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In a hard-wall model of holographic QCD, we find that nonlinear boundary dynamics are required
in order to maintain the correct pattern of explicit and spontaneous chiral symmetry breaking
beyond leading order in the pion fields. With the help of a field redefinition, we relate the requisite
nonlinear boundary conditions to a standard Sturm-Liouville system. Observables insensitive to the
chiral limit receive only small corrections in the improved description, and classical calculations in
the hard-wall model remain surprisingly accurate.

I. INTRODUCTION

Holographic QCD is an extra-dimensional approach to modeling hadronic physics at low energies [1–6]. Hadronic
resonances are interpreted as Kaluza-Klein modes of five-dimensional (5D) fields with quantum numbers of the corre-
sponding QCD states. Motivated by the AdS/CFT correspondence [7–9], in hard-wall models [2–6] the background
is chosen to be a slice of Anti-de Sitter space (AdS5), with metric

ds2 =
R2

z2
(

ηµνdx
µdxν − dz2

)

, ǫ ≤ z ≤ zm, (1.1)

where ηµν is the Minkowski metric with mostly negative signature in 3+1 dimensions, R is the AdS radius, and ǫ pro-
vides a short-distance cutoff in the model. The size of the extra dimension depends on zm, which sets the Kaluza-Klein
scale and is related holographically to the confining scale of QCD. Alternative spacetime backgrounds have been mo-
tivated by D-brane configurations in string theory which give rise to QCD-like theories with chiral symmetry breaking
and confinement, as in the Sakai-Sugimoto model based on the D4-D8 system [10]. Non-normalizable (i.e. infinite-
action) backgrounds of fields act as sources of corresponding operators in QCD, and normalizable (i.e. finite-action)
backgrounds determine the expectation values of those operators [11, 12]. The established AdS/CFT dictionary be-
tween physics in 3+1 and 4+1 dimensions motivates a model in which a complex scalar field in 4+1 dimensions, with
the quantum numbers of the quark bilinears qLiqRj with flavor labels i, j, fluctuates about a background configuration
related to the quark mass (the source of qq) and chiral condensate (the expectation value of qq). We will review this
version of the hard-wall model in more detail in Sec. II. As a demonstration of the pattern of chiral symmetry breaking
in the model, the Gell-Mann-Oakes-Renner (GOR) relation for the pion mass was shown to be approximately satisfied
[5, 13],

m2
πf

2
π = 2mqσ, (1.2)

where mπ and fπ are the pion mass and decay constant calculated from the model, and mq and σ are parameters in
the scalar field background playing the role of the quark mass and chiral condensate, respectively. The GOR relation
is also satisfied in an SU(3) extension of the hard-wall model with an independent strange quark mass parameter [14].
Classical calculations in the hard-wall model have reproduced a variety of QCD observables with surprising accuracy,

generally at the 10-15% level [5, 6]. The hard-wall model fails at high energies [15] where the Kaluza-Klein spectrum
diverges from the Regge spectrum [16], a problem partially corrected in the soft-wall model [17]. More surprisingly,
it was discovered that pion condensation in the hard-wall model has qualitatively different features from predictions
of the chiral Lagrangian [18]. If the isospin chemical potential increases beyond a critical value, hadronic matter is
expected to undergo a phase transition to a state in which a linear combination of the pion fields condenses [19–21].
In chiral perturbation theory without unphysically large low-energy coefficients, the pion condensation transition is
second order and approaches the Zel’dovich equation of state for stiff matter smoothly across the phase boundary [22].
The pion condensation transition has been studied using other approaches including lattice QCD [23–26], with results
in agreement with chiral perturbation theory. However, in the hard-wall model the transition from the hadronic phase
to the pion condensate phase was found to be first order, rapidly approaching the Zel’dovich equation of state across
the phase boundary. The holographic model takes as input the pattern of chiral symmetry breaking, so disagreement
with lowest-order chiral perturbation theory is surprising.
Another more subtle puzzle related to chiral symmetry lies in the form of the GOR relation when the chiral

condensate σ is allowed to have a phase with respect to the quark mass. As deduced from a linear sigma model,
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the quark mass and condensate are in phase, a fact related to the existence of an anomalous chiral U(1) symmetry.
However, beginning with the non-Abelian nonlinear sigma model we can ask what would happen if the parameter σ
corresponding to 〈qq〉 were complex. In unpublished work, it was found that the resulting GOR relation as derived in
the hard-wall model with complex σ disagrees with the analogous prediction of the chiral Lagrangian. In particular,
in the hard-wall model the GOR relation takes the form [27]

m2
πf

2
π log

( σ

σ∗

)

= 2mq (σ − σ∗) , (1.3)

while the corresponding prediction based on the chiral Lagrangian and PCAC is the same as Eq. (1.2) with σ replaced
by its real part. It is the goal of this paper to reconcile these discrepancies and restore consistency between holographic
QCD and chiral perturbation theory.
We will show that the incorrect structure of pion interactions in the hard-wall model is a result of the choice of

boundary conditions imposed on the 5D fields. Care must be taken in order that the boundary conditions respect
the symmetry breaking structure. The subtlety compared with other extra-dimensional models is that here the
background of a bulk field not only spontaneously breaks the gauge invariance in the bulk, but a non-normalizable
term in the background also explicitly breaks the gauge invariance. In the hard-wall model the bulk gauge invariance
is responsible for the global chiral symmetry of the effective 4D theory, so it is important that the explicit and
spontaneous breaking be correctly accounted for at the boundaries.
We will demonstrate that nonlinear boundary conditions on the bulk scalar field, or else nonlinear boundary terms

in the action, may be consistently chosen so as to restore the proper pattern of chiral symmetry breaking in the hard-
wall model. The nonlinear boundary dynamics we propose are an alternative to the description in Ref. [28], which
also leads to acceptable symmetry structure (and also accommodates a bulk Chern-Simons term absent in the present
model). The nonlinear boundary conditions relate the 5D σ-model scalars to products of pseudoscalars πaπa, (πaπa)2,
etc. In order to motivate these unusual boundary conditions and to demonstrate their relation to a Sturm-Liouville
system, as required for consistency of the standard Kaluza-Klein decomposition of the fields and their interactions,
we reparametrize the 5D fields by a nonlinear field redefinition. The reparametrization introduces a new surface
term (i.e. a total derivative) involving the pions in the 5D action but replaces the nonlinear boundary conditions
with ordinary linear boundary conditions consistent with the desired symmetry-breaking pattern. As opposed to the
boundary conditions proposed to describe multitrace operators in the AdS/CFT correspondence [29, 30], the nonlinear
boundary conditions in the hard-wall model arise away from the boundary of AdS, at the infrared boundary of the
spacetime.
The modifications of the hard-wall model as described in Ref. [5] required to restore the structure of chiral symmetry

breaking have a number of phenomenological consequences. The GOR relation for the pion mass, Eq. (1.2), is correctly
normalized only after the quark mass and chiral condensate are rescaled. This same rescaling is consistent with the
AdS/CFT correspondence, and is a result of the modified boundary physics. The pion potential is modified so as to
reconcile properties of the pion condensation transition with predictions of chiral perturbation theory. Most hadronic
observables receive only small corrections which vanish in the chiral limit, so the hard-wall model remains surprisingly
accurate in many of its predictions for low-energy QCD observables.

II. REVIEW OF THE HARD-WALL MODEL

Following the conventions of Ref. [5], the hard-wall model is defined by the 5D action

S =

∫

d5x
√

|g|Tr
{

− 1

4g25

(

(F
(L)
MN )2 + (F

(R)
MN )2

)

+ |DMX |2 + 3

R2
|X |2

}

, (2.1)

where F (L) = F (L)aσa/2 and F (R) = F (R)aσa/2 are field strengths for the 5D SU(2)L×SU(2)R gauge fields; σa are
the three Pauli matrices; M,N ∈ 0, . . . , 4 are Lorentz indices contracted with the AdS5 metric from Eq. (1.1); and
X is a 2×2 matrix of complex scalar fields transforming in the bifundamental representation of SU(2)L×SU(2)R. For
the calculations in this paper we work with R = 1.
The equations of motion have a solution with vanishing gauge fields and scalar field profile

X0(z) =
1

2
(m̃qz + σz3)11 ≡ ṽ(z)

2
11, (2.2)

where 11 is the 2×2 identity matrix. The fields X have the quantum numbers of the scalar quark bilinears, which are
the operators whose coefficients in the Lagrangian of the 3+1 dimensional theory are quark masses. We approximate
isospin as unbroken, so that the up and down quarks have equal mass. The term in the solution Eq. (2.2) proportional
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to z is non-normalizable and is related by the AdS/CFT dictionary to the quark mass, which explicitly breaks the
chiral symmetry; and the term in the solution proportional to z3 is normalizable and is related to the condensate
〈qLqR〉, which spontaneously breaks the chiral symmetry [11, 12].
The non-normalizable mode in the scalar field background explicitly breaks a bulk gauge invariance, but the presence

of this mode is equivalent to spontaneous breaking due to a heavy Higgs field localized on the ultraviolet boundary
(z = ǫ) in the decoupling limit. To see this, we write the Higgs doublet (φ+, φ0) as a matrix,

H =

(

φ0 φ+

−φ− φ0

)

, (2.3)

which transforms in the bifundamental representation of the chiral symmetry. In this form, the up and down quark
Yukawa couplings take the form LYuk = λTr

{

H†qLqR + h.c.
}

. Replacing qLqR with the 5D field X , the localized
Higgs field has boundary action

Sǫ =

∫

z=ǫ

d4xTr

{

|∂µH |2 − V (H) +
λ

ǫ3
(

HX† +XH†
)

}

, (2.4)

where V (H) is the Higgs potential exhibiting spontaneous symmetry breaking. A similar coupling appears in bosonic
technicolor models [31, 32]. The factor of 1/ǫ3 in the last term ensures the proper scaling with the field X near the
UV boundary. We impose Neumann boundary conditions on X in the ultraviolet, modified by the presence of the
boundary term (2.4). Replacing the Higgs field H by its vacuum expectation value 〈H〉 = 〈φ0〉11, chosen real, the
equations of motion and boundary condition for X are given by:

∂z

(

1

z3
∂zX

)

− 1

z3
�X +

3

z5
X = 0, (2.5)

∂zX
∣

∣

ǫ
= −λ〈H〉, (2.6)

where � ≡ ηµν∂µ∂ν . Greek indices will always refer to 3+1 dimensions, and capital Latin indices will refer to 4+1
dimensions.
By identifying the diagonal quark mass Mq = λ〈H〉, the boundary condition becomes ∂zX

∣

∣

ǫ
= −Mq. Near the

boundary as ǫ→ 0, the solution for X consistent with this boundary condition takes the form X ≈ −Mqz. Thus, the
coupling of X to a Higgs field localized at the UV boundary gives rise to the appropriate non-normalizable background
solution for X , which justifies the presence of the non-normalizable background and its AdS/CFT interpretation as
the source for the operator qq. However, the overall normalization ofMq in terms of the physical quark mass depends
on the normalization of the field X . In Eq. (2.2) we have set Mq = −m̃q/2. (Other normalizations may better match
QCD predictions for correlators of products of scalar quark bilinears [33].)
The fluctuations of X , which contain scalars and pseudoscalars (pions), are typically decomposed as [5, 6, 34]:

Xold(x, z) =

(

1

2
(m̃qz + σz3)11 + S̃(x, z)

)

Ũ(x, z), (2.7)

where S̃ is a Hermitian matrix of scalars and Ũ = exp[iπ̃a(x, z)σa] is unitary. Any matrix can be written as a product
of a Hermitian and a unitary matrix, and any Hermitian matrix function of x and z can be written as the term in
parentheses in Eq. (2.7), so this ansatz is completely general up to an overall phase which is relevant for the chiral
anomaly but which will not be discussed here.
The scalars and pseudoscalars decouple at quadratic order in the action, so we temporarily limit our attention to

fluctuations with S̃ = 0. In order to simplify the discussion we also temporarily decouple the vector fields by taking
g5 = 0. We will include the gauge couplings in Sec. V, but they are an added complication which is not necessary to
understand the main conclusions.
The lightest pion Kaluza-Klein mode, π̃(x, z) = π̃a(x, z)σa/2 = π̃a(x)ψ(z)σa/2, has action

S =

∫

d5xTr

{

ṽ(z)2

4z3
(∂µŨ∂

µŨ † − ∂zŨ∂zŨ
†)

}

=

∫

d5xTr

{

ṽ(z)2

4z3

(

∂µŨ∂
µŨ † − 4ψ′(z)2 π̃(x)2

)

}

.

(2.8)

As explained in Ref. [5] and will also be explained in Sec. III, the pion wavefunction is flat with ψ(z) ≈ 1 except near
z = ǫ, so integrating over z yields the effective 4D action for the pions,

Seff =

∫

d4x
f2
π

4
Tr

{

∂µŨ∂
µŨ † − 4m2

ππ̃
2
}

, (2.9)



4

where m2
π is determined by the equations of motion and boundary conditions, and from the kinetic term we identify

the pion decay constant

f2
π ≈

∫ zm

ǫ

dz σ2z3

=
σ2z4m
4

(2.10)

as ǫ → 0. The expression (2.10) for fπ also follows from an AdS/CFT calculation of the transverse part of the axial
vector current-current correlator [18].

III. CHIRAL SYMMETRY BREAKING IN THE HARD-WALL MODEL

The structure of the pion effective action (2.9) demonstrates the discrepancy between the hard-wall model as
defined above and chiral perturbation theory. The pion mass term in Eq. (2.9) does not include the higher-order
pion interactions required for the chiral symmetry to be maintained when the quark mass matrix transforms in the
bifundamental representation under the chiral symmetry (like a Higgs spurion). In the chiral Lagrangian the pion
mass term is proportional to Tr (MqU

† +M †
qU), which displays the proper pattern of explicit and spontaneous chiral

symmetry breaking. Beyond quadratic order in the pion fields, the hard-wall model as described above disagrees
with the chiral Lagrangian, leading to unusual pion phenomenology inconsistent with chiral perturbation theory. The
absence of quartic terms in the pion potential in this context was also noted in Ref. [35].
Restoration of the correct pattern of chiral symmetry breaking may be achieved by modifying the boundary con-

ditions in a nonlinear way which mixes the scalar modes S̃ and products of pseudoscalars π̃aπ̃a, as we discuss below.
It will be convenient to rescale the quark mass parameter m̃q = −2mq, so that the background profile of the field X
takes the form

X0(z) = −mqz +
σz3

2
≡ v(z)

2
11. (3.1)

We then consider a nonlinear redefinition of the 5D fields as follows:

X(x, z) = −mqz +
(σ

2
z3 + S(x, z)

)

U(x, z), (3.2)

which is to be compared with Eq. (2.7). We write U(x, z) = exp [iπa(x, z)σa]. Now the pseudoscalar fluctuations in
U(x, z) multiply the term in the background responsible for the spontaneous breaking of the chiral symmetry, but
not the term responsible for the explicit breaking. We also add to the action a counterterm localized in the UV,

Sct = −
∫

ǫ

d4x
|X |2
ǫ4

, (3.3)

to cancel off the divergent termm2
q/ǫ

2. The finite part of this counterterm, mqσ, has the consequence of modifying the
AdS/CFT calculation of 〈qq〉 in terms of σ such that the normalization of mq and σ in Eq. (3.1) is consistent with the
AdS/CFT correspondence. We note that this normalization of mq and σ agrees up to a sign with the normalization of
the tachyon background in a string-motivated holographic QCD model in which chiral symmetry is broken by tachyon
condensation [36].
With boundary conditions S(x, ǫ) = πa(x, ǫ) = S(x, zm) = 0, and a Neumann condition on πa at zm, the scalar

and pseudoscalar modes again decouple at quadratic order and the pion action takes the form

S =

∫

d5xTr

{

σ2z3

4
(∂µU∂

µU † − ∂zU∂zU
†)

}

+

∫

d4xTr
{mqσ

2
(U + U †)

∣

∣

zm

}

, (3.4)

where the last term is an IR localized boundary term due to a total derivative in the action and we have discarded
some irrelevant constants. Although we focus in this paper on the leading terms in the chiral Lagrangian, we note
that at higher order there are two terms in the 5D Lagrangian (with structure Tr S2∂zU∂zU

† and Tr S∂zU∂zU
†)

which could damage the chiral symmetry. We suggest that nonlinear modification of the boundary conditions may be
introduced to modify these terms, but we will not pursue this issue further here. The field parametrization Eq. (3.2)
is an alternative to those of Refs. [28, 37] which also lead to an acceptable model, but with a nonlinear term at the
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UV boundary z = ǫ rather than at the IR boundary z = zm. The Kaluza-Klein modes are solutions to the linearized
equations of motion, which follow from the quadratic part of the action:

S =

∫

d5x
σ2z3

2
(∂µπ

a∂µπa − ∂zπ
a∂zπ

a)−
∫

d4xmqσ(π
aπa)

∣

∣

zm
, (3.5)

where πa(x, z) = πa(x)ψ(z). The linearized bulk equation of motion for the pion separates as follows:

∂µ∂
µπa(x) = −m2

ππ
a(x),

∂z(z
3∂zψ) = −m2

πz
3ψ.

(3.6)

The Neumann boundary condition in the IR is modified by the boundary term in the action, with the result

∂zψ(z)
∣

∣

zm
= −2mq

σz3m
ψ(zm). (3.7)

Note that the boundary conditions here are linear, and the nonlinear boundary terms in the action are treated as
interactions. In this form, the pions are described by a standard Sturm-Liouville system. The solutions are in terms
of Bessel functions and the normalizable solution has the expansion

ψ(z) =

(

1− m2
πz

2

8
+ higher order in mπz

)

. (3.8)

If mπzm ≪ 1 then ψ(z) ≈ 1 in the entire interval ǫ < z < zm. Substituting the expansion of ψ(z) into the boundary
condition Eq. (3.7), we find to leading order in mq,

m2
π

σ2z4m
4

= 2mqσ. (3.9)

Using Eq. (2.10), which is not affected by the field redefinition, Eq. (3.9) is just the Gell-Mann-Oakes-Renner relation

m2
πf

2
π = 2mqσ, (3.10)

justifying the interpretation of mq and σ as the quark mass and chiral condensate, respectively, up to a simultaneous
rescaling of mq and σ as in Ref. [33]. Note that the quark mass, and in particular the product mqσ, is rescaled
from the old parameter m̃q and even has a different sign. This rescaling is required in order to obtain the correct
normalization in the GOR relation, but is also consistent with the AdS/CFT interpretation of mq as the source for
the operator qLqR whose expectation value is the chiral condensate. The condensate is obtained by varying the action
with respect to the source mq. Because of the additional boundary term, which scales as mq, the quark mass needs
to be rescaled with respect to the chiral condensate as above.
We now derive the 4D effective Lagrangian for the redefined pions. Let us first focus on the z-derivative piece.

Ignoring the higher KK modes and writing U = exp [iπa(x)ψ(z)σa], we find

−
∫

d5xTr

(

σ2z3

4
∂zU∂zU

†

)

= −
∫

d4x

[
∫

dz
σ2z3

2
ψ′(z)2

]

πa(x)πa(x), (3.11)

as before. Integrating by parts and using the equations of motion and the boundary condition for ψ we find for the
second term in the bulk integral in Eq. (3.4):

S ⊃
∫

d4x

[
∫

dz (−m2
πσ

2z3)ψ(z)2 + 2mqσ

]

1

2
πa(x)πa(x). (3.12)

Using the flatness of the ψ(z) profile, the expression for f2
π in Eq. (2.10), and the GOR relation, the above expression

in brackets vanishes. Including the boundary term in Eq. (3.4), the approximate 4D effective Lagrangian is equivalent
to the lowest-order chiral Lagrangian:

S =

∫

d4xTr

{

f2
π

4
∂µU∂

µU † +
m2

πf
2
π

4
(U + U †)

}

. (3.13)

Due to the modified boundary dynamics, the properties of the pion condensate phase and other aspects of pion physics
now agree with the predictions of chiral perturbation theory.
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IV. NONLINEAR BOUNDARY CONDITIONS

The nonlinear reparametrization of the bulk field X in Eq. (3.2) allows for independent linear boundary conditions
on the scalar and pseudoscalar modes while maintaining the proper pattern of chiral symmetry breaking. In terms of
the original decomposition of X as per Eq. (2.7), the boundary conditions required to maintain the pattern of chiral
symmetry mix the scalar and pseudoscalar fields in a nonlinear way. To understand the structure of the nonlinear
boundary conditions we can expand the two field decompositions, Eqs. (2.7) and (3.2):

X =

[

1

2
(m̃qz + σz3) + S̃

]

(

1 + 2iπ̃ − 2π̃2 + . . .
)

= −mqz +

(

σz3

2
+ S

)

(

1 + 2iπ − 2π2 + . . .
)

,

(4.1)

where π̃ = π̃aσa/2, and similarly for π. Equating the anti-Hermitian parts of the two descriptions gives, to quadratic
order in the fields,

π = π̃

(

1 +
m̃q

σz2

)

+
1

σz3

[

(S̃π̃ − Sπ) + (π̃S̃ − πS)
]

+ . . .

= π̃

(

1 +
m̃q

σz2

)

+
1

σz3

{[

S̃π̃ − S̃π̃

(

1 +
m̃q

σz2

)]

+ h.c.

}

+ . . .

= π̃

(

1 +
m̃q

σz2

)

− m̃q

σ2z5

(

S̃π̃ + π̃S̃
)

+ . . . .

(4.2)

Similarly, the Hermitian parts give,

S = S̃ − m̃qz π̃
2 − σz3

(

π̃2 − π2
)

+ i
[

S̃ (π̃ − π)− h.c.
]

+ . . .

= S̃ + m̃qz π̃
2 − i

m̃q

σz2

(

S̃π̃ − π̃S̃
)

+ . . . .
(4.3)

These expressions have been left in terms of the old mass parameter m̃q, which is equivalent to −2mq, and terms
higher order in m̃q have been dropped.
In the new decomposition of the field X , the boundary conditions consistent with the chiral symmetry breaking

structure are:

S(x, ǫ) = S(x, zm) = 0 = π(x, ǫ) = 0, ∂zπ(x, z)|zm =
m̃q

σz3m
π. (4.4)

In terms of the original decomposition of the field X , the boundary conditions are,

S = 0 → S̃ = −m̃qz π̃
2 + . . . , (4.5)

∂zπ =
m̃q

σz3
π → ∂zπ̃ =

3m̃q

σz3
π̃ + . . . , (4.6)

where the ellipses include terms higher order in the fields and in m̃q, and terms that vanish when traced over.
For these boundary conditions to be physically acceptable, the boundary variation of the action must vanish.

Expanding the action (2.1) with g5 = 0 about the background as in Eq. (2.7), we obtain

S =

∫

d5xTr

{

1

z3
∂µX∂

µX† − 1

z3
(∂zS̃)

2 − ṽ′(z)

z3
∂zS̃ − 1

z3

(

ṽ

2
+ S̃

)2

∂zŨ∂zŨ
†

+
3

z5

(

ṽS̃ + S̃2
)

}

+ constant.

(4.7)

where ṽ(z) = m̃qz + σz3 as in Eq. (2.2). The terms in Eq. (4.7) with z-derivatives lead to boundary terms in the

variation of the action. Expanding to quadratic order in S̃ and π̃, we find for the boundary variation of S,

δS =

∫

ǫ,zm

d4xTr

{[

− 2

z3
∂zS̃ − 1

z3
(

m̃q + 3σz2
)

]

δS̃ −
[

2(m̃qz + σz3)2

z3
∂zπ̃

]

δπ̃

}

. (4.8)
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To leading order in m̃q and in the fields, using

δS̃ = −m̃qz (π̃ δπ̃ + δπ̃ π̃) + . . . (4.9)

from Eq. (4.5), we find that the boundary variation δS indeed vanishes to this order. The cancellation of boundary
variations in this nonlinear fashion is novel in the context of extra-dimensional models, though it is reminiscent of the
mixed boundary conditions of certain Higgsless models [38] in which the contributions to the boundary variation of
the action from different fields cancel one another.
In Kaluza-Klein theories an effective description of the lightest modes is often derived by simply neglecting the heav-

ier modes and integrating the action over the extra dimension. Indeed, that is how we derive the pion effective action
in this paper. However, consistency of this approach relies on orthogonality and completeness relations dependent
on the Sturm-Liouville structure of the equations of motion and boundary conditions. It is a mathematical question
which classes of systems of differential equations with nonlinear boundary conditions satisfy the completeness and
orthogonality theorems of Sturm-Liouville systems. In holographic QCD we have seen that there is a nonlinear field
redefinition after which the boundary conditions are of the linear Sturm-Liouville form. This justifies the effective
description obtained by including only the lightest modes.

V. COUPLINGS TO VECTOR AND AXIAL-VECTOR FIELDS

Having derived the chiral Lagrangian in the g5 → 0 limit, we turn to the case of nonzero 5D gauge couplings with
dynamical gauge bosons representing the vector and axial vector mesons. Including the gauge fields, the action takes
the form of Eq. (2.1). The field X transforms as a bifundamental under the gauge group SU(2)L × SU(2)R and
we will use the gauge fixing condition La

z = Ra
z = 0. We will also be working mainly with the linear combinations

Aa
µ = (La

µ − Ra
µ)/2, the axial vector field, and V a

µ = (La
µ + Ra

µ)/2, the vector field. The normalization of these

combinations by a factor of 2 (rather than
√
2) is so that their kinetic terms are canonically normalized given the

unconventional normalization of the gauge fields in Eq. (2.1).
We parameterize the fluctuations of the field X as in Eq. (3.2). To leading order the scalars and pseudoscalars are

decoupled, so we focus only on the pseudoscalars and set S = 0 for the present discussion. As in the previous section,
the boundary condition on the pion is modified as in Eq. (3.7).
We will determine the pion decay constant as in Refs. [5, 6] by the residue of the axial current two-point correlator

at q2 = 0. The AdS/CFT calculation of the correlator is performed by taking two functional derivatives, with respect
to the source of the axial current operator, of the action evaluated on the classical solution to the linearized equation
of motion for the transverse part of Aa

µ. The resulting correlator is in terms of the bulk-to-boundary propagator for
Aa

µ, which is a particular solution to the transverse-projected linearized equation of motion. This equation of motion
for Aa

µ(q, z)⊥ is

[

∂z

(

1

z
∂zA

a
µ

)

+
q2

z
Aa

µ − v2g25
z3

Aa
µ

]

⊥

= 0. (5.1)

If we have a solution to Eq. (5.1) of the form Aa
µ(q, z) = A(q, z)Aa

0µ(q), with boundary conditions ∂zA(q, z)|zm = 0
and A(q, ǫ) = 1, then A(q, z) is identified as the bulk-to-boundary propagator and Aa

0µ(q) is the source for the axial
current. The AdS/CFT prediction for the pion decay constant is then,

f2
π = − 1

g25

∂zA(0, z)

z

∣

∣

∣

∣

z=ǫ

. (5.2)

In order to study the pions we note that the pion fluctuations identified in the field X mix with the longitudinal part
of the axial vector field Aa

µ → ∂µφ
a, which has the same quantum numbers. The pions will be identified as the lowest

mode of this coupled system. Since we have in mind a Kaluza-Klein decomposition of the fields and since, for the
purposes of deriving the low energy theory, we are only interested in the lowest mode, we will make the substitutions
πa(x, z) → πa(x)ψ(z) and φa(x, z) → πa(x)φ(z). The linearized equations of motion for ψ(z) and φ(z) are

vφ− σz3ψ =
z3

vg25
∂z

(

1

z
∂zφ

)

,

m2
π(vφ− σz3ψ) = ∂z

(

σz3∂zψ
)

,

(5.3)

where the fields satisfy the boundary conditions ∂zφ(z)|zm = φ(ǫ) = ψ(ǫ) = 0, and Eq. (3.7).
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A. Approximate Analytic Results

We can obtain an approximate solution to the equations of motion, Eqs. (5.3), in the chiral limit, in a similar
fashion to Ref. [5]. We find that the approximate solutions near the ǫ boundary are φ(z) = 1−A(0, z) and ψ(z) = 0,
while those away from the ǫ boundary are φ(z) = 1 − A(0, z) and ψ(z) ≈ 1. Plugging the first equation of Eq. (5.3)
into the second, approximating v(z) ≈ σz3, and integrating once we arrive at

m2
π

σg25

(

1

z
∂zφ− 1

z
∂zφ

∣

∣

∣

∣

ǫ

)

= σz3∂zψ. (5.4)

Now if we evaluate this expression on the IR boundary, using our approximate solution for φ(z) and recalling the
boundary conditions, we find

m2
π

(

− 1

g25

∂zA(0, z)

z

∣

∣

∣

∣

ǫ

)

= 2mqσψ(zm). (5.5)

By utilizing Eq. (5.2) and the fact that ψ(zm) ≈ 1, we have once again derived the GOR relation.
The derivation of the chiral Lagrangian mass term is similar to that of previous sections. The only contributions

come from the term proportional to ∂zU∂zU
† and the boundary term proportional to U +U †. In particular we have,

upon integration by parts,

S ⊃
∫

d4x

[
∫

dz ∂z
(

σz3∂zψ
)

ψ + 2mqσψ(zm)2
]

1

2
πa(x)πa(x)

+

∫

d4xTr
{mqσ

2
(U + U †)

∣

∣

zm

}

.

(5.6)

If we make use of the equations of motion, Eq. (5.3), and substitute our approximate solutions for φ and ψ, we find
that the two terms in the square brackets cancel, to first order in mq. Thus, to this order in mq, we are left with the
mass term of the chiral Lagrangian:

S4D ⊃
∫

d4xTr

{

m2
πf

2
π

4
(U + U †)

}

. (5.7)

B. Numerical Results

We will now present a numerical analysis of the equations of motion, Eqs. (5.3). We choose a value ǫ = 10−7 MeV
for the UV cutoff, and determine the location of the IR boundary to be zm = 1/(323 MeV), by setting the rho mass
to 776 MeV [5]. We take g5 = 2π as in Ref. [5], noting that the derivation of this assignment is unaffected by our new
choice for the form of the field X(x, z), with different background. With the values mq = 2.36 MeV for the quark
mass and σ = (333 MeV)3 for the condensate, we have mπ = 140 MeV for the pion mass and fπ = 92.0 MeV for the
pion decay constant. The solutions for ψ(z) and φ(z) are plotted in Fig. 1, along with their approximate solutions,
namely ψ(z) = 1 and φ(z) = 1 − A(0, z). The functions ψ(z) and φ(z) are normalized to obtain a canonically
normalized kinetic term in the low energy theory. The plotted numerical solutions illustrate the extent to which the
approximations of the previous section are valid.
We would also like to understand numerically how robust the GOR relation is in this model, with respect to varying

some of the parameters. In particular, fixing mπ = 140 MeV (by adjusting mq for fixed values of σ) we would like
to see what happens for different values of σ. Varying the condensate by sampling a discrete number of points from
(290 MeV)3 to (360 MeV)3, the pion decay constant takes values ranging from 79 MeV to 102 MeV and the quark
mass goes from 2.52 MeV down to 2.21 MeV. In Fig. 2, we plot the ratio (m2

πf
2
π)/(2mqσ) for the above specified

range of values for the condensate. If the GOR relation holds, the ratio should be approximately 1 and we can see
that the plot shows good agreement over the entire region.

VI. CONSEQUENCES FOR HOLOGRAPHIC QCD

We check that the change of background does not adversely affect some standard predictions of the hard-wall model;
that is, we will compare our predictions with those of “Model A” in Ref. [5]. We might expect the modifications to
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Ε zm
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z
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1.0
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(b)

FIG. 1: Figures (a) and (b) display the numerical solutions to Eq. (5.3) for ψ(z) and φ(z), respectively. In both figures there
are two curves plotted: the blue curves are the numerical solutions and the red, dashed curves are the approximate solutions
(ψ(z) = 1 in figure (a) and φ = [1− A(0, z)] in figure (b)). These plots were made with mq = 2.36 MeV and σ = (333 MeV)3.

290 300 310 320 330 340 350 360 Σ
3

0.2

0.4

0.6

0.8

1.0

fΠ
2 mΠ

2

2 mq Σ

FIG. 2: The red long-dashed line is a horizontal line at 1. The blue dots are the values of the function, (m2

πf
2

π)/(2mqσ). For
this plot, the quark mass is adjusted to fix mπ = 140 MeV at each point.

be marginal because only the pion physics should be sensitive to changes in mq, but we have also changed a sign.
Aside from the substitution m̃q → −2mq, the derivations of the equations of motion for the gauge fields and of
the vector current correlators are unaffected by the new form of the X-field. Since the expressions for the related
observables we compute are likewise unchanged, we refer the reader to Ref. [5], for more detail. In the following,
we summarize the methods for obtaining the results. To calculate the mass of the a1, we solve Eq. (5.1) for the
normalizable mode ψa1

(z) with boundary conditions ψa1
(ǫ) = ∂zψa1

(zm) = 0. The wavefunction ψa1
is normalized

such that Aµ(x) has a canonical kinetic term, where Aµ(x, z) = ψa1
(z)Aµ(x) . As derivable from the two-point vector

current correlator, we use the following expression to calculate the decay constants in terms of the profile in the extra
dimension: F 1/2 =

√

ψ′′(0)/g5. And finally, by looking at the terms cubic in the fields, coupling V ππ, we make a
prediction for gρππ. All relevant cubic terms are the following:

S ⊃ ǫabc
∫

d5x V b
µ

[

1

zg25
∂z∂

µφa∂zφ
c +

1

z3
∂µ

(

vφa − σz3πa
) (

vφc − σz3πc
)

]

, (6.1)

where we have used the equations of motion for the vector field to obtain this expression. In order to calculate the
on-shell gρππ from the effective 4D theory, we integrate out the extra dimension and identify gρππ as the coefficient of
ǫabc∂µπa(x)ρbµ(x)π

c(x), where ρbµ is the lowest mode in the vector field KK decomposition. Extracting this coefficient
from Eq. (6.1) we find

gρππ =
g5
f2
π

∫

dz ψρ(z)

[

1

zg25
(∂zφ)

2 +
1

z3
(

vφ− σz3ψ
)2
]

, (6.2)

where the z-integral of the expression in brackets is normalized to f2
π . The results are presented in Table I and we

find that the new predictions have not changed significantly compared to “Model A” – they are still on the 10% level,
with the exception of gρππ.
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Observable Measured (MeV) Model (MeV) Model A (MeV)[5]

mπ 140 140 140

mρ 776 776 776

ma1
1230 1370 1360

fπ 92.4 92.0 92.4

F
1/2
ρ 345 329 329

F
1/2
a1

433 493 486

gρππ 6.03 4.44 4.48

TABLE I: The predictions of the model as compared with “Model A” of Ref. [5] and experimental central values [5]. The
results are based on fitting to mπ, fπ, and mρ, leading to the parameter choice mq = 2.36 MeV, σ = (333 MeV)3, and
zm = 1/(323 MeV).

VII. CONCLUSIONS

Holographic QCD models are surprisingly successful in their predictions of low-energy QCD observables. However,
it was discovered in earlier work that the pion condensation transition in one version of the hard-wall model has
qualitatively different features than the predictions of chiral perturbation theory and other approaches. We have shown
that this disagreement is due to a boundary effect related to the explicit breaking of the gauged chiral symmetry by the
non-normalizable background of a 5D scalar field. To restore agreement with the chiral Lagrangian we modified the
boundary dynamics, either by introducing nonlinear boundary conditions on the fields, or by performing a nonlinear
field redefinition which induced an infrared boundary term in the action. The field redefinition allowed us to relate
the system with nonlinear boundary conditions to a standard Sturm-Liouville system which manifestly maintains the
proper symmetry structure, justifying the subsequent Kaluza-Klein decomposition of the fields. The chirally improved
hard-wall model makes predictions for low-energy QCD observables that agree with the original model to within 1-2%.
It would be useful to further explore the consequences of the modified boundary physics with regard to pion

observables and to extend the analysis beyond leading order in chiral perturbation theory. It would also be interesting
to find additional applications of nonlinear boundary conditions to extra-dimensional model building, for example
to Higgsless models and holographic technicolor models. Finally, the necessity for nonlinear boundary dynamics in
the hard-wall model provides motivation for further study of the mathematical problem of differential equations with
nonlinear boundary conditions. In particular, it would be useful to classify those systems of equations and boundary
conditions that can be related to a Sturm-Liouville system by a change of variables.
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