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We study the fragmentation of (light) quarks and gluons to hadrons inside a jet of cone size
R. This allows for a more exclusive analysis of fragmentation than is currently the case. The
shape of semi-inclusive cross sections in the hadron energy fraction z is described by fragmenting
jet functions (FJFs), which we calculate in terms of R and the jet energy E. We introduce a new
joint resummation to sum the double-logarithms of R and 1 − z in the FJFs, which has a similar
application to initial-state radiation at hadron colliders. Our results at next-to-leading logarithmic
order indicate that the resummation of the threshold logarithms of 1 − z is already important for
z >

∼ 0.5 and improves the convergence of perturbation theory. Our framework may be used to
analyze LHC and RHIC data and to test and tune Monte Carlo event generators.

Introduction. High-energy processes with an observed
hadron in the final state can be described by factori-
zing the short-distance (partonic) physics, which is per-
turbatively calculable in QCD, from (universal) non-
perturbative contributions, see e.g. Ref. [1]. In this con-
text, the (unpolarized) fragmentation functions (FFs)
Dh

i (z, µ) [2] encode the information on the transition
from an energetic parton i = {g, u, ū, d, . . . } to a hadron
h, which carries the fraction z of its energy, plus a re-
mainder X . The knowledge of both perturbative and
non-perturbative ingredients in factorization theorems is
crucial to have control on theoretical predictions. For
example, a better determination of the b-quark FF was
important for resolving a discrepancy between CDF data
and theory for the pT spectrum of J/ψ [3]. Furthermore,
additional understanding of hadron production at high
pT in pp collisions is also required to determine more ac-
curately the relative suppression of hadron spectra (jet
quenching) seen in heavy-ion collisions [4].
Parameterizations for the FFs have been constrained

by fitting to data for single-inclusive charged hadron
production in e+e− at next-to-leading order (NLO) in
perturbation theory [5, 6]. More recently, global analy-
ses have been performed that also include semi-inclusive
deep-inelastic scattering and/or pp, pp̄ data from HERA,
RHIC and the Tevatron [7]. To illustrate the current level

of precision, the dominant Dπ+

u (z, µ = mZ) is determined
with uncertainties at the 10% level for z >∼ 0.5 [6]. The
FFs of the gluon and the non-valence quarks are known
even less accurately.
In contrast to the inclusive analyses listed above, the

Belle collaboration is studying light-quark fragmentation
in their on-resonance data, using a cut on the thrust event
shape to remove the large b-quark background [8]. Here,
the fragmentation takes place inside a (hemisphere) jet of
invariant mass s, described by the fragmenting jet func-
tions (FJFs) Gh

i (s, z, µ) that we introduced in Ref. [9].
Correspondingly, z should not be too small, to avoid con-
tributions from hadrons outside the jets. For s≫ Λ2

QCD,

the FJFs can be perturbatively matched onto the FFs [9],

i.e. Gh
i =

∑
j Jij ⊗ Dh

j where the convolution is in the
momentum fraction z. In performing this OPE, we as-
sume that parton and hadron masses [23] are negligible
compared to the jet mass. The Wilson coefficients Jij

describe the emissions from the parent parton at larger
virtualities building up the jet while Dh

j encodes physics
at lower scales where hadronization effects are important.
The one-loop Jij(s, z, µ) were determined in Refs. [10,

11], and allowed us to calculate in Ref. [11] the cross sec-
tion for e+e− → hX with a cut on thrust up to NNLL
in Soft-Collinear Effective Theory (SCET)[12]. There we
found correlations between the thrust cut and z that are
crucial for the analysis of the Belle data. Of course this
analysis is subject to non-perturbative power corrections,
which can be sizable at the Belle energy, and a compari-
son with data is desirable to assess their importance.
Here we study fragmentation inside cone jets, defined

with a cone jet algorithm. For simplicity we discuss the
case of e+e− → N jets, but our method can also be
applied to pp collisions [24]. Following Refs. [13–15], the
cone size is denoted by R and a cutoff Λ is applied on
the energy in the region between jets [25]. The jets are
required to be energetic and well-separated:

tan2(R/2),
tan2(R/2)

tan2(ψ/2)
,

Λ

Emin
≪ 1 (1)

where ψ is the minimum angular separation between jets
and Emin the minimum jet energy. Additional power
corrections due to the jet algorithm are suppressed if R
is not too small [16], see also Eq. (3). SCET can then
be applied to separate hard, collinear and soft dynam-
ics, leading to factorization formulae as in Refs. [13, 14].
Schematically, at leading power,

dσh

dz
(E,R)=

∫
dΦN tr[HNSN ]Gh

i (E,R, z, µ)
∏

ℓ

Jℓ . (2)

The hard function HN describes the hard collision and
the soft function SN the soft radiation (both are matrices
in color space). For each of the jets there is a jet function
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Jij γ̃ Γ β

LO 0-loop - - 1-loop

NLO 1-loop - - 2-loop

LL 0-loop - 1-loop 1-loop

NLL 1-loop 1-loop 2-loop 2-loop

TABLE I: Order counting for the matching coefficients, the
non-cusp and cusp anomalous dimension, and the αs running.

Jℓ describing the final-state collinear radiation, which is
replaced by a FJF for the jet in which the hadron is ob-
served [9]. The phase-space is denoted by dΦN . The
dependence on the renormalization scale µ cancels in the
cross section up to the order that one is working, and is
used to estimate the uncertainty from higher-order cor-
rections. Large logarithms of ratios of mass scales are
summed by evaluating each of these functions at their
natural scale, where they contain no large logarithms,
and by running them to a common scale µ using their
renormalization group equations. The FJFs with a cone
restriction depend on E and R rather than s, and in
the next section we calculate their matching onto FFs at
NLO,

Gh
i (E,R, z, µ) =

∑

i

∫ 1

z

dz′

z′
Jij(E,R, z

′, µ)Dh
j

( z
z′
, µ

)

×
[
1 +O

( Λ2
QCD

4E2 tan2(R/2)

)]
. (3)

To avoid large non-perturbative corrections, R should
thus not be too small [26]. Since the other ingredients
of the factorization theorem in Eq. (2) do not affect the
fragmentation variable z, the shape of the cross section
in z is completely determined by the cone FJF. (This
is not the case when invariant masses are measured, as
in Ref. [11], because invariant masses also receive a con-
tribution from soft radiation.) The soft function is sen-
sitive to two different scales [14] leading to non-global
logarithms [17] but this only affects the normalization of
the cross section. Furthermore, we would like mention
that the generalization of our framework to transverse-
momentum-dependent and polarized FFs, can be applied
as a tool to obtain information on the proton spin struc-
ture by studying azimuthal asymmetries for hadron dis-
tributions inside a high-pT jet in transversely polarized
pp collisions [18].
Calculation. We now calculate the one-loop matching

coefficients for the cone FJFs Gh
i (R, z, µ) onto FFs. At

one-loop the cone restriction is equivalent to

s ≤ min
( z

1− z
,
1− z

z

)
4E2 tan2(R/2) , (4)

where s is the invariant mass of the jet, z the fragmenta-
tion variable, E the jet energy and R the cone size. [Note
that E and R appear in the combination E2 tan2(R/2)
which is invariant under boosts along the jet axis.] We

may therefore obtain the matching coefficients from the
bare results for the standard FJFs in Ref. [11]. We find,
using the MS scheme,

Jqq(E,R, z, µ)

2(2π)3
= δ(1− z) +

αsCF

π

[
δ(1− z)

(
L2 −

π2

24

)

+ Pqq(z)L+ Ĵqq(z)

]
,

Jqg(E,R, z, µ)

2(2π)3
=
αsCF

π

[
Pgq(z)L+ Ĵqg(z)

]
,

Jgg(E,R, z, µ)

2(2π)3
= δ(1− z) +

αsCA

π

[
δ(1− z)

(
L2 −

π2

24

)

+ Pgg(z)L+ Ĵgg(z)

]
,

Jgq(E,R, z, µ)

2(2π)3
=
αsTF
π

[
Pqg(z)L+ Ĵgq(z)

]
, (5)

with the splitting functions in the convention of Eq. (3.7)
in Ref. [19]. Anti-quarks have the same coefficients as
quarks, and Jqq̄ and Jqq′ only start at two-loop order.
In Eq. (5)

L = ln
2E tan(R/2)

µ
(6)

and

Ĵqq(z) =
1

2
(1− z) +

{
Pqq(z) ln z z ≤ 1

2

(1 + z2)
( ln(1−z)

1−z

)
+

z ≥ 1
2

,

Ĵqg(z) =
z

2
+ Pgq(z)

{
ln z z ≤ 1

2

ln(1− z) z ≥ 1
2

,

Ĵgg(z) =

{
Pgg(z) ln z z ≤ 1

2
2(1−z+z2)2

z

( ln(1−z)
1−z

)
+

z ≥ 1
2

,

Ĵgq(z) = z(1− z) + Pqg(z)

{
ln z z ≤ 1

2

ln(1− z) z ≥ 1
2

. (7)

We have cross-checked these results with expressions
for the jet functions Ji with a cone restriction in Ref. [14]
(there called “unmeasured jet functions”). The FJFs Gi

and jet functions Ji have the same anomalous dimension
[9], consistent with Eq. (2), which provides a check on
the UV divergent terms that we encounter in deriving
Eq. (5). The finite terms were checked with the momen-
tum sum rule [9, 11]

∑

j

∫ 1

0

dz z Jij(R, z, µ) = 2(2π)3 Ji(R, µ) , (8)

and a new sum rule
∫ 1

0

dz [Jqq(R, z, µ)− Jqq̄(R, z, µ)] = 2(2π)3 Jq(R, µ) .

(9)
This new relation follows from quark-number conserva-
tion in the perturbative calculation of the FJF Gi

q.
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FIG. 1: The FJF for u → π+ at LL and NLL order for E = 100GeV and R = 0.4. The bands show the perturbative

uncertainties from varying the scale in the matching onto Dπ+

j up and down by factors of two, and then evolving G
π+

u to
µ = 2E tan(R/2). For reference we include the LO result (where µ is the jet energy E) in the left panel. In the middle panel
the same curves and bands relative to this LO result are shown. The dotted lines correspond to the central values without
threshold resummation, for which the uncertainties are shown in the right panel.

Threshold Logarithms. Closer inspection reveals that
Jqq and Jgg contain large threshold logarithms. For ex-
ample,

Jqq(E,R, z, µ)

2(2π)3
=
αsCF

π

[
δ(1− z)

(
L2 −

π2

24

)
+

2L

(1 − z)+

+ 2
( ln(1 − z)

1− z

)
+
+O(1 − z)

]
, (10)

which by Eq. (3) leads to the large (double) logarithms

Gh
q (E,R, z, µ)

2(2π)3
=ln2

[2(1− z)E tan R
2

µ

]
Dh

q (z) + . . . (11)

We may thus sum both the logarithms of R and the
threshold logarithms by evaluating the FJF at µ =
2(1 − z)E tan(R/2). (In the plots we evolve the FJF to
µ = 2E tan(R/2), to remove the z dependence from this
scale.) Fig. 1 shows the improved convergence of pertur-
bation theory arising from threshold resummation, which
will be discussed more extensively in the next section. We
stress that we do not need to perform a threshold expan-
sion, therefore our results are also valid away from the
threshold region.
This improvement holds to all orders in perturbation

theory, since we find that the logarithms ofR and 1−z are
tied together through the anomalous dimension of Jqq.
Using Eq. (3) this can be obtained from the anomalous
dimension of the (unmeasured) jet function [13, 14] and
the FF [20],

γJqq
= −2Γq

[
L δ(1− z) +

1

(1− z)+

]

+ γ̃J δ(1− z) +O(1 − z) . (12)

Here Γq = αsCF /π +O(α2
s) is the (quark) cusp anoma-

lous dimension. The non-cusp anomalous dimension γ̃J
only starts at two loops, which is reflected in the ab-
sence of single logarithms in Eqs. (10) and (11). In mo-
ment space one can see explicitly how the logarithm of
R and the 1/(1− z)+ combine, since the Nth moment of
1/(1− z)+ is − lnN − γE .

The above discussion applies to Jgg as well. By con-
trast, the off-diagonal Jqg and Jgq do not contain thresh-
old logarithms and their contribution should thus be eval-
uated at the appropriate scale µ = 2E tan(R/2).
Our new joint resummation can also be used in the

standard FJFs Gh
i (s, z, µ) of Refs. [9–11]. Here the scale

choice µ2 = (1 − z)s sums both the logarithms of s and
1 − z. We have checked that this significantly improves
the convergence of perturbation theory at large z.
Similarly, for initial-state jets described by beam func-

tions Bi(t, x, µ) [21], we find that the logarithms of t and
1 − x can be simultaneously resummed by evaluating
the flavor-diagonal terms for matching beam functions
onto PDFs at the scale µ2 = (1 − x)t. At the LHC, the
momentum fraction x is typically small, suggesting that
threshold resummation is less important than in the case
studied here. However, it has been argued that the log-
arithms of 1 − x are dynamically enhanced through the
shape of the PDFs [22]. A detailed study is left for future
work.
Results. We now show some numerical results for

fragmentation inside a cone jet. Our order counting is
shown in Table I. As input we use the HKNS FFs [6] at
LO or NLO order and their value for αs.
We first consider a fixed cone R = 0.4 and study

the convergence of our resummed result. Fig. 1 shows
the central values and perturbative uncertainties for the
u → π+ FJF at LL and NLL order. In the middle
and right panels these results relative to the LO curve
are shown, making the separation between the central
curves and the size of the uncertainties more visible. As
expected, the cone restriction suppresses the small z re-
gion, because at large z the hadron carries off most of the
energy and there is not much additional radiation that
would be subject to the cone restriction. As is clear from
comparing the dotted with the solid curves, the effect of
threshold resummation becomes important at z >∼ 0.5.
Including threshold resummation improves the conver-
gence and leads to smaller uncertainties. At small z the
difference between LL and NLL is not fully captured by
the uncertainty band. However, in this region the uncer-
tainties on the FFs (which are not shown here) dominate.
We have studied similar plots for d→ π+ and g → π+.
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FIG. 2: The FJF for u, d, g → π+ is shown at NLL order for E = 100GeV. The curves are for R = 0.2, 0.4, 0.6, 0.8 and are
shown relative to the R = 1 result.

Here the convergence is not as good when the dominant

mixing contribution involving Dπ+

u (and Dπ+

d̄
) turns on.

For g → π+ and d → π+ this happens at NLO and
NNLO, respectively.
In Fig. 2 we study the effect of varying the cone size R.

We stress that the normalization of the curves for differ-
ent R should not be compared, because other ingredients
in the factorization theorem affect the normalization of
the cross section (the shape in z is entirely determined by
G). For u→ π+ and d→ π+ the small z region gets sup-
pressed relative to the large z region as one reduces the
cone size, as expected. For g → π+, the bump-shaped
enhancement at intermediate z is mainly due to the Jgq

contribution.
Conclusions. Our framework leads to a reliable de-

scription of fragmentation within an identified jet, pro-
viding the tools for a more exclusive study of fragmen-
tation. This can be used to reduce the background
from other processes, to help identify underlying partonic

structures and enables novel tests of the universality of
FFs. Our setup provides accurate analytical predictions,
where large logarithms are properly summed, for single
hadron spectra in a jet which can be used to tune Monte
Carlo event generators. This will become more and more
relevant as the determination of the fragmentation func-
tions becomes more accurate. We have for the first time
established the connection between the resummation of
logarithms for exclusive jet production and threshold re-
summation, and have shown the numerical importance
of their interplay in the case of jet fragmentation.
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