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We analyze the properties of the ACOT scheme for heavy quark production and make use of
the MS massless results at NNLO and N3LO for the structure functions F2 and FL in neutral
current deep-inelastic scattering to estimate the higher order corrections. For this purpose we
decouple the heavy quark mass entering the phase space from the one entering the dynamics of
the short distance cross section. We show numerically that the phase space mass is generally
more important. Therefore, the dominant heavy quark mass effects at higher orders can be taken
into account using the massless Wilson coefficients together with an appropriate slow-rescaling
prescription implementing the phase space constraints. Combining the exact ACOT scheme at
NLO with these expressions should provide a good approximation to the missing full calculation in
the ACOT scheme at NNLO and N3LO.
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I. INTRODUCTION

A. Motivation

The production of heavy quarks in high energy pro-
cesses has become an increasingly important subject of
study both theoretically and experimentally. The the-
ory of heavy quark production in perturbative Quan-
tum Chromodynamics (pQCD) is more challenging than
that of light parton (jet) production because of the new
physics issues brought about by the additional heavy
quark mass scale. The correct theory must properly take
into account the changing role of the heavy quark over
the full kinematic range of the relevant process from the
threshold region (where the quark behaves like a typi-
cal “heavy particle”) to the asymptotic region (where the
same quark behaves effectively like a parton, similar to
the well known light quarks {u, d, s}).

With the ever-increasing precision of experimental
data and the progression of theoretical calculations and
parton distribution function (PDF) evolution to next-to-
next-to-leading order (NNLO) of QCD there is a clear
need to formulate and also implement the heavy quark
schemes at this order and beyond. The most impor-
tant case is arguably the heavy quark treatment in in-
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clusive deep-inelastic scattering (DIS) since the very pre-
cise HERA data for DIS structure functions and cross
sections form the backbone of any modern global anal-
ysis of PDFs. Here, the heavy quarks contribute up to
30% or 40% to the structure functions at small momen-
tum fractions x. Extending the heavy quark schemes to
higher orders is therefore necessary for extracting precise
PDFs and hence for precise predictions of observables at
the LHC. However, we would like to also stress the theo-
retical importance of having a general pQCD framework
including heavy quarks which is valid to all orders in per-
turbation theory over a wide range of hard energy scales
and which is also applicable to other observables than
inclusive DIS in a straightforward manner.

An example, where higher order corrections are par-
ticularly important is the structure function FL in DIS.
The leading order (O(α0

S)) contribution to this structure
function vanishes for massless quarks due to helicity con-
servation (Callan-Gross relation). This has several con-
sequences:

• FL is useful for constraining the gluon PDF via the
dominant subprocess γ∗g → qq̄.

• The heavy quark mass effects of order O(m
2

Q2 ) are

relatively more pronounced.1

• Since the first non-vanishing contribution to FL

is next-to-leading order (up to mass effects), the

1 Similar considerations also hold for target mass corrections
(TMC) and higher twist terms. We focus here mainly on the
kinematic region x < 0.1 where TMC are small [1]. An inclusion
of higher twist terms is beyond the scope of this study.
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Figure 1: FL vs. Q from combined HERA-I inclusive
deep inelastic cross sections measured by the H1 and

ZEUS collaborations. Figure taken from Ref. [2].

NNLO and N3LO corrections are more important
than for F2.

In Fig. 1 we show a comparison of different theoretical
calculations of FL with preliminary HERA data [2]. As
can be seen, in particular at small Q2 (i.e. small x), there
are considerable differences between the predictions.2

The purpose of this paper is to calculate the leading
twist neutral current DIS structure functions F2 and FL

in the ACOT factorization scheme up to order O(α3
S)

(N3LO) and to estimate the error due to approximating

the heavy quark mass terms O(α2
S×m2

Q2 ) and O(α3
S×m2

Q2 )

in the higher order corrections. The results of this study
form the basis for using the ACOT scheme in NNLO
global analyses and for future comparisons with precision
data for DIS structure functions.

B. Outline of Paper

The rest of this paper is organized as follows. In Sec. II
we review theoretical approaches to include heavy flavors
in QCD calculations. Particular emphasis is put on the
ACOT scheme which is the minimal extension of the MS
scheme in the sense that the observables in the ACOT
scheme reduce to the ones in the MS scheme in the
limit m → 0 without any finite renormalizations. In this
discussion we explicitly distinguish between the heavy
quark/heavy meson mass entering the final state phase
space which we will call “phase space mass” and the heavy
quark mass entering the dynamics of the short distance
cross section denoted “dynamic mass.” We show numer-
ically using the exact ACOT scheme at O(αS) (NLO)

2 An updated analysis of the H1 measurements extending down
to even lower Q2 values has been published in Ref. [3], and a
combined analysis with ZEUS is in progress.

Figure 2: Characteristic Feynman graphs which con-
tribute to DIS heavy quark production in the ACOT
scheme: a) the LO O(α0

S) quark-boson scattering QV →
Q, b) the NLO O(α1

S) gluon-boson scattering gV → QQ̄,
and c) the corresponding subtraction term (SUB) (g →

QQ̄)⊗ (Q → gQ).

that the effects of the phase space mass are more impor-
tant than the ones due to the dynamic mass. We use this
observation to construct in Sec. III the NC DIS structure
functions in the ACOT scheme up to O(α3

S). The cor-
responding numerical results are presented in Sec. IV.
Finally, in Sec. V we summarize the main results.

II. REVIEW OF THEORETICAL METHODS

We review theoretical methods which have been ad-
vanced to improve existing QCD calculations of heavy
quark production, and the impact on recent experimen-
tal results.

A. ACOT Scheme

The ACOT renormalization scheme [4] provides a
mechanism to incorporate the heavy quark mass into the
theoretical calculation of heavy quark production both
kinematically and dynamically. In 1998 Collins [5] ex-
tended the factorization theorem to address the case of
heavy quarks; this work provided the theoretical foun-
dation that allows us to reliably compute heavy quark
processes throughout the full kinematic realm.

Figure 2 displays characteristic Feynman graphs for
the first two orders of DIS heavy quark production. If we
consider the DIS production of heavy quarks at O(α1

S)
this involves the LO QV → Q process and the NLO
gV → QQ̄ process.3

The key ingredient provided by the ACOT scheme is
the subtraction term (SUB) which removes the “double
counting” arising from the regions of phase space where
the LO and NLO contributions overlap. Specifically, at
NLO order, we can express the total result as a sum of

σTOT = σLO + {σNLO − σSUB} (1)

3 At NLO, there are corresponding quark-initiated terms; for sim-
plicity we do not display them here, but they are fully contained
in our calculations [6].
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where the subtraction term for the gluon-initiated pro-
cesses is

σSUB = fg ⊗ P̃g→Q ⊗ σQV →Q . (2)

σSUB represents a gluon emitted from a proton (fg)
which undergoes a collinear splitting to a heavy quark
(P̃g→Q) convoluted with the LO quark-boson scatter-

ing σQV →Q. Here, P̃g→Q(x, µ) =
αs

2π ln(µ2/m2)Pg→Q(x)

where Pg→Q(x) is the usual MS splitting kernel, m is the
quark mass and µ is the renormalization scale4 which we
typically choose to be µ = Q.

An important feature of the ACOT scheme is that it
reduces to the appropriate limit both as m → 0 and
m → ∞ as we illustrate below.

1. Fixed-Flavor-Number-Scheme (FFNS) Limit

Specifically, in the limit where the quark Q is rela-
tively heavy compared to the characteristic energy scale
(µ ∼< m), we find σLO ∼ σSUB such that σTOT ∼ σNLO.
In this limit, the ACOT result naturally reduces to
the Fixed-Flavor-Number-Scheme (FFNS) result. In the
FFNS, the heavy quark is treated as being extrinsic to
the hadron, and there is no corresponding heavy quark
PDF (fQ ∼ 0); thus σLO ∼ 0. We also have σSUB ∼ 0
because this is proportional to ln(µ2/m2). Thus, when
the quark Q is heavy relative to the characteristic energy
scale µ, the ACOT result reduces to σTOT ∼ σNLO.

2. Zero-Mass Variable-Flavor-Number-Scheme (ZM-VFNS)
Limit

Conversely, in the limit where the quark Q is rela-
tively light compared to the characteristic energy scale
(µ ∼> m), we find that σLO yields the dominant part
of the result, and the “formal” NLO O(αS) contribution
{σNLO − σSUB} is an O(αS) correction.

In the limit m/µ → 0, the ACOT result will reduce
to the MS Zero-Mass Variable-Flavor-Number-Scheme
(ZM-VFNS) limit exactly without any finite renormal-
izations. In this limit, the quark mass m no longer plays
any dynamical role and purely serves as a regulator. The
σNLO term diverges due to the internal exchange of the
quark Q, and this singularity will be canceled by σSUB .

3. ACOT as a minimal extension of MS

We illustrate the versatile role of the quark mass in
Fig. 3-a where we display the MS ZM-VFNS and the
ACOT result as a function of the quark mass m.

4 In this subsection we will distinguish µ and Q; in the following,
we will set µ = Q and display the results as a function of Q.
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Figure 3: Comparison of F c
2 (x,Q) (scaled by 104) vs.

the quark mass m in GeV for fixed x = 0.1 and Q =
10 GeV. The red dots are the full ACOT result, and the
blue line is the massless MS result. The logarithmic plot
demonstrates this result holds precisely in the m → 0

limit.

We observe that when m is within a decade or two of
µ that the quark mass plays a dynamic role; however,
for m ≪ µ, the quark mass purely serves as a regulator
and the specific value is not important. Operationally, it
means we can obtain the MS ZM-VFNS result either by
i) computing the terms using dimensional regularization
and setting the regulator to zero, or ii) by computing the
terms using the quark mass as the regulator and then
setting this to zero.5 To demonstrate this point explicitly,
in Fig. 3-b we again display the MS ZM-VFNS and the
ACOT results but this time with a logarithmic scale to
highlight the small m region. We clearly see that ACOT
reduces the MS ZM-VFNS exactly in this limit without
any additional finite renormalization contributions.6

The ACOT scheme is minimal in the sense that the
construction of the massive short distance cross sections
does not need any observable–dependent extra contribu-
tions or any regulators to smooth the transition between
the high and low scale regions. The ACOT prescription
is to just calculate the massive partonic cross sections

5 If we were to compute this process in the MS scheme, the
ln

(
m2/Q2

)
in the SUB term would simply be replaced by a

1/ε pole which would cancel the corresponding singularity in the
NLO contribution.

6 It is possible to define other massive schemes that could include
additional matching parameters or extra observable–dependent
contributions. For example, the calculation of F c

2 in the original
RT scheme [7] included extra higher-order contributions that do
not vanish as Q/m → ∞.
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(SUB) f̃c(x, µ) = fg(x, µ) ⊗ P̃g→c vs. µ in GeV for two
representative values of x.

and perform the factorization using the quark mass as
regulator.

It is in this sense that we claim the ACOT scheme is the
minimal massive extension of the MS ZM-VFNS. In the
limit m/µ → 0 it reduces exactly to the MS ZM-VFNS,
in the limit m/µ ∼> 1 the heavy quark decouples from
the PDFs and we obtain exactly the FFNS for m/µ ≫ 1
and no finite renormalizations or additional parameters
are needed.

4. When do we need Heavy Quark PDFs

The novel ingredient in the above calculation is the
inclusion of the heavy quark PDF contribution which re-
sums logs of αS ln(µ2/m2). An obvious question is when
do we need to consider such terms, and how large are
their contributions? The answer is illustrated in Fig. 4
where we compare the DGLAP evolved PDF fQ(x, µ)

with the single splitting perturbative result f̃Q(x, µ).
The DGLAP PDF evolution sums a non-perturbative

infinite tower of logs which are contained in σLO while the
σSUB contribution removes the perturbative single split-
ting component which is already included in the σNLO

contribution. Hence, at the PDF level the difference be-
tween the heavy quark DGLAP evolved PDF fQ and the

single-splitting perturbative f̃Q will indicate the contri-
bution of the higher order logs which are resummed into
the heavy quark PDF. Here, f̃Q = fg ⊗ P̃g→Q represents
the PDF of a heavy quark Q generated from a single
perturbative splitting.

For µ ∼ m we see that fQ and f̃Q match quite closely,

2 5 10 20 50 100
0

0.01

0.02

0.03

Q  (GeV)

FFN
ZM-VFN

 

ACOT
S-ACOT

Figure 5: F c
2 for x = 0.1 for NLO DIS heavy quark pro-

duction as a function of Q. We display calculations us-
ing the ACOT, S-ACOT, Fixed-Flavor Number Scheme
(FFNS), and Zero-Mass Variable Flavor Number Scheme
(ZM-VFNS). The ACOT and S-ACOT results are virtu-

ally identical.

whereas they differ significantly for µ values a few times
m. While the details will depend on the specific pro-
cess, in general we find that for µ-scales a few times m
the terms resummed by the heavy quark PDF can be
significant. Additionally, the difference between fQ and

f̃Q will be reduced at higher orders as more perturbative

splittings are included in f̃Q.
Note that these scales are much lower than one might

estimate using the naive criterion αS

2π ln(µ2/m2) ∼ 1; in
particular, the ACOT calculation often yields reduced µ-
dependence as the quark dominated σLO contributions
typically have behavior which is complementary to the
gluon-initiated σNLO terms.

B. S-ACOT

In a corresponding application, it was observed that
the heavy quark mass could be set to zero in certain
pieces of the hard scattering terms without any loss of
accuracy. This modification of the ACOT scheme goes
by the name Simplified-ACOT (S-ACOT) and can be
summarized as follows [8].

S-ACOT: For hard-scattering processes with
incoming heavy quarks or with internal on-
shell cuts on a heavy quark line, the heavy
quark mass can be set to zero (m = 0) for
these pieces.

If we consider the case of NLO DIS heavy quark pro-
duction, this means we can set m = 0 for the LO terms
(QV → Q) as this involves an incoming heavy quark, and
we can set m = 0 for the SUB terms as this has an on-
shell cut on an internal heavy quark line. Hence, the only
contribution which requires calculation with m retained
is the NLO gV → QQ̄ process. Figure 5 displays a com-
parison of a calculation using the ACOT scheme with all
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masses retained vs. the S-ACOT scheme; as expected,
these two results match throughout the full kinematic
region.

It is important to note that the S-ACOT scheme is
not an approximation; this is an exact renormalization
scheme, extensible to all orders.

C. ACOT and χ-Rescaling

As we have illustrated in Sec. II A above, in the limit
Q2 ≫ m2 the mass simply plays the role of a regula-
tor. In contrast, for Q2 ∼ m2 the value of the mass is
of consequence for the physics. The mass can enter dy-
namically in the hard-scattering matrix element, and can
enter kinematically in the phase space of the process.

We will demonstrate that for the processes of interest
the primary role of the mass is kinematic and not dy-
namic. It was this idea which was behind the original
slow-rescaling prescription of [9] which considered DIS
charm production (e.g., γc → c) introducing the shift

x → χ = x

[
1 +

(
mc

Q

)2
]
. (3)

This prescription accounted for the charm quark mass by
effectively reducing the phase space for the final state by
an amount proportional to (mc/Q)2.

This idea was extended in the χ-scheme by realiz-
ing that in addition to the observed final-state charm
quark, if the beam has a charm-flavor quantum number
of zero (such as a proton beam) then there is also an
anti-charm quark in the beam fragments because all the
charm quarks are ultimately produced by gluon splitting
(g → cc) into a charm pair.7 For this case the scaling
variable becomes

χ = x

[
1 +

(
2mc

Q

)2
]
. (4)

This rescaling is implemented in the ACOTχ scheme,
for example [10–12]. The factor (1 + (2mc)

2/Q2) repre-
sents a kinematic suppression factor which will suppress
the charm process relative to the lighter quarks. Addi-
tionally, the χ-scaling ensures the threshold kinematics
(W 2 > 4m2

c +M2) are satisfied; while it is important to
satisfy this condition for large x, this may prove too re-
strictive at small x where the HERA data are especially
precise.8

7 If the beam has non-zero charm-flavor quantum number, such
as a D-meson, this argument would be incorrect. Technically,
χ-scaling violates factorization as we are presuming the mass of
the beam fragments; if we perform a thought experiment with a
beam of D-mesons, charm quark need not be associated with an
anti-charm quark.

8 We sketch the relevant kinematics in Appendix A3.

To encompass all the above results, we can define a
general scaling variable χ(n) as

χ(n) = x

[
1 +

(
n mc

Q

)2
]

(5)

where n = {0, 1, 2}. Here, n = 0 corresponds to the mass-
less result without rescaling, n = 1 corresponds to the
original Barnett slow-rescaling, and n = 2 corresponds
to the χ-rescaling.

D. Phase Space (Kinematic) & Dynamic Mass

We now investigate the effects of separately varying the
mass entering the χ(n) variable taking into account the
phase space constraints and the mass value entering the
hard scattering cross section σ̂(m). We call the former
mass parameter “phase space (kinematic) mass” and the
latter “dynamic mass”9.

In Fig. 6a we display F c
2 (x,Q) vs. Q. The family of

3 curves shows the NLO ACOT calculation with χ(n)
scaling using a zero dynamic mass for the hard scatter-
ing. We compare this with Fig. 6b which shows F c

2 (x,Q)
in the NLO ACOT scheme using a fixed n = 2 scal-
ing, but varying the mass used in the hard-scattering
cross section. The upper (cyan) curves use a non-zero
dynamic mass [σ̂(mc = 1.3)] and the lower (purple)
curves have been obtained with a vanishing dynamic
mass [σ̂(mc = 0)]. We observe that the effect of the
‘dynamic mass’ in σ̂(mc) is only of consequence in the
limited region Q ∼> m, and even in this region the ef-
fect is minimal. In contrast, the influence of the phase
space (kinematic) mass shown in Fig. 6a is larger than
the dynamic mass shown in Fig. 6b. To highlight these
differences, we scale the curves in Fig. 6 by the massless
n = 2 scaling result and plot bands that represent the
variation of the dynamic and kinematic masses.

In conclusion, we have shown that (up to O(αS)) the
phase space mass dependence is generally the dominant
contribution to the DIS structure functions. Assuming
that this observation remains true at higher orders, it is
possible to obtain a good approximation of the structure
functions in the ACOT scheme at NNLO and N3LO using
the massless Wilson coefficients together with a non-zero
phase space mass entering via the χ(n)-prescription.

9 Note that the finite mass terms (m2/Q2)n in σ̂(m) receive contri-
butions from both, masses in the heavy quark propagators and
masses in the phase space. Still we refer to them as dynamic
mass terms and show that they are numerically less important
than the mass terms in the slow rescaling variable χ(n) which
are of purely kinematic origin.
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Figure 6: Comparison of phase space (kinematic) & dynamic mass effects
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III. ACOT SCHEME BEYOND NLO

We have shown using the NLO full ACOT scheme that
the dominant mass effects are those coming from the
phase space which can be taken into account via a gen-
eralized slow-rescaling χ(n)-prescription. Assuming that
a similar relation remains true at higher orders, one can
construct the following approximation to the ACOT re-
sult up to N3LO (O(α3

S)):

ACOT[O(α0+1+2+3
S )] ≃

ACOT[O(α0+1
S )] + ZM-VFNSχ(n)[O(α2+3

S )] (6)

In this equation, “ACOT” generically represents any vari-
ant of the ACOT scheme (ACOT, S-ACOT, S-ACOTχ);
for the results presented in Sec. IV, we will use the fully

massive ACOT scheme with all masses retained out to
NLO. The ZM-VFNSχ(n) term uses the massless Wilson

coefficients at O(αα2
S) and O(αα3

S) with the specified
χ(n)-scaling.10 Sample processes which contribute at this
order are displayed in Fig. 8.

We use the ZM-VFNSχ(n) result in Eq. (6) to approxi-
mate the higher-order terms because not all the necessary
massive Wilson coefficients at O(αα2

S) and O(αα3
S) have

been computed. There has been a calculation of neutral
current electroproduction (equal quark masses, vector

10 In Sec.II.A.2 we demonstrated that the ACOT calculation re-
duces to the ZM-VFNS result in the massless limit. We will
address the choice of the χ(n)-rescaling in the Sec. III.A.
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Figure 8: Sample Feynman diagrams contributing to DIS
heavy quark production (from left): LO O(α0

S) quark-
boson scattering QV → Q, NLO O(α1

S) gluon-boson
scattering gV → QQ̄, NNLO O(α2

S) boson-gluon scatter-
ing gV → gQQ̄, and N3LO O(α3

S) boson-gluon scattering
gV → ggQQ̄.

coupling) of heavy quarks at this order by Smith & Van-
Neerven [13] in the FFNS which could be used to obtain
the massive Wilson coefficients in the S-ACOT scheme by
applying appropriate collinear subtraction terms. How-
ever, for the original ACOT scheme it would then still
be necessary to compute the massive Wilson coefficients
for the heavy quark initiated subprocess at O(αα2

S). See
Refs. [12, 14] for details.

Using the result of Ref. [13], Thorne and Roberts de-
veloped an NLO VFNS [7, 15], and an improved NNLO
formulation was presented in Ref. [16]. The FONNL
formalism was outlined in Ref. [17] and this was used
to construct matched expressions for structure functions
to NNLO [18]; implications of these results in the con-
text of the NNPDF analysis were presented in Ref. [19].
An overview and comparison of these analyses was pre-
sented in the 2009 Les Houches report [20]. More re-
cently, an NNLO S-ACOT-χ calculation was developed
in Refs. [12, 14]. For charge current case massive calcu-
lations are available at order O(ααS) [21–23] and partial
results at order O(αα2

S) [24]. Comparative analyses of
these schemes are under investigation; however, this is
beyond the scope of this paper.

Here, we argue that the massless Wilson coefficients
at O(αα2

S) together with a χ(n)-prescription provide a
very good approximation of the exact result. At worst,
the maximum error would be of order O(αα2

S×[m2/Q2]).
However, based on the arguments of Sec. II D we expect
the inclusion of the phase space mass effects to contain
the dominant higher order contributions so that the ac-
tual error should be substantially smaller.

The massless higher order coefficient functions for the
DIS structure function F2 via photon exchange can be
found in Refs. [25–27] for O(α1

S), Refs. [28–30] for O(α2
S),

and Ref. [31] for O(α3
S). For our numerical code we have

used the x-space parameterization provided in Refs. [32,
33] for O(α2

S), and Refs. [31, 34] for O(α3
S).

The expressions for the structure function FL have
been calculated in Refs. [29, 35] for O(α2

S), and Ref. [31]
for O(α3

S). In our FORTRAN code we have used the
x-space parameterization provided in Refs. [32, 36] for
O(α2

S) and Ref. [36] for O(α3
S).

In order to calculate the inclusive structure functions

F2 and FL in the ZM-VFNSχ using these Wilson coef-
ficients, plus- and delta-distributions have to be evalu-
ated which is in principle straightforward. However, for
the implementation of the slow-rescaling prescription it
is necessary to decompose the Wilson coefficients into the
contributions from different parton flavors. This step is
non-trivial at O(α2

S) and beyond, and we therefore pro-
vide some details of our calculation in the Appendix B.

A. Choice of χ(n)-Rescaling

We now consider our choice for the appropriate gener-
alized χ(n)-rescaling variable.

In Table I we display the various rescalings of ξ for
the LO γQ → Q process and the NLO γg → QQ pro-
cess. The “general” result is obtained by working out the
detailed kinematics for the corresponding process [37].

The factor η is the rescaling due to the hadronic mass
M ; notice that this factors out from the partonic mass
dependence as it should [1]. For details see Appendix A.

The LO case with full massive kinematics has been
computed in Ref. [37]. In the limit where the initial
mass is small (m1 → 0), we recover the Barnett [9] slow-
rescaling result. Additionally, we obtain the curious re-
sult that for a neutral current equal mass case (m1 = m2)
the rescaling is this same factor.

For the NLO gluon-induced process, the interpreta-
tion of the rescaling is straightforward; the phase space
is simply suppressed by the total invariant mass of the
final state (m1 +m2) compared to the scale Q. For the
charged current case where we neglect m1, we again ob-
tain the standard rescaling factor. However, for the neu-
tral current case (m1 = m2) we obtain a rescaling factor
which is analogous to the χ-scaling factor.

For the purposes of this study, we will vary the phase
space mass using the χ(n) rescaling with n = {0, 1, 2}.
While n = 0 corresponds to the massless case (no rescal-
ing), it is not obvious whether n = 1 or n = 2 is the
preferred rescaling choice for higher orders. Thus, we
will use the range between n = 1 and n = 2 as a measure
of our theoretical uncertainty arising from this ambiguity.

IV. RESULTS

We now present the results of our calculation extend-
ing the ACOT scheme to NNLO and N3LO. As outlined
in Eq. (6), we will use the fully massive ACOT scheme for
the LO and NLO contributions, and combine this with
the ZM-VFNS supplemented with the χ-rescaling pre-
scription to approximate the higher order terms. We will
use the QCDNUM program [38] with the VFNS evolved
with the DGLAP kernels at NNLO to generate our PDFs
from an initial distribution based on the Les Houches
benchmark set [39]; this ensures that our heavy quark
PDFs are consistently evolved so that the heavy quark
initiated LO terms properly match the corresponding
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ξ General m1 = 0 m1 = m2 = m χ-scheme:

η
[
Q2−m2

1
+m2

2
+∆[−Q2,m2

1
,m2

2
]

2Q2

]
η
[
1 +

m2

2

Q2

]
η
[
1 + m2

Q2

]
η
[
1 + (2m)2

Q2

]

η

[
1 +

(
m1+m2

Q

)2
]

η
[
1 +

m2

2

Q2

]
η
[
1 + (2m)2

Q2

]
η
[
1 + (2m)2

Q2

]

Table I: The massive rescaling factor for the LO quark-initiated process (V q1 → q2), and the NLO gluon-initiated
process (V g → q1q2). The quarks q1,2 have mass m1,2, respectively, and V represents the vector boson; γ/Z for
neutral current processes (m1 = m2), and W± for charged current processes (m1 6= m2). η is the scaling factor
which depends on the hadronic mass M ; see Appendix A for details. The triangle-function is defined as: ∆[a, b, c] =√

a2 + b2 + c2 − 2(ab+ bc+ ca).

SUB contribution. At NNLO the proper matching con-
ditions across flavor thresholds introduces discontinuities
in the PDFs which are incorporated in the QCDNUM
program; we discuss this in detail in Appendix C. We
choose mc = 1.3 GeV, mb = 4.5 GeV, αS(MZ) = 0.118.
We note that the QCDNUM ZM-STFN package has the
massless Wilson coefficients computed up to N3LO; we
cross checked our implementation of ACOT in the mass-
less limit with QCDNUM, and they agree precisely.

A. Effect of χ(n)-Scaling

In Figures 9a and 9b we display the structure functions
F2 and FL, respectively, for selected x values as a function
of Q. Each plot has three curves which are computed
using n-scalings of {0, 1, 2}. We observe that the effect of
the n-scaling is negligible except for very small Q values.
This result is in part because the heavy quarks are only
a fraction of the total structure function, and the effects
of the n-scaling are reduced at larger Q values.

In Fig. 10 we magnify the small Q region of FL of
Fig. 9b for x = 10−5, where the effects of using differ-
ent scalings are largest. We can see that for inclusive
observables, the n = 1 and n = 2 scalings give nearly
identical results, but they differ from the massless case
(n = 0). This result, together with the observation that
at NLO kinematic mass effects are dominant, suggests
that the error we have in our approach is relatively small
and approximated by the band between n = 1 and n = 2
results.

B. Flavor Decomposition of χ(n) Scaling

We can investigate the effects of the χ(n)-scaling in
more details by examining the flavor decomposition of
the structure functions.

In Figures 11a and 11b we display the fractional con-
tributions of quark flavors to the structure functions F2,L

for selected n-scaling values as a function of Q. Flavor
decomposition of inclusive structure functions is defined
in appendix B in Eqs. (B1) and (B2). We observe the
n-scaling reduces the relative contributions of charm and

bottom at low Q scales. For example, without any n-
scaling (n = 0) we find the charm and bottom quarks
contribute an unusually large fraction at very low scales
(Q ∼ mc) as they are (incorrectly) treated as massless
partons in this region. The result of the different n-
scalings (n = 1, 2) is to introduce a kinematic penalty
which properly suppresses the contribution of these heavy
quarks in the low Q region. In the following, we will gen-
erally use the n = 2 scaling for our comparisons.

C. F2,L Initial-State Flavor Decomposition

In Figures 12a and 12b we display the fractional con-
tributions for the initial-state quarks (i) to the structure
functions F2 and FL,11 respectively, for selected x val-
ues as a function of Q; here we have used n = 2 scal-
ing. Reading from the bottom, we have the cumulative
contributions from the {g, u, d, s, c, b}. Although this de-
composition is not physically observable, it is instructive
to see which PDFs are dominantly influencing the result.
We observe that for large x and low Q the heavy flavor
contributions are minimal. For example, for x = 10−1

we see the contribution of the u-quark comprises ∼ 80%
of the F2 structure function at low Q. In contrast, at
x = 10−5 and large Q we see the F2 contributions of the
u-quark and c-quark are comparable (as they both cou-
ple with a factor 4/9), and the d-quark and s-quark are
comparable (as they both couple with a factor 1/9).

It is notable that the gluon contribution to FL is sig-
nificant. For x = 10−1 this is roughly 40% throughout
the Q range, and can be even larger for smaller x values.

D. F2,L Final-State Flavor Decomposition

In Figures 13a and 13b we display the fractional con-
tributions for the final-state quarks (j) to the structure
functions F2 and FL, respectively, for selected x values as
a function of Q; here we have used n = 2 scaling. Reading

11 Fractional decomposition of “initial-state” structure functions is
understand as F i

2,L =
∑6

j=1 F
ij
2,L.
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Figure 9: F2,L vs. Q at N3LO for fixed x = {10−1, 10−3, 10−5} (left to right). The three lines show the scaling
variable: n = {0, 1, 2} (red, green, blue). We observe the effect of the n-scaling is negligible except for very small Q

values.

1.0 5.02.0 3.01.5 7.0

0.5

1.0
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2.0

Figure 10: Enlargement of Fig. 9b for x = 10−5 showing
the small Q region. Here we can distinguish plots for dif-
ferent scalings; from top to bottom we have n = {0, 1, 2}

(red, green, blue).

from the bottom, we have the cumulative contributions
from the {u, d, s, c, b}. Again, we observe that for large
x and low Q the heavy flavor contributions are minimal,
but these can grow quickly as we move to smaller x and
larger Q.

E. Comparison of LO, NLO, NNLO, N3LO

In Figure 14a we display the results for F2 vs. Q com-
puted at various orders. For large x (c.f. x = 0.1) we find
the perturbative calculation is particularly stable; we see
that the LO result is within 20% of the others at small Q,
and within 5% at large Q. The NLO is within 2% at small
Q, and indistinguishable from the NNLO and N3LO for
Q values above ∼ 10 GeV. The NNLO and N3LO results

are essentially identical throughout the kinematic range.
For smaller x values (10−3, 10−5) the contribution of the
higher order terms increases. Here, the NNLO and N3LO
coincide for Q values above ∼ 5 GeV, but the NLO result
can differ by ∼ 5%.

In Figure 14b we display the results for FL vs. Q com-
puted at various orders. In contrast to F2, we find the
NLO corrections are large for FL; this is because the LO
FL contribution (which violates the Callan-Gross rela-
tion) is suppressed by (m2/Q2) compared to the dom-
inant gluon contributions which enter at NLO. Conse-
quently, we observe (as expected) that the LO result
for FL receives large contributions from the higher or-
der terms.12 Essentially, the NLO is the first non-trivial
order for FL, and the subsequent contributions then con-
verge. For example, at large x (c.f. x = 0.1) for
Q ∼ 10 GeV we find the NLO result yields ∼ 60 to 80% of
the total, the NNLO is a ∼ 20% correction, and the N3LO
is a ∼ 10% correction. For lower x values (10−3, 10−5)
the convergence of the perturbative series improves, and
the NLO results is within ∼ 10% of the N3LO result.
Curiously, for x = 10−5 the NNLO and N3LO roughly
compensate each other so that the NLO and the N3LO
match quite closely for Q ≥ 2 GeV.

12 Because we use the fully massive ACOT scheme to LO and NLO,
the LO result in Fig. 14b contains the (m2/Q2) helicity-violating
contributions ∼ O(α0

s); hence, it is non-zero. In the S-ACOT
scheme, the LO result for FL vanishes, but the NLO result is
comparable to the NLO ACOT result.
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Figure 11: Effect of χ(n)-scaling for n = {0, 1, 2} (left to right) at N3LO for fixed x = {10−3}. Reading from the

bottom we have fractional contribution for each quark flavor to F j
2,L/F2,L vs. Q from {u, d, s, c, b} (green, blue, cyan,

magenta, pink).
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Figure 12: Fractional flavor decomposition of “initial-state” F i
2,L/F2,L vs. Q at N3LO for x = {10−1, 10−3, 10−5} (left

to right) for n = 2 scaling. Reading from the bottom, we plot the cumulative contributions to F2,L from {g, u, d, s, c, b},
(red, green, blue, cyan, magenta, pink).

While the calculation of FL is certainly more challeng-
ing, examining Fig. 1 we see that for most of the relevant
kinematic range probed by HERA the theoretical calcu-
lation is quite stable. For example, in the high Q2 region
where HERA is probing intermediate x values (x ∼ 10−3)

the spread of the χ(n) scalings is small. The challenge
arises in the low Q region (Q ∼ 2 GeV) where the x values
are ∼ 10−4; in this region, there is some spread between
the various curves at the lowest x value (∼ 10−5), but
for x ∼ 10−3 this is greatly reduced.
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Figure 13: Fractional contribution for each quark flavor to F j
2,L/F2,L vs. Q at N3LO for fixed x = {10−1, 10−3, 10−5}

(left to right). Results are displayed for n = 2 scaling. Reading from the bottom, we have the cumulative contributions
from the {u, d, s, c, b} (green, blue, cyan, magenta, pink).
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Figure 14: F2,L vs. Q at {LO, NLO, NNLO, N3LO} (red, green, blue, cyan) for fixed x = {10−1, 10−3, 10−5} (left to
right) for n = 2 scaling.

V. CONCLUSIONS

We extended the ACOT calculation for DIS structure
functions to N3LO by combining the exact ACOT scheme
at NLO with a χ(n)-rescaling; this allows us to include
the leading mass dependence at NNLO and N3LO. Us-

ing the full ACOT calculation at NLO, we demonstrated
that the heavy quarks mass dependence for the DIS struc-
ture functions is dominated by the kinematic mass con-
tributions, and this can be implemented via a generalized
χ(n)-rescaling prescription.

We studied the F2 and FL structure functions as a
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function of x and Q. We examined the flavor decompo-
sition of these structure functions, and verified that the
heavy quarks were appropriately suppressed in the low
Q region. We found the results for F2 were very stable
across the full kinematic range for {x,Q}, and the contri-
butions from the NNLO and N3LO terms were small. For
FL, the higher order terms gave a proportionally larger
contribution (due to the suppression of the LO term from
the Callan-Gross relation); nevertheless, the contribu-
tions from the NNLO and N3LO terms were generally
small in the region probed by HERA.

The result of this calculation was to obtain precise pre-
dictions for the inclusive F2 and FL structure functions
which can be used to analyze the HERA data.

Appendix A: Kinematic Relations

1. Target Mass Contributions

In the DIS process, the effect of the target mass (M) on
the scaling variable is a multiplicative correction factor

η =
2x

1 +
√
1 + 4x2M2

Q2

−→
M→0

x

[
1−

(
xM

Q

)2
]
+ ... . (A1)

This is used in Table I to modify the scaling variable [1,
37].

2. Barnett Scaling

If we consider the charged-current DIS process for
charm production, this takes place via the subprocess
W+(q) s(ξP ) → c(k). If we impose 4-momentum con-

servation, we have (q + ξP )
2

= k2 = m2
c . Defining

q2 = −Q2 and x = Q2/(2p · q), we obtain the traditional
“slow rescaling” relation [9]

ξ = x

(
1 +

m2
c

Q2

)

which was used in Eq. (3).

3. Ŵ constraints

If we compute the invariant mass Ŵ of a boson of mo-
mentum q scattering from a light parton a of momentum
pa = ξP , we find [14]

Ŵ = (pa + q)2 = Q2(ξ/x− 1) . (A2)

If the partonic final state has a minimum invariant mass

Ŵmin = 4m2, then ξ is constrained by

1 ≥ ξ ≥ χ ≥ x (A3)

Figure 15: O(α0
S) - γ∗qi → qi. Contributes to Cns

a,q (and
hence to Cs

a,q) but not to Cps
a,q.

Figure 16: O(α1
S) - γ∗qi → qig. Contributes to Cns

a,q (and
hence to Cs

a,q) but not to Cps
a,q. This contribution does

not depend on nf .

where χ = x(1 + 4m2/Q2). This is the relation used

in Eq. (4). This choice will ensure Ŵ ≥ Ŵmin is sat-
isfied. While this constraint is important in the large x
region, this may be too restrictive in the small x region—
especially as this is the region where the HERA data is
very precise.

Appendix B: Decomposition of the Wilson
coefficients

In this appendix we present the decomposition of the
Wilson coefficients used to implement the scheme. We
will need to decompose the structure function F in terms
of the individual partonic contributions,

F =
5∑

i=0

6∑

j=1

F ij (B1)

where the indices i and j represent initial and final-state
partons respectively (see captions of Figs. 15–24). More
specifically, i = 0 denotes a gluon and i, j = 1, 2, 3, . . .
denotes u, d, s, . . . quarks and anti-quarks. A top quark
PDF (i = 6) is not included in this study.

Let us consider the heavy quark structure functions
F c
2,L as an example. This is obtained by requiring that

there is a charm in the initial state while summing
over the final-state flavors up to and including charm
in Eq. (B1), or by requiring that there is a charm in the
final-state and summing over the initial flavors up to and
including charm. Thus, we obtain:

F c =

3∑

i=0

F i4 +

3∑

j=1

F 4j + F 44 . (B2)

The case where the initial and final-state are both charm
quarks (F 44) has been written explicitly in the equation
to avoid double counting this contribution.13 The first

13 Note that in our decomposition, diagrams with a bottom quark
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Figure 17: O(α1
S) - γ∗g → qj q̄j .

Figure 18: O(α2
S) - γ∗qi → qigg. Contributes to Cns

a,q

(and hence to Cs
a,q) but not to Cps

a,q. This part is inde-
pendent of nf .

sum in Eq. (B2) includes cases, as in Fig. 20, where the
incoming quark is a light quark while the charm quark is
one of the quarks in the quark anti-quark pair.

In order to obtain the required decomposition, there
are some manipulations that need to be performed to
transform from the singlet (s), non-singlet (ns), and
purely-singlet (ps) structure function combinations found
in the literature into individual partonic components.

The general expression for the structure function is
given by:

x−1Fa = qns ⊗ Cns
a,q + 〈e2〉

(
qs ⊗ Cs

a,q + g ⊗ Ca,g

)

(B3)

where a = {2, L}, and

qns =

nf∑

i=1

(e2i − 〈e2〉)q+i

qs =

nf∑

i=1

q+i , q+i = qi + q̄i

〈e2〉 = 〈e2〉(nf ) =
1

nf

nf∑

i=1

e2i , (B4)

and Cns
a,q, Cs

a,q, Ca,g are the Wilson coefficients. From
Eq. (B4) one can extract the contribution from a single
initial-state quark as:

x−1Fa,qi = q+i ⊗
[
e2i Cns

a,q + 〈e2〉Cps
a,q

]
(B5)

in the initial or final state, contribute to the bottom structure
function, even in the presence of a charm quark.

Figure 19: O(α2
S) - γ∗g → qj q̄jg.

(a) Contribution propor-
tional to nf for Cps

a,q.

(b) Contribution propor-
tional to nf for Cns

a,q.

Figure 20: O(α2
S) - γ∗qi → qiqj q̄j .

where Cps
a,q is

Cps
a,q = Cs

a,q − Cns
a,q . (B6)

To further decompose Eq. (B5) into the different final-
state contributions, we examine the diagrams that con-
tribute to the non-singlet and purely-singlet coefficients.
Diagrams in which the photon couples to the incoming
quark contribute to Cns

a,q (Figs. 15, 16, 18, 20b, etc.),
whereas the diagrams where the photon does not couple
to the incoming quark contribute to Cps

a,q; these contribu-

tions appear for the first time at O(α2
S) in Figs. 20a, 23a.

Separating out the final-state quark from Eq. (B5) we ob-
tain:

x−1F ij
a = q+i ⊗

{
e2i

[
Cns

a,q(nf = 0) δij

+ Cns
a,q(j)− Cns

a,q(j − 1)
]

(B7)

+ 〈e2〉(j)Cps
a,q(j)− 〈e2〉(j−1) Cps

a,q(j − 1)

}
.

We have introduced δij in the non-singlet contribution
to account for contributions in which the photon couples
to the initial and final-state quark. When this is not the
case, (i.e., in all purely-singlet contributions and in non-
singlet contributions such as the ones in Fig. 20b), the
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Figure 21: O(α3
S) - γ∗qi → qiggg. Contribution to Cns

a,q

not proportional to nf .

Figure 22: O(α3
S) - γ∗g → qj q̄jgg.

difference of the coefficient functions with nf = j and
nf = j − 1 flavors is taken.

Some comments are in order:

• We have verified analytically and numerically that
one recovers Eq. (B5) when summing over the final
state quark partons (j = 1, . . . , nf ) in Eq. (B7).

• The corresponding decomposition for the gluon-
initiated subprocesses is simpler than the one in
Eq. (B7) since there are only purely-singlet contri-
butions:

x−1F 0j
a = g ⊗

{
〈e2〉(j)Ca,g(j)

− 〈e2〉(j−1) Ca,g(j − 1)

}
. (B8)

• We remark that the decomposition in Eq. (B7) also
includes the contributions from virtual diagrams to
the Wilson coefficients. As has been discussed in
the literature [40], such a decomposition is ambigu-
ous at O(α2

S) and beyond due to the treatment of
heavy quark loops contributing to the light quark
structure functions. However, numerically the am-
biguous terms are small and it is standard to ana-
lyze the heavy quark structure functions F c

2,L and

F b
2,L in addition to the inclusive structure functions

F2,L without any further prescription.

For the general neutral current case (including Z-boson

(a) Contribution propor-
tional to nf for Cps

a,q.

(b) Contribution propor-
tional to nf for Cns

a,q.

Figure 23: O(α3
S) - γ∗qi → qiqj q̄jg.

Figure 24: O(α3
S) - γ∗g → qj q̄jqk q̄k.

exchange), the electromagnetic couplings should be re-
placed by electroweak couplings as follows:

e2i → a+qi = e2i − 2eivevqχZ +(v2e + a2e)(v
2
q + a2q)χ

2
Z (B9)

where

vf = T 3
f − 2Qf sin2 θW , af = T f

3 (B10)

are the standard (axial-)vector couplings of the Z-boson
to the leptons (f = e) and quarks (f = q). Furthermore,
χZ is the ratio of the Z-boson propagator with respect
to the photon propagator including additional coupling
factors:

χZ =
GFM

2
Z

2
√
2π αem

Q2

Q2 +M2
Z

. (B11)

Finally, the average squared charge is modified as

〈e2〉(nf ) → a+(nf ) =
1

nf

nf∑

i=1

a+qi . (B12)

Appendix C: Matching Across Heavy Flavor
Thresholds

As we compute at higher orders, we find the matching
conditions of the PDFs become discontinuous at O(α2

s)
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(NNLO), and the matching of the MS αs(µ) becomes
discontinuous at O(α3

s) (N3LO).
While the discontinuities in the PDFs and αs (which

are unphysical quantities) persist at all orders, physical
observables (such as cross sections and structure func-
tions) will match across thresholds up to the computed
order of the perturbation theory; for example, a physical
observable in an N -flavor and an (N + 1)-flavor scheme
will match up to higher order terms when computed to
order αM

s in the perturbation expansion:

σN = σN+1 +O(αM+1
s ) .

As it is not immediately obvious how the discontinuities
cancel order-by-order, we shall examine a NNLO numeric
case, and also a simple analytic example.

1. Discontinuities across the flavor transition.

To illustrate the behavior of the discontinuities, we
will work at NNLO where the DGLAP evolution and
the flavor-threshold boundary conditions have been com-
puted and implemented.14 Since µ = mc is often used for
the initial evolution scale, we will focus on the transition
from NF = 4 to NF = 5 flavors at µ = mb.

The matching conditions across flavor thresholds can
be summarized as [41]

fN+1
a = Aab ⊗ fN

b (C1)

where fN and fN+1 are the PDFs for N and N+1 flavors,
and Aab can be expanded perturbatively. In the VFNS
for µ < mb, the b-quark PDF is zero and the gluon PDF
is finite and positive. Using Eq. (C1) for µ > mb, we
find the b-quark is negative for µ ∼ mb, and it becomes
more negative as we move to smaller x. In contrast, the
gluon has a positive discontinuity as it must to ensure
the momentum sum rule is satisfied.

2. The b-quark flavor transition.

Although these discontinuities are too small to be no-
ticeable in the figures of Sec.IV, in Figure 25 we have
magnified the axes so the discontinuities are visible.
Here, we display F2 and FL for a selection of x-values.

The first general feature we notice in Fig. 25 is that
the size of the discontinuity generally grows as we go to
smaller x values. This is consistent with the fact that
the discontinuity computed by Eq. (C1) also grows for
smaller x. We display the results for a selection of n-
scaling values; note that the uncertainty arising from the

14 At present, the full set of matching conditions and DGLAP ker-
nels have not been computed at N3LO.

discontinuity is typically on the order of the difference
due to the choice of scaling.

Another feature that is most evident for the series of
FL plots (Fig. 25b) is that the discontinuity can change
sign for different x values. This can happen because the
mix of quark and gluon initiated terms is changing as a
function of x.

This observation is key to understanding how the (un-
physical) PDFs may have a relatively large discontinu-
ity, while the effect on the physical quantities (such as
σ and F2,L) is moderated. Because physical quantities
will contain a sum of gluon and quark initiated contri-
butions, and because the discontinuity of the quark and
gluon PDFs have opposite signs, the discontinuities of the
quark and gluon PDFs can partially cancel so that the
physical quantity may have a reduced discontinuity.

This discontinuity, in part, reflects the theoretical un-
certainty of the perturbation theory at a given order. As
we compute the physical observables to higher and higher
orders, this discontinuity will be reduced even though
the discontinuity in the PDFs and αs remain. We will
demonstrate this mechanism in the following.

3. A “Toy” Example at NLO”

We now illustrate how the cancellation of the quark
and gluon PDF discontinuities work analytically using a
“toy” calculation.

Expanding Eq. (C1) in the region of µ = mb we have:

f5
b =

{
0 +

αs

2π
Pqg (L+ aqg) +O(α2

s)
}
⊗ f4

g

f5
g =

{
1 +

αs

2π
Pgg (L+ agg) +O(α2

s)
}
⊗ f4

g

(C2)

where L = ln(µ2/m2
b). It happens that the constant

terms aij in Eq. (C2) are zero at O(α1
s) in the MS

scheme; this is not due to any underlying symmetry, and
in fact at O(α2

s) these terms are non-zero. Because aij
are zero, if we perform the matching at µ = mb, we find
that the gluon PDF is continuous f5

b (x,mb) = f4
g (x,mb),

and the bottom PDF starts from zero f5
b (x,mb) = 0.

a. If aij was non-zero at O(α1
s)

To illustrate how the discontinuities cancel in the
ACOT renormalization scheme, we will suppose (for this
“toy” calculation) that the constant terms (aij) in the
matching conditions are non-vanishing at order α1

s; thus,
the gluon and bottom PDFs will now have O(α1

s) dis-
continuities, but the physical observables computed with
different NF values will still match up to O(α2

s).
In the ACOT scheme, the total cross section can be de-

composed as: σTOT = σLO + σNLO − σSUB , where σLO

represents γb → b, σNLO represents γg → bb̄, and σSUB
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(a) F2 vs. Q for x = {10−1, 10−3, 10−5} (left to right) for different n scalings.

4.4 4.425 4.45 4.475 4.5 4.525 4.55 4.575
0.01

0.02

0.03

0.04

0.05

0.06

n=0
n=1

n=2

4.4 4.425 4.45 4.475 4.5 4.525 4.55 4.575
0.330

0.335

0.340

0.345

0.350

0.355

0.360

0.365

0.370

n=0

n=1
n=2

4.4 4.425 4.45 4.475 4.5 4.525 4.55 4.575
1.0

1.1

1.2

1.3

1.4

1.5

1.6

n=0

n=1

n=2

(b) FL vs. Q for x = {10−1, 10−3, 10−5} (left to right) for different n scalings.

Figure 25: Discontinuity for F2, FL at NNLO in the region of the bottom mass, mb = 4.5 GeV.

represents the (g → b) ⊗ (γb → b) “subtraction” contri-
bution.15 We will now perturbatively compute σTOT in
the region µ ∼ mb for both NF = 4 and NF = 5.

b. ACOT for NF = 4

For µ < mb, we have NF = 4 and fb = 0; thus, σLO

and σSUB vanish, and we have:

σNF=4
TOT = σNLO = C1 ⊗ f4

g +O(α2
s)

where C1 represents the O(α1
s) process γg → bb̄.

c. ACOT for NF = 5

For µ > mb, we have NF = 5 and fb 6= 0. For the
contributions we have:

σLO = C0 ⊗ f5
b ≃ C0 ⊗

{
0 +

αs

2π
Pqg (L+ aqg)

}
⊗ f4

g

σNLO = C1 ⊗ f5
g ≃ C1 ⊗

{
1 +

αs

2π
Pgg (L+ agg)

}
⊗ f4

g

σSUB = C0 ⊗ f̃g→q ⊗ f5
g ≃ C0 ⊗

{αs

2π
Pqg (L+ aqg)

}

⊗
{
1 +

αs

2π
Pgg (L+ agg)

}
⊗ f4

g

15 Note, we will focus on the gluon-initiated terms, but the demon-
stration for the quark-initiated pieces is analogous.

Keeping terms to O(α1
s) we have:

σNF=5
TOT = σLO + σNLO − σSUB = C1 ⊗ f4

g +O(α2
s)

Notice that the discontinuity introduced by aqg in the
PDFs is canceled by aqg from the SUB contribution.16

d. Comparison of NF = 5 and NF = 4

Comparing the NF = 5 and NF = 4 results, we find

σNF=5
TOT = σNF=4

TOT +O(α2
s)

so that the total physical results match up the order of
the perturbation theory.

In the above illustration, we have retained the log
terms (L); the cancellation of the logs is ensured in a
well defined renormalization scheme, and the aij con-
stant terms get carried along with the logs and will thus
cancel order by order.

Therefore, the discontinuity of the physical quantities
(σ, F2,L) reflects the perturbative uncertainty, and this
will be systematically reduced at higher orders.
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