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The renormalization scale uncertainty can be eliminated by the Principle of Maximum Con-
formality (PMC) in a systematic scheme-independent way. Applying the PMC for the tt̄-pair
hadroproduction at the NNLO level, we have found that the total cross-sections σtt̄ at both the
Tevatron and LHC remain almost unchanged when taking very disparate initial scales µinit

R equal
to mt, 10mt, 20mt and

√
s, which is consistent with renormalization group invariance. As an

important new application, we apply PMC scale-setting to study the top-quark forward-backward
asymmetry. We observe that the more convergent perturbative series after PMC scale-setting leads
to a more accurate top-quark forward-backward asymmetry. The resulting PMC prediction on the
asymmetry is also free from the initial renormalization scale-dependence. Because the NLO PMC
scale has a dip behavior for the (qq̄)-channel at small subprocess collision energies, the importance

of this channel to the asymmetry is increased. We observe that the asymmetries Att̄
FB and A

pp̄
FB at

the Tevatron will be increased by 42% in comparison to the previous estimates obtained by using

conventional scale-setting; i.e. we obtain A
tt̄,PMC

FB ≃ 12.5% and A
pp̄,PMC

FB ≃ 8.28%. Moreover, we

obtain A
tt̄,PMC

FB (Mtt̄ > 450 GeV) ≃ 35.0%. These predictions have a 1σ-deviation from the present
CDF and D0 measurements; the large discrepancies of the top-quark forward-backward asymmetry
between the Standard Model estimate and the CDF and D0 data are thus greatly reduced.

PACS numbers: 12.38.Aw, 14.65.Ha, 11.15.Bt, 11.10.Gh
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I. INTRODUCTION

The top quark is the heaviest known elementary par-
ticle, and it plays a fundamental role in testing the Stan-
dard Model (SM) and the extensions of the SM. Its
production and decay channels are important probes of
new physics, and because of its large coupling to the
Higgs, the top-quark production processes provide a sen-
sitive probe of electroweak symmetry breaking. The to-
tal cross-section for the top-quark pair production has
been calculated up to NNLO within the MS-scheme in
Refs. [1–20]. The SM estimates, especially those obtained
by using the Principle of Maximum Conformality (PMC)
[17, 18], agree well with the experimental result which has
been measured with a precision ∆σtt̄/σtt̄ ∼ ±7% at the
Tevatron [21, 22] and ∼ ±10% at the LHC [23, 24].

The top-quark forward-backward asymmetry which
originates from charge asymmetry physics [25, 26] has
also been studied at the Tevatron and LHC. Two op-
tions for the asymmetry have been used for experimental
analysis; i.e. the tt̄-rest frame asymmetry

Att̄
FB =

σ(ytt̄t > 0)− σ(ytt̄t < 0)

σ(ytt̄t > 0) + σ(ytt̄t < 0)
(1)
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and the pp̄-laboratory frame asymmetry

App̄
FB =

σ(ypp̄t > 0)− σ(ypp̄t < 0)

σ(ypp̄t > 0) + σ(ypp̄t < 0)
, (2)

where ytt̄t is the top-quark rapidity in the tt̄-rest frame
and ypp̄t is the top-quark rapidity in the pp̄-laboratory
frame (or the pp̄ center-of-mass frame). The CDF and
D0 collaborations have found comparable values in the

tt̄-rest frame: Att̄,CDF
FB = (15.8± 7.5)% [27] and Att̄,D0

FB =
(19.6 ± 6.5)% [28], where the uncertainties are derived
from a combination of statistical and systematic errors.
The asymmetry in the pp̄-laboratory frame measured by

CDF is App̄,CDF
FB = (15.0 ± 5.5)% [27]. The CDF col-

laboration has also measured the dependence of Att̄
FB

with respect to the tt̄-invariant mass Mtt̄: the asymme-
try increases with Mtt̄, and Att̄

FB(Mtt̄ > 450 GeV) =
(47.5± 11.4)% [27].
These measured top-quark forward-backward asymme-

tries are much larger than the usual SM estimates. For
example, the NLO QCD contributions to the asymmet-
ric tt̄-production using conventional scale-setting yield
Att̄

FB ≃ 7% and App̄
FB ≃ 5% (see e.g. [29]), which are

about 2σ-deviation from the above measurements. For
the case of Mtt̄ > 450 GeV, using the MCFM pro-
gram [30], one obtains Att̄

FB(Mtt̄ > 450 GeV) ∼ 8.8%
which is about 3.4σ-deviation from the data. These dis-
crepancies have aroused great interest because of the
possibility for probing new physics beyond the Standard
Model.
A recent reevaluation of the electroweak correction

raises the QCD asymmetries by at most 20%: i.e.
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Att̄
FB(A

pp̄
FB) ∼ 9% (7%) [31, 32] and Att̄

FB(Mtt̄ >
450 GeV) ∼ 12.8% [32].
It has been argued that the missing higher-order cor-

rections cannot be the reason for the significant discrep-
ancy [33–36]. In fact, only a several percent increment
has been observed in Ref.[33] using a next-to-next-to-
leading-logarithmic (NNLL) calculation. It is for this
reason, many new physics models beyond the SM have
been suggested.
Since the SM estimate on the total cross-section agrees

well with the experimental data, it is hard to understand
the large deviation of the asymmetry. Before introducing
any new physics, it is best to have a more precise esti-
mation within the SM. It should be noted that all the
present SM estimations are based on the conventional
scale-setting, where the renormalization scale µR is set
to be the typical momentum transfer Q of the process;
i.e. Q = mt. One then estimates the scale-uncertainty by
varying µR ∈ [mt/2, 2mt], which will lead to a O(10%)
scale uncertainty to the asymmetry. Usually, it is argued
that this scale uncertainty can be suppressed by includ-
ing higher-order corrections in a order-by-order manner.
The conventional scale-setting procedure is clearly prob-
lematic since the resulting fixed-order pQCD prediction
will depend on the choice of renormalization scheme. In
fact, it gives the wrong result when applied to QED pro-
cesses.
It should be recalled that there is no ambiguity in

setting the renormalization scale in QED. In the stan-
dard Gell-Mann-Low scheme for QED, the renormaliza-
tion scale is the virtuality of the virtual photon [37].
For example, the renormalization scale for the electron-
muon elastic scattering through one-photon exchange can
be set as the virtuality of the exchanged photon, i.e.

µGM−L
R = Q =

√

−q2. But it is wrong to use Q directly
as the scale for any other renormalization scheme. Some
displacement must be included in order to ensure scheme-
independence. For example under the MS scheme, we

have µMS
R = e−5/6Q ≃ 0.43Q [38] 1. This result shows

that the effective scale of the MS-scheme should gener-
ally be about half of the true momentum transfer occur-
ring in the interaction. The invariance under choice of
renormalization scheme is a consequence of the transi-
tivity property of the renormalization group [41, 42]. Of
course, the question is more complicated in QCD due to
its non-Abelian nature.
Recently, it has been suggested that one can system-

atically fix the renormalization scale at any fixed order
by using the PMC [17, 18, 39, 40]. The PMC provides
the principle underlying the Brodsky-Lepage-Mackenzie
method [43], and they are consistent with each other

1 The same scale-displacement can be obtained by using the
PMC [39, 40]. In fact, the PMC can also be applied to QED
processes. One can obtain proper scale-displacements among
different renormalization schemes for higher perturbative orders
in a systematic way.

through the PMC-BLM correspondence principle [40].
The main idea is that, after proper procedures, all non-
conformal {βi}-terms in the perturbative expansion are
summed into the running coupling so that the remaining
terms in the perturbative series are identical to that of
a conformal theory; i.e., the corresponding theory with
{βi} ≡ {0}. The underlying conformal symmetry is
a useful principle for physics; e.g. the AdS/QCD the-
ory [44], the conformal general relativity model [45] and
the canonical quantum gravity theory [46].
After PMC scale-setting, the divergent renormalon se-

ries with n!-growth does not appear in the conformal
series. This is consistent with the treatment done in
Ref.[47]. Since renormalon terms are absent, one ob-
tains a more convergent perturbative expansion series,
and thus the full next-to-leading order (NLO), or even
the leading-order (LO) calculation, is often enough to
achieve the required accuracy. The PMC scale µPMC

R is
unambiguous at any finite order. We emphasize that the
PMC is consistent with the renormalization group prop-
erty that a physical result is independent of the renor-
malization scheme and the choice of the initial renormal-
ization scale µinit

R . Any residual dependence on µinit
R for

a finite-order calculation is highly suppressed since the
unknown higher-order {βi}-terms will be absorbed into
the PMC scales’ higher-order perturbative terms.
As an application, we have previously applied the PMC

procedure to obtain NNLO predictions for the tt̄-pair
hadroproduction cross-section at the Tevatron and LHC
colliders [17, 18]. It is found that there is almost no de-
pendence on the choice of initial renormalization scale;
i.e. the total cross-section remains almost unchanged
even when taking very disparate initial scales µinit

R equal
to mt, 10mt, 20mt and

√
s, thus greatly improving the

precision of the QCD prediction. By using the PMC
scales, a larger σtt̄ is obtained in comparison to the con-
ventional scale-setting, which agrees well with the present
Tevatron and LHC data. It is thus interesting to see
whether the use of PMC scales, especially those of the
dominant asymmetric (qq̄)-channel at the Tevatron, can
improve our understanding on the top-quark forward-
backward symmetry; this is the purpose of the present
paper.
The remaining parts of this paper are organized as fol-

lows: in Sec. II, we give the relevant formulae for the top-
quark forward-backward asymmetry. The new properties
of the predictions after PMC scale-setting are presented.
In Sec. III, we present the numerical results and some dis-
cussions for the top-quark forward-backward asymmetry
at the Tevatron. Sec. IV provides a summary.

II. THE FORWARD-BACKWARD

ASYMMETRY

Before discussing the top-quark forward-backward
asymmetry, we first review the total cross-sections for the
top-quark pair production at the Tevatron up to NNLO.
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A comparison of the production cross-sections using
conventional scale-setting versus PMC scale-setting will
give us some useful information on how the PMC scale-
setting can improve our understanding of the top-quark
pair production: the relative importance of all the pro-

duction channels, especially those which provide the
asymmetries; the convergence of the perturbative se-
ries for each production channel; etc. This information
will be helpful for constructing a more precise pertur-
bative expansion for calculating the top-quark forward-
backward asymmetry.

Conventional scale-setting PMC scale-setting

LO NLO NNLO total LO NLO NNLO total

(qq̄)-channel 4.890 0.963 0.483 6.336 4.748 1.727 -0.058 6.417

(gg)-channel 0.526 0.440 0.166 1.132 0.524 0.525 0.160 1.208

(gq)-channel 0.000 -0.0381 0.0049 -0.0332 0.000 -0.0381 0.0049 -0.0332

(gq̄)-channel 0.000 -0.0381 0.0049 -0.0332 0.000 -0.0381 0.0049 -0.0332

sum 5.416 0.985 0.659 7.402 5.272 2.176 0.112 7.559

TABLE I. Total cross-sections (in unit: pb) for the top-quark pair production at the Tevatron with pp̄-collision energy
√
S = 1.96

TeV. For conventional scale-setting, we set the renormalization scale µR ≡ Q. For PMC scale-setting, we set the initial
renormalization scale µinit

R = Q. Here we take Q = mt = 172.9 GeV and use the MSRT 2004-QED parton distributions [54] as
the PDF.

Analytical expressions up to NNLO have been pro-
vided in the literature, e.g. Ref.[5–8] 2, and the ex-
plicit calculation technology for PMC scale-setting can
be found in Ref.[18], so we will not present them here.
Numerical results for the top-quark pair production at
the Tevatron with pp̄-collision energy

√
S = 1.96 TeV

are presented in Table I. Because the Coulomb-type cor-
rections will lead to sizable contributions in the thresh-
old region [48, 49] which are enhanced by factors of π.
Thus the terms which are proportional to (π/v) or (π/v)2

(v =
√

1− 4m2
t/s is the top-quark velocity in the par-

tonic center-of-mass frame; s is the subprocess center-of-
mass energy squared) at the NLO or NNLO level should
be treated separately [50]. For this purpose, the results
listed in the total-column is not a simple summation of
the corresponding LO, NLO and NNLO results; the re-
sults are obtained by using the Sommerfeld re-scattering
formula to treat the Coulomb part. In doing the numer-
ical calculation, we set mt = 172.9 GeV [53] and the
factorization scale µf ≡ mt. We set µR ≡ Q = mt for
conventional scale-setting, and take the initial renormal-

2 These NNLO results are derived using resummation [5–7], which
is supported by the observation that the production of a top-
quark pair with an additional jet is small [51, 52]. The nearly
scale-independent PMC estimations in Refs. [17, 18] show that at
least the relative importance of the {βi}-terms at the NNLO have
been well set. A full NNLO calculation for the (qq̄)-channel has
been recently presented by using the conventional scale-setting
which also shows a very small perturbative uncertainty between
the NNLO and NNLL calculation, i.e. ±2.7% [19].

ization scale µinit
R = Q = mt to initialize PMC scale-

setting. For the PDFs, we adopt MSRT 2004-QED par-
ton distributions [54] to be consistent with the choice of
Ref.[32].
By comparing with the total cross-sections derived

from the PMC scale-setting and the conventional scale-
setting listed in Table I, we observe the following points:

• At the Tevatron, the top-quark pair cross-section
is dominated by the (qq̄)-channel which provides
∼ 85% contribution to the total cross-section. The
(qq̄)-channel is asymmetric at the NLO level, so
it will lead to sizable top-quark forward-backward
asymmetry at the Tevatron. In contrast, one finds
that the dominant channel at the LHC is the sym-
metric (gg)-channel, c.f. Ref.[26], so the top-quark
forward-backward asymmetry from other channels
will be greatly diluted at the LHC; this asym-
metry becomes small which agrees with the CMS
and ATLAS measurements [55, 56]. Accordingly,
at present, we will concentrate on the top-quark
forward-backward asymmetry at the Tevatron.

• At the lowest order, the two channels qq̄ → tt̄ and
gg → tt̄ do not discriminate the final top-quark and
top-antiquark, so their differential distributions are
symmetric for the hadronic production process. At
the NLO level, either the virtual or real gluon emis-
sion will cause sizable differences between the dif-
ferential top-quark and top-antiquark production,
thus leading to an observable top-quark forward-
backward asymmetry. At the Tevatron, the asym-
metric channels are (qq̄)-, (gq)- and (gq̄)- channels
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FIG. 1. Dominant Feynman diagrams (cut diagrams) for the
QCD forward-backward asymmetry at the NLO level. Two
types of asymmetries are shown: the interference of the final-
state with the initial-state gluon bremsstrahlung and the in-
terference of the box diagram with the Born diagram.
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FIG. 2. Flavor-excitation Feynman diagrams (cut diagrams)
for the QCD forward-backward asymmetry at the NLO level,
which are small and negligible. Here either gluon-1 or gluon-2
can be attached at four places in the light-quark or top-quark
lines, so there are totally 16 Feynman diagrams.

accordingly. Table I shows the total cross-sections
of the (gq) and (gq̄) channels are quite small, less
than 1% of that of (qq̄)-channel, so their contri-

butions to the asymmetry can be safely neglected.
Fig.(1) shows the dominant Feynman diagrams for
the QCD charge asymmetry at the NLO level and
Fig.(2) shows the less important flavor-excitation
Feynman diagrams for the QCD charge asymme-
try at the NLO level.

• When using conventional scale-setting, the NNLO
cross-section for the (qq̄)-channel is about 50% of
its NLO cross-section; i.e. |σNNLO

tt̄,qq̄ /σNLO
tt̄,qq̄ | ≃ 50%.

Thus in order to derive a consistent asymmetry
up to NNLO, one must consider the asymmetric
contribution from the NNLO (qq̄)-channel, which
may be sizable. In contrast, a much more conver-
gent pQCD series expansion is obtained after PMC
scale-setting, since all non-conformal {βi}-terms in
the perturbative expansion are summed into the
running coupling. For example for the asymmet-
ric (qq̄)-channel, the value of |σNNLO

tt̄,qq̄ /σNLO
tt̄,qq̄ | is low-

ered to be only ∼ 3%. This shows that after PMC
scale-setting, the change to the asymmetry from
the NNLO is greatly suppressed.

• Writing the numerator and the denominator of the
two asymmetries AFB defined by Eqs.(1,2) in pow-
ers of αs, we obtain

AFB =
α3
sN1 + α4

sN2 +O(α5
s)

α2
sD0 + α3

sD1 + α4
sD2 +O(α5

s)

=
αs

D0

[

N1 + αs

(

N2 −
D1N1

D0

)

+ α2
s

(

D2
1N1

D2
0

− D1N2

D0
− D2N1

D0

)

+ · · ·
]

, (3)

where the Di-terms stand for the total cross-
sections at certain αs-order and the Ni-terms stand
for the asymmetric cross-sections at certain αs-
order. The terms up to NLO (D0, D1, N1) have
been calculated, whereas only parts of D2 and N2

are currently known [1–16].

As shown in Table I, using conventional scale-
setting, the relative importance of the denominator
terms is

[

α2
sD0 : α3

sD1 : α4
sD2 ≃ 1 : 18% : 12%

]

,
and the numerator terms for the asymmetric
(qq̄)-channel satisfy

[

α3
sN1 : α4

sN2 ∼ 1 : 50%
]

3.
Thus, the N1D1/D0 term and the N2 term have
the same importance. Because the NNLO N2

term is not available at the present, one has

3 Since at present the NNLO numerator term N2 is not available,
as a first approximation, we treat these asymmetric terms to
have the same relative importance as their total cross-sections;
i.e. (α3

sN1)qq̄ : (α4
sN2)qq̄ ∼ (α3

sD1)qq̄ : (α4
sD2)qq̄ .

to use the lowest-order O(α2
s) cross-section in

the denominator and the O(α3
s) term in the

numerator; i.e. dealing with only the so-called LO
asymmetry [26, 29, 31, 32]: AFB = N1

D0
αs.

However, after PMC-scale setting, we have
[

α2
sD0 : α3

sD1 : α4
sD2 ≃ 1 : 41% : 2%

]

and the nu-
merators for the asymmetric (qq̄)-channel becomes
[

α3
sN1 : α4

sN2 ∼ 1 : 3%
]

. It shows that, after PMC
scale-setting, the NNLO corrections for both the
total cross-sections and the asymmetric part are
lowered by about one order of magnitude. There-
fore, the NNLO-terms N2 and D2 can be safely
neglected in the calculation, and we can obtain the
asymmetry at the so-called NNLO level:

AFB =
αs

D0

[

N1 − αs

(

D1N1

D0

)

+ α2
s

(

D2
1N1

D2
0

)]

.

Furthermore, it is natural to assume that those
higher-order termsNi andDi with i > 2 after PMC
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(a) (b) (c)

FIG. 3. Representative cut diagrams contributing to the
QCD-QED interference term O(α2

sα). The wave lines stand
for the photon.

scale-setting will also give negligible contribution 4;
the above asymmetry can thus be resummed to a
more convenient form:

AFB =
α3
sN1

α2
sD0 + α3

sD1
. (4)

• As argued by Refs. [26, 31, 32], the electromag-
netic and weak interaction will provide an extra
∼ 20% increment for the asymmetry. This shows
that the electromagnetic contribution provides a
non-negligible fraction of the QCD-based antisym-
metric cross-section with the same overall sign. The
asymmetry to be calculated thus changes to

AFB =
α3
sN1 + α2

sαÑ1 + α2Ñ0

α2
sD0 + α3

sD1
. (5)

Representative diagrams contributing to the QCD-
QED interference term Ñ1 at the order O(α2

sα) are
shown in Fig.(3). The weak contributions to the
asymmetry are obtained by changing the photon
propagator to be a Z0-propagator. The pure elec-
troweak antisymmetric O(α2) term Ñ0 arises from
|Mqq̄→γ→tt̄ +Mqq̄→Z0→tt̄|2 [32].
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FIG. 4. PMC scales for the dominant asymmetry (qq̄)-channel
versus the sub-process collision energy

√
s for the top-quark

pair production up to 1.96 TeV, where we have set the initial
renormalization scale µinit

r = mt = 172.9 GeV.

Based on the above considerations, the top-quark
forward-backward asymmetry after PMC scale-setting
can be written as

Att̄,PMC
FB =

1

σtot,PMC
H1H2→tt̄X(µPMC

R )

[

σ(qq̄)
asy

(

µPMC
R ; ytt̄t > 0

)

−σ(qq̄)
asy

(

µPMC
R ; ytt̄t < 0

)]

(6)

and

App̄,PMC
FB =

1

σtot,PMC
H1H2→tt̄X(µPMC

R )

[

σ(qq̄)
asy

(

µPMC
R ; ypp̄t > 0

)

−σ(qq̄)
asy

(

µPMC
R ; ypp̄t < 0

)

]

,(7)

where σtot
H1H2→tt̄X is total hadronic cross-section up to

NLO. The symbol σ
(qq̄)
asy stands for the asymmetric cross-

section of the (qq̄)-channel which includes the above men-
tioned O(α3

s), O(α2
sα) and O(α2) terms. Here µPMC

R

stands for the PMC scale. In the denominator for the
total cross-section up to NLO, for each production chan-
nel, we need to introduce two LO PMC scales which are
for the Coulomb part and non-Coulomb part accordingly,
and one NLO PMC scale for the non-Coulomb part 5.
In the numerator, we only need the NLO PMC scale

µPMC,NLO
R for the (qq̄)-channel, since it is the only asym-

metric component. Detailed processes for deriving these
PMC scales can be found in Ref.[18], which are obtained
by using the cross-sections calculated within the MS-
scheme. We present the behaviors of the PMC scales
for the dominant asymmetric (qq̄)-channel in Fig.(4).
Note that if the cross-sections are calculated within
any other renormalization scheme, some proper scale-
displacements to the present PMC scales will be auto-
matically set by PMC scale-setting so as to ensure the
scheme-independence of the final estimation.
It is interesting to observe that there is a dip for the

NLO scale µPMC,NLO
R of the (qq̄)-channel when

√
s ≃

[
√
2 exp(5/6)]mt ∼ 563 GeV, which is caused by the cor-

relation among the PMC coefficients for NLO and NNLO
terms. More specifically, it is found that
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FIG. 5. PMC coefficients of the dominant asymmetric (qq̄)-
channel versus the subprocess collision energy

√
s, which de-

termine the dip behavior of the NLO PMC scale µ
PMC,NLO

R .
µinit

R = mt = 172.9 GeV.

µPMC,NLO
R = exp

(

B̃2qq̄

Ã1qq̄

)

µPMC,LO
R = exp

(

B̃2qq̄

Ã1qq̄

)

exp

(

3B1qq̄

2A0qq̄
+O(αs)

)

µinit
R , (8)

where the coefficients are defined through the standard PMC scale-setting [17, 18]; i.e.

[m2
t σ̂qq̄]non−Coulomb = A0qq̄a

2
s(µ

init
R ) + [A1qq̄ +B1qq̄nf ] a

3
s(µ

init
R ) +

[

A2qq̄ +B2qq̄nf + C2qq̄n
2
f

]

a4s(µ
init
R )

= A0qq̄a
2
s(µ

PMC,LO
R ) +

[

Ã1qq̄

]

a3s(µ
PMC,LO
R ) +

[

Ã2qq̄ + B̃2qq̄nf

]

a4s(µ
PMC,LO
R )

= A0qq̄a
2
s(µ

PMC,LO
R ) +

[

Ã1qq̄

]

a3s(µ
PMC,NLO
R ) +

[

˜̃A2qq̄

]

a4s(µ
PMC,NLO
R ). (9)

Here σ̂qq̄ stands for the partonic cross-section. As shown

in Fig.(5), the value of B̃2qq̄ is always negative and Ã1qq̄

has a minimum value at small
√
s. As a result, there will

be a dip for the NLO PMC scale µPMC,NLO
R as shown in

Fig.(4). Quantitatively, the NLO PMC scale µPMC,NLO
R

for the (qq̄)-channel is considerably smaller than mt in
the small

√
s-region (corresponding to small momentum

fraction of the incident partons which are favored by the
parton luminosity Lqq̄ [18]). The NLO cross-section of

4 There may still be large higher-order corrections not associated
with renormalization. The nf -dependent but renormalization
scale independent terms should not be absorbed into the coupling
constant. An important example in QED case is the electron-
loop light-by-light contribution to the sixth-order muon anoma-
lous moment which is of order (α/π)3 ln(mµ/me) [57].

5 Since the channels (ij) = {(qq̄), (gg), (gq), (gq̄)} are distinct and
non-interfering, their PMC scales should be set separately [18].

the (qq̄)-channel will thus be greatly increased; it is a
factor of two times larger than its value derived under
conventional scale-setting, as shown by Table I.
As a byproduct, it is found that if fixing the calcula-

tion only at the NLO level, i.e. there is no higher-order
terms in the LO PMC scale 6, and setting the initial
renormalization scale to be equal to the factorization sale

µinit
R = µf ≡ mt, our present LO PMC scale µPMC,LO

R
for the (qq̄)-channel returns to the normal choice which
agrees with the QED case,

µPMC,LO
R

∼= exp(−5/6)
√
s.

Note if µinit
R 6= µf , one can apply the renormalization

group method to derive the full scale-dependent coeffi-

6 Note that the PMC scales will be a perturbative series of αs so
as to absorb all nf -dependent terms properly [40, 58].
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cients [9] and then get the same result. The new terms

which involve the factor ln
(

µinit
R

2
/µ2

f

)

must be separated

into two parts, one is proportional to lnµ2
f/m

2
t which

should be kept in its original form, and the other one is

proportional to ln
(

µinit
R

2
/m2

t

)

which should be absorbed

into the lower-order αs-terms through the standard PMC

scale-setting.

III. PHENOMENOLOGICAL APPLICATIONS

The PMC asymmetries Att̄,PMC
FB and App̄,PMC

FB can be
compared with the asymmetries calculated using con-
ventional scale-setting. For definiteness, we apply PMC
scale-setting to improve Hollik and Pagani’s results [32],
and we obtain

Att̄,PMC
FB =

{

σtot,HP
H1H2→tt̄X

σtot,PMC
H1H2→tt̄X

}







αs
3
(

µPMC,NLO
R

)

αHP
s

3
(µconv

R )
Att̄,HP

FB |O(α3
s)
+

αs
2
(

µPMC,NLO
R

)

αHP
s

2
(µconv

R )
Att̄,HP

FB |O(α2
sα)

+Att̄,HP
FB |O(α2)







(10)

App̄,PMC
FB =

{

σtot,HP
H1H2→tt̄X

σtot,PMC
H1H2→tt̄X

}







αs
3
(

µPMC,NLO
R

)

αHP
s

3
(µconv

R )
App̄,HP

FB |O(α3
s)
+

αs
2
(

µPMC,NLO
R

)

αHP
s

2
(µconv

R )
App̄,HP

FB |O(α2
sα)

+App̄,HP
FB |O(α2)







(11)

Here µconv
R stands for the renormalization scale set by

conventional scale-setting and the symbol HP stands for
the corresponding values of Ref.[32]; i.e. for µconv

R = mt,
it shows [32]

σtot,HP
H1H2→tt̄X = 5.621pb

Att̄,HP
FB |O(α3

s)
= 7.32% Att̄,HP

FB |O(α2
sα)

= 1.36%

Att̄,HP
FB |O(α2) = 0.26% App̄,HP

FB |O(α3
s)

= 4.85%

App̄,HP
FB |O(α2

sα)
= 0.90% App̄,HP

FB |O(α2) = 0.16%

where

• Att̄,HP
FB |O(α3

s)
and App̄,HP

FB |O(α3
s)

stand for the pure

QCD asymmetry at the α3
s-order under the tt̄-rest

frame and the pp̄ lab frame respectively.

• Att̄,HP
FB |O(α2

sα)
and App̄,HP

FB |O(α2
sα)

stand for the com-
bined QED and weak with the QCD asymmetry at
the α2

sα-order under the tt̄-rest frame and the pp̄
lab frame respectively.

• Att̄,HP
FB |O(α2) and App̄,HP

FB |O(α2) stand for the pure

electroweak asymmetry at the α2-order under the
tt̄-rest frame and the pp̄ lab frame respectively.

In the formulae (10,11), we have defined an effec-

tive coupling constant αs

(

µPMC,NLO
R

)

for the asymmet-

ric part, which is the weighted average of the strong
coupling constant for the (qq̄)-channel; i.e. in using

the effective coupling constant αs

(

µPMC,NLO
R

)

, one ob-

tains the same (qq̄)-channel NLO cross-section as that of

αs(µ
PMC,NLO
R )7. It is noted that the NLO-level asym-

7 This mean value technology is consistent with the global PMC
scale idea suggested in Ref.[39]. In principle, one could divide the

FIG. 6. Dominant cut diagrams for the nf -terms at the α4-
order of the (qq̄)-channel, which are responsible for the smaller

effective NLO PMC scale µ
PMC,NLO

R , where the solid circles
stand for the light-quark loops.

metric part for (qq̄)-channel only involves the NLO PMC
scale for the non-Coulomb part, so the effective coupling

constant αs

(

µPMC,NLO
R

)

can be unambiguously deter-

mined. We obtain a smaller effective NLO PMC scale

µPMC,effective
R ≃ exp(−9/10)mt ∼ 70 GeV , (12)

which corresponds to

αs

(

µPMC,NLO
R

)

= 0.1228. (13)

It is larger than αHP
s (mt) ≃ 0.098 [31, 32]. This effective

NLO PMC scale is dominated by the non-Coulomb nf -
terms at the α4-order, which are shown in Fig.(6). In
these diagrams, the momentum flow in the virtual gluons
possess a large range of virtualities. This effect for NLO

PMC scale µPMC,effective
R can be regarded as a weighted

cross-sections into the symmetric and asymmetric components
and to find PMC scales for each of them. For this purpose,
one needs to identify the nf -terms or the n2

f
-terms for both the

symmetric and asymmetric parts at the NNLO level separately.
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tt
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HP

PMC

Lab frame A FB

pp

FIG. 7. Comparison of the PMC prediction with the CDF
data [27] for the tt̄-pair forward-backward asymmetry for the

whole phase-space. The upper diagram is for Att̄
FB in the tt̄-

rest frame and the lower diagram is for App̄
FB in the laboratory

frame. The Hollik and Pagani’s results (HP) [32] using con-
ventional scale-setting are presented for a comparison. The
result for D0 data [28] shows a similar behavior.

average of these different momentum flows in the gluons,
so it can be small.

Finally, we obtain

Att̄,PMC
FB ≃ 12.7% ; App̄,PMC

FB ≃ 8.39% (14)

Thus after PMC scale-setting, the top-quark asymme-
try under the conventional scale-setting is increased by
∼ 42% for both the tt̄-rest frame and the pp̄-laboratory
frame. This large improvement is explicitly shown in
Fig.(7), where Hollik and Pagani’s results which are de-
rived under conventional scale-setting [32] are presented
for comparison. In Fig.(7), the upper diagram is for Att̄

FB

in the tt̄-rest frame and the lower diagram is for App̄
FB in

the laboratory frame.

0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
±σ

± 2σ

HP

PMC

A    (M  > 450 GeV)FB

tt

tt

FIG. 8. The PMC prediction of Att̄
FB(Mtt̄ > 450 GeV) and

the corresponding CDF data [27] for the tt̄-pair forward-
backward asymmetry for Mtt̄ > 450 GeV. The Hollik and
Pagani’s results (HP) [32] using conventional scale-setting are
presented for a comparison.

A. The PMC prediction of Att̄
FB(Mtt̄ > 450 GeV)

The CDF collaboration has found that when the tt̄-
invariant mass, Mtt̄ > 450 GeV, the top-quark forward-
backward asymmetry Att̄

FB(Mtt̄ > 450 GeV) is about 3.4
standard deviations above the SM asymmetry prediction
under the conventional scale-setting [30]. However after
applying PMC scale-setting, with the help of the formu-
lae (10,11) and the cross-sections derived by using con-
ventional scale-setting which are listed in Ref.[32], we
will obtain a much larger Att̄

FB(Mtt̄ > 450 GeV) than the
previous estimation [32].

For the present case 8, we have σtot,PMC
H1H2→tt̄X(Mtt̄ >

450 GeV) = 2.406 pb and

αs

(

µPMC,NLO
R

)

= 0.1460

with

µPMC,NLO
R ∼ exp(−19/10)mt ≃ 26 GeV.

Then, we obtain

Att̄,PMC
FB (Mtt̄ > 450 GeV) ≃ 35.0% , (15)

which is increased by about 1.7 times of the previous

one Att̄,HP
FB (Mtt̄ > 450 GeV) = 12.8% [32]. Our present

prediction is only about 1σ-deviation from the CDF data,
which is shown in Fig.(8).

8 For simplicity, we have adopted the partonic center-of-mass
frame to estimate the PMC total cross-section under the con-
dition of Mtt̄ > 450 GeV, which however agrees with that of
tt̄-rest frame within a high accuracy, since as shown in Ref.[33],
the events near the partonic threshold provide the dominant con-
tributions to the cross-section at the Tevatron.
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B. Initial renormalization scale dependence

We emphasize that the top-quark asymmetry calcu-
lated under PMC scale-setting is almost free of renor-
malization scale dependence.

400 600 800 1000 1200 1400 1600 1800 2000
0.1

1

10

100

RQ
PMC; LO; Non-Coulomb

10*RQ
PMC; NLO; Non-Coulomb

  Q= 10 mt

  Q= 20 mt

 

 

R
Q

P
M

C

s (GeV)

100*RQ
PMC; LO; Coulomb

(qq)-channel

FIG. 9. The ratio RPMC

Q =
µPMC
r |

µinit
r =Q

µPMC
r |

µinit
r =mt

versus the sub-

process collision energy
√
s up to 1.96 TeV for the (qq̄)-

channel, where Q = 10mt and 20mt respectively. Here
mt = 172.9 GeV.

To show how the change of initial scale affects the PMC
scales, we define the ratio

RPMC
Q =

µPMC
R |µinit

R
=Q

µPMC
R |µinit

R
=mt

,

where µPMC
R |µinit

R
=Q stands for the PMC scales deter-

mined under the condition of µinit
R = Q. In Fig.(9), we

show the ratio RPMC
Q versus the sub-process collision

energy
√
s up to 1.96 TeV for the (qq̄)-channel, where

Q = 10mt and 20mt respectively. The residual scale
dependence for the PMC scales slightly increases with
the subprocess collision energy

√
s; i.e. for the interested

non-Coulomb NLO PMC scale, the value of RPMC
Q is

about 11% for Q = 10mt and 13% for Q = 20 mt at√
s = 1.96 TeV. The cross-section at high collision ener-

gies is strongly suppressed by the parton luminosities,
so that the total cross-section at the Tevatron remains
almost unchanged even when taking disparate initial
scales µinit

R equal to mt, 10mt, 20mt. Due to this fact,
the top-quark asymmetry after PMC scale-setting is also
almost free of initial renormalization scale dependence;
i.e. the residual scale uncertainty is less than 10−3 by

taking Q = mt/4, 10mt, 20mt and
√
s respectively.

IV. SUMMARY

With the help of present known top-quark pair pro-
duction cross-sections up to NNLO, we have presented a
new analysis on the top-quark forward-backward asym-
metry using PMC scale-setting. After PMC scale-setting,
a more convergent pQCD series expansion is obtained
and the renormalization scale and scheme ambiguities are
removed.
In comparison to the previous SM values estimated un-

der conventional scale-setting, we have shown that after
PMC scale-setting, both the top-quark forward-backward
asymmetries Att̄

FB and App̄
FB for tt̄-rest frame and pp̄-

laboratory frame can be increased by ∼ 42%; i.e.

Att̄,PMC
FB ≃ 12.7% and App̄,PMC

FB ≃ 8.39% .

Moreover, the top-quark asymmetry with certain kine-
matical cut, such as Att̄

FB(Mtt̄ > 450 GeV), can be raised
by about 1.7 times; i.e.

Att̄,PMC
FB (Mtt̄ > 450 GeV) ≃ 35.0% .

This shows that, after PMC scale-setting, the top-quark
forward-backward asymmetries are close to the CDF and
D0 measurements within only ∼ 1σ-deviation. The dis-
crepancies between the SM estimate and the present CDF
and D0 data are greatly reduced. This greatly suppresses
the parameter space for new physics.
It is clear that the previous large discrepancy between

the SM estimation and the CDF and D0 data for the
top-quark forward-backward asymmetry is caused by the
improper setting of renormalization scale. The PMC
provides a systematic way to obtain optimal renormal-
ization scales for the high energy process, whose the-
oretical predictions are essentially free of initial renor-
malization scale dependence even at fixed order. As we
have shown the top-quark pair total cross-section and
its forward-backward asymmetry are almost unaltered by
taking very disparate initial renormalization scales at the
NNLO level.
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