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Abstract

We consider the position of the deconfining critical endpoint, where the first order transition for

deconfinement is washed out by the presence of massive, dynamical quarks. We use an effective

matrix model, employed previously to analyze the transition in the pure glue theory. If the param-

eters of the pure glue theory are unaffected by the presence of dynamical quarks, and if the quarks

only contribute perturbatively, then for three colors and three degenerate quark flavors this quark

mass is very heavy, mde ∼ 2.5 GeV, while the critical temperature, Tde, barely changes, ∼ 1%

below that in the pure glue theory. The location of the deconfining critical endpoint is a sensitive

test to differentiate between effective models. For example, models with a logarithmic potential

for the Polyakov loop give much smaller values of the quark mass, mde ∼ 1 GeV, and a large shift

in Tde ∼ 10% lower than that in the pure glue theory.
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The nature of the phase transitions in QCD are of interest for a variety of reasons. In

theory, all in-equilibrium thermodynamic quantities can be computed from first principles

using numerical simulations on the lattice. In practice, and especially if one is interested in

comparing to experiment, it is useful to have effective models. These allow one to compute

quantities near thermal equilibrium, such as transport coefficients, which are much more

difficult to extract from the lattice.

For a pure glue theory with three colors and no dynamical quarks, the deconfining phase

transition is of first order. This follows from the global Z(3) symmetry in the pure glue

theory [1]. Adding dynamical quarks acts like a background Z(3) field, and so tends to

weaken the first order transition. As the quark mass decreases, it is possible to reach a

deconfining critical endpoint, at a mass mde, where the deconfining transition is of second

order.

In this paper we consider the properties of the deconfining critical endpoint in effective

models. This was done before in a zero parameter matrix model by Meisinger, Miller, and

Ogilvie [2, 3]. In this paper we perform the computation in one [4] and two [5] parameter

matrix models. This is a useful exercise, since the solution of the zero parameter model does

not agree with lattice data on the interaction measure of the pure SU(3) glue theory. In

contrast, the coefficients of the one and two parameter models are tuned to give increasingly

good agreement with the lattice results [4, 5]. For related matrix models, see [6, 7] and [8].

We expect these models will give very similar results to ours.

For these matrix models, and for models based upon polynomials of the Polyakov loop

[9–12], we find a heavy mde. For three colors and three degenerate quark flavors, mde is

about twice as heavy as the charm quark mass, mde ∼ 2.5 GeV for the matrix model,

and ∼ 3.5 GeV for a polynomial loop model. This is in sharp contrast to models based

on a potential motivated by the Vandermonde determinant, which involve the logarithm of

the Polyakov loop [13–17]. They give a quark mass that is lighter than the charm quark,

mde ∼ 1 GeV.

Besides the value of mde, effective models can give detailed information about the prop-

erties of the deconfining critical endpoint. One obvious parameter is the temperature at

which it occurs, Tde. If Td is the temperature of the deconfining phase transition in the pure

glue theory, matrix and polynomial loop models find very small shifts in the temperature,

Tde ∼ 0.995Td. The shift in logarithmic loop models is much larger, Tde ∼ 0.9Td.
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We also present results for the interaction measure of the theory, which exhibits charac-

teristic differences between the different models. For three degenerate flavors, in the matrix

and polynomial loop models, the interaction measure exhibits two peaks, one near Td, and

one near 3Td. This is not seen in logarithmic loop models.

There are lattice simulations [18, 19] which address this problem. These give a result

which is close to the value in a logarithmic loop model, mde ∼ 1.4 GeV [20–22]. They

are not current, however. There are recent results from the WHOT collaboration [23], but

they do not present an estimate for mde, nor of Td. Recently, the Wuppertal-Budapest

Collaboration has published numerical results on the QCD equation of state with 2 + 1 light

flavors and a dynamical charm quark [24]. Thus they could also address the question of the

deconfining critical endpoint with relative ease.

At the outset, we note that in our effective model, any dimensional parameter is a pure

number times a common mass scale, which we chose at Td. That is, our model determines the

dimensionless ratios, mde/Td and Td/Td. To illustrate the physics, when we quote quantities

such as mde, we uniformly assume that Td = 270 MeV, but stress that this is an assumption.

I. EFFECTIVE MATRIX MODELS

A. Model for a pure glue theory

We wish to model the region near the deconfining transition temperature. In this region,

which has been termed the “semi” quark gluon plasma (QGP), the expectation value of the

Polyakov loop is less than unity. In a matrix model [2, 4, 5], to represent this we expand

the time like component of the vector potential about a constant value,

Aij0 =
2πT

g
qi δ

ij . (1)

For now we consider the general case of SU(N), where indices in the fundamental represen-

tation run from i, j = 1, 2, . . . , N . The matrix A0 is an element of the SU(N) Lie algebra,

so that
∑

i qi = 0.

In this background field, in the fundamental representation the Wilson line L and the

Polyakov loop ` are

L = e2πiq ; ` =
1

N
tr L . (2)
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At one loop order, in this background field the potential for q is

Vglpert(q) = − (N2 − 1)π2

45
T 4 +

2π2

3
T 4

N∑
i,j=1

V2(qi − qj) , (3)

where

V2(x) = x2(1− |x|)2 , −1 ≤ x ≤ 1 . (4)

V2(x) is periodic in x, x→ x+ 1. This can be understood more generally. While the Wilson

line is gauge variant, its eigenvalues, exp(2πiqi), are gauge invariant.

In the pure glue theory, the potential is also invariant under Z(N) transformations.

A Z(N) transformation is given, e.g., by shifting qi → qi + 1/N for i = 1 . . . (N − 1), and

qN → −(N−1)/N , under which L→ exp(2πi/N) L. The fact that the potential is invariant

under this transformation is elementary, since the differences |qi− qj| either vanish or equal

one, which by periodicity is equivalent to zero.

In the matrix model, to drive the transition to confinement, one adds a non-perturbative

term [4]

Vglnon(q) = − 4π2

3
T 2 T 2

d

(
c1

N∑
i,j=1

V1(qi − qj) + c2

N∑
i,j=1

V2(qi − qj) +
(N2 − 1)

60
c3

)
. (5)

where

V1(x) = x(1− |x|) , −1 ≤ x ≤ 1 . (6)

Again, the potential V1(x) is periodic in x → x + 1; it is also invariant under Z(N) trans-

formations.

B. Inclusion of dynamical quarks

In the background field of Eq. (1), at one loop order gluons generate the potential in Eq.

(3). When dynamical quarks are added then, certainly the first thing to do is to compute

the analogous contribution which they make to the q-dependent potential.

This has been computed in Ref. [2], but we include it here for completeness. For quarks

of mass m, the one loop potential is given by

ln det(γµ∂µ + qδµ4 + im) = 2 ln det
[(
∂0 + 2πTq

)2
− ~∂ 2 +m2

]
, (7)

As fermions, in the Matsubara formalism, the frequencies are odd multiples of πT .
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For simplicity we denote the background field simply by q. This is equivalent to an imag-

inary chemical potential for the quark. This makes it easy to do the integral. Instead of

summing over the frequencies, we can just use the standard expression for the thermody-

namic potential of a free fermion gas, replacing the chemical potential µ by 2πiq. Thus we

need to compute

− 2T

∫
d3p

(2π)3

[
ln
(
1 + e−Ep/T−2πiq

)
+ ln

(
1 + e−Ep/T+2πiq

)]
, (8)

where Ep =
√
~p 2 +m2. We then expand each logarithm in a power series,

ln
[
1 + e−Ep/T−2πiq

]
= e−Ep/T−2πiq − 1

2
e−2Ep/T−4πiq + · · · (9)

where the first term is the usual Boltzmann term.

This leaves the integral over momenta. The angular integral is trivial, leaving only the

integral over p:∫ ∞
0

p2e−Ep/Tdp = − ∂

∂β

∫ ∞
0

p2

Ep

e−βEpdp = − ∂

∂β

∫ ∞
1

m2
√
y2 − 1 e−βmydy (10)

= − ∂

∂β

[m
β
K1(βm)

]
= m2 T K2

(m
T

)
,

where Kν is the modified Bessel function of the second kind, and β = 1/T .

The modified Bessel function of the first kind is given by

I−ν(x)− Iν(x) =
Γ
(

1
2
− ν
)

sin(2νπ)

π3/2

(x
2

)ν ∫ ∞
1

(y2 − 1)ν−
1
2 e−xydy, (11)

where Γ(x) is the usual Gamma function. The Bessel function of the second kind is

Kν(x) =
π

2

I−ν(x)− Iν(x)

sin(νπ)
. (12)

Putting all of the factors together, and summing over different colors, for a single flavor

of massive quark its contribution to the potential is given by

Vqkpert(q) =
2m2 T 2

π2

∞∑
n=1

(−1)n

n2
K2

(nm
T

) N∑
i=1

cos(2πnqi) . (13)

The dependence upon the q’s can be rewritten more generally as

N∑
i=1

cos(2πnqi) =
tr Ln + tr

(
L†
)n

2
. (14)
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C. Predictions for matrix model

We now concentrate on the results for three colors. For the pure glue theory, by a Z(3)

rotation we can assume that the Polyakov loop is real. With dynamical quarks, this remains

true if all of the quark masses are real and the quark chemical potential vanishes. We then

take a path in q-space as

q =
1

3
(r − 1, 0, 1− r) (15)

We have chosen to introduce r because the confined vacuum is then given by r = 0; the

perturbative vacuum is r = 1.

For three colors, assuming that the Polyakov loop is real, uniquely specifies the qi. This

is not true for four or more colors [5]. We also have computed the position of the deconfining

critical endpoint for this model in the limit of an infinite number of colors [25], and find,

somewhat surprisingly, that the parameters for the deconfining critical endpoint are similar

to that for three colors.

In writing the potential, it is convenient to introduce a dimensionless temperature,

rescaled by Td,

t =
T

Td
. (16)

The gluon potential is a sum of two terms,

Vgl(r, t) = Vglpert(r, t) + Vglnon(r, t) =
8π2

45
T 4
d t

2 (t2 − c2)
[
Wgl(r, t) +W0

gl(t)
]
. (17)

The first term is a simple quartic potential in r,

Wgl(r, t) = −z(t) r2 − 10

9
r3 +

5

3
r4 , (18)

where

z(t) =
5

3
− 50

27

(
1− c2
t2 − c2

)
. (19)

Here we have fixed the constant c1 by requiring that the transition occurs at Td; this results

in the relation

c1 =
50

27
(1− c2) . (20)

The second constant, c3, is fixed by requiring that the pressure vanish at Td, which gives

the condition

c3 = 1 + c1 −
10

9
(1− c2) . (21)
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This leaves a term independent of r in the potential,

W0
gl(t) =

1

9

(
t2 − 1

t2 − c2

)
. (22)

The overall constant for SU(N) is 1/N2, which is 1/9 for N = 3. The basic justification of

this matrix model is an expansion in large N , so this constant term manifestly represents a

correction of ∼ 1/N2.

For three colors, the model of Ref. [2] takes c2 = 0. The values of c1 and c3 are then fixed

by Eqs. (20) and (21), so this model has no free parameters. When c2 = 0, though, the

peak in the interaction measure, (e− 3p)/T 4 (e is the energy density and p the pressure), is

much broader than found from lattice simulations [4, 5].

We next consider the one parameter model of Ref. [4]. This finds a good fit to the

interaction measure, for values

c1 = 0.31537, c2 = 0.8297, c3 = 1.12615 . (23)

The one parameter model gives a good fit to the interaction measure overall, but has

problems very close to Td; see, e.g., Fig. (3) of Ref. [5]. In particular, the value of the latent

heat for the one parameter model is much smaller than found on the lattice. To avoid this

discrepancy, we consider the two parameter model of Ref. [5]. In this model, c1 and c2 are

constants, as before, but now c3 is a function of temperature,

c3(t) = c3(∞) +
c3(1)− c3(∞)

t2
. (24)

Because T 2c3 enters into the potential, this is equivalent to a MIT “bag” constant,

B =
8π2

45
[c3(1)− c3(∞)]T 4

d . (25)

Fixing the transition to occur at Td relates c1 and c2 as in Eq. (20). Requiring that the

pressure vanish in the confined phase fixes c3(1) to have the value of Eq. (21). That leaves

two free parameters, c2 and c3(∞). An optimal fit was found to be given by

c1 = 0.830, c2 = 0.5517, c3(1) = 1.332, c3(∞) = 0.95 . (26)

The corresponding MIT bag constant is (244 MeV)4.

The r-dependent terms in the potential are unchanged. The only change in the potential

is the term independent of r, which becomes

W0
gl(0, t) =

1

9
+

(
−c1 − c2 + c3(t)

t2 − c2

)
. (27)
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When c3(t) is a constant, this reduces to the previous form in Eq. (22).

The addition of dynamical quarks behaves as expected. The pure glue theory is invari-

ant under Z(3) transformations, so that the confining vacuum, where r = 0, is always a

stationary point of the potential.

With quarks, the Z(3) symmetry is lost. This is clear, as the terms in the quark potential,

Eq. (13), involves

tr Ln = 1 + 2 cos

(
2πn(1− r)

3

)
. (28)

While these quantities all vanish in the confined vacuum, what matters is the equation of

motion for r, and it is easy to see that any derivative with respect to r is nonzero when

r = 0. Thus the presence of dynamical quarks removes the Z(3) symmetry of the pure glue

theory, and acts like a background Z(3) field.

Including the quark term, a nonzero expectation value is generated for any Polyakov loop,

tr Ln, at any nonzero temperature. There is a problem with the 1/N2 term in the gluon

potential, Eq. (22), though. While small relative to the other gluon terms for T > Td, with

quarks, there is an expectation for the Polyakov loop(s), and so a pressure, below Td. The

term in Eq. (22) tends to give negative pressures below Td, which is manifestly unphysical.

Such a negative pressure is not always present. For example, in models like this we could

consider the limit in which both the number of colors, N , and the number of quark flavors,

Nf , are large. Then for temperatures below Td in the pure glue theory, the pressure is large,

∼ N2 or NNf , which are both of the same order.

To avoid this problem, for the one parameter model we simply modify the gluon potential

as

W0
gl(t)→W0

gl(r, t) =
1

9

(
t2 − 1

t2 − c2

)
r2 . (29)

That is, to suppress the contribution of W0
gl, we promote it to a function of r, that is

constructed to vanish when r = 0. We admit that this is an ad hoc procedure. In principle,

one could envisage matching onto a hadron resonance model in the low temperature phase.

This modification changes the properties of the deconfining transition in the pure gauge

theory, but these are very small. In particular, the transition temperature Td does not shift,

since like W0
gl(t), W0

gl(r, t) vanishes at Td, t = 1. We have also checked that the change in

the parameters for the deconfining critical endpoint are small. The main modification is

that with this improvement, the pressure is always non-negative, even below Td.
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Similarly, for the two parameter model, by hand we change the potential as

W0
gl(0, t)→W0

gl(r, t) =

[
1

9
+

(
−c1 − c2 + c3(t)

t2 − c2

)]
r2 . (30)

Besides multiplying by r2, we also investigated multiplying by `2; the results obtained were

very similar. This is because in the end we are looking for a regime where the pressure is

small, anyway.

To compute, we make the most minimal assumptions possible. Notably, we assume

that the temperature which enters into the pure glue potential, Td, remains unchanged by

the addition of quarks. Ultimately, the validity of this assumption will be tested by the

comparison of our model to the results of lattice simulations.

We also assume that the only non-perturbative terms are those of the pure glue theory.

This actually is forced upon us by the Z(N) structure of the theory. While quarks break

the Z(N) symmetry, numerical lattice simulations with three colors find that, at least for

up to three light flavors, that the breaking of Z(3) is relatively mild.

This implies that any terms in the non-perturbative potential should have the symme-

try of the pure glue theory, and not that of the theory with dynamical quarks. We have

considered the modification of the theory with terms such as ∼ T 2 T 2
d tr Ln, characteristic

of quarks. These terms break the Z(3) symmetry, and drastically change the expectation

value of the loop, even above Td. We have checked that if such terms are present, that their

numerical coefficients must be very small.

Lastly, we take the parameter c2 to be that of the pure glue theory. This is really a rather

mild assumption; the important point is that we do not allow the mass scale Td to itself

change as we add dynamical quarks. We also take the values of the other constants in the

non-perturbative potential, c1 and c3, Eq. (23), from the pure glue theory [5].

In short, we assume that confinement is driven by the transition in the pure glue theory.

Upon adding quarks, the modification to the theory is entirely through their perturbative

contribution to the q-dependent potential.

Notably, this means that we assume that the transition temperature the pure glue theory,

Td, remains unchanged after the addition of quarks. Of course adding quarks will shift the

physical transition in the theory, which is why the temperature for the deconfining critical

endpoint, Tde, will differ from Td.

While these assumptions are rather strong, they do allow us to make unique predictions
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for the theory with dynamical quarks from the pure glue model.

II. OTHER MODELS

Two types of the Polyakov loop effective potential have been widely used. The first is a

potential which is a polynomial in the Polyakov loop [9–12]:

Vpoly
T 4

= −b2(T )

2
`∗`− b3

6

[
`3 + (`∗)3

]
+
b4
4

(`∗`)2 . (31)

The mass term is convoluted,

b2(T ) = a0 + a1
Td
T

+ a2

(
Td
T

)2

+ a3

(
Td
T

)3

. (32)

The coefficients are determined by fitting the equation of state and the expectation value of

the Polyakov loop to lattice data of pure gauge theory [26, 27] in Ref. [12].

The second is motivated by the strong coupling expansion. Following Fukushima, one

uses a logarithmic potential [13–17]:

Vlog
T 4

= −a(T )

2
`∗`+ b(T ) ln

{
1− 6`∗`+ 4

[
`3 + (`∗)3

]
− 3(`∗`)2

}
. (33)

Again, the coefficients are involved functions of temperature,

a(T ) = a0 + a1
Td
T

+ a2

(
Td
T

)2

, b(T ) = b3

(
Td
T

)3

. (34)

The above parameterization for the temperature dependence was introduced by Rößner,

Ratti, and Weise [14], with the constants determined by fitting lattice data to the pure

SU(3) theory.

For a single flavor and three colors, the quark contribution to the thermodynamic poten-

tial for the Polyakov loop models is

Vqkpert(`, `∗) = −2T

∫
d3p

(2π)3
{

ln[1 + 3(`+ `∗e−βEp)e−βEp + e−3βEp ] + c.c.
}
. (35)

We assume that there is no chemical potential for the quarks, so that `∗ = `. In this case,

Eq. (35) can be rewritten similarly to Eq. (13)

Vqkpert(`) =
2m2 T 2

π2

∞∑
n=1

(−1)n

n2
K2

(nm
T

) [
1 + 2 Tn

(
3`− 1

2

)]
, (36)

where Tn(x) is the n-th Chebyshev polynomial, Tn(x) = cos(n arccos(x)).
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TABLE I: Parameters in the polynomial potential (31).

Td[MeV] a0 a1 a2 a3 b3 b4

270 6.75 −1.95 2.625 −7.44 0.75 7.5

TABLE II: Parameters in the logarithmic potential (33).

Td[MeV] a0 a1 a2 b3

270 3.51 −2.47 15.22 −1.75

2 2.5 3 3.5 4
2

2.5

3

3.5

4

ms, GeV

1st order

crossover

2nd order

m
u,

d, 
G

eV

2.17

2.39
2.52

FIG. 1: The phase diagram for the deconfining phase transition in the matrix model without a bag

constant, assuming Td ∼ 270 GeV.

III. RESULTS

Most of the results can be understood by considering Eq. (13) in the non-relativistic limit,

when m� T . Then the contribution of a single flavor of quark to the potential is

Vqkpert(q) ≈ −
√

2

π3/2
T 5/2 m3/2e−m/T Re tr L . (37)

We find that for a matrix model, and those with a polynomial potential, that this is a good

approximation.

If true, we can immediately make an interesting prediction. When the quark mass is

heavy, the change in the critical temperature is small, and Tde ≈ Td. For the one and two
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1

2

3

4

5

ms , GeV

m
u,

d 
, G

eV
logarithmic PL

matrix model

polynomial PL

matrix model w/ bag

FIG. 2: The phase diagram of the deconfining phase transition for the matrix model without/with

bag constant (bold/thin solid line) and the Polyakov loop models with the polynomial (dashed line)

and logarithmic (dotted line) potentials. The lines correspond to the second order deconfining phase

transition.

parameter matrix models [4, 5], this holds to ∼ 1%, Eqs. (39) and (40).

Assuming that Tde ≈ Td, consider a theory with Nf flavors of quarks, each with mass

m. The mass for the deconfining critical endpoint is a function of Nf , m
de(Nf ). If the

non-relativistic approximation holds, we trivially obtain the relation

log(Nf ) +
3

2
log

(
mde(Nf )

Td

)
− mde(Nf )

Td
≈ constant . (38)

Once we know mde for one value of Nf , this relation gives us its value for any Nf .

In general, mde and Tde must be computed numerically. Even working with the exact

result for the quark potential in Eq. (13), though, given the simplicity of the potentials the

numerical effort is minimal. As always we assume that Td = 270 GeV.

In Fig. (1) we present the results for the one parameter matrix model, without a bag

constant. The critical temperature changes very little from the pure gauge theory,

T 1 para.
de = .995Td . (39)

The deconfining critical endpoint occurs for a very heavy mass: for one flavor, mde =

2167 MeV. The values for other flavors obey Eq. (38); as Nf increases, so does mde.
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Going to a two parameter matrix model with a bag constant, we find that again the shift

in the critical temperature is very small,

T 2 para.
de = .990Td . (40)

The quark mass mde moves down by about 10% from the the one parameter model, with

mde = 1836 MeV for one flavor. This is the direction expected: in the one parameter model

[4] the latent heat is too small. Going to a two parameter model, with a bag constant,

increases the latent heat to agree with the lattice data [5]. If the latent heat is larger, it

should take a larger background field, or a smaller quark mass, to wash out the first order

deconfining phase transition.

For the zero parameter matrix model, for one flavor we find a slightly larger shift in the

critical temperature, Tde = 0.973Td, and a smaller quark mass, mde = 1536 MeV. These

values agree with those of Ref. [2]. This quark mass is ∼ 17% lighter than for the two

parameter model, but remember that this model does not describe the interaction measure

of the pure glue theory.

We compare the results for different models in Fig. (2). For the logarithmic Polyakov

loop model, the masses are light, mde ∼ 1 GeV. The temperature for the deconfining critical

endpoint is significantly less than for the pure glue theory,

T Log.PLM
de = 0.90 Td . (41)

A polynomial Polyakov loop model gives a very large mass, mde ∼ 3.5 GeV. The critical

temperature is very close to the pure glue theory, Tde ∼ 0.996 Td.

We comment that Ref. [11] used a polynomial Polyakov loop model, but finds a result

rather different from ours. Crucially, we are in accord on the value of the background

field, h, at which the deconfining critical end point occurs. We differ in how to relate this

background field to the quark mass. We assume that in a Polyakov loop model, that the

quark contribution is related following the one loop quark determinant, Sec. (I B), which

gives h ∼ m
3/2
qk exp(−mqk/T ) when mqk � T , Eq. (36). Ref. [11] uses a relation motivated

by light quarks, and take h ∼ exp(−mπ); doing so then gives mde
π ∼ 1.8 GeV.

It is also interesting to compute the interaction measure at the deconfining critical end-

point. In our model, it is a sum of the interaction measure for the glue part of the theory,

plus the interaction measure for quarks. For a massive quark, it is easy to see that the inter-

action measure has a peak at ∼ 0.4 m. For the logarithmic Polyakov loop potential, because
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0 2 4 6 8 10
0

1

2
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4 matrix model
matrix model w/ B
logarithmic PL
polynomial PL

T / Tde

(ε
-3

p)
/ T

4

FIG. 3: The conformal anomaly, (ε− 3p)/T 4, as a function of the temperature, T , normalized by

Tde for the matrix model without/with bag constant (bold/thin solid line) and the Polyakov loop

models with the polynomial (dashed line) and logarithmic (dotted line) potentials. The calculations

are performed for three flavors with m = mde.

the quark mass is relatively light, mde ∼ 1 GeV, the contribution of three degenerate flavors

of quarks to the interaction measure just broadens and enhances the peak in the pure glue

theory, Fig. (3).

In contrast, for either matrix model, or for a polynomial Polyakov loop potential, the

quark mass is heavier than 2 GeV. This means that the interaction measure has a charac-

teristic form: there is the usual peak from gluons, near Tde, plus a second peak from quarks,

at a heavier temperature.

This two peak structure in the interaction measure is special to three degenerate flavors

of quarks. For one or two flavors, there is a peak in the interaction measure from quarks,

but it does not stick out over the contribution from gluons.

IV. CONCLUSIONS

The existence and computation of the deconfining critical endpoint is a well known prob-

lem. In this paper we have shown that its properties can be used to differentiate between

different effective models.

If the critical quark mass is very heavy, as in matrix and polynomial Polyakov loop

14



models, then effects of lattice discretization for such heavy quarks will be severe. It may be

useful instead to compute the background field at which the deconfining critical endpoint

occurs, e. g. by adding a term proportional to h (tr L + tr L†)/2 to the Yang Mills action,

where h is the external field. This is easily computed to one loop order in the Boltzmann

approximation. This result receives corrections perturbatively, proportional to ∼ g2, etc..

Nevertheless, computing with a background field is elementary in numerical simulations on

the lattice, and should indicate if mde is relatively light, ∼ 1 GeV, or heavy, ∼ 2 GeV.
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