)
a

†
(t,x)O(S2)

a (0)
〉
, (4.8)

where 〈•〉 now represents the ensemble average. For large time separations, Φ
(S)
2 is proportional to the matrix element

φH , and the proportionality is determined from C
(SS)
2 (t,0). Each two-point function is constructed from a staggered

quark propagator with local (δ) sources and sinks. We compute C2 functions for all (four) combinations S1, S2 = δ
and 1S, requiring heavy clover quark propagators with all combinations of 1S smeared and local sources and sinks.
Only the local sink clover propagators are needed to compute the Φ2 functions. With the sum over tastes in Eqs. (4.7)
and (4.8), the correlation functions Φ2 and C2 can also be cast in a heavy-naive formalism [77].

The staggered light quarks in the axial-current and pseudoscalar two-point correlation functions lead to the presence
of opposite-parity states that oscillate in time as (−1)t. Hence the two-point functions take the following forms:

Φ
(S)
2 (t) = A

(S)
Φ

(
e−Mt + e−M(T−t)

)
+ Ã

(S)
Φ (−1)

t
(
e−M̃t + e−M̃(T−t)

)
+ A

′ (S)
Φ

(
e−M

′t + e−M
′(T−t)

)
+ . . . , (4.9)

C
(S1S2)
2 (t, ~p = 0) = A(S1)A(S2)

(
e−Mt + e−M(T−t)

)
+ Ã(S1)Ã(S2) (−1)

t
(
e−M̃t + e−M̃(T−t)

)
+ A′ (S1)A′ (S2)

(
e−M

′t + e−M
′(T−t)

)
+ . . . , (4.10)

where a prime denotes a standard excited state of the same parity and a tilde denotes the mass or amplitude of an
opposite-parity state. The oscillating behavior is visible throughout the entire lattice temporal extent, and must be
included in fits to extract the ground-state mass and amplitudes.

We then obtain the renormalized decay amplitude in lattice units from the ratio

a3/2φH =
√

2
ZA4

Qq
A

(S)
Φ

A(S)
, (4.11)

where A
(S)
Φ and A(S) are the amplitudes of the ground state exponentials defined in Eqs. (4.9) and (4.10), and the

renormalization factor ZA4
Qq

is discussed in Sec. V.

B. Analysis I

Our primary analysis of two-point correlation functions Φ
(S)
2 and C

(S1S2)
2 —“Analysis I”—proceeds as follows. The

amplitudes A
(S)
Φ and A(S) in Eq. (4.11) are determined from fits to multiple correlators using the full data correlation

matrix. In Analysis I, we start by fitting combinations A, B, C and D in Table VI. We find combination A, which
uses the axial-current correlator with a 1S smeared source and the pseudoscalar correlator with a 1S smeared source
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TABLE VI. Combinations of two-point functions that can be used to extract a3/2φH . All combinations of two and three
correlators are shown. Additional combinations of four or more correlators are not enumerated.

two-point fit combination

function A B C D E F

Φ
(1S)
2 (t) • • • • •

Φ
(δ)
2 (t) • • • • •

C
(1S,1S)
2 (t) • • •

C
(δ,δ)
2 (t) • •

C
(δ,1S)
2 (t) • •

C
(1S,δ)
2 (t) •

TABLE VII. Numbers of states and time ranges used in two-point Analysis I. In the number of states, “1+1” means one simple
exponential and one oscillating state (opposite parity). The fits in columns two through five were used for the central values,
while the fits in columns six through nine were used in estimating systematic errors from the choice of fit ranges (see Sec. VII C).

central fits alternate fits

charm bottom charm bottom

≈ a [fm] nstates t range nstates t range nstates t range nstates t range

0.15 1+1 11–23 2+1 4–20 1+1 12–23 1+1 9–20

0.12 1+1 14–31 2+1 5–22 1+1 16–31 1+1 12–22

0.09 1+1 21–47 2+1 7–30 1+1 23–47 1+1 16–30

and sink, to be suitable. The extra complexity of combinations of three correlators (C and D) give little benefit, and
the errors from combination A are somewhat smaller than those from combination B.

For fits to charm-light meson correlators, we include just one simple exponential (the desired state) and one
oscillating exponential, which we call a “1+1 state fit”. We choose the minimum distance, tmin, such that contributions
from excited states are small compared to our statistical errors. Because we fit two propagators simultaneously while
imposing the constraint that the masses be equal, this is a six parameter fit: two amplitudes for each propagator and
a common mass for each of the simple and oscillating exponentials. To help stabilize the fit, the amplitudes and mass
of the oscillating state are weakly constrained by Gaussian priors, which are incorporated as additional terms in χ2 in
the fitting procedure [71, 72]. The central values for these priors are determined by a trial fit where the prior for the
opposite parity mass is set to 500 ± 250 MeV above the ground state mass,1 and the amplitudes are unconstrained.
Then the jackknife fits use central values for the opposite parity state amplitudes and mass determined by the trial fit,
with Gaussian widths that are typically 3–10 times the error estimates on these parameters, so in the end the priors
make a negligible contribution to χ2. We have checked, by varying the prior widths for three of the 0.09 fm ensembles,
that such wide priors are still narrow enough to ensure stable fits. We propagate the uncertainties in the correlator fits
to the subsequent chiral-continuum extrapolation with a jackknife procedure. In the jackknife resamples, we center
the priors at the values found in the fit to the full ensemble, again with widths that are typically three to ten times
the error estimates on these parameters.

The bottom meson correlators fall off much more rapidly with t, so it is difficult to take a large enough minimum
distance to insure that excited state contributions are negligible. Therefore we use a fit with two simple exponentials
and one oscillating exponential or a “2+1 state fit”. The mass of this excited state is also weakly constrained by
priors in the same way that the opposite parity mass is, except that the width of the prior on the excited state mass
is set to 200 MeV.

Figure 1 shows the heavy-light pseudoscalar mass as a function of the minimum time used in the fit. The left-hand
plots show sample fits to bottom correlators, while the right-hand plots show sample fits to charm correlators. We
select fitting ranges to give reasonable fits for all sea-quark ensembles and all valence-quark masses. We quantify the
goodness-of-fit with the “p value” [54], which is the probability that a fit with this number of degrees of freedom
would have a χ2 larger than this value. Table VII gives the fit ranges for charm-light and bottom-light correlators
on the three lattice spacings, both for the fits used for the central values and for alternate fits used in estimating

1 Although 500 MeV is a reasonable guess for the mass gap to the first excited state of the meson, we actually expect that this excited
state in the fit approximates the contributions of a number of physical states, likely including both single and multiparticle channels.
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FIG. 1. Ground-state rest mass MH versus minimum distance tmin included in the fit. For each lattice spacing, we show an
ensemble with the dynamical light-quark mass ml in the middle of the range. Similarly, we show correlators with a valence
quark mass mV in the center of the ranges used. The top two panels are at a ≈ 0.15 fm, the middle two at a ≈ 0.12 fm and the
bottom two at a ≈ 0.09 fm. In each row the left panel shows results for charm and the right-panel shows results for bottom.
The size of each plot symbol is proportional to the p value (confidence level) of the fit, with the symbol size in the legends of
the upper right panel corresponding to p = 50%. The red octagons are for fits including one state of each parity (“1+1 fits”)
and the blue squares are for fits including an excited state of the same parity as the ground state (“2+1 fits”). In each panel,
the arrow indicates the fit that is used in Sec. VI.
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systematic errors from choices of fit parameters. The meson masses, a3/2φH values, and p values for the data set used
in Analysis I are tabulated in Appendix B.

The decay amplitude a3/2φH is highly correlated among different light valence-quark masses on the same ensemble.
To propagate the correlations among the different valence masses to the subsequent chiral-continuum extrapolation,
in Sec. VI, we use a single-elimination jackknife procedure to estimate the covariance matrix of a3/2φH for the selected
valence quark masses. This is done by computing the covariance matrix of the single elimination jackknife samples,
and multiplying by (N − 1)

2
, where N is the number of configurations in the ensemble. In fact, when all valence

quark masses are kept, the covariance matrices are close enough to singular to be unmanageable. This reflects the
fact that the correlators for intermediate valence masses can be very accurately predicted from the correlators for
nearby masses, so some of the correlators provide very little new information. Therefore, we omit some valence quark
masses, using only those set in bold in Table II.

We use a single elimination jackknife rather than an omit-J jackknife because a large number of samples are needed
to compute a reliable covariance matrix. Successive configurations in the ensemble are not independent, however, so
we must take autocorrelations into account. We do so by repeating the calculation after first blocking the data by
a factor of four. (This block size of four is determined from tests on the a ≈ 0.12 fm lattices using fit Analysis II,
for which it gives a reasonable compromise between suppressing autocorrelations and leaving enough data points for
the statistical analysis.) We then compute, for each valence-quark mass i, the ratio Ri of the diagonal element of the
covariance matrix with a block size of four to the same element of the unblocked covariance matrix:

Ri = σ
(4)
ii /σii, (4.12)

where the superscript denotes the block size. The rescaled covariance matrix for a3/2φH is given by

C
(4)
ij = Cij

√
RiRj , (4.13)

which preserves the eigenvalue structure of the covariance matrix, whereas simply using the covariance matrix of the
blocked data would be more likely to produce spurious small eigenvalues. The rescaling factors Ri themselves have
errors, and in many cases turn out to be less than one. In such cases, we do not replace the Ri by one, despite the
fact that this would likely be a better estimate of the individual Ri. Doing so would yield a covariance matrix with a
bias toward larger errors, and could produce misleading estimates of goodness-of-fit in the later analysis.

Finally, we combine the covariance matrices from all of the individual ensembles into larger covariance matrices, one
each for the charm and bottom a3/2φH . Since different ensembles are statistically independent, these large covariance
matrices are block diagonal, with each block containing the correlations among different light valence-quark masses
on a single sea-quark ensemble.

C. Analysis II

Analysis II is a second, independent analysis of the two-point correlators that uses the bootstrap method to
propagate correlated errors from the two-point analysis through to the chiral extrapolations. In Analysis II, we
block average the two-point correlator data over four sequential configurations (which themselves are spaced by more
than four trajectories) before the analysis. In the bootstrap procedure, we resample the data (with replacement),
taking the number of sampled configurations to be equal to the number of blocked configurations in each bootstrap
ensemble. For each bootstrap ensemble, we recompute the covariance matrix. During the bootstrap process, we
randomly draw from a gaussian distribution new prior mean values of each constrained parameter belonging to an
excited state while keeping the widths fixed. The ground state parameters are given loose priors so that the fitted
values are determined by the data. To help stabilize the fits, the ground state prior means are not randomized in
the bootstrap. Prior values for the energy splittings are taken from a chiral quark model calculation for the D and
B meson systems [78]. Prior widths are taken to be about 200 MeV for excited states. Excited state amplitudes
log(A(S)) have a prior width σlogA = 2.

On each gauge ensemble, the same sequence of gauge resamplings is taken for all valence mq to preserve correlations

among a3/2φH values. Our final results are based upon 4,000 bootstrap replications of the data. We use the central
values of a3/2φH from the fits to the entire ensemble in the chiral-continuum extrapolation, and use the bootstrap
values to obtain the covariance matrix.

To optimize the determination of a3/2φH , we compare simultaneous fits of up to six two-point functions; the various
combinations of up to four functions are listed in Table VI. At a minimum, one axial-current correlator must be paired
with one propagator (combinations A or B in Table VI) to extract a3/2φH . Combination A, using smeared operators,
is used in Analysis I, described above. Because fits of four or more two-point functions over a wide time range can lead
to a poorly determined data covariance matrix having large rank relative to the number of available configurations, we
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focus on combinations having two or three correlators. Unlike combination A, combination B does not take advantage
of smeared sources and the ratio does not show convincing plateaus over the range of times with decent signal to
noise. Comparing combination C to D, the smeared source in C is less noisy than the smeared sink in D.

Given these considerations, for fits to charm correlators, we use two-point function combination C to obtain a3/2φH
which uses both of the axial current functions. We look for stability of the ground-state mass and amplitude when
varying tmin, tmax, and the number of excited states included in the fit. We also compare fit results from other
combinations of correlators to check that we have isolated the correct ground-state energy and matrix element. Our
final results come from fits accounting for two pseudoscalar states and two (oscillating) opposite-parity states.

For fits to bottom correlators, we use combination B for our final results; this is the same set used in Analysis I.
Combination C gives fits with rather low confidence levels for the B meson and tends to result in larger errors for
a3/2φH . Again, we examine fits varying the time range; we also try fits with up to three pseudoscalar states plus
three oscillating opposite parity states. We use these fits and fits to alternate combinations of two-point correlators
as a consistency check.

The fit results from the two different analyses are consistent with each other for most cases, but there are a few
cases where they differ by a standard deviation or more (see Figure 11). The a3/2φH results from the two analyses
are propagated through the chiral-continuum extrapolations in Secs. VI B and VI C. The resulting differences in the
extrapolated results in turn provide the basis for our systematic error analysis due to fit choices given in Sec. VII C.

V. HEAVY-LIGHT CURRENT MATCHING

In this section, we discuss in more detail the ingredients of Eq. (2.5), which allow a “mostly nonperturbative”
matching procedure [45].

A. Perturbative calculation of ρA4
Qq

The perturbative expansion of ρA4
Qq

can be written as

ρA4
Qq

= 1 + αs(q
∗)ρ

[1]
A4(mQa,mqa) + . . . . (5.1)

where αs is the strong coupling and ρ
[1]
A4 is the one-loop coefficient. The one-loop coefficient is calculated in Ref. [46]

using lattice perturbation theory, where we see explicitly that ρ
[1]
A4 is small because most of the one-loop corrections

cancel. The self-energy contributions cancel exactly (to all orders, in fact), and, in practice, we are in a region where

ρ
[1]
A4(mQa,mqa), viewed as a function of mQa, has two zeroes. Therefore the renormalization factor ρA4

Qq
is close to

unity for both bottom and charm.
The perturbative calculation of ρA4

Qq
in Eq. (5.1) proceeds as follows. We use αs(q

∗) defined in the V scheme [79]

as determined in Ref. [80], and take q∗ = 2/a, which is close to the optimal choice of Refs. [79, 81] for a wide range

of quark masses. The one-loop coefficients ρ
[1]
A4 are computed for light-quark masses amq = 0.001, 0.01, 0.04 to cover

the range used in this analysis. From these we obtain ρA4
Qq

at other light-quark masses by linear interpolation in

amq. For illustration, Table VIII lists ρA4
bq

and ρA4
cq

evaluated at the light valence mass amq = 0.01 for the eleven

sea-quark ensembles used in this work. Note that the sea-quark mass dependence is indirect, via the plaquette used
to determine αs(q

∗). The dependence on the light-quark mass in the current is very mild: for bottom, ρA4
bq

changes

with amq by 0.07–0.2%, depending on lattice spacing, and for charm, ρA4
cq

changes by around 0.1%. On the fine

ensembles, the amq dependence is almost as large as the total one-loop correction because the overall cancellation,
especially in ρA4

cq
, is so fortuitously good.

B. Nonperturbative computation of ZV 4
qq

and ZV 4
QQ

The nonperturbative part of the matching factor ZA4
Qq

is obtained from the temporal components of the clover-

clover and staggered-staggered vector currents. At zero-momentum transfer, the (correctly normalized) vector current
simply counts flavor-number, so it is possible to obtain ZV 4 nonperturbatively for any discretization and any mass [45].
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TABLE VIII. The perturbative correction factor ρA4
Qq

for the heavy-light current A4 at the simulated charm and bottom heavy

quark κ values given in Table III and at amq = 0.01 for the different sea-quark ensembles. The statistical errors associated
with the numerical integration are negligible.

≈ a [fm] aml/amh ρA4
bq

ρA4
cq

0.09 0.0031/0.031 1.0026 1.0000

0.0062/0.031 1.0026 1.0000

0.0124/0.031 1.0026 1.0000

0.12 0.005/0.05 1.0081 0.9959

0.007/0.05 1.0081 0.9959

0.010/0.05 1.0081 0.9959

0.020/0.05 1.0080 0.9960

0.030/0.05 1.0079 0.9961

0.15 0.0097/0.0484 1.0270 0.9937

0.0194/0.0484 1.0267 0.9938

0.0290/0.0484 1.0265 0.9938

For the staggered-staggered current, we compute

C
(S1S2)
3 (t2, 0, t1) =

∑
ab

∑
x,y

〈
O(S1)
a (t2,y)V 4

ab(0)O(S2)
b

†
(t1,x)

〉
, (5.2)

where, as in Eq. (4.5), O(S)
a is a smeared or local clover-staggered meson operator with mass chosen to optimize the

signal, and

V 4
ab(x) = χ̄(x)[Ω†(x)γ4Ω(x)]abχ(x) (5.3)

is the temporal component of the staggered-staggered vector current. The three-point functions C3 are computed
from the same staggered quarks used for the clover-staggered two point functions. The staggered quark is transformed
into an improved naive quark by applying the Ω matrix; this naive quark at time t1 is then used as the source term
when computing the charm propagator. We smear the source at t1 so that S1 = S2.

We compute ZV 4
qq

using a Dq meson [cf. Eq. (4.5)], which provides a good signal. The three-point function

C
(S1S2)
3 (t2, 0, t1) contains states of both the desired and the opposite parity, with the latter carrying oscillating

(−1)t dependence. We construct C
(S1S2)
3 (t2, 0, t1) with local sources S1 = S2 = δ and compute it at multiple even

and odd values of t1 and t2 in order to disentangle the ground-state amplitude from the other contributions.
Within the time range t1 < 0 < t2 and in the limit of large separations, |t1|, t2 � a,

C
(δ,δ)
3 (t2, 0, t1) = Z−1

V 4
qq
A2 exp (−E(t2 − t1))

+ Z ′AB
[
(−1)t1 exp (E′t1 − Et2) + (−1)t2 exp (Et1 − E′t2)

]
+ Z ′′B2(−1)(t1+t2) exp (−E′(t2 − t1)) + . . . , (5.4)

neglecting contributions from excited states. We extract ZV 4
qq

from a minimum χ2 fit to the three-point function using

the right-hand side of Eq. (5.4) as the model function. The fit is linear in the free parameters Z−1
V 4
qq

, Z ′′ and Z ′, while

we fix the ground-state energies E and E′, and the operator overlaps A and B to the values determined by fitting the

two-point function C
(δ)
2 (t,0). We use a single-elimination jackknife procedure to compute the data covariance matrix.

Table IX presents our results for ZV 4
qq

on the ensembles used in this work. The three-point functions for the ZV 4
qq

calculation are generated at a single source time, tsrc = 0 (instead of the four used for two-point functions Φ
(S)
2 and

C
(S1S2)
2 ). At a ≈ 0.12 fm we have results at two values of the sea quark masses which are consistent within errors.

At a ≈ 0.09 and 0.15 fm we have results for several values of mq. We do not see evidence for a dependence upon mq

with current statistics. The errors, however, increase at smaller quark mass. Hence, we use the ZV 4
qq

corresponding

to mq ∼ ms in Eq. (4.11). In the table, they are set in bold.
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TABLE IX. Light-light vector current renormalization factor ZV 4
qq

. Values in bold are used in computing the heavy-light current

renormalizations. With our conventions, the tree-level value of ZV 4
qq

is 2. A colon is used to represent the range of time values

included in the fit.

≈ a [fm] aml/amh nconf −t1 t2 amq ZV 4
qq

0.09 0.0124/0.031 518 23:12 11:13 0.0272 1.868(49)

23:12 11:13 0.0124 1.883(69)

0.12 0.01/0.05 592 15:9 7:11 0.03 1.853(45)

0.007/0.05 523 20:7 7:12 0.03 1.882(56)

0.15 0.0097/0.0484 631 20:5 4:12 0.0484 1.704(34)

20:5 4:12 0.029 1.709(40)

20:5 4:12 0.0242 1.711(42)

20:5 4:12 0.0194 1.707(45)

20:5 4:12 0.0097 1.662(55)

For the clover-clover current, we compute

C̃
(S1S2)
3 (t2, t1, 0) =

∑
x,y

〈
Õ(S1)†(t2,y)V 4

QQ(t1,x)Õ(S2)(0)
〉
, (5.5)

where

V 4
QQ(x) = Ψ̄(x)γ4Ψ(x) (5.6)

is the temporal component of the (rotated) clover-clover vector current. The clover-clover bilinear

Õ(S)(x) =
∑
y

ψ̄(y)S(x, y)γ5s(x) (5.7)

consists of a heavy-quark field corresponding to charm or bottom, as the case may be, and a light clover-quark field
s with mass chosen to provide a good signal. At large time separations, these three-point functions are proportional
to Z−1

V 4
QQ

, with the proportionality coming from

C̃
(S1S2)
2 (t) =

∑
x

〈
Õ(S1)†(t,x)Õ(S2)(0)

〉
. (5.8)

We compute ZV 4
QQ

using a Q̄s meson, where the strange quark is simulated with the clover action to circumvent

oscillating opposite-parity states [cf. Eq. (5.7)]. We restrict our calculation of C̃2,3 to S = S1 = S2 using both local and

1S smearing functions. The function C̃2 combines a local-local clover quark with mass around ms and a heavy clover

quark propagator with source and sink S. The function C̃3 requires the same heavy- and light-quark propagators as

needed in C̃2. An additional heavy-quark propagator originating from t2 has as its source the light quark propagator
restricted to t2, multiplied by γ5 and convolved with smearing function S.

In Eq. (5.7), we use a random color wall source with three dilutions for both the heavy and light spectator quarks
that originate from t = 0. We generate two- and three-point functions for both local-local and smeared-smeared
source-sink combinations where the smearing is applied to the heavy quark. We compute the 2- and 3-point functions
at several values of κ spanning a range from around the charm quark to the bottom quark. We determine ZV 4

QQ
from

a fit to the plateaus in the jackknifed ratio of the three-point and two-point functions. Our results are summarized
in Table X.

In order to properly normalize the derivative dφ/dκQ (see Eq. (3.5)), we need values of ZV 4
QQ

at κ values other than

those used in the ZV 4
QQ

simulations. We therefore fit the simulation results to the interpolating quartic polynomial

ZV 4
QQ

(κ) = 1 +

4∑
j=1

cjκ
j (5.9)

which reproduces the infinite mass limit ZV 4
QQ
→ 1. Our codes employ the hopping parameter version of the action;

so, at tree level c1 = −6u0 and for j > 1, cj = 0. We constrain the interpolation parameters to the tree-level values
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TABLE X. Heavy-heavy vector current renormalization factor ZV 4
QQ

computed at several κ values, covering the charm and

bottom quark masses, for three lattice spacings.

≈ a [fm] aml/amh nconf × nsrc κQ ZV 4
QQ

0.09 0.0062/0.031 1912× 2 0.1283 0.2749(4)

0.127 0.2830(4)

0.110 0.3856(6)

0.0950 0.4730(8)

0.0931 0.4840(9)

0.12 0.007/0.05 2110× 2 0.124 0.2899(4)

0.122 0.3028(4)

0.116 0.3410(5)

0.098 0.4507(7)

0.086 0.5209(10)

0.074 0.5894(15)

0.15 0.0194/0.0484 631× 2 0.122 0.3195(14)

0.118 0.3440(16)

0.088 0.5195(48)

0.076 0.5898(81)

TABLE XI. Heavy-heavy vector current renormalization factor ZV 4
QQ

corresponding to the charm and bottom κsim values used

in the decay constant simulations.

charm bottom

≈ a [fm] κQ ZV 4
QQ

κQ ZV 4
QQ

0.09 0.127 0.2829(4) 0.0923 0.4891(9)

0.12 0.122 0.3029(4) 0.086 0.5216(10)

0.15 0.122 0.3199(14) 0.076 0.5868(81)

taking σj = 4 as the widths. Table XI shows values for ZV 4
QQ

interpolated to the nominal charm and bottom κsim

used in our decay constant runs. Figure 2 plots the data in Table X together with the interpolation of Eq. (5.9).
To aid perturbative intuition, the values of ZV 4

QQ
in the figure are scaled by the tree-level expression 1 − 6u0κ; the

relation between κ and m0a/(1 +m0a) can be inferred from Eq. (4.4).

VI. CHIRAL AND CONTINUUM EXTRAPOLATION

In this section, we present the combined chiral and continuum extrapolations used to obtain the physical values of
the B(s) and D(s) meson decay constants. We first discuss the use of SU(3) chiral perturbation theory for heavy-light
mesons in Sec. VI A, giving the formulas used for the chiral fits and describing our method for incorporating heavy-
quark and light-quark discretization effects into the extrapolation. We then show the chiral fits for the D system in
Sec. VI B, and for the B system in Sec. VI C.

A. Chiral Perturbation Theory framework

The errors introduced by the chiral and (light-quark) continuum extrapolations are controlled with rooted staggered
chiral perturbation theory (rSχPT) [25, 26] applied to heavy-light mesons. In Ref. [42], the heavy-light decay constant
was calculated to one-loop in rSχPT at leading order in the heavy-quark expansion [(1/MH)0], where MH is a generic
heavy-light meson mass. A replica trick is used in rSχPT to take into account the effect of the fourth root of the
staggered determinant [18, 24].

In addition to using the form calculated in Ref. [42], we also use a chiral fit form that includes, in the loops, the
effects of hyperfine splittings (e.g., M∗B −MB) and flavor splittings (e.g., MBs −MB). These splittings are ∼ 100
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FIG. 2. Plot of ZV 4
QQ
/(1− 6u0κ) vs. m0a/(1 +m0a) for the three lattice spacings.

MeV, and so not much smaller than Mπ, despite the fact that they are formally of order 1/MH . Since the lightest
pseudoscalar meson masses in our simulations are ∼ 225 MeV, it is not immediately obvious that including the
splittings is necessary or useful. Their inclusion is motivated, first of all, by the observation of Arndt and Lin [82] that
finite-volume effects in the one-loop diagrams can be substantially larger with the splittings present. This is mainly
due to the fact that accidental cancellations in finite volume effects between different diagrams at (1/MH)0 disappear
once splittings are included. As described below, it is not difficult to include the splitting effects into the calculation
of Ref. [42]. We also discuss the extent to which including the splittings, but not other effects that could occur at
order 1/MH , is a systematic approximation. In practice, we do fits both including and omitting the splittings, and use
the difference as one estimate of the chiral extrapolation error. For central values, we include the splittings, because
this yields a more conservative estimate of finite-volume effects.

With staggered quarks, the (squared) pseudoscalar meson masses are

M2
ab,ξ = B0(ma +mb) + a2∆ξ, (6.1)

where ma and mb are quark masses, B0 is a parameter of χPT, and the representation of the meson under the taste
symmetry group is labeled by ξ = P,A, T, V, I [25]. The exact non-singlet chiral symmetry of staggered quarks as
ma,mb → 0 ensures that ∆P = 0. All of these pseudoscalars appear in the “pion” cloud around the heavy-light meson
in the simulation, and all of them therefore affect the decay constant.

Working at leading order [(1/MH)0] in the heavy-quark expansion and at one loop, or next-to-leading order (NLO),
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in the chiral expansion, the rSχPT expression for the decay constant with light valence quark q takes the form [42]

φHq = φ0
H

[
1 +

1

16π2f2

1 + 3g2
π

2

{
− 1

16

∑
e,ξ

`(M2
eq,ξ)

− 1

3

∑
j∈M(2,q)

I

∂

∂M2
Q,I

[
R

[2,2]
j (M(2,q)

I ;µ
(2)
I )`(M2

j )
]

−
(
a2δ′V

∑
j∈M̂(3,q)

V

∂

∂M2
Q,V

[
R

[3,2]
j (M̂(3,q)

V ;µ
(2)
V )`(M2

j )
]

+ [V → A]

)}

+ p(mq,ml,mh, a
2)

]
, (6.2)

where mq is the light valence-quark mass, e runs over the sea quarks, the lighter two of which have masses ml,
and the heavier, mh.2 The parameter φ0

H is independent of the light masses, and p is an analytic function. We fit
the charm and bottom systems separately, so φ0

H depends, in practice, on the heavy-quark mass. The meson mass
MQ,ξ is similar to Mab,ξ in Eq. (6.1), but constructed from a valence quark-antiquark, qq̄. The light-meson decay
constant f ≈ fπ ∼= 130.4 MeV and the H-H∗-π coupling gπ controls the size of the one-loop effects. Taste-violating
hairpin diagrams, which arise only at non-zero lattice spacing, are parameterized by δ′A and δ′V . The residue functions

R
[n,k]
j ({M}, {µ}) are defined in Ref. [26]. Chiral logarithms are written in terms of the functions `(M2) [83]:

`(M2) = M2 ln
M2

Λ2
χ

[infinite volume], (6.3)

`(M2) = M2

(
ln
M2

Λ2
χ

+ δ1(ML)

)
[spatial volume L3], (6.4)

δ1(ML) ≡ 4

ML

∑
r 6=0

K1(|r|ML)

|r|
. (6.5)

Here Λχ is the chiral scale, K1 the Bessel function of imaginary argument, and r any non-zero three-vector with
integer components. The mass sets in the residue functions of Eq. (6.2) are

µ(2) = {M2
U ,M

2
S}, (6.6)

M(2,q) = {M2
Q,M

2
η}, (6.7)

M̂(3,q) = {M2
Q,M

2
η ,M

2
η′}, (6.8)

where MU (MS) is the mass of the pseudoscalar ll̄ (hh̄) meson.
The salient feature of the chiral extrapolation of φHq is that the chiral logs have a characteristic curvature as

mq → 0 [84]. At non-zero lattice spacing, the presence of the additive splittings a2∆ξ in the meson masses reduces
the curvature of the chiral logarithms. The characteristic curvature returns, however, as the continuum limit is
approached.

To combine data from several lattice spacings into one chiral extrapolation, it is necessary to convert lattice
units to (some sort of) physical units. As mentioned in Sec. III A, we convert in two steps, first by canceling
lattice units with the appropriate power of r1/a. In particular, pseudoscalar meson masses [cf. Eq. (6.1)] become

r2
1M

2
ab,ξ = (r1/a)2(aMab,ξ)

2, and the decay constant [cf. Eq. (6.2)] becomes r
3/2
1 φH = (r1/a)3/2(a3/2φH), with a3/2φH

determined from Analyses I or II (cf. Sec. IV). Strictly speaking, one must take the quark mass dependence of r1

into account, either separately or by modifying the right-hand side of Eq. (6.2) accordingly. At the present level of
accuracy, we ignore this subtlety, canceling units ensemble-by-ensemble with the computed r1/a. Since r1 is expected
to depend smoothly on ml and mh, we are unlikely to introduce an uncontrolled error into the extrapolated decay
constants. (After completing the chiral-continuum extrapolation in r1 units, we then use r1 = 0.3117(22) fm (cf.
Sec. III A) to convert to MeV.)

2 The physical values of the average up-down quark mass and of the strange-quark mass are denoted by m̂ = (mu + md)/2 and ms,
respectively.
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To quantify the size of NLO (and higher) corrections to χPT, it is useful to define dimensionless parameters xq, xl
and xh proportional to the quark masses mq, ml and mh:

xq,l,h ≡
(r1B0)(r1/a)(2amq,l,h)

8π2f2
πr

2
1

.

Since the splittings a2∆ξ are added to the quark mass terms in Eq. (6.1), it is similarly useful to define

x∆ξ
≡ r2

1a
2∆ξ

8π2f2
πr

2
1

, (6.9)

x∆̄ ≡
r2
1a

2∆̄

8π2f2
πr

2
1

, (6.10)

where ∆̄ is the average pion splitting

∆̄ = 1
16 (∆P + 4∆A + 6∆T + 4∆V + ∆I). (6.11)

The xi are in “natural” units for χPT, in the sense that one expects that chiral corrections, when written as series in
the xi, have coefficients [or low-energy constants (LECs)] that are of order 1.

We then take the analytic function p in Eq. (6.2) to have the following form at NLO

Lval(xq + x∆val
) + Lsea(2xl + xh + 3x∆sea

) + La
a2

16π2f2
πr

4
1

, (6.12)

where Lval, Lsea and La are quark-mass-independent LECs that we fit from our data, and we define

x∆val
≡ 9

5
x∆̄ −

4

5
x∆I

, (6.13)

x∆sea
≡ 9

11
x∆̄ +

2

11
x∆I

, (6.14)

The low-energy constants Lval, Lsea and La depend implicitly on the chiral scale Λχ, so that the complete expression,
Eq. (6.2), is independent of Λχ. As in Ref. [42], we choose to include the a2 dependent terms x∆sea and x∆val

in
the coefficients of Lval and Lsea so that these coefficients represent those combinations of meson masses that arise
naturally under a change of Λχ in the chiral logarithms.

The LEC La arises from analytic taste-violating effects; it serves as a counterterm to absorb changes proportional
to the taste-violating hairpins δ′A and δ′V under a change in chiral scale. As such, we take the a2 coefficient of La in
Eq. (6.12) to vary with lattice spacing like x∆val

. As long as La then appears as an independent fit parameter, the
introduction of the x∆sea

and x∆val
terms in the coefficients of Lval and Lsea in Eq. (6.12) has a negligible effect on the

results from the chiral fits. However, we find that the introduction of these terms significantly reduces the magnitude
of La; in other words, most of the discretization error from the light quarks appears to be due to the a2 dependence
of the light meson masses in the chiral loops. We leave Lval , Lsea and La unconstrained in the fits that determine
central values; their size is of O(1) as expected (and is in fact ≤ 0.6).

In the region of the strange-quark mass, the data for the decay constants show some curvature, and at least some
quadratic terms in the quark masses (NNLO effects) must in general be added in order to obtain acceptable (p > 0.01)
fits. There are four such LECs, giving a NNLO contribution to p of the form

Q1x
2
q +Q2(2xl + xh)2 +Q3xq(2xl + xh) +Q4(2x2

l + x2
h). (6.15)

Fits omitting the Q1 and Q3 terms give poor confidence levels and are rejected; adding the Q2 and Q4 terms does not
change the fit results much, but increases over-all errors by up to 30%. To be conservative, we include all four terms
in fits for central values; other acceptable fits (for example, fixing Q2 or Q4 or both to zero) are included among the
alternatives used to estimate the systematic error of the chiral extrapolation.

For the central-value fits, the Qi are mildly constrained by Gaussian priors with central value 0 and width 0.5, since
that is roughly the expected size in natural units. After fitting, the posterior values satisfy |Qi| ≤ 0.5, and Q1 and
Q3 have errors ≈ 0.05 (much less than the prior width), indicating that they are constrained by the data. Q2 and Q4

have errors ∼ 0.5, indicating that they are largely constrained by the priors. Changing the prior widths for the Qi
to 1.0 has a negligible effect on central values and errors of the decay constants, although the posterior Q2 and Q4

typically increase in size and error, as expected.
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While the chiral form introduced so far gives acceptable simultaneous fits to our data from all available lattice
spacings, we still need to estimate the size of heavy-quark and generic light-quark discretization errors. Following
the Bayesian approach advocated in Refs. [71, 72], we add constrained lattice-spacing-dependent terms to the fit
function until the statistical errors of the results cease to increase appreciably. For the heavy quark, we take up to six
such terms, fE(m0a), fX(m0a), fY (m0a), fB(m0a), f3(m0a), and f2(m0a), where m0 is the heavy quark bare mass.
Details about the origin and form of these six functions are given in Appendix A. These functions estimate fractional
(not absolute) errors, and as such are included within the square brackets in Eq. (6.2) (or its equivalent, Eq. (6.20)
below). The first three are O(a2) corrections and are added to the fit with coefficients zi (aΛ)2, i ∈ {E,X, Y }, where
Λ is a scale characteristic of the heavy-quark expansion, and the zi are parameters with prior value 0 and prior
width 1 (for fY ) or

√
2 (for fE and fX , since they each appear twice in the analysis of Appendix A). The next two

terms are O(αsa) corrections, added with coefficients zi αsaΛ, i ∈ {B, 3}, with zi taken to have prior value 0 and

prior width 1 (for fB) or
√

2 (for f3, again because it appears twice). The final term arises from the propagation
to the decay constants of heavy-quark errors in the tuning of the heavy-quark hopping parameter, κ. It comes in
with coefficient z2 (aΛ)3, with z2 having prior value 0 and prior width 1. We take a large value Λ = 700 MeV, which
provides conservatively wide priors, especially for the first five terms. Once one of each of the first two types of terms
is added, the errors already reach ∼80% of their values with all six added.

Similar terms representing generic light-quark errors, which are not automatically included in the fit function
(unlike taste-violating terms), may also be added. With the asqtad staggered action, generic discretization effects are
of O(αsa

2). We allow the physical LECs φ0
H , Lval, Lsea, Q1, Q2, Q3, and Q4, to have small relative variations with

lattice spacing with coefficients Ciαs(aΛ)2, where i stands for any of the seven physical LECs, Λ is again taken to be
700 MeV, and the Ci have prior value 0 with prior width 1. This corresponds to a maximum of about a 3% difference
for a given LEC between the a ≈ 0.12 fm and the a ≈ 0.09 fm ensembles. Once several heavy-quark discretization
terms have been introduced, these light-quark terms further increase the total error of individual decay constants by
less than 10%. However, the errors on the decay constant ratios fDs/fD+ and fBs/fB+ are significantly increased
by light-quark discretization effects, because the heavy-quark effects on the ratios cancel to first approximation. For
our central values, we include all six heavy-quark and all seven light-quark terms, so the total error from a given fit
should estimate all (taste-conserving) discretization errors, as well as normal statistical effects. To estimate “heavy-
quark” and “light-quark” discretization effects separately, we set to zero the light- or heavy-quark discretization terms,
respectively, and then subtract the statistical errors in quadrature. Such separate errors are not relevant to any final
results quoted below, but are included as separate lines in the error budget for informational purposes.

As mentioned above, our preferred fit form modifies Eq. (6.2) by including the effects of hyperfine and flavor
splittings of the heavy-light mesons in one-loop diagrams. We now briefly describe how one may adjust the results
of Ref. [42] to include these splittings. In Eq. (6.2), the contributions proportional to g2

π come from diagrams with
internal H∗ propagators, namely the left-hand diagrams in Fig. 5 of Ref. [42]. Contributions with no factor of g2

π

come from diagrams with light-meson tadpoles, namely the right-hand diagrams in Fig. 5 of Ref. [42]. The latter
have no internal heavy-light propagators, so are unaffected by any heavy-light splittings. The splittings in the former
diagrams depend on whether the light-meson line is connected (Fig. 5a, left, of Ref. [42]), or disconnected (Fig. 5b,
left). In the disconnected case, the H∗ in the loop always has the same flavor (q) as the external Hq, so there is no
flavor splitting between the two, only a hyperfine splitting. In the connected case, the H∗ in the loop has the flavor
of the virtual sea quark loop (which we labeled by e in Eq. (6.2)), so there is flavor splitting with the external Hq, in
addition to the hyperfine splitting.

Let ∆∗ be the (lowest-order) hyperfine splitting, and δeq be the flavor splitting between a heavy-light meson with
light quark of flavor e and one of flavor q. At lowest order, δeq is proportional to the quark-mass difference (or
light-meson squared mass difference), which can be written in terms of a parameter λ1:

δeq ∼= 2λ1B0(me −mq) ∼= λ1(M2
E −M2

Q), (6.16)

where ME is the mass of an eē light meson. Here we have used the notation of Arndt and Lin [82] and included a
factor of B0 in the middle expression; B0 is omitted in the notation of Ref. [85], Eq. (16), and of Ref. [42], Eq. (45).

By convention, the mass of the external H is removed in the heavy quark effective theory, so the mass shell is at
k = 0, where k is the external three-momentum. When there is no splitting, the internal H∗ has its pole at the same
place, which makes the integrals particularly simple, giving the chiral log function `(M2), Eq. (6.3). If a splitting ∆
is present, the integrals involve a significantly more complicated function, which we denote

J(M,∆) = (M2 − 2∆2) log(M2/Λ2) + 2∆2 − 4∆2F (M/∆) [infinite volume]. (6.17)

Here the function F is most simply expressed [86, 87]

F (1/x) =

{
−
√

1−x2

x

[
π
2 − tan−1 x√

1−x2

]
, if |x| ≤ 1,

√
x2−1
x ln(x+

√
x2 − 1), if |x| ≥ 1,

(6.18)
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which is valid for all x.
It is then straightforward to write down the generalization of Eq. (6.2) to include splittings. The basic rule is to

replace

`(M2)→ J(M,∆) (6.19)

in the terms proportional to g2
π. It is not hard to show that J(M, 0) = `(M2), so this replacement is consistent

with the original result neglecting the splittings. In making the replacements, one must choose the correct value of
the splitting ∆ in each term. As mentioned above, in terms that come from the diagram with a disconnected light-
meson propagator, one must put ∆ = ∆∗. But in terms that come from the diagram with a connected light-meson
propagator, one must put ∆ = ∆∗ + δeq, because the internal heavy-light meson is a H∗e , while the external meson is
an Hq. The result for the heavy-light meson decay amplitude including the splittings is then

φHq = φ0
H

[
1 +

1

16π2f2

1

2

{
− 1

16

∑
e,Ξ

`(M2
eq,Ξ)

− 1

3

∑
j∈M(2,x)

I

∂

∂M2
X,I

[
R

[2,2]
j (M(2,x)

I ;µ
(2)
I )`(M2

j )
]

−
(
a2δ′V

∑
j∈M̂(3,x)

V

∂

∂M2
X,V

[
R

[3,2]
j (M̂(3,x)

V ;µ
(2)
V )`(M2

j )
]

+ [V → A]

)

− 3g2
π

1

16

∑
e,Ξ

J(Meq,Ξ,∆
∗ + δeq)

− g2
π

∑
j∈M(2,x)

I

∂

∂M2
X,I

[
R

[2,2]
j (M(2,x)

I ;µ
(2)
I )J(Mj ,∆

∗)
]

− 3g2
π

(
a2δ′V

∑
j∈M̂(3,x)

V

∂

∂M2
X,V

[
R

[3,2]
j (M̂(3,x)

V ;µ
(2)
V )J(Mj ,∆

∗)
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+ [V → A]

)}

+ p(mq,ml,mh, a
2)

]
. (6.20)

It is also straightforward to include finite-volume effects into Eq. (6.20). One simply replaces

J(M,∆)→ J(M,∆) + δJ(M,∆, L), (6.21)

where δJ(M,∆, L) is the finite-volume correction in a spatial volume L3. The correction can be written in terms of
functions defined in Refs. [44, 82]:

δJ(M,∆, L) =
M2

3
δ1(ML)− 16π2

[
2∆

3
JFV (M,∆, L) +

∆2 −M2

3
KFV (M,∆, L)

]
, (6.22)

with

KFV (M,∆, L) ≡ ∂

∂∆
JFV (M,∆, L), (6.23)

and δ1(ML) as given in Eq. (6.5).
Before turning to the fit details and results, we briefly discuss the extent to which including the splittings as in

Eq. (6.20), and not other possible 1/MH effects, is a systematic improvement on Eq. (6.2). In fact, in a parametric
sense within the power counting introduced by Boyd and Grinstein [85], this is a systematic improvement, as long as
we make some further specifications as to how Eq. (6.20) should be applied. As we detail below, however, the power
counting of Ref. [85] is only marginally applicable to our data. For that reason we ultimately fit to both Eq. (6.20)
and Eq. (6.2) and take the difference as one measure of the chiral extrapolation error.

For the following discussion, let ∆ be a generic splitting (∆∗ or δeq or a linear combination of the two), and M be
a generic light pseudoscalar mass. The power counting introduced in Ref. [85] takes

∆2, ∆M, M2

MH
� ∆ ∼M. (6.24)
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For our data, treating ∆ and M as the same size is not dangerous, even though ∆ is significantly smaller than our
simulation M values—at worst this means that we include some terms unnecessarily. The condition M2/MH � ∆,
which is necessary to drop other 1/MH contributions as still higher order, is marginally valid, however. For the D
system, M2

K/MD ≈ 130 MeV, which is roughly of the same size as ∆∗ and δsd. For the B system, M2
K/MB ≈ 47 MeV,

of the same size as ∆∗ but somewhat less than δsd. For the purposes of the chiral extrapolation, however, what matters
is the applicability of the power counting at the lowest simulated light meson masses, not its applicability at MK .3

For our lightest simulated pions with mass ∼MK/2, we can reduce the left hand side of the inequality in Eq. (6.24)
by a factor of four, at which point it becomes reasonably applicable.

Having tentatively accepted the power counting of Eq. (6.24), it is clear that F (M/∆) in Eq. (6.17) should be
treated as O(1). Then the difference between J(M,∆) and the chiral logarithm it replaces, `(M2) is of the same
order as `(M2) itself, so including the splittings becomes mandatory at the one-loop order to which we are working.
The next question is whether Eq. (6.2) includes all effects to this order. As discussed by Boyd and Grinstein, the key
issue is whether operators with two or more derivatives (two or more powers of residual momentum k) on the heavy
fields can contribute. Such operators are suppressed by 1/MH relative to the leading-order heavy-light Lagrangian,
which has a single derivative. Since we are keeping ∆∗, which is also in principle a 1/MH effect, one might worry that
such operators could contribute at the same order. The power counting implies, however, that the relevant diagrams
pick up a factor of (∆,M)/MH relative to the terms being kept in Eq. (6.20). The reason for the difference is that
the explicit extra factor of k turns into ∆ or M—the only dimensional constants available—after integration. In
the term that generates the hyperfine splitting itself, in contrast, the dimensional quantity balanced against 1/MH is
Λ—a heavy-quark QCD scale—rather than M . The power counting in Eq. (6.24) effectively treats Λ as larger than
M (so that ∆ ∼ Λ2/MH ∼M). Similarly, the term that generates the flavor splittings has a single factor of mq and
no residual momentum, and Eq. (6.24) effectively takes mq ∼ k in such terms.

Boyd and Grinstein do find some other contributions at the same order as Eq. (6.20), but most come from terms
that are simply Λ/MH times terms in the leading-order heavy-light Lagrangian or current, and thus give simply an
overall factor times the result without them. The exceptions are the terms multiplied by g2 in Eq. (15) of Ref. [85] and
by ρ2 in Eq. (18) of Ref. [85]. These are operators that have the same dimension as the original Lagrangian current
operators, but that violate heavy-quark spin symmetry, and therefore give different contributions to the pseudoscalar
and vector meson decay constants at this order. Since we are only looking at pseudoscalar meson decay constants
here, however, and since these effects are flavor-independent, we can also absorb all of the 1/MH effects into (1) the
effects of the splittings in the loop, described by Eq. (6.20), and (2) an overall factor in front of the full one-loop
result.

The overall factor in Eq. (6.20) is 1/(16π2f2). Since f is not fixed at one loop, one should in any case allow it to
vary over a reasonable range, which we take to be fπ to fK . We allow such variations even when we fit to the form
without splittings, Eq. (6.2). The difference between using fπ and fK corresponds to a 45% change in the size of the
one-loop coefficient, but produces only a 1 to 3 MeV change in the decay constants.4 We therefore assume that any
further 1/MH uncertainty in 1/(16π2f2) has negligible effects on our results.

Finally, there is a question of whether terms coming from taste violations contribute something new at the same order
in which we include splittings. Since taste-violating terms in the Lagrangian can enter just like light-quark masses,
this is a possibility in principle. Corresponding to the terms in the quark masses that generate flavor splittings of
heavy-light mesons (cf. Eq. (45) of Ref. [42]), there are taste-violating terms given in Eq. (51) of that paper. Just as
for the quark-mass terms, however, we are only interested here in contributions that change the heavy-light meson
mass, not ones coupling the mesons to pion fields. When the pion fields are set to zero, all the terms in Eq. (51) of
Ref. [42] just give a constant heavy-light meson mass term proportional to a2 that contributes equally to the H and
H∗ masses of all valence flavors. Terms that produce a hyperfine splitting would have to also violate heavy quark
spin symmetry, and hence be of order a2Λ/MH . Similarly, terms that produce flavor splitting would need to violate
flavor symmetry, and hence be of order a2mq/Λχ. Both such contributions are higher order in our power-counting.
Since there is no splitting, there is no contribution to the decay constants because the effect will vanish when we put
the external B or D meson on mass shell.

In our chiral fits, we take the physical light-quark masses, as well as the parameters B0, a2∆ξ, δ
′
A, and δ′V , from the

MILC Collaboration’s results of rSχPT fits to light pseudoscalars masses and decay constants [15, 88] on ensembles
that include lattice spacing a ≈ 0.15 fm through a ≈ 0.06 fm. Table XII shows the values used. In general, we
use older MILC determinations since newer versions, e.g., those in Ref. [69], do not cover the full range of lattice
spacings employed here (but are consistent where they overlap). The exceptions are the values of the taste-violating

3 We assume here that the fit to the data is good over the full mass range simulated. It is not important for the chiral extrapolation
that the fit be systematic in the region around MK , but it must describe the data in that range so that we can correctly interpolate to
the physical kaon mass. In Sec. VII, we check that the inclusion of points around MK in the fit does not significantly affect the chiral
extrapolation to light quark mass.

4 Most of the change in the size of the overall coefficient is compensated by a change in the LECs that come from the fit to our data.
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TABLE XII. Inputs to our heavy-light chiral fits taken from the MILC Collaboration’s light-meson chiral fits [15, 88]. The
physical bare-quark masses mu, md, m̂ ≡ (mu + md)/2, and ms are determined by demanding that the charged pion and
kaons take their physical masses after the removal of electromagnetic effects. Errors in the masses are due to statistics, chiral
extrapolation systematics, scale determination, and (for md and mu) the estimate of electromagnetic effects, respectively.
“Continuum” values are found from chiral fits that have been extrapolated to the continuum, but masses are still in units of
the “fine” (a ≈ 0.09 fm) lattice spacing, and with the fine-lattice value of the mass renormalization. Values for r21a

2δ′A and
r21a

2δ′V take into account newer MILC analyses [69] as noted in the text. The light-meson analysis determining these quantities
assumes that they scale like the taste-violating splittings ∆ξ and are larger by a factor of 1.68 on the 0.15 fm lattices than
on the 0.12 fm lattices, and smaller by a factor 0.35 on the 0.09 fm lattices than on the 0.12 fm lattices. The statistical and
systematic errors on r1B0 and r21a

2∆ξ are not given here; such errors have negligible effect on the heavy-light decay constants.

Quantity Lattice spacing

a ≈ 0.15 fm a ≈ 0.12 fm a ≈ 0.09 fm “continuum”

ams × 102 4.29(1)(8)(6) 3.46(1)(10)(5) 2.53(0)(6)(4) 2.72(1)(7)(4)

am̂× 103 1.55(0)(3)(2) 1.25(0)(4)(2) 0.927(2)(27)(13) 0.997(2)(32)(14)

amd × 103 2.20(0)(4)(3)(5) 1.78(0)(6)(3)(4) 1.31(0)(4)(2)(3) 1.40(0)(5)(2)(3)

amu × 104 8.96(2)(17)(13)(49) 7.31(2)(23)(10)(40) 5.47(1)(16)(8)(30) 5.90(1)(19)(9)(32)

r1B0 6.43 6.23 6.38 6.29

r21a
2∆A 0.351 0.205 0.0706 0

r21a
2∆T 0.555 0.327 0.115 0

r21a
2∆V 0.721 0.439 0.152 0

r21a
2∆I 0.897 0.537 0.206 0

r21a
2δ′A — −0.28(6) — 0

r21a
2δ′V — 0.00(7) — 0

hairpin parameters r2
1a

2δ′A and r2
1a

2δ′V . For them, the newer analysis including two-loop chiral logarithms gives larger
systematic errors and a changed sign of the central value of r2

1a
2δ′V , which has always been consistent with zero. For

these parameters, we therefore use the wider ranges listed in Table XII, which encompasses both types of analyses.
For comparison, the results of the analysis of Ref. [88] were r2

1a
2δ′A = −0.30(1)(4) and r2

1a
2δ′V = −0.05(2)(4).

In order to fit Eq. (6.20) to our lattice data, it is also necessary to input values for the hyperfine splitting ∆∗ and
for λ1 in Eq. (6.16). For B mesons, we have [54]

∆∗ = MB∗ −MB ≈ 45.8 MeV, (6.25)

δsd = MBs −MB ≈ 87.0 MeV, (6.26)

λ1 ≈ 0.192 GeV−1, (6.27)

where we use ME = MS = 0.6858(40) GeV [70] and MQ = Mπ0 ≈ 135.0 MeV to obtain λ1 from the experimental
data. Similarly, for D mesons, we have

∆∗ = MD∗0
−MD0 ≈ 142.1 MeV, (6.28)

δsd = MDs −MD± ≈ 98.9 MeV, (6.29)

λ1 ≈ 0.219 GeV−1. (6.30)

In the chiral fit, we input the relevant physical ∆∗ and λ1 from either Eqs. (6.25)–(6.27) or (6.28)–(6.30), and
then use Eq. (6.16) with the actual me and mq from each data point, and B0 the slope for a given ensemble, from
Table XII. We emphasize here that B0 comes from a simple tree-level chiral fit of light meson masses to Eq. (6.1). This
is adequate for our purposes, since the resulting meson masses are only used within the one-loop chiral logarithms.

We can now present the actual chiral fits and show how we extract results and systematic errors from them.
Recall that we compute φHq for many combinations of the valence and light sea-quark masses, and at three lattice
spacings: a ≈ 0.15, 0.12, and 0.09 fm. We fit all the decay constant data to the form given either by Eq. (6.20) or by
Eq. (6.2). One-loop finite-volume effects are included through Eq. (6.21) or Eq. (6.4). There are four unconstrained
free parameters in our fits: the LO parameter φ0

H , and the one-loop LECs Lval, Lsea, La [Eq. (6.12)]. The central
fit fixes the chiral coupling f at fπ, but a range of couplings are considered in alternative fits, as described in more
detail in Sec. VII. Similarly, the H-H∗-π coupling gπ, which is poorly constrained by our data, is taken in the range
0.51 ± 0.20. This encompasses a range of phenomenological and lattice determinations [86, 89–94], as discussed in
Ref. [56]. In the central fit, gπ is held fixed at 0.51, while it is varied in alternative fits described in Sec. VII. Although
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changing gπ is equivalent to changing f when splittings are omitted [cf. Eq. (6.2)], the effects are inequivalent when
splittings are included [cf. Eq. (6.20)]. This is especially true of the finite-volume effects, for which the splittings have
the potential to produce significant changes [82].

Some additional parameters constrained by Bayesian priors are also included in the chiral fits, as discussed above.
The taste-violating hairpin parameters δ′V and δ′A are given by the ranges in Table XII. In addition, up to six
heavy-quark and up to seven light-quark lattice-spacing dependent terms, are added for investigation of discretization
effects. Except where otherwise noted, all twelve such terms are included in the fits plotted below: this gives errors
that include true statistical errors plus our estimate of discretization effects from the heavy quarks and generic (taste
non-violating) discretization errors from the light quarks. In addition, some or all of the (mildly) constrained NNLO
LECs, Q1, . . . , Q4, are included. Again, unless otherwise noted, the fits below include all four such parameters; such
fits tend to give larger (and hence more conservative) errors than fits that restrict the number of these parameters.
In total, there are 23 fit parameters in the central fits: the 19 constrained parameters listed in this paragraph, and
the 4 unconstrained parameters listed in the previous paragraph.

B. Chiral fits and extrapolations for the D system

Figure 3 shows our central chiral fit to r
3/2
1 φD+ and r

3/2
1 φDs . Data from ensembles at a ≈ 0.15 fm, a ≈ 0.12 fm

and a ≈ 0.09 fm are shown, but the a ≈ 0.15 fm ensembles are not included in the fit. The points and covariance
matrix are obtained from Analysis I (Sec. IV B) of the two-point functions. For clarity, only the unitary (full QCD)
points are shown for φD (and approximately unitary for φDs), but the fit is to all the partially-quenched data on the
a ≈ 0.12 fm and a ≈ 0.09 fm ensembles. The fit properly takes into account the covariance of the data; χ2/dof and
the p value (goodness of fit) are reasonable, as shown. The points in Fig. 3 are plotted as a function of mass mx,
where, for φD+ , the light valence mass mq and the light sea mass ml are given by mq = ml = mx. For φDs , only

FIG. 3. Central chiral fit for the D system, based on Analysis I of the fits to 2-point correlators. Only (approximately) unitary
points are shown. Data from ensembles at a ≈ 0.15 fm, a ≈ 0.12 fm and a ≈ 0.09 fm are shown, but the a ≈ 0.15 fm ensembles
are not included in the fit. The bursts show extrapolated values for φDs and φD+ , with the purely statistical errors in bright
red and the statistical plus discretization errors in darker red. The physical strange-quark mass corresponds to an abscissa
value of mx ≈ 0.1.
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ml = mx varies, while mq is held fixed at the value msv near the physical strange mass ms.
5 In order to be able to

compare ensembles at different lattice spacings, we have adjusted the bare quark masses by the ratio Zm/Z
0.09 fm
m ,

where Zm is the (one-loop) mass renormalization constant [95], and Z0.09 fm
m is its value on the a ≈ 0.09 fm ensembles.

The continuum extrapolation is carried out by taking the fitted parameters and setting a2 = 0 in all taste-violating
terms (parameterized by ∆ξ, δ

′
A, δ′V , and La), all heavy-quark discretization effects (parameterized by zE , zX , zY ,

zB , z3, and z2) and all generic light-quark discretization effects (parameterized by Ci). The red lines (solid for φD+ ,
dotted for φDs) show the effect of extrapolating to the continuum and setting the strange quark mass (both sea, mh,
and valence, msv ) to the physical value ms.

Finally, the bursts give the result after the chiral extrapolation in the continuum, i.e., setting mx = md for φD+ ,
and mx = m̂ for φDs . The larger, dark red, error bars on the bursts show the total error from the fit, which includes
heavy-quark and generic light-quark discretization errors using Bayesian priors, as described above. The smaller,
bright red error bars, show purely statistical errors, which are computed by a fit with all the discretization prior
functions turned off. In plotting the red line for φD+ , the light sea mass is shifted slightly (ml = mx + m̂ −md) so
that it takes its proper mass when mx = md. (We neglect isospin violations in the sea.) The small mass differences
between m̂ and md (and the corresponding difference between m̂ and mu for the B+) produce changes in φ that are
much smaller than our current errors, but we include them here with an eye to future work, where the precision will
improve.

The trend of the data for the coarsest lattice spacing (a ≈ 0.15 fm, the magenta points in Fig. 3) tends to be rather
different than for the finer lattice spacings, especially for the Ds, which is why we exclude the a ≈ 0.15 fm data from
the central fit. This trend is even more exaggerated for the B system, but with particularly large statistical errors;
see Fig. 6 below. Nevertheless, the effect of including the a ≈ 0.15 fm points in the fit is a rough indication of the
size of discretization errors. Figure 4 shows what happens to the fit when these points are included: φD+ and φDs
each move up an amount comparable to (but less than) the size of the larger (dark red) error bars, which represent

FIG. 4. Same as Fig. 3, but including points at a ≈ 0.15 fm in the chiral-continuum fit.

5 On the a ≈ 0.15 fm ensembles, msv is equal to the value of the strange sea quark mass mh (amsv = 0.0484), but on the other two
ensembles we take it lower than mh, because mh has been chosen somewhat larger than the physical strange mass. In the figure,
amsv = 0.415 for the a ≈ 0.12 fm ensembles and amsv = 0.272 for the a ≈ 0.09 fm ensembles.
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heavy and generic light quark discretization errors (as well as statistical errors, which are smaller). The consistency
is reassuring.

As discussed in Sec. IV, we also examine Analysis II of the 2-point functions. Figure 5 shows the effect of using
Analysis II in the chiral fits. The differences in the decay constant results between Fig. 3 and Fig. 5 are included in the
decay-constant error budgets as a “fitting error”. Note that the covariance matrix calculation in Analysis II results
in an apparent underestimate of χ2 (and, consequently, a high apparent p value). We believe that this stems from
binning of the data to remove autocorrelation effects, which has the disadvantage of reducing the number of samples
used to compute the covariance matrix. It is then difficult to determine small eigenvalues accurately. Indeed the
eigenvalues of the (normalized) correlation matrix tend to have a lower bound of ∼ 10−4 to 10−3 with this approach,
whereas they typically go down to 10−5 in Analysis I. [Recall that in Analysis I we keep all samples, and deal with
autocorrelation effects by Eq. (4.13).] Nevertheless, the difficulty with small eigenvalues explains only a small fraction
of the difference between the results from Analyses I and II. For example, fD is changed by only 0.2 MeV when we
smooth eigenvalues from Analysis I that are less than 10−3, following the method of Ref. [96]. This may be compared
to the total difference between fD in Analyses I and II, which is 1.7 MeV.

C. Chiral fits and extrapolations for the B system

Results for the B system closely resemble those for the D system in most respects. One important difference is that
the signal-to-noise ratio is worse for the B system because the mass difference that controls the noise, 2mB−mηb−mπ,
increases with the mass of the heavy quark [97]. Therefore, the preferred fit in Analysis I for the charm case (1 simple
exponential + 1 oscillating exponential at large tmin) is too noisy here, and we must use fits with an extra excited
state and smaller tmin (see Sec. IV B). Consequently, our B-system results have larger statistical errors. On the other
hand, heavy-quark discretization errors are smaller in the B system. In the HQET analysis of discretization effects
they appear in the heavy-quark expansion, which works better for B’s to begin with [63].

Figure 6 shows, for unitary points only, our central chiral fit for the B system. This is based on Analysis I of the
2-point functions. As in Fig. 3, the red lines (solid for φB+ , dotted for φBs) show the effect of extrapolation to the
continuum and setting the strange quark mass to its physical value ms. For the solid red line, the light sea mass is

FIG. 5. Same as Fig. 3, but using Analysis II of the 2-point function.



27

again shifted slightly, but now ml = mx + m̂−mu, so that it takes its proper mass when mx = mu. The bursts show
the final results, and come from setting mx = mu for φB+ and mx = m̂ for φBs . As before, the smaller, bright red,
error bars, show purely statistical errors, and the larger, dark red, error bars come from the fit with Bayesian priors
and include heavy-quark and generic light-quark discretization errors as well as statistical errors.

In Fig. 6, the a ≈ 0.15 fm data are both noisy and far from those of the finer lattice spacings. Therefore, these
ensembles are again dropped from the central fit. Figure 7 shows the effect of including the a ≈ 0.15 fm points.
Note that the resulting continuum-extrapolated line for φBs (dotted red line) now has what appears to be a rather
unphysical shape, showing a significant initial increase as the light sea-quark mass is decreased, starting at the right
side of the graph. There are several possible causes for the large discretization effects at a ≈ 0.15 fm. These include
heavy quark effects (aMH takes its largest value in our analysis, ∼ 4, on these points), light quark taste violations
(a ≈ 0.15 fm ensembles are often excluded from light quark analyses [98] because of large a4 corrections), and the fact
that the improved gauge action does not remove O(αsa

2) errors due to quark loops. In addition, there is the simple
problem of the large statistical noise for B system, which is worst at the coarsest lattice spacing, as seen clearly in
Fig. 7. The end result is that the differences caused by including the a ≈ 0.15 fm points in the standard (Bayesian) fit
is 10 to 20% larger than the dark red error bars in Fig. 6, and 40 to 60% larger than discretization errors estimated
by removing the statistical errors from the dark red bars. Because the trend for a ≈ 0.15 fm is so different from
the other spacings, and because of the unphysical behavior when these points are included in the fit, we believe this
difference overestimates the true discretization error. Nevertheless, to be conservative, we increase the discretization
error estimate to take into account the effect of including the a ≈ 0.15 fm ensembles, as described in Sec. VII.

Figure 8 shows the effect of using Analysis II of the correlation functions. In order to make these comparisons as
direct as possible, we first turn off all the Bayesian discretization terms in the fits. Compared to the results from
Fig. 6, this fit gives a value of fBs about 1 MeV higher and a value of fB+ about 2 MeV lower. These differences are
included in our estimate of the fitting errors due to excited state contamination in Sec. VII.

FIG. 6. Central chiral fit for the B system, with data from Analysis I of the 2-point functions. Only (approximately) unitary
points are shown. Data from ensembles at a ≈ 0.15 fm, a ≈ 0.12 fm, and a ≈ 0.09 fm are shown, but the a ≈ 0.15 fm ensembles
are not included in the fit. The bursts show extrapolated values for φBs and φB+ , with the purely statistical errors in bright
red and the statistical plus discretization errors in darker red. The physical strange-quark mass corresponds to an abscissa
value of mx ≈ 0.1.
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VII. ESTIMATION OF SYSTEMATIC ERRORS

In this section, we present a careful, quantitative accounting for the uncertainties in our calculation. We consider
in turn discretization errors, fitting errors, errors from inputs r1 and quark-mass tuning, renormalization, and finite-
volume effects. Table XIII details our error budget.

A. Heavy-quark and generic light-quark discretization effects

As described in Sec. VI and Appendix A, we parameterize possible heavy-quark and generic light-quark discretiza-
tion effects and follow a Bayesian approach in including such effects in our chiral fitting function. Consequently, the
raw “statistical” error that comes from our fits is not a pure statistical error but includes an estimate of the errors
coming from the discretization effects. This inclusive error is shown with the dark red error bars in the plots in
Sec. VI. For the D system, it is listed in the first line of Table XIII.

In the B system, the effect on the continuum-extrapolated results caused by including the the a ≈ 0.15 fm data
can be somewhat larger than the discretization error estimated in the Bayesian approach. To be conservative, we
therefore replace the Bayesian estimates in such cases with the difference between a fit with and without the a ≈ 0.15 fm
ensembles included. (These comparison fits do not themselves include the Bayesian discretization error terms.) The
pure statistical error is then added in quadrature to the difference to get the “statistics ⊕ discretization” error shown
for fB+ and fBs in Table XIII. (For the ratio fBs/fB+ , the Bayesian estimate was larger than the error determined
this way, so we use the former.) For comparison, the Bayesian-determined errors for fB+ and fBs are 5.5 and 5.1 MeV,
respectively.

For informational purposes, it is useful to break down this inclusive error into its component parts, at least approx-
imately. We can see what errors to expect and, hence, target for improvement in future simulations. In particular,
with our current actions, the light-quark and heavy-quark discretization errors should behave differently as a function
of lattice spacing, with heavy-quark errors decreasing more slowly as a is reduced. To extract the pure statistical
errors, we rerun the fits with all the Bayesian discretization terms set to zero. We then find the pure heavy-quark
(or pure light-quark) discretization contributions, by turning back on the heavy-quark (light-quark) terms, and then

FIG. 7. Same as Fig. 6, but including points at a ≈ 0.15 fm in the fit.
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subtracting in quadrature the pure statistical errors from the resulting raw errors. These individual errors are shown
in Table XIII in parentheses. Note that the total error at the bottom of the table includes the error on the first line,
not the sum of the three errors in parentheses, when these differ. Note also that the discretization errors are similar
to what we would have obtained with less sophisticated power counting.

B. Chiral extrapolation and taste-violating light-quark discretization effects

As described in Sec. VI, we modify the chiral fit function in a variety of ways to estimate the error associated with
the chiral extrapolation:

χ1. Set the chiral coupling f to fK instead of fπ.

χ2. Allow the chiral coupling f to be a Bayesian fit parameter, with prior value fπ and prior width equal to fK−fπ.

χ3. Replace the H-H∗-π coupling gπ (which is 0.51 in the central fit) with 0.31 or 0.71, which are the extremes of
the range discussed in Sec. VI.

χ4. Allow gπ to be a constrained fit parameter, with prior value 0.51 and prior width 0.20.

χ5. Fix to zero those NNLO analytic terms [Q2 and/or Q4 in Eq. (6.15)] that may be eliminated without making
the fit unacceptably poor.

χ6. Use the chiral function without hyperfine and flavor splittings, i.e., use Eq. (6.2) instead of Eq. (6.20).

χ7. Use combinations of modifications χ1 and χ3 or modifications χ2 and χ3. These choices can produce significantly
larger deviations since changes in gπ have a similar effect on the fit function as changes in f .

These modifications typically change the decay constant by 1–3 MeV, and the ratios by 1–1.5%. We take the chiral
extrapolation error of a given quantity to be the largest change (of either sign) under the above modifications, and

FIG. 8. Same as Fig. 6, but using Analysis II of the 2-point functions.
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TABLE XIII. Total error budget for the heavy-light decay constants. Uncertainties are in MeV for decay constants. The
total combines errors in quadrature. The first row includes statistics, heavy-quark discretization errors, and generic light-quark
discretization errors, as explained in the text. Errors in parentheses are approximate sub-parts of errors that are computed in
combination.

Source fD+ (MeV) fDs (MeV) fDs/fD+ fB+ (MeV) fBs (MeV) fBs/fB+

Statistics ⊕ discretization 9. 2 8. 9 0. 014 5. 8 6. 0 0. 013

(statistics) (2. 3) (2. 3) (0. 005) (3. 6) (3. 4) (0. 010)

(heavy-quark disc.) (8. 2) (8. 3) (0. 007) (3. 8) (4. 3) (0. 004)

(light-quark disc.) (2. 9) (1. 5) (0. 012) (2. 5) (2. 5) (0. 007)

Chiral extrapolation 3. 2 2. 2 0. 014 2. 9 2. 8 0. 014

Two-point functions 3. 3 1. 6 0. 013 3. 0 4. 1 0. 015

Scale (r1) 1. 0 1. 0 0. 001 1. 0 1. 4 0. 001

Light quark masses 0. 3 1. 4 0. 005 0. 1 1. 3 0. 006

Heavy quark tuning 2. 8 2. 8 0. 003 3. 9 3. 9 0. 005

u0 adjustment 1. 8 2. 0 0. 001 2. 5 2. 8 0. 001

Finite volume 0. 6 0. 0 0. 003 0. 5 0. 1 0. 003

ZV 4
QQ

and ZV 4
qq

2. 8 3. 4 0. 000 2. 6 3. 1 0. 000

Higher-order ρQqA4
1. 5 1. 8 0. 001 1. 4 1. 7 0. 001

Total Error 11. 3 10. 8 0. 025 9. 1 10. 0 0. 026

list it in Table XIII. In several cases, (fD+ , fDs/fD+ , and fBs/fB+) the largest change comes from modification χ6,
eliminating the heavy-light splittings. The fit without the splittings is shown for the D system in Fig. 9. It may be
compared to Fig. 3 to see the effects: the curvature at small mass for φD+ is slightly greater without the splittings,
which results in a decrease of fD+ of 3.2 MeV. Note that the p values of the two fits are almost identical, so the
goodness-of-fit cannot be used to choose one version of the chiral extrapolation over the other.

Modifications of f and/or gπ produce the largest changes in the other quantities, namely fDs , fB+ and fBs . In
particular, putting f = fK and gπ = 0.31 results in an increase of +2.9 for fB+ and +2.8 MeV for fBs . The modified
fit is shown in Fig. 10, and may be compared with Fig. 6 to see the effects of the changes. Increasing f and decreasing
gπ both suppress the chiral logarithms [cf. Eq. (6.20)] and give fit functions with less curvature and smaller slope at
low quark mass.

In Sec. VI A, we argued that the fact that the chiral power counting is at best marginally applicable in the
neighborhood of MK is not a problem for the chiral extrapolation. To test this, we remove the largest two valence
quark masses from each ensemble, and repeat the analysis. The heaviest valence masses are then 0.73ms on the
a ≈ 0.09 fm ensembles and 0.58ms on the a ≈ 0.12 fm ensembles. For all quantities, the differences in final results
from the central analysis are comparable to or less than the purely statistical errors, and always significantly less than
the chiral error determined by the comparisons χ1–χ7 above. Furthermore, the chiral fit parameters never change by
more than the statistical errors.

Since the rSχPT fit functions in Eqs. (6.2) and (6.20) explicitly include one-loop discretization effects coming from
taste violations in the (rooted) staggered light quark action, the chiral error estimates we describe here inherently
include taste-violating discretization errors. However, it seems unlikely that the current data can accurately distinguish
between such taste-violating errors of order α2

sa
2 and generic light-quark discretization effects of order αsa

2, or even
heavy-quark discretization effects. Indeed, the taste-violating LEC La [cf. Eq. (6.12)] is not well constrained by our
fits and is consistent with zero within large errors. The central fits give

La = +0.6± 6.5 (D system), (7.1)

La = −1.9± 8.8 (B system), (7.2)

where the error is the raw statistical error. (Note that we do not constrain La by any prior width.) The errors in La
decrease by about 10% if Bayesian parameters for generic light-quark errors are removed, and an additional 10% if the
parameters for heavy-quark errors are removed. Thus, there is “cross talk” between various error sources, making it
difficult to completely distinguish the various types of discretization errors. Future work, with more and finer lattice
spacings, should make a cleaner separation possible.
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C. Fitting errors

The “fitting errors” are the errors introduced in the analysis of the two-point correlators. They represent the effects
of various choices of fit ranges and fitting functions, and are an estimate of the systematic effect of the contamination
by excited states. We compare results from the three choices of two-point fitting (see Sec. IV): Analysis I, Analysis II,
and a modified Analysis I using 1 simple + 1 oscillating state, but values of tmin larger than those described in
Sec. IV B.

Some of these differences may, in fact, be due simply to statistical effects, and hence already included in the
statistical error. Figure 11 shows the differences between values of φBq in Analyses I and II, divided by the average
statistical error for each of the common partially quenched data points. Only 10 of 74 differences are greater than 1
statistical σ. Nevertheless, there appears to be some significant systematic trend in that 46 of 74 points are positive.
To be conservative, we take the largest difference between the Analysis-I fits and the other two fits as the fitting error
for each physical quantity, and list it in Table XIII. For fDs and fBs , the difference is largest for chiral fits based on
2-point Analysis II, while, for the other four quantities, the difference is largest for the modified Analysis I.

D. Scale uncertainty

We use the scale r1 = 0.3117(22) fm to tune the values of the quark masses and convert the decay constants into
physical units (see Sec. III A). To find the scale errors on the final results, we shift r1 to 0.3139 fm or 0.3095 fm

and redo the analysis. Although φH scales like r
−3/2
1 , the change in the results under a change in r1 is smaller than

pure dimensional analysis would imply, because our estimates of the physical light masses and the heavy-quark κc

and κb also shift, producing partially compensating changes in φH . At r1 = 0.3139 fm, we shift the light masses in
Table XII upward by the scale error shown in that table. [The lattice light-quark masses scale like r2

1, because they
are approximately linear in the squared meson masses (r1mπ)2 and (r1mK)2.] Similarly, we shift the tuned κc and κb

downward by the scale error in Table V because the bare heavy quark mass increases with r1. We then adjust φB(s)

and φD(s)
at each lattice spacing using Eq. (3.5) and the values of dφ/dκ given in Table V. Redoing the preferred

FIG. 9. Same as Fig. 3 but omitting heavy-light hyperfine and flavor splittings in the chiral fit function.
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chiral fits shown in Figs. 3 and 6, extrapolating to the continuum, and plugging in the adjusted continuum light quark
masses gives the scale error listed in Table XIII.

E. Light-quark mass determinations

To estimate the error from the light-quark mass determination, we follow a similar procedure to that in the scale-
error case. We shift the continuum light quark masses in Table XII by the sum in quadrature of all errors except
scale errors. This includes the statistical errors, the chiral errors and, where relevant, the electromagnetic errors. We
then plug the new masses into the continuum-extrapolated chiral fits and take the difference from the central results
to give the errors listed in Table XIII. The relative direction of shifts on different masses makes little difference in
the size of the errors on the decay constants fDs , fD+ , fBs , and fB+ , since they are sensitive primarily to the valence
quark masses. However, it does affect the error of the ratios fDs/fD+ and fBs/fB+ . The largest effect clearly occurs
when the strange mass is shifted in the opposite direction from the lighter masses. To be conservative, we take the
size of change of the ratios in this case as the error, but this is almost certainly an overestimate because the statistical
and chiral extrapolation errors on the light quark masses are positively correlated between the strange mass and the
other masses.

Note that the errors from the light-quark masses in Table XIII are much larger for fDs and fBs than for fD+ and
fB+ . That simply reflects the facts that the decay constants have a nonzero limit when the quark masses vanish,
and that the dependence on the quark masses is reasonably linear. Thus a given percent error in the strange mass
produces a much larger percent difference in fDs and fBs , than the same percent error in the d or u mass does in fD+

and fB+ .

F. Bottom and charm quark mass determinations

The propagation of statistical errors in the tuned κc and κb to the decay constants is complicated by the fact that
the independent errors at each lattice spacing affect the final results in a nontrivial way through the continuum and

FIG. 10. Same as Fig. 6 but with f = fK and gπ = 0.31 in the chiral fit function.
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chiral extrapolations. At each lattice spacing, we choose 200 gaussian-distributed ensembles of trial κ values with
central value equal to the tuned values, and standard deviation equal to the statistical error, taken from Table V.
For a given choice of trial κ values at each lattice spacing, we produce an adjusted trial data sample by shifting the
φH values according to Eq. (3.5), but with the trial values replacing the tuned values. We then perform the complete
chiral fit and extrapolation procedure on each of the 200 trial data sets. The standard deviation over trials of a given
decay constant or decay constant ratio is taken to be the heavy quark tuning error, and is listed in Table XIII.

G. Tadpole factor (u0) adjustment

In order to improve the convergence of lattice perturbation theory, we use tadpole-improved actions for the gluons,
light quarks, and heavy quarks [79]. For the gluon and sea-quark actions we take the tadpole factor u0 from the
average plaquette. On the a ≈ 0.15 fm and a ≈ 0.09 fm lattices we use the same choice for the light valence and
heavy-quark actions. On the a ≈ 0.12 fm lattices, however, we use the tadpole factor u0 taken from the Landau
link in the valence-quark action and in the clover term in the heavy-quark action. This results in a slight mismatch
between the light valence and sea-quark actions on these ensembles, and also affects the values obtained for the tuned
bottom- and charm-quark masses κb and κc. The difference between u0 obtained from the average plaquette and the
Landau link is approximately 3–4% on the a ≈ 0.12 fm ensembles.

FIG. 11. Difference of φBq values from Analyses I and II, divided by the average statistical error at each of the common valence
and sea mass points. The order along the abscissa is arbitrary.
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We propagate this difference through the chiral/continuum extrapolation as follows. First, we compute the heavy-
strange meson decay amplitudes φBs and φDs with both choices for u0 on the ensemble with aml/amh = 0.01/0.05,
a ≈ 0.12 fm. For each choice of u0, we compute φBs and φDs directly at the tuned values of κb and κc, thereby
avoiding an interpolation in κ. Next, we renormalize the lattice decay amplitudes using the nonperturbative, flavor-
diagonal current renormalization factors ZV 4

qq
and ZV 4

QQ
obtained for each case. (We neglect the slight difference in

the perturbative correction ρA4
Qq

.) Then, we calculate the ratio of the renormalized decay amplitudes, finding no

difference within errors:

φplaquette
c /φLandau

c = 1.005(13), (7.3)

φplaquette
b /φLandau

b = 1.014(20). (7.4)

As expected, the u0 dependence from the bare current and renormalization factors mostly cancels. Finally, we repeat
the chiral/continuum extrapolation shifting φc and φb on the a ≈ 0.12 fm ensembles by the statistical errors reported
in Eqs. (7.3)–(7.4). We find that these percent-level errors in φc and φb lead to approximately 1% errors in the
extrapolated decay constants and approximately 0.1% errors in the decay-constant ratios. These errors are listed as
“u0 adjustment” in the error budget in Table XIII.

H. Heavy-light current renormalization

There are two sources of systematic error in our heavy-light current renormalization. The first is due to the
perturbative calculation of ρA4

Qq
and the second is due to the nonperturbative calculation of ZV 4

QQ
and ZV 4

qq
.

The perturbative calculation of ρA4
Qq

has been carried out to one-loop order. Since ρA4
Qq

is defined from a ratio of

renormalization factors [see Eq. (2.5)], its perturbative corrections are small by construction. Indeed, as can be seen
from the results for ρA4

Qq
given in Table VIII, we observe very small corrections. For bottom they range from 0.3%

at a ≈ 0.09 fm to 0.8% at a ≈ 0.12 fm and 2.8% at a ≈ 0.15 fm. For charm they range from less than 0.08% at
a ≈ 0.09 fm to 0.4% at a ≈ 0.12 fm and 0.6% at a ≈ 0.15 fm. As shown in Ref. [46] the perturbative corrections to
the ρ-factors for the spatial currents, while still small, tend to be bigger than those for the temporal currents A4 and

V 4. We therefore estimate the error due to neglecting higher order terms as ρ
[1]

V 1
Qq
α2
s. We take αs at a ≈ 0.09 fm and

ρ
[1]

V 1
Qq
≈ 0.1, which is the largest one-loop coefficient for ρV 1

Qq
in the mass range mQa ≤ 3. This procedure yields a

systematic error of 0.7%, which we take for both charm and bottom decay constants.
The decay constant ratios fBs/fB+ and fDs/fD+ depend on the corresponding ratios of ρA4

Qs
/ρA4

Qq
. These ratios

differ from unity only because of the small variation of the ρA4
Qq

with light valence mass, which is described in Sec. V.

We take the variation of the ρA4
Qq

with light valence mass at a ≈ 0.09 fm as the error. This yields an error of 0.1%

for both bottom and charm.
The dominant corrections in the heavy-light renormalization factor as defined in Eq. (2.5) are due to ZV 4

QQ
and ZV 4

qq

which are calculated nonperturbatively. The values (and errors) for ZV 4
qq

and ZV 4
QQ

are listed in Tables IX and XI,

respectively. To obtain the error in ZV 4
Qq

=
√
ZV 4

qq
ZV 4

QQ
we add the statistical errors in ZV 4

qq
and ZV 4

QQ
in quadrature.

The error on ZV 4
Qq

is dominated by the error on ZV 4
qq

. The errors are largest, 1.3%, on the a ≈ 0.09 fm ensemble

and they are about the same for both charm and bottom on the two finest ensembles used to obtain our main decay
constant results. Hence we use 1.3% as our estimate for the uncertainty in ZV 4

Qq
.

I. Finite volume effects

To study finite volume effects, we use the chiral fit function with heavy-light hyperfine and flavor splittings included
(Eq. (6.20)), since the effects are known to be larger with the splittings than without [82]. The central fit includes
the (one-loop) finite volume corrections, Eq. (6.21), on the lattice data, and then takes the infinite volume limit when
extracting the final results for the decay constants. We then take the larger of the following two values as our estimate
of the finite volume error:

V1. The difference between the central result and the result from a chiral fit in which the finite volume corrections
are omitted.
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V2. The largest finite volume correction to the relevant data points, as determined by the central fit. For φD+ and
φB+ , the “relevant data points” are the ones on each ensemble with the lightest valence mass, i.e., those closest
to the chirally extrapolated point. For φDs and φBs , the relevant points are the ones on each ensemble with
valence mass closest to ms.

Method V1 gives a larger difference for φDs and φBs ; method V2 for φD+ and φB+ and the ratios. The resulting
values are shown in Table XIII. Note that our choices are conservative because we correct for the (one-loop) finite
volume errors, but nevertheless take the full size of these effects as our error.

VIII. RESULTS AND CONCLUSIONS

After adding the error estimates described in the previous section in quadrature, we obtain:

fB+ = 196.9(9.1) MeV, (8.1)

fBs = 242.0(10.0) MeV, (8.2)

fBs/fB+ = 1.229(0.026), (8.3)

fD+ = 218.9(11.3) MeV, (8.4)

fDs = 260.1(10.8) MeV, (8.5)

fDs/fD+ = 1.188(0.025). (8.6)

Since our most reliable method of determining discretization errors combines them with statistical errors, we do not
quote separate statistical and systematic errors.

Figure 12 shows a comparison of our results for charmed decay constants with other lattice QCD calculations and
with experiment. Our results agree with the only other three-flavor lattice QCD determination from the HPQCD
collaboration [99], which is obtained with HISQ staggered valence quarks and asqtad staggered sea quarks. (The
difference in fDs is a bit greater than 1σ.) They are also consistent with the two-flavor results of the ETM Collaboration
using twisted-mass Wilson fermions [100], although the ETM error budget does not include an estimate of the
uncertainty due to quenching the strange quark. One can also compare with “experimental” determinations of fD
and fDs if one assumes CKM unitarity to obtain the matrix elements |Vcd| and |Vcs|. For the D meson, Rosner and
Stone combine CLEO’s measurement of branching fraction B(D+ → µ+ν) [101] with the latest determination of |Vcd|
from the PDG [54] to obtain fD = 206.7(8.9) MeV [53]. For the Ds meson, they average CLEO and Belle results for
B(D+

s → µ+ν) [102, 103] with CLEO and BABAR results for B(D+
s → τ+ν) [102, 104–106] to obtain a combined

average for the two decay channels of fDs = 257.5(6.1) MeV [53]. The Heavy Flavor Averaging Group obtains a
similar average, fDs = 257.3(5.3) MeV [107]. Our results are consistent with these values, confirming Standard Model
expectations at the ∼ 5% level.

Figure 13 shows a similar comparison of our results for bottom meson decay constants with other lattice QCD
calculations. Our results agree with the published three-flavor determination using NRQCD b-quarks and Asqtad
staggered light quarks of the HPQCD collaboration [109], but are only marginally consistent with HPQCD’s more
recent calculation of fBs using HISQ light valence quarks [108]. Our results are also consistent with the two-flavor
results of the ETM collaboration [100], who use Wilson heavy quarks and interpolate between the charm-mass region
and the static limit to obtain results for bottom. Further, our result for the ratio fBs/fB also agrees with the
significantly less precise three-flavor determination using static b-quarks and domain-wall light quarks by the RBC
and UKQCD Collaborations [110].

For the D system the largest uncertainties in our current calculation stem from heavy-quark discretization, while
the chiral extrapolation, the ZV factors, excited states, heavy-quark tuning, and the chiral-continuum extrapolation
play important but subdominant roles. For the B system, heavy-quark tuning, statistics, and excited states are the
sources of the largest errors, while the ZV factors and the chiral-continuum extrapolation (incorporating our estimate
of heavy-quark discretization effects) are next in size. Recall that a novel feature of our work is the treatment of
heavy-quark discretization effects, via the functions fi in Eq. (2.4), and priors constraining the chiral-continuum fits
to follow this form. At tree level, we have explicit calculations of the mismatch, some of which appeared already in
Ref. [36] and all of which are compiled in Ref. [63]. Beyond the tree level, the continuum and static limits can be used
to constrain the functional form. That said, the theoretical guidance of the priors cannot be highly effective in an
analysis, such as this, with only two lattice spacings. Indeed, the quoted heavy-quark discretization errors are similar
to less sophisticated power-counting estimates.

While completing this analysis, we have begun runs to generate data that will address the main sources of uncertainty
reported here. The new data set will contain four times the configurations used here to reduce the statistical errors
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in the correlation functions and, thus, directly improve the decay amplitudes, the determinations of the hopping-
parameters κc and κb, and the renormalization factors ZV 4

qq
and ZV 4

QQ
, all of which feed into the decay constant.

Our new data will also encompass two finer lattice spacings of a ≈ 0.06 fm and a ≈ 0.045 fm, in order to explicitly
reduce light- and heavy-quark discretization errors and better control the continuum extrapolation. With four lattice
spacings, our new method of heavy-quark discretization priors will be put to a more stringent test. The new runs will
also include light valence- and sea-quark masses down to ∼ ms/20 in order to better control the chiral extrapolation
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FIG. 12. Comparison of fD and fDs with other two- and three-flavor lattice QCD calculations and with experiment. Results
shown come from Refs. [53, 99–106]. The HPQCD fD value is computed from their update to fDs and their earlier result for
the ratio fDs/fD.
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FIG. 13. Comparison of fB and fBs with other two- and three-flavor lattice QCD calculations. Results shown come from
Refs. [100, 108–110]. In the case of fBs HPQCD has two separate calculations using NRQCD b quarks and using HISQ b
quarks; we show both the published NRQCD result (HPQCD ’09) and the more recent HISQ result (HPQCD ’11) in the plot
above.
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to the physical d and u quark masses.
In order to reduce errors further, we will have to eliminate the errors from the matching factors and from quenching

the charmed quark. The MILC Collaboration [111] is generating ensembles with 2+1+1 flavors of sea quarks with the
HISQ action, with plans to provide a range of lattice spacings and sea quark masses equal to or more extensive than
the 2+1 asqtad ensembles. Use of the HISQ action for the charm valence quark will allow us to further reduce many
of the uncertainties, and provides the particularly nice advantage that one can use the local pseudoscalar density
without multiplicative renormalization to obtain the continuum matrix element [112]. In several years, once the full
suite of HISQ ensembles with several sea-quark masses and lattice spacings has been analyzed, we expect to obtain
percent-level errors for both B- and D-meson decay constants. This will enable precise tests of the Standard Model
and may help to reveal the presence of new physics in the quark-flavor sector.
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Appendix A: Heavy-quark Discretization Effects

We are using the heavy-quark Lagrangian as given in [36], with κt = κs (or, equivalently, ζ = 1), rs = 1, and
cB = cE = cSW. This amounts to the Sheikholeslami-Wohlert Lagrangian [35] for Wilson fermions [62]. The current
has a heavy quark of this type, rotated as in Eq. (4.2) (cf. Eqs. (7.8)–(7.10) of Ref. [36]), and a staggered light
quark. At the tree level, the heavy-quark rotation is the same no matter what the other quark is. The discretization
effects are estimated from a (continuum) effective field theory [39–41], as shown explicitly for decay constants in
Eqs. (8.7)–(8.12) of Ref. [39].

1. Theory

Both QCD and lattice gauge theory can be described via

LQCD
.
= LHQET =

∑
i

Ccont
i (mQ)Oi, (A1)

LLGT
.
= LHQET(m0a) =

∑
i

Clat
i (mQ,m0a)Oi, (A2)

where the Ci are short-distance coefficients and the Oi are operators describing the long-distance physics. The
coefficients have dimension 4 − dimOi. For lattice gauge theory. they depend on m0a, which is a ratio of short
distances a and 1/mQ. The effective-theory operators Oi in Eqs. (A1) and (A2) are the same.

The error from each term is simply the difference

errori =
∣∣[Clat

i (mQ,m0a)− Ccont
i (mQ)

]
Oi
∣∣ . (A3)
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The relative error in our matrix elements can be estimated by setting 〈Oi〉 ∼ ΛdimOi−4
QCD ; choices for the QCD scale

ΛQCD are discussed below. The coefficient mismatch can be written

Clat
i (mQ,m0a)− Ccont

i (mQ) = adimOi−4fi(m0a). (A4)

This recovers the usual counting of powers of a (familiar from Symanzik [37, 38]), but maintaining the full m0a
dependence. The final expression for the discretization errors is then

errori ∝ fi(m0a)(aΛQCD)dimOi−4. (A5)

For Wilson fermions, limm0a→0 fi = constant (whereas in lattice NRQCD without fine tuning this is not the case).
We have explicit calculations of the fi for the O(a) and O(a2) errors at the tree level [36, 63]. The next subsection
discusses how to use them to guide a continuum-limit extrapolation the O(αsa) and O(a2) errors.

Equations (A1) and (A2) can be generalized to currents. For the axial-vector current,

Aµ .
= Ccont

A⊥
(mQ)q̄iγµ⊥γ5hv − Ccont

A‖
(mQ)vµq̄γ5hv −

∑
i

Bcont
Ai (mQ)QµAi, (A6)

Aµlat
.
= C lat

A⊥
(mQ,m0a)q̄iγµ⊥γ5hv − C lat

A‖
(mQ,m0a)vµq̄γ5hv −

∑
i

Blat
Ai (mQ,m0a)QµAi, (A7)

and
.
= again means in the sense of matrix elements. Here vµ selects the temporal component and ⊥ the spatial, and

the list of dimension-4 operators Q can be found in Refs. [40].
The matrix element of the temporal component of the axial-vector current [cf. Eq. (4.7)] is normalized by multiplying

with ZA4 = Ccont
A‖

/C lat
A‖

. The current mismatch then leads to errors

adimQi−3fi(m0a) = ZA4Blat
Ai −Bcont

Ai , (A8)

with the sum running over the two operators Q that point in the temporal direction [40].

2. Error Estimation

The total error from heavy-quark discretization effects is then

error =
∑
i

zi (aΛQCD)sifi(m0a) (A9)

where the sum runs over Lagrangian operators Oi of dimension 5 and 6 and current operators Qi of dimension 4
and 5, si = dimOi − 4 or dimQi − 3, and the zi are unknown coefficients. The functions fi (summarized below)
have been computed for O(a2) and estimated for O(αsa). We omit contributions of order αlsa

2, whether from extra
operators or from iterating to second order operators with coefficients of order αsa.

In the past, we have taken a very conservative ΛQCD = 700 MeV and assumed a Gaussian distribution for the zi
centered on 0 and of width 1. This amounts to treating the discretization errors as independent and adding them in
quadrature. It also implicitly assumes that the data have nothing to say about the size or relative importance of the
terms.

Here, however, we incorporate these errors into the chiral-continuum extrapolation, discussed in Sec. VI. This
means that the zi are now constrained fit parameters, with prior constraints discussed in Sec. VI.

The fi are collected next.

a. O(a2) errors

We start with these, because explicit expressions for the functions fi(m0a) are available. The Lagrangian leads to
two bilinears, h̄D · Eh and h̄iΣ · [D × E]h, and many four-quark operators. At the tree level the coefficients of all
four-quark operators vanish. At the tree level the coefficients of the two bilinears are the same, and the mismatch
function is

fE(m0a) =
1

8m2
Ea

2
− 1

2(2m2a)2
. (A10)
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Using explicit expressions for 1/m2 [36] and 1/m2
E [63], one finds

fE(m0a) =
1

2

[
cE(1 +m0a)− 1

m0a(2 +m0a)(1 +m0a)
− 1

4(1 +m0a)2

]
. (A11)

We are using cE = 1, so

fE(m0a) =
2 + 3m0a

8(2 +m0a)(1 +m0a)2
. (A12)

With no further assumptions, this term enters twice independently, so we take the width of this prior to be
√

2 rather
than 1.

The current leads to three more terms with non-zero coefficients, q̄ΓD2h, q̄ΓiΣ ·Bh, and q̄Γα ·Eh, which can be
deduced from Eq. (A17) of Ref. [36]. Their coefficients can be read off from Eq. (A19). When cB = rs the first two
share the same coefficient

fX(m0a) =
1

8m2
Xa

2
− ζd1(1 +m0a)

m0a(2 +m0a)
− 1

2(2m2a)2
,

=
1

2

[
1

(2 +m0a)(1 +m0a)
+

1

2(1 +m0a)
− 1

4(1 +m0a)2
− 1

(2 +m0a)2

]
,

=
1

2

[
1

2(1 +m0a)
−
(

m0a

2(2 +m0a)(1 +m0a)

)2
]
, (A13)

where the last term on the second line comes from using the tree-level d1 (as we do in the simulations). Because of

the two-fold appearance, we again take the prior width to be
√

2.
For q̄Γα ·Eh

fY (m0a) =
1

2

[
d1

m2a
− ζ(1− cE)(1 +m0a)

m0a(2 +m0a)

]
,

=
2 + 4m0a+ (m0a)2

4(1 +m0a)2(2 +m0a)2
, (A14)

where the last line reflects the choices made for cE and d1.

b. O(αsa) and O(a3) errors

Here the mismatch functions fi(m0a) start at order αs, and we do not have explicit expressions for them. We take
unimproved tree-level coefficients as a guide to the combinatoric factors and the asymptotic behavior as m0a→ 0 and
m0a→∞.

The Lagrangian leads to two bilinears, the kinetic energy O2 = h̄D2h and the chromomagnetic moment OB =
h̄iΣ ·Bh. We match the former nonperturbatively, by identifying the meson’s kinetic mass with the physical mass;
the discretization error f2 stems, therefore, from discretization effects in M2.

The computed kinetic meson mass is

M2 = m2(κ) + continuum binding energy + δM2, (A15)

where [58]

δM2 =
Λ̄2

6mQ

[
5

(
m3

2

m3
4

− 1

)
+ 4w4(m2a)3

]
, (A16)

and m2, m4, and w4 are functions of m0a and, hence, κ. (See Refs. [36, 63] for explicit expressions.) Equating M2 to
a physical meson mass means that we choose κ such that m2(κ) + δM2 = mQ, thereby making in φ a relative error

error2 = Λ̄

(
1

2m2
− 1

2mQ

)
= Λ̄

(
1

2mQ − 2δM2
− 1

2mQ

)
≈ Λ̄

δM2

2m2
Q

. (A17)
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The right-most expression is (aΛ̄)3 f2(m0a), f2 = [ ]/12(m2a)3, where [ ] is the bracket in Eq. (A16). It is formally
smaller than the other errors considered here—f2 is of order 1 for all m0a. Numerically, however, it is not much
smaller.

At the tree level the chromomagnetic mismatch is

f
[0]
B (m0a) =

cB − 1

2(1 +m0a)
. (A18)

This has the right asymptotic behavior in both limits, so our Ansatz for the one-loop mismatch function is simply

fB(m0a) =
αs

2(1 +m0a)
, (A19)

and errorB is this function multiplied by aΛ. We take αs = 0.288 on the a ≈ 0.12 fm ensembles, which is the value
determined for αV from the plaquette [79] with one-loop running to scale q∗ = 2.5/a. On other ensembles, αs is found
by assuming that the measured average taste splitting goes like α2

sa
2 (with a determined from r1/a). This gives αs

values that track αV (q∗ = 2.5/a) quite well, which is why we make that q∗ choice. The results are rather insensitive
to the details here. For example, using αs = 0.325 on the a ≈ 0.12 fm ensembles, which corresponds to q∗ = 2.0/a,
increases the error estimate by less than 0.6 MeV for fD+ , and less than 0.25 MeV for fB+ .

The current leads to one more term, with tree-level mismatch function

f
[0]
3 (m0a) =

m0a

2(2 +m0a)(1 +m0a)
− d1, (A20)

and the tree-level d1 is chosen so that f
[0]
3 = 0. As with the mismatch function fB , we would like to anticipate f

[1]
3

by setting d
[1]
1 = 0 and multiplying the rest with αs. But it is not generic that this vanishes as m0a→ 0. Therefore,

we take

f3(m0a) =
αs

2(2 +m0a)
, (A21)

which has the right asymptotic behavior. We take the prior width as
√

2, because A4 has two such corrections [40].

3. Dispersion relation, Eq. (3.1)

We take a similar approach to the dispersion relation, Eq. (3.1), with the difference that we now know the sign of
the leading effect.

The tree-level functions are

a
[0]
4 =

1

(m
[0]
2 a)2

− m
[0]
1 a

(m
[0]
4 a)3

, (A22)

a
[0]
4′ = m

[0]
1 aw

[0]
4 . (A23)

The binding energy enters A4 and A4′ via the meson’s kinetic energy. Hence, the binding contributions are

A′4 =
3m

[0]
1 a

m
[0]
2 a (m

[0]
4 a)3

− 2

(m
[0]
2 a)3

−]
1

(m
[0]
4 a)3

, (A24)

A′4′ = w
[0]
4

(
1− m

[0]
1 a

m
[0]
2 a

)
, (A25)

and in Eq. (3.4) the binding energy floats within a Gaussian prior described by (Λ̄, σΛ̄) = (600, 400) MeV. This choice
conservatively brackets the binding energy of a heavy-strange meson. For the higher-order perturbative contribution
to the coefficients, we take the Ansätze based on the asymptotic behavior:

a
[1]
4 =

y4 + z4 ln(1 +m0a)

(1 +m0a)2
, (A26)

a
[1]
4′ =

y4′m0a+ z4′ ln(1 +m0a)

1 +m0a
, (A27)
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where the ys and zs float within Gaussian priors described by (y4, σy4) = (3, 5), (z4, σz4) = (1, 2), (y4′ , σy4′ ) = (0, 0),
and (z4′ , σz4′ ) = (0, 2). The terms proportional to yi stem from the m0a→ 0 limit, in which the renormalization of m4

must coincide with that of m1, and a4 = m1aw4 must vanish like m0a. The terms proportional to zi stem from the
m0a→∞ limit, where the static limit is obtained. Except for y4′ , the numerical values have been chosen consistent
with one-loop experience for m1 and m2 [113]. We have set y4′ ≡ 0, because at small m0a it is indistinguishable from

the other term in a
[1]
4′ , and our range of m0a does not reach far into the region m0a� 1.
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Appendix B: Two point fit results from Analysis I

TABLE XIV. Heavy-light pseudoscalar meson masses and renormalized decay amplitudes obtained from Analysis I fits of the
charm correlators at lattice spacing a ≈ 0.09 fm.

aml/ams amq aMH a3/2φH χ2/dof p

0.0031/0.031 0.0031 0.7523(0.0016) 0.0857(0.0015) 58/48 0.23

0.0031/0.031 0.0044 0.7553(0.0014) 0.0873(0.0013) 56/48 0.28

0.0031/0.031 0.0062 0.7589(0.0011) 0.0890(0.0011) 55/48 0.33

0.0031/0.031 0.0087 0.7634(0.0009) 0.0910(0.0009) 53/48 0.38

0.0031/0.031 0.0124 0.7699(0.0007) 0.0936(0.0007) 53/48 0.41

0.0031/0.031 0.0186 0.7807(0.0005) 0.0978(0.0006) 52/48 0.44

0.0031/0.031 0.0272 0.7954(0.0004) 0.1030(0.0005) 50/48 0.5

0.0031/0.031 0.031 0.8018(0.0004) 0.1052(0.0004) 50/48 0.5

0.0062/0.031 0.0031 0.7541(0.0030) 0.0875(0.0027) 56/48 0.37

0.0062/0.031 0.0044 0.7577(0.0023) 0.0899(0.0021) 52/48 0.49

0.0062/0.031 0.0062 0.7613(0.0019) 0.0917(0.0018) 50/48 0.58

0.0062/0.031 0.0087 0.7654(0.0015) 0.0933(0.0015) 58/51 0.43

0.0062/0.031 0.0124 0.7712(0.0012) 0.0952(0.0012) 52/48 0.48

0.0062/0.031 0.0186 0.7810(0.0009) 0.0985(0.0010) 56/48 0.37

0.0062/0.031 0.0272 0.7952(0.0006) 0.1032(0.0008) 59/48 0.28

0.0062/0.031 0.031 0.8015(0.0005) 0.1052(0.0007) 60/48 0.25

0.0124/0.031 0.0031 0.7551(0.0038) 0.0930(0.0036) 60/48 0.27

0.0124/0.031 0.0042 0.7554(0.0031) 0.0926(0.0028) 65/48 0.15

0.0124/0.031 0.0062 0.7574(0.0023) 0.0929(0.0021) 65/48 0.16

0.0124/0.031 0.0087 0.7608(0.0017) 0.0938(0.0015) 59/48 0.28

0.0124/0.031 0.0124 0.7666(0.0013) 0.0957(0.0012) 49/48 0.63

0.0124/0.031 0.0186 0.7766(0.0008) 0.0991(0.0009) 42/48 0.85

0.0124/0.031 0.0272 0.7907(0.0006) 0.1038(0.0007) 48/48 0.64

0.0124/0.031 0.031 0.7969(0.0005) 0.1058(0.0006) 53/48 0.47
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TABLE XV. Heavy-light pseudoscalar meson masses and renormalized decay amplitudes obtained from Analysis I fits of the
charm correlators at lattice spacing a ≈ 0.12 fm.

aml/ams amq aMH a3/2φH χ2/dof p

0.005/0.050 0.005 0.9943(0.0032) 0.1436(0.0030) 30/30 0.52

0.005/0.050 0.007 0.9977(0.0024) 0.1453(0.0024) 29/30 0.6

0.005/0.050 0.01 1.0026(0.0018) 0.1477(0.0019) 28/30 0.64

0.005/0.050 0.014 1.0090(0.0016) 0.1508(0.0017) 28/30 0.64

0.005/0.050 0.02 1.0186(0.0013) 0.1551(0.0015) 29/30 0.58

0.005/0.050 0.03 1.0345(0.0010) 0.1620(0.0012) 33/30 0.42

0.005/0.050 0.0415 1.0526(0.0008) 0.1694(0.0010) 36/30 0.27

0.007/0.050 0.005 0.9948(0.0035) 0.1442(0.0035) 17/30 0.98

0.007/0.050 0.007 0.9975(0.0027) 0.1455(0.0028) 19/30 0.95

0.007/0.050 0.01 1.0019(0.0021) 0.1476(0.0021) 22/30 0.89

0.007/0.050 0.014 1.0081(0.0016) 0.1504(0.0017) 24/30 0.83

0.007/0.050 0.02 1.0178(0.0012) 0.1547(0.0014) 23/30 0.85

0.007/0.050 0.03 1.0338(0.0009) 0.1615(0.0010) 20/30 0.94

0.007/0.050 0.0415 1.0520(0.0007) 0.1687(0.0008) 19/30 0.95

0.010/0.050 0.005 0.9958(0.0039) 0.1461(0.0041) 15/30 0.99

0.010/0.050 0.007 1.0000(0.0031) 0.1486(0.0032) 20/30 0.94

0.010/0.050 0.01 1.0057(0.0024) 0.1516(0.0026) 26/30 0.75

0.010/0.050 0.014 1.0126(0.0019) 0.1549(0.0021) 29/27 0.41

0.010/0.050 0.02 1.0226(0.0015) 0.1594(0.0017) 33/30 0.39

0.010/0.050 0.03 1.0387(0.0011) 0.1662(0.0014) 31/30 0.5

0.010/0.050 0.0415 1.0567(0.0008) 0.1733(0.0011) 27/30 0.68

0.020/0.050 0.005 0.9942(0.0046) 0.1537(0.0050) 49/30 0.036

0.020/0.050 0.007 0.9959(0.0036) 0.1533(0.0039) 49/30 0.036

0.020/0.050 0.01 0.9987(0.0027) 0.1532(0.0031) 48/30 0.051

0.020/0.050 0.014 1.0037(0.0021) 0.1543(0.0024) 45/30 0.075

0.020/0.050 0.02 1.0124(0.0016) 0.1575(0.0019) 43/30 0.11

0.020/0.050 0.03 1.0274(0.0011) 0.1632(0.0014) 37/30 0.27

0.020/0.050 0.0415 1.0447(0.0009) 0.1695(0.0012) 32/30 0.48

0.030/0.050 0.005 0.9830(0.0042) 0.1475(0.0042) 33/30 0.39

0.030/0.050 0.007 0.9853(0.0033) 0.1485(0.0033) 33/30 0.4

0.030/0.050 0.01 0.9897(0.0025) 0.1505(0.0025) 32/30 0.47

0.030/0.050 0.014 0.9960(0.0020) 0.1534(0.0020) 31/30 0.53

0.030/0.050 0.02 1.0054(0.0015) 0.1574(0.0016) 32/30 0.46

0.030/0.050 0.03 1.0205(0.0011) 0.1633(0.0012) 37/30 0.27

0.030/0.050 0.0415 1.0376(0.0009) 0.1695(0.0010) 40/30 0.15
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TABLE XVI. Heavy-light pseudoscalar meson masses and renormalized decay amplitudes obtained from Analysis I fits of the
charm correlators at lattice spacing a ≈ 0.15 fm.

aml/ams amq aMH a3/2φH χ2/dof p

0.0097/0.0484 0.0048 1.1659(0.0044) 0.1979(0.0052) 20/20 0.5

0.0097/0.0484 0.007 1.1710(0.0034) 0.2017(0.0040) 22/20 0.37

0.0097/0.0484 0.0097 1.1768(0.0027) 0.2054(0.0032) 25/20 0.26

0.0097/0.0484 0.0194 1.1951(0.0016) 0.2159(0.0020) 25/20 0.26

0.0097/0.0484 0.029 1.2117(0.0012) 0.2242(0.0015) 20/20 0.51

0.0097/0.0484 0.0484 1.2432(0.0009) 0.2385(0.0012) 15/20 0.79

0.0194/0.0484 0.0048 1.1726(0.0046) 0.2106(0.0052) 23/20 0.35

0.0194/0.0484 0.007 1.1749(0.0036) 0.2105(0.0041) 23/20 0.35

0.0194/0.0484 0.0097 1.1785(0.0028) 0.2113(0.0031) 23/20 0.32

0.0194/0.0484 0.0194 1.1935(0.0016) 0.2174(0.0020) 30/20 0.092

0.0194/0.0484 0.029 1.2091(0.0013) 0.2244(0.0016) 32/20 0.055

0.0194/0.0484 0.0484 1.2400(0.0010) 0.2381(0.0013) 27/20 0.17

0.0290/0.0484 0.0048 1.1613(0.0044) 0.1975(0.0049) 17/20 0.72

0.0290/0.0484 0.007 1.1660(0.0034) 0.2010(0.0040) 18/20 0.64

0.0290/0.0484 0.0097 1.1717(0.0026) 0.2049(0.0031) 21/20 0.47

0.0290/0.0484 0.0194 1.1896(0.0015) 0.2151(0.0019) 24/20 0.3

0.0290/0.0484 0.029 1.2058(0.0011) 0.2229(0.0015) 23/20 0.32

0.0290/0.0484 0.0484 1.2368(0.0008) 0.2364(0.0011) 20/20 0.49

TABLE XVII. Heavy-light pseudoscalar meson masses and renormalized decay amplitudes obtained from Analysis I fits of the
bottom correlators at lattice spacing a ≈ 0.09 fm.

aml/ams amq aMH a3/2φH χ2/dof p

0.0031/0.031 0.0031 1.6509(0.0018) 0.1359(0.0016) 41/39 0.48

0.0031/0.031 0.0044 1.6532(0.0016) 0.1378(0.0015) 40/39 0.51

0.0031/0.031 0.0062 1.6562(0.0015) 0.1402(0.0014) 40/39 0.49

0.0031/0.031 0.0087 1.6601(0.0013) 0.1433(0.0014) 42/39 0.42

0.0031/0.031 0.0124 1.6659(0.0012) 0.1475(0.0013) 45/39 0.31

0.0031/0.031 0.0186 1.6752(0.0011) 0.1542(0.0012) 47/39 0.23

0.0031/0.031 0.0272 1.6879(0.0009) 0.1628(0.0011) 49/39 0.19

0.0031/0.031 0.031 1.6934(0.0009) 0.1664(0.0011) 49/39 0.18

0.0062/0.031 0.0031 1.6539(0.0046) 0.1358(0.0051) 40/39 0.56

0.0062/0.031 0.0044 1.6557(0.0039) 0.1377(0.0044) 37/39 0.68

0.0062/0.031 0.0062 1.6584(0.0032) 0.1402(0.0037) 34/39 0.77

0.0062/0.031 0.0087 1.6620(0.0027) 0.1434(0.0031) 34/39 0.8

0.0062/0.031 0.0124 1.6675(0.0022) 0.1480(0.0026) 36/39 0.72

0.0062/0.031 0.0186 1.6767(0.0018) 0.1550(0.0022) 41/39 0.53

0.0062/0.031 0.0272 1.6892(0.0014) 0.1637(0.0019) 45/39 0.37

0.0062/0.031 0.031 1.6946(0.0014) 0.1672(0.0018) 45/39 0.35

0.0124/0.031 0.0031 1.6532(0.0036) 0.1387(0.0038) 52/39 0.16

0.0124/0.031 0.0042 1.6550(0.0033) 0.1407(0.0034) 48/39 0.27

0.0124/0.031 0.0062 1.6576(0.0030) 0.1432(0.0031) 40/39 0.55

0.0124/0.031 0.0087 1.6606(0.0027) 0.1456(0.0029) 35/39 0.77

0.0124/0.031 0.0124 1.6650(0.0024) 0.1488(0.0027) 33/39 0.84

0.0124/0.031 0.0186 1.6730(0.0019) 0.1544(0.0023) 36/39 0.73

0.0124/0.031 0.0272 1.6847(0.0016) 0.1623(0.0021) 42/39 0.48

0.0124/0.031 0.031 1.6900(0.0015) 0.1657(0.0020) 45/39 0.38
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TABLE XVIII. Heavy-light pseudoscalar meson masses and renormalized decay amplitudes obtained from Analysis I fits of the
bottom correlators at lattice spacing a ≈ 0.12 fm.

aml/ams amq aMH a3/2φH χ2/dof p

0.005/0.050 0.005 1.9170(0.0044) 0.2236(0.0050) 45/27 0.03

0.005/0.050 0.007 1.9197(0.0039) 0.2263(0.0046) 46/27 0.022

0.005/0.050 0.01 1.9235(0.0033) 0.2300(0.0040) 46/27 0.021

0.005/0.050 0.014 1.9287(0.0029) 0.2347(0.0036) 45/27 0.027

0.005/0.050 0.02 1.9367(0.0024) 0.2418(0.0031) 43/27 0.046

0.005/0.050 0.03 1.9503(0.0020) 0.2532(0.0026) 39/27 0.096

0.005/0.050 0.0415 1.9657(0.0017) 0.2654(0.0023) 36/27 0.17

0.007/0.050 0.005 1.9147(0.0036) 0.2224(0.0039) 37/27 0.12

0.007/0.050 0.007 1.9177(0.0033) 0.2254(0.0037) 35/27 0.17

0.007/0.050 0.01 1.9219(0.0030) 0.2292(0.0036) 34/27 0.2

0.007/0.050 0.014 1.9272(0.0028) 0.2337(0.0037) 35/27 0.19

0.007/0.050 0.02 1.9351(0.0026) 0.2401(0.0037) 36/27 0.15

0.007/0.050 0.03 1.9485(0.0022) 0.2508(0.0035) 38/27 0.096

0.007/0.050 0.0415 1.9638(0.0019) 0.2628(0.0031) 40/27 0.07

0.010/0.050 0.005 1.9182(0.0047) 0.2254(0.0047) 30/27 0.4

0.010/0.050 0.007 1.9207(0.0041) 0.2284(0.0042) 32/27 0.29

0.010/0.050 0.01 1.9250(0.0035) 0.2328(0.0037) 36/27 0.18

0.010/0.050 0.014 1.9307(0.0030) 0.2383(0.0033) 39/27 0.097

0.010/0.050 0.02 1.9391(0.0025) 0.2457(0.0028) 43/27 0.048

0.010/0.050 0.03 1.9527(0.0020) 0.2569(0.0024) 47/27 0.02

0.010/0.050 0.0415 1.9682(0.0017) 0.2689(0.0021) 51/27 0.0092

0.020/0.050 0.005 1.9136(0.0060) 0.2278(0.0069) 33/27 0.27

0.020/0.050 0.007 1.9163(0.0050) 0.2305(0.0059) 33/27 0.28

0.020/0.050 0.01 1.9200(0.0042) 0.2340(0.0050) 31/27 0.36

0.020/0.050 0.014 1.9249(0.0036) 0.2381(0.0043) 29/27 0.47

0.020/0.050 0.02 1.9322(0.0031) 0.2437(0.0039) 28/27 0.52

0.020/0.050 0.03 1.9445(0.0027) 0.2526(0.0038) 30/27 0.42

0.020/0.050 0.0415 1.9590(0.0025) 0.2627(0.0039) 33/27 0.3

0.030/0.050 0.005 1.9030(0.0058) 0.2196(0.0073) 38/27 0.12

0.030/0.050 0.007 1.9058(0.0049) 0.2223(0.0064) 32/27 0.29

0.030/0.050 0.01 1.9099(0.0041) 0.2258(0.0056) 27/27 0.56

0.030/0.050 0.014 1.9155(0.0034) 0.2306(0.0048) 23/27 0.74

0.030/0.050 0.02 1.9239(0.0028) 0.2376(0.0040) 22/27 0.77

0.030/0.050 0.03 1.9372(0.0022) 0.2479(0.0034) 25/27 0.64

0.030/0.050 0.0415 1.9518(0.0019) 0.2585(0.0032) 28/27 0.49
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TABLE XIX. Heavy-light pseudoscalar meson masses and renormalized decay amplitudes obtained from Analysis I fits of the
bottom correlators at lattice spacing a ≈ 0.15 fm.

aml/ams amq aMH a3/2φH χ2/dof p

0.0097/0.0484 0.0048 2.2553(0.0071) 0.3311(0.0115) 36/25 0.097

0.0097/0.0484 0.007 2.2576(0.0061) 0.3341(0.0102) 37/25 0.09

0.0097/0.0484 0.0097 2.2611(0.0052) 0.3389(0.0089) 36/25 0.1

0.0097/0.0484 0.0194 2.2757(0.0036) 0.3568(0.0063) 34/25 0.16

0.0097/0.0484 0.029 2.2901(0.0030) 0.3727(0.0053) 33/25 0.16

0.0097/0.0484 0.0484 2.3175(0.0023) 0.4002(0.0046) 35/25 0.12

0.0194/0.0484 0.0048 2.2296(0.0175) 0.2743(0.0416) 32/25 0.2

0.0194/0.0484 0.007 2.2349(0.0142) 0.2823(0.0357) 34/25 0.15

0.0194/0.0484 0.0097 2.2416(0.0118) 0.2917(0.0309) 36/25 0.1

0.0194/0.0484 0.0194 2.2639(0.0072) 0.3243(0.0202) 36/25 0.1

0.0194/0.0484 0.029 2.2819(0.0054) 0.3482(0.0152) 30/25 0.27

0.0194/0.0484 0.0484 2.3124(0.0038) 0.3839(0.0109) 24/25 0.59

0.0290/0.0484 0.0048 2.2402(0.0073) 0.3101(0.0123) 29/25 0.32

0.0290/0.0484 0.007 2.2464(0.0061) 0.3199(0.0104) 30/25 0.28

0.0290/0.0484 0.0097 2.2524(0.0052) 0.3289(0.0089) 31/25 0.25

0.0290/0.0484 0.0194 2.2695(0.0036) 0.3502(0.0066) 27/25 0.42

0.0290/0.0484 0.029 2.2847(0.0030) 0.3665(0.0058) 21/25 0.72

0.0290/0.0484 0.0484 2.3125(0.0025) 0.3939(0.0057) 18/25 0.87
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