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Department of Physics, University of California at San Diego, La Jolla, CA 92093

We derive a factorization formula for the double Drell-Yan cross section in terms of double parton
distribution functions (dPDFs). Diparton spin and color correlations and parton-exchange interfer-
ence terms contribute, even for unpolarized beams. Soft radiation effects are nontrivial for the color
correlation and interference contributions, and are described by non-perturbative soft functions. We
provide a field-theoretic definition of the quark dPDFs and study some of their basic properties, in-
cluding discrete symmetries and their interpretation in a non-relativistic quark model. We calculate
the renormalization group evolution of the quark dPDFs and of the soft functions. The evolution
receives contributions from both ultraviolet and rapidity divergences. We find that color correlation
and interference effects are Sudakov suppressed, greatly reducing the number of dPDFs needed to
describe double parton scattering at high energy experiments.

I. INTRODUCTION

In high-energy hadronic collisions, one parton from
each hadron can collide via a hard interaction to produce
a final state with a large invariant mass. The classic ex-
ample of such single parton scattering (SPS) is Drell-Yan
production, p1+p2 → `+`−.1 In some hadronic collisions,
two partons in one hadron can have simultaneous hard in-
teractions with two partons from the other hadron. This
process is called double parton scattering (DPS).2 A rep-
resentation of DPS in space-time is shown in Fig. 1. DPS
was first considered in Ref. [1–4] and was subsequently
studied in the context of jet production [5–7], double
Drell-Yan [8, 9] and W+jets [10]. Two examples we will
study are double Drell-Yan, p1 + p2 → `+1 `

−
1 `

+
2 `
−
2 (where

`1 and `2 could be the same flavor), and same sign W
pair production, p1 + p2 →W+W+.

DPS is higher twist, i.e. it is suppressed by order
Λ2

QCD/Q
2 compared to single parton scattering (SPS),

where Q is the scale of the short-distance interactions.
Heuristically, this arises because the two partons which
collide in the second hard interaction have to be within a
transverse area of order 1/Q2 of each other, whereas they
could each be anywhere within the incoming hadrons (of
transverse area ∼ 1/Λ2

QCD).
Experimentally, DPS has been studied in four-jet

events by the AFS collaboration [11] at
√
s = 63 GeV,

the UA2 collaboration [12] at
√
s = 630 GeV and the

Tevatron [13]. At the Tevatron, DPS has also been stud-
ied in γ + 3 jet events [14, 15] and there is an analysis
using early LHC data for DPS in W + 2 jets [16]. In

1 We will denote the beams by their momenta p1,2, without spec-
ifying the hadron. The most common cases are pp collisions
(Tevatron) or pp collisions (LHC).

2 At the Tevatron and LHC one needs to be careful to distinguish
double parton scattering from pile-up, i.e. two single parton scat-
terings involving different pairs of hadrons during the same bunch
crossing, since this would produce a similar signal. Separating
the two relies on identifying the vertex of the hard collision.

these experiments DPS is quantified using an effective
cross section σeff , defined in Eq. (5). The measured val-
ues of σeff range from 5 to 15 mb.

DPS is an important background for light Higgs
searches in the channel pp → WH → `νbb̄ [17–20]. A
clean channel for studying DPS at the LHC is provided
by same-sign lepton searches, i.e. via p1 + p2 →W+W+

with W+ → `+ν, since SPS is suppressed [21–24]. The
maximum incoming partonic charge in SPS is +1 from
ud, so the conservation of electric charge requires the
presence of at least two additional jets in the final state
via ud → W+W+ud, leading to a large suppression of
SPS by [α/(4π)]2[αs/(4π)]2 relative to single Drell-Yan.
There is no corresponding suppression of DPS, which can
proceed via uudd→W+W+. After typical cuts the DPS
cross section is of fb order [23, 24], making it more of a
long-term goal at the LHC.

In the original DPS formalism, the cross section is de-
scribed as [5]

dσ =
1

S

∑
i,j,k,l

∫
d2z⊥ Fij(x1, x2, z⊥, µ)Fkl(x3, x4, z⊥, µ)

×σ̂ik(x1x3

√
s, µ)σ̂jl(x2x4

√
s, µ) . (1)

Each incoming hadron is described by a double parton
distribution function (dPDF) F and the short-distance
processes are described by partonic cross sections σ̂, in
analogy with SPS. Fij(x1, x2, z⊥) is the number den-
sity for simultaneously finding two partons with flavors
i, j = g, u, ū, d, . . . , longitudinal momentum fractions
x1, x2 and transverse separation z⊥ inside the hadron.
Our convention is that in formulæ such as Eq. (1), the
first (second) dPDF is for the beam with momentum p1

(p2). The σ̂ik(x1x3
√
s) is the partonic cross section for

partons i, k going to the desired final state. S is a sym-
metry factor that can arise if there are identical particles
in the final state.
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FIG. 1. Double parton scattering in space-time. The two
hadrons have transverse size of order 1/ΛQCD and longitudi-
nal size of order 1/(γΛQCD), where γ � 1 is the boost. The
two hard interactions are shown by black dots. They have
longitudinal and time separation 1/(γΛQCD), and transverse
separation 1/ΛQCD.
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FIG. 2. Double PDFs in momentum space (forward diagram).

The dPDF in momentum space is defined by3

Fij(x1, x2, r⊥, µ) =

∫
d2z⊥e

−ir⊥·z⊥Fij(x1, x2, z⊥, µ) .(2)

It should be clear from the context whether the third
argument refers to position or momentum. The dPDF
in momentum space is shown in Fig. 2. The figure also
shows that the dPDF is not the squared absolute value
of an amplitude, since the partons on the two sides of the
cut have different momenta.

It is commonly assumed that the dependence on the
transverse separation is uncorrelated with the momen-
tum fractions or parton flavors,

Fij(x1, x2, z⊥, µ) = Fij(x1, x2, µ)F (z⊥, µ) . (3)

3 We follow the convention of Refs. [25, 26], where r⊥ is a trans-
verse momentum, not a coordinate.

In addition, a factorized ansatz is made

Fij(x1, x2, µ) = fi(x1, µ)fj(x2, µ) θ(1−x1−x2)(1−x1−x2) ,
(4)

where f denotes a single PDF and the last factors
smoothly impose the kinematic constraint x1 + x2 ≤ 1.
For small momentum fractions 1−x1−x2 ≈ 1 these fac-
tors can be neglected, and the cross section in Eq. (1)
becomes

σ =
∑
i,j,k,l

σik σjl
S σeff

, σeff =

[ ∫
d2z⊥ F (z⊥, µ)2

]−1

. (5)

The effective cross-section is a measure of the area of the
proton ∼ 1/Λ2

QCD, consistent with the fact that DPS is
higher twist.

The expression in Eq. (1) is an example of a fac-
torization formula, where the hadronic cross-section is
written as the convolution of hard-scattering partonic
cross-sections which are target-independent, and non-
perturbative distribution functions which depend on the
hadronic target. We will see that there are several impor-
tant modifications to the naive expressions above. In par-
ticular, the product forms of Eqs. (3) and (4) are spoiled
by QCD radiative corrections. There are also several
different spin and color structures that enter the factor-
ization formula, even for unpolarized beams [25–27].

In processes such as double Drell-Yan, one can mea-
sure the invariant mass and transverse momentum of each
lepton pair. Double Drell-Yan can arise from a double-
parton process, (qq → γ∗) + (qq → γ∗). The transverse
momentum of each incoming parton is the intrinsic trans-
verse momentum of a quark in a hadron, and is typically
of order ΛQCD. Double Drell-Yan can also arise from a
single parton process such as (g → qq) + (g → qq) where
a quark from one gluon and an antiquark from the other
gluon annihilate into a virtual photon. In this case, the
transverse momentum of the quarks (and thus the lep-
ton pair) can be of order the hard scale Q. There is an
inevitable overlap between the SPS and DPS contribu-
tions to a physical process such as double Drell-Yan in
the region where the transverse momentum of the lepton
pair (not the individual leptons) is small. The total SPS
contribution to double Drell-Yan is leading twist, but the
contribution to the small transverse momentum region is
Λ2

QCD/Q
2 suppressed (because it is a fraction Λ2

QCD/Q
2

of the total phase space) and is the same order as DPS
in this region (see e.g. Ref. [28] for a more detailed dis-
cussion).

In light of the above discussion, observables that are
sensitive to the regions of phase space where SPS and
DPS are of the same order, are used to separate SPS
and DPS contributions [29]. In a recent analysis by the
Atlas collaboration [16], DPS was studied in pp→W +2
jets, for a leptonically decaying W . The normalized total
transverse momentum of the two jets, ∆n

jets = |p1⊥ +

p2⊥|/(|p1⊥| + |p2⊥|), was used to separate DPS from
SPS, and is shown in Fig. 3.
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Figure 4: Comparison of ∆n
jets distribution in the data with expectations after χ2 minimisation fits of the

templates to data to extract f R
DP. The result obtained using Sherpa for template A is shown in (a) and

the result obtained using Alpgen+Herwig+Jimmy (A+H+J) for template A is shown in (b). The physics
background (physics BG) is added to template A in the figure (dotted line). The fit region is the region
to the left of the dotted line. Data and the overall fit were normalised to unity, template A to 1 − f R

DP and
template B to f R

DP.

Template B, the model for W0 + 2jDPI kinematics, is constructed from dijet data using the selection
outlined in Section 4. The fractional difference between the extracted value of f R

DP when using dijet MC
in place of dijet data was found to be negligible.

7.2 Fit results

The result of fitting the templates to the data is shown in Figure 4. The fraction of DPI events was found to
be f R

DP = 0.18, using the Sherpa prediction for template A. The associated quality of the fit was χ2/Ndf =

1.4 (Ndf = 27). The fraction of DPI was observed to be f R
DP = 0.14 using the Alpgen+Herwig+Jimmy

prediction for template A, with a χ2/Ndf of 0.9. The final value of f R
DP was taken to be the average of

these results ( f R
DP = 0.16). The statistical uncertainty was obtained by varying the χ2 by one unit and

was found to be � 0.07 f R
DP. The systematic uncertainties on the extracted value of f R

DP are discussed in
Section 7.4.

The value f R
DP extracted from the fit to ∆n

jets can be used to normalise appropriate templates for ∆jets.
Figure 5 shows the distribution obtained in data compared to these normalised templates.

7.3 Transition of results from detector to parton level

In this section, the relationship between the parton-level, f P
DP, and reconstruction level, f R

DP, quantities is
established. The fraction of events originating from double parton scattering is defined at parton-level by

f P
DP =

NP
W0+2jDPI

NP
W0+2jDPI

+ NP
W+2jD

. (16)

where NP
W0+2jDPI

is the number of events generated with the two partons originating from DPI and NP
W+2jD

is the number of events generated with the two partons produced directly from the W+2j matrix element.
The partons are required to pass the same selection criteria as the reconstructed jets, pT > 20 GeV and
|y| < 2.8. The value of f P

DP was evaluated to be 0.18 in the nominal Alpgen+Herwig+Jimmy settings.
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FIG. 3. Extraction of the double parton scattering contribu-
tion to pp→W + 2 jets by the Atlas collaboration [16]. The
extraction is performed by comparing the observed spectrum
of the normalized total transverse momentum of the two jets
∆n

jets = |p1⊥+p2⊥|/(|p1⊥|+ |p2⊥|) to templates for SPS and
DPS obtained from Monte Carlo programs. (ATLAS Experi-
ment c© 2012 CERN.)

FIG. 4. Mixing between the gluon single PDF and the qq
double PDF.

The dPDF is a new non-perturbative object. It
has a renormalization group (RG) evolution similar to
that for the conventional (single) PDF. The evolution
of Fij(x1, x2, µ) was determined a long time ago in
Refs. [30, 31]. It has recently been extended to include
the z⊥ dependence [25, 26]. The RG evolution for the qq
dPDF is

µ
d

dµ
Fqq̄(x1, x2, r⊥, µ) =

αsCF
π

{ ∑
i=q,g

∫
dz

z

[
Pqi

(x1

z

)
Fiq(z, x2, r⊥, µ) + Pqi

(x2

z

)
Fqi(x1, z, r⊥, µ)

]
+Pqg

( x1

x1 + x2

)fg(x1 + x2, µ)

x1 + x2

}
, (6)

where P denotes the usual PDF splitting functions. The
first two terms describe the independent evolution of each
of the partons with the standard (single) PDF kernel.
The second line is the contribution of the single gluon
PDF feeding into the dPDF via g → qq, shown in Fig. 4.
This term has no r⊥ dependence, and leads to a r⊥ inde-
pendent contribution to F (x1, x2, r⊥, µ), or equivalently
to a δ(2)(z⊥) contribution to F (x1, x2, z⊥, µ). This δ-
function in transverse position space leads to a divergence
in the cross section Eq. (1), as discussed in Refs. [25, 26].
The resolution of this singularity is related to the issue of
double counting between SPS and DPS mentioned ear-
lier, and will be discussed in a subsequent paper [32]. The
double-counting problem only enters through the mixing
between single and double PDFs, which we therefore also
postpone to Ref. [32]. The factorized form in Eq. (4) for
the dPDF is not preserved by the evolution [33, 34]. Sum
rules for dPDFs were derived and used to find a new
ansatz that satisfies the evolution equation reasonably
well [35].

In DPS, the two partons extracted out of the proton
can be correlated in spin and color, as was first dis-
cussed in Ref. [27]. These correlations are not present
in phenomenological models and were recently revisited
in Refs. [25, 26] for transverse momentum dependent
dPDFs.

In this paper our main focus will be on formulating
the QCD factorization theorem for double Drell-Yan and
related processes in terms of dPDFs, and on studying the
RG evolution of color correlations in quark dPDFs. We
find that the color-correlated dPDFs contain rapidity di-
vergences, which are tied to the presence of large rapidity
logarithms of r2

⊥/Q
2. We will treat the rapidity diver-

gences and resum the corresponding series of logarithms
using the recently introduced rapidity renormalization
group [36, 37]. We find that the effects of soft gluon ex-
change do not cancel for the color-correlated dPDF: the
color-correlated dPDFs contribute to the cross-section in
combination with a non-perturbative soft function. The
RG evolution shows that the color-correlated dPDF is
Sudakov suppressed, in agreement with Ref. [38]. In ad-
dition, we will also study the interference contributions
such as shown in Fig. 5, which were first considered in
Refs. [25, 26]. We find that all interference dPDFs are
Sudakov suppressed. These conclusions greatly reduce
the number of possible parton distributions that con-
tribute to DPS at high energies. There is significant
overlap of Secs. III and IV with the topics covered in
a recent paper [26] which appeared while this work was
in progress. Ref. [26] focuses on double parton scattering
where the transverse momenta of the final state particles
are measured. The evolution of the standard dPDFs,
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FIG. 5. Interference contribution to DPS. Note the orienta-
tion of the fermion lines.

which we calculate in Sec. V, differs from the evolution
of transverse-momentum-dependent dPDFs obtained in
Ref. [26]. This is similar to the situation in regular Drell-
Yan, which is described by PDFs if the lepton transverse
momentum is not measured (or integrated over), and by
transverse-momentum-dependent PDFs if it is. The two
are not simply related to each other, because they are
renormalized differently.

In Sec. II, we discuss the phenomenological aspects
and implications of our results. The remainder of the
paper contains the more technical aspects of our work.
We present a systematic derivation of the factorization
formula for the DPS contribution to double Drell-Yan
production in Sec. III, after reviewing the steps that lead
to the well-known factorization theorem for single Drell-
Yan. In contrast to Eq. (1), we will include spin and color
correlations and interference contributions, which natu-
rally arise. In Sec. IV we define the quark dPDF, classify
its spin and color structures, study its properties under
discrete symmetries and give an interpretation in the con-
text of a quark model. The calculation of the RGE for
the quark dPDFs and the corresponding soft functions is
given in Sec. V. It includes a brief introduction to the
topic of rapidity divergences and the technology of the ra-
pidity renormalization group with explicit examples. All
spin and color correlations as well as interference effects
are considered. We conclude in Sec. VI.

II. PHENOMENOLOGY

In this section we give an overview of our work and its
phenomenological implications. The technical details can
be found in the remainder of the paper. As mentioned
in the introduction, spin and color correlations can ap-
pear for DPS. Already in SPS there are different spin
dependent quark PDFs. For example, the polarized dis-
tribution function ∆q(x) measures the number of right
minus the left-handed quarks with momentum fraction
x, i.e. the longitudinal polarization. It contributes to
the polarized structure function g1(x) that is measured
in polarized deep-inelastic scattering. The transversity
distribution h1(x) measures the transverse quark polar-
ization δq(x). It is a chiral-odd distribution, and does

not contribute to polarized deep-inelastic scattering, but
does contribute to polarized Drell-Yan with transversely
polarized beams [39, 40].

The quark spin in a proton is correlated with the
hadron spin, so that both ∆q(x) and δq(x) vanish for un-
polarized proton targets. By contrast, in DPS the spins
of the two partons can be correlated with each other,
and so nontrivial spin structures exist even if the proton
is unpolarized. In addition to the usual unpolarized dis-
tribution Fqq, there are F∆q∆q, and Fδqδq, which measure
longitudinal and transverse spin correlations between two
partons. Fδqδq is chiral odd in each δq, but has overall
chirality zero. The dependence of the dPDF on z⊥ al-
lows for several more spin structures, but these do not
contribute to the cross sections we consider.

In addition, dPDFs can also have color correlations
which have no analog in SPS. The regular quark PDF
is (schematically) the hadron matrix of the quark bilin-
ear qq. For dPDFs, there are two possible color struc-
tures qq qq and qTAq qTAq. Both objects are overall color
singlets, but they give information on parton color cor-
relations in the hadron target. We will refer to 1 ⊗ 1
and TA ⊗ TA as the color-summed and color-correlated
dPDFs. The two operators can also be written as lin-
ear combinations of qq qq and qαqβ q

βqα, which can be
thought of as color-direct and color-exchange contribu-
tions.

Two quarks can be in a 6 or 3 color representation,

which contribute to two different dPDFs F
(6)
qq and F

(3)
qq ,

measuring the color 6 and 3 diquark distributions. In
terms of the qq qq and qTAq qTAq basis,

F 1
qq = 6F (6)

qq + 3F (3)
qq ,

FTqq = 4(F (6)
qq − F (3)

qq ) , (7)

where F 1
qq is the color-summed dPDF (1⊗ 1) and FTqq is

the color-correlated dPDF (TA ⊗ TA). (The factor of 4
on the second line is due to an arbitrary normalization.)

Since F 6
qq and F 3

qq are proportional to the probabilities to

find diquarks in a color 6 or 3 and are positive, Eq. (7) im-
plies −4F 1

qq/3 ≤ FTqq ≤ 2F 1
qq/3. Similarly the qq dPDFs

F 1
qq, F

8
qq measure the singlet and octet qq distributions.

The complete classification of dPDFs in terms of spin and
color structures is discussed in Sec. IV A. F 1

qq and FTqq
evolve differently with energy, so the color correlations
are energy dependent.

In addition to spin and color correlations, there are
also interference contributions to the cross section, an
example of which is shown in Fig. 5. The interpretation
of this as an interference contribution becomes clear in
the context of a non-relativistic quark model, as discussed
in Sec. IV D. There we find that the regular dPDF Fqq
and the interference dPDF Iqq are (roughly) given by

F 1
qq ∼ |φqq(k1, k2)|2 , I1

qq ∼ φqq(k1, k2)∗φqq(k1, k2) ,
(8)

where φ is the qq wave function and k1 and k2 are the
momenta of the quark and antiquark. The interference
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dPDFs do not have a nice probabilistic interpretation.
Whereas regular dPDFs F (x1, x2, z⊥) are positive (or
real, in the case of spin and color correlations), the inter-
ference dPDF does not even have to be real, as we argue
in Sec. IV C. Only the contribution of the interference
dPDFs to the cross section is real. In Sec. IV C we also
discuss the properties of dPDFs under discrete symme-
tries. For example, charge conjugation invariance leads
to Fqq/P = Fqq/P , where the spin and color structures

match up on both sides of this equation.

To see how spin and color correlations and interference
effects contribute to the cross section, requires a refine-
ment of Eq. (1). In Sec. III we systematically derive the
formula for the DPS cross section for double Drell-Yan
production, which results in the following leading-order
factorization theorem

dσDPS

dq2
1 dY1 dq2

2 dY2
=
(4πα2Q2

q

3Nc s

)2 1

q2
1q

2
2

∫
d2z⊥

{[
(F 1
qqF

1
qq + F 1

∆q∆qF
1
∆q∆q) + (F 1

qqF
1
qq + F 1

∆q∆qF
1
∆q∆q)

]
+

2Nc
CF

[
(FTqqF

T
qq + FT∆q∆qF

T
∆q∆q) + (FTqqF

T
qq + FT∆q∆qF

T
∆q∆q)

]
STT

+
1

2

[
(I1
qq + I1

∆q∆q)(I
1
qq + I1

∆q∆q) + I1
δqδqI

1
δqδq

]
S11
I

+
Nc
2

[
(ITqq + IT∆q∆q)(I

1
qq + I1

∆q∆q) + ITδqδqI
1
δqδq + (1↔ T )

]
ST1
I

+
Nc
CF

[
(ITqq + IT∆q∆q)(I

T
qq + IT∆q∆q) + ITδqδqI

T
δqδq

]
STTI + (q ↔ q)

}
, (9)

Here q2
i and Yi are the total invariant mass and rapid-

ity of each lepton pair, and Qq is the quark charge. We
suppressed the arguments of all functions in Eq. (9) for
brevity. The arguments of the dPDFs are the momen-
tum fractions and transverse separation z⊥, just as in
Eq. (1). In addition to the dPDFs, the last four lines
involve soft functions S, describing the effects of soft ra-
diation. The soft functions only depend on the large z⊥
separation, since soft radiation does not resolve the short
distances associated with the momentum fractions. The
second line of Eq. (9) contains the contribution from color
correlations and the third through fifth line contains the
interference contributions. Eq. (9) agrees with the terms
in the factorization theorem presented in Ref. [26] that
were explicitly written out. The analogous expression for
the cross section for WW production in terms of double
PDFs is given in Sec. III C.

The position space dPDF F (z⊥) is dimension two, and
of order Λ2

QCD. The momentum space dPDF F (r⊥) is
dimensionless, and of order unity. The dPDF terms in
Eq. (9)

∼
∫

d2z⊥F (z⊥)F (z⊥) (10)

are of dimension two, and order Λ2
QCD, since the z⊥ in-

tegral produces a 1/Λ2
QCD. This shows that the dPDF

cross-section is Λ2
QCD/Q

2 suppressed.
Clearly the large number of functions that appear in

Eq. (9) is worrisome for the prospect of measuring them
in experiments. The good news is that color-correlations
and interference contributions are Sudakov suppressed at
high energies, leaving only the first line of this equation,

which is one of the main conclusions of our paper. The
Fδqδq dPDF does not enter in the leading order expression
in Eq. (9).

Intuitively, the Sudakov suppression of color-correlated
and interference dPDFs can be understood as a conse-
quence of long range (z⊥ ∼ 1/ΛQCD) color correlations.
This is illustrated in Fig. 6, where the color flow is shown
for both the color-summed and color-correlated dPDF. In
Fig. 7 we show the color flow for the interference dPDFs
I1 and IT , which both involve long range color correla-
tions. While color is conserved in the hadron matrix ele-
ment, the color-correlated and interference dPDFs move
color a distance of order 1/ΛQCD within the hadron.

More formally, the Sudakov suppression follows from
our study of the anomalous dimensions of the dPDFs
and soft functions in Sec. V. In the remainder of this
section, we summarize our results for the RGE evolution
and Sudakov suppression of FT . Similar results hold for
the interference dPDFs, and are presented in Sec. V.

At this point we need to briefly discuss rapidity diver-
gences, which we encounter in our calculations. These
divergences cancel between the soft function and dPDFs
and are thus absent in the cross-section. However, they
need to be regulated and there is a corresponding series
of large (single) logarithms that needs to be summed for
reliable predictions. We achieve this using the recently
introduced rapidity renormalization group [36, 37], whose
workings are similar to that of dimensional regularization
for UV divergences. Just as 1/ε UV divergences lead to
a µ anomalous dimension, 1/η rapidity divergences lead
to a ν anomalous dimension. The new renormalization
scale ν is then used to sum the rapidity logarithms. (An
introduction to the rapidity renormalization group and



6

FIG. 6. Color flow in the color-summed dPDF F 1
qq and color-

correlated dPDF FTqq. The vertical separation of the vertices
⊗ is z⊥.

FIG. 7. Color flow in the interference dPDFs I1qq and ITqq.
Both have long-range color correlations. The vertical separa-
tion of the vertices ⊗ is z⊥.

sample calculations involving the rapidity regulator are
provided in Secs. V A and V C.)

The anomalous dimensions for FT and STT are calcu-
lated in Sec. V B and Sec. V C and are given by

γF
T

µ =
αs(µ)

π

[(
CF −

1

2
CA

)
Pqq(x1) + CA

(
ln

ν

p−1
+

3

4

)
×δ(1− x1)

]
δ(1− x2)δ(2)(r⊥) + (1↔ 2) ,

γF
T

ν = −αs(µ)CA
π2

1

µ2

1

(r2
⊥/µ

2)
+

δ(1− x1)δ(1− x2) ,

γS
TT

µ =
2αs(µ)CA

π
ln
µ2

ν2
δ(2)(r⊥) ,

γS
TT

ν =
2αs(µ)CA

π2

1

µ2

1

(r2
⊥/µ

2)
+

, (11)

dPDF F T

Hard σ̂

Soft STT

µ ∼ Q

µ ∼ Λ

ν ∼ Λ ν ∼ Q

FIG. 8. Natural scales of the dPDF F and soft function S.

written in terms of the usual (one-dimensional) plus dis-
tributions

1

u+
= lim
ξ→0

[
θ(u− ξ)

u
+ δ(u− ξ) ln ξ

]
. (12)

In Eq. (11) we explicit showed the dependence on all
variables, where a δ(1 − x1) or δ(2)(r⊥) means that the
evolution does not affect the x1 or r⊥ dependence, re-
spectively. From Eq. (11) we read off that the natural
scales for FT are (µF , νF ) ∼ (|r⊥|, p−) ∼ (Λ, Q) and for
STT are (µS , νS) ∼ (Λ,Λ). Λ is a scale of order ΛQCD

which we take to be 1.4 GeV in our numerical analysis.
By evaluating FT and STT at these scales, and running
them to a common scale using the µ and ν RGE, the
large logarithms in the cross-section are summed. The
natural scales and our running strategy are summarized
in Fig. 8. As we mentioned, the rapidity divergences, and
thus the corresponding ν evolution, must cancel between
the dPDFs and the soft function. Indeed,

γF
T

ν +
1

2
γS

TT

ν δ(1− x1)δ(1− x2) = 0 , (13)

which provides a consistency check on our calculations.
We will now show that the contribution of the color-

correlated dPDF to the cross section is Sudakov sup-
pressed. For both FT and STT , µ ∼ Λ is their natural
scale, from we simultaneously evolve them to the hard
scale µ = Q. Combining the µ-evolution of the dPDFs
and the soft function, we find

γF
T

µ +
1

2
γS

TT

µ δ(1− x1)δ(1− x2)

=
αs
π

[(
CF−

1

2
CA

)
Pqq(x1) + CA

(
ln

µ

p−1
+

3

4

)
δ(1−x1)

]
×δ(1− x2)δ(2)(r⊥) + (1↔ 2) (14)

for each dPDF. The µ anomalous dimension has an in-
teresting structure. The x-dependent piece is the usual
splitting function, but with a modified color factor of
−1/6 rather than 4/3, so the x-dependent part of the
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0. 0.2 0.4 0.6 0.8 1.
0.

0.2

0.4

0.6

x

x
fHxL

f H Μ=1.4L
f 1H Μ=100L
f T H Μ=100L

FIG. 9. Comparing the x-dependent part of the evolution
of F 1 and FT assuming a common initial PDF. The three
curves correspond to the initial PDF at µ = 1.4 GeV, and the
evolution of F 1 and FT to µ = 100 GeV.

anomalous dimension can be interpreted as a slow “re-
verse” evolution due to the change in magnitude and sign
of the color factor. The effect of this reverse evolution is
evaluated using HOPPET [41] and shown in Fig. 9 for
a sample initial PDF. It would be interesting to see this
effect experimentally.

There is also the second term in Eq. (14), which is x-
independent and thus does not change the shape of the
dPDF. Its evolution (combining both dPDFs) from a low
scale Λ to the hard scale Q ∼ Q1 ∼ Q2 is given by an
overall multiplicative factor

Ũµ(Λ, Q) = exp
(
− αsCA

2π
ln2 Q

2

Λ2

)
, (15)

at leading-logarithmic accuracy. Color correlations are
thus Sudakov suppressed and can be neglected for Q �
Λ. Eq. (15) agrees with Ref. [38], which arrived at this
conclusion by studying the color factors in the real and
virtual Sudakov form factor. Ref. [38] did not attempt
to factorize the cross section and does not discuss the
interference case, which we find is also Sudakov sup-
pressed. The effect of the Sudakov suppression is shown
in Fig. 10 at next-to-leading-logarithmic accuracy and
taking the running of αs into account [which was ne-
glected in Eq. (15)].

We also need to perform the ν-evolution to sum the
rapidity logarithms. In Sec. V D we calculate the evolu-
tion kernel Uν . We estimate the effect of the ν-evolution
on the cross section by (schematically)

σ ∼
∫

d2p⊥d2q⊥d2s⊥F
T (p⊥, νF )FT (q⊥, νF )

×Uν(s⊥, νF , νS)STT (−p⊥ − q⊥ − s⊥, νS)

∼
∫ |p⊥|≤Λ

d2p⊥Uν(p⊥, Q,Λ) , (16)

Here we assumed that FT and STT have a width of order
Λ at their natural scales νF ∼ Q, νS ∼ Λ. In Fig. 10 we

U
�

Μ UΝ

U
�

Μ only

10 100 1000
0.

0.2

0.4

0.6

0.8

1.

Q

FIG. 10. The Sudakov suppression factor with and without
rapidity resummation, running from Λ = 1.4 GeV to Q. The

evolution kernels Ũµ and Uν are discussed in the text.

q

p1 p2

k1 k2

FIG. 11. Drell-Yan production, p1 + p2 → `+`−.

take Λ = 1.4 GeV, and normalize our above estimate for
the effect of the ν evolution such that it is 1 when Q = Λ.
The resummation of the rapidity logarithms increases the
cross section, as shown in Fig. 10. However, it is only
a single-logarithmic series and thus has a smaller effect
than the Sudakov suppression. At high energies the first
line in Eq. (9) thus dominates.

III. FACTORIZATION THEOREM AT
LEADING ORDER

This section discusses the factorization theorem for
DPS. We start by reviewing the usual derivation of the
factorization theorem for single Drell-Yan, and then re-
peat the analysis for double Drell-Yan. Other derivations
of factorization for double parton scattering have been
presented in Ref. [26] and for scalar partons in Ref. [5].

A. Single Drell-Yan

The single Drell-Yan process is shown in Fig. 11. The
Drell-Yan cross-section is

dσ =
1

2Ep1

1

2Ep2

1

vrel

∫
d4q

d3k1

(2π)32Ek1

d3k2

(2π)32Ek2
(17)
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(2π)4δ(4)(q − k1 − k2)δ(4)(q + pX − p1 − p2)
∑
X

|A|2

where the sum is over hadronic final states X. The mo-
menta are shown in Fig. 11. The amplitude for leptons
produced through a virtual photon is

A = −ie u(k1)γµv(k2)
−igµν
k2

iQq 〈X|Jν |pp〉 , (18)

where Qq is the electric charge of the quark. Performing
the sum over the lepton spins∑

spins

ū(k1)γµv(k2) v̄(k2)γνu(k1)

= 4 (kµ1 k
ν
2 + kµ2 k

ν
1 − gµνk1 ·k2) , (19)

and the leptonic phase-space integral∫
d3k1

(2π)32Ek1

d3k2

(2π)32Ek2
(2π)4δ(4)(q − k1 − k2)

×4 (kµ1 k
ν
2 + kµ2 k

ν
1 − gµνk1 ·k2)

=
1

6π

(
qµqν − q2gµν

)
, (20)

leads to

dσ =
e4Q2

q

12πs

∫
d4q δ(4)(q + pX − p1 − p2) (21)

×
∑
X

〈pp|J†µ|X〉 〈X|Jν |pp〉
1

q2

(qµqν
q2
− gµν

)
.

The hadronic amplitude is shown in Fig. 12 and is

(2π)4δ(4)(q + pX − p1 − p2)Mµ
X

=

∫
d4z eiq·z 〈X|Jµ(z)|p1p2〉

=

∫
d4z eiq·ze−iz·(p1+p2−pX) 〈X|Jµ(0)|p1p2〉

= (2π)4δ(4)(q + pX − p1 − p2) 〈X|Jµ(0)|p1p2〉 . (22)

The hadronic tensor can thus be rewritten as

Hµν =
∑
X

(2π)4δ(4)(q + pX − p1 − p2)Mµ∗
X Mν

X

=

∫
d4z e−iz·q 〈pp|Jµ†(z)Jν(0)|pp〉 , (23)

such that

dσ =
4πα2Q2

q

3s

∫
d4q

(2π)4
Hµν(p1, p2, q)

1

q2

(qµqν
q2
−gµν

)
.

(24)

The hadronic matrix element separates into two PDFs.
It will be convenient to use light-cone coordinates where
p1 is in the n direction and p2 is in the n direction, such
that p−1 = n · p1 and p+

2 = n · p2 are large. Explicitly,
nµ = (1, 0, 0, 1) and nµ = (1, 0, 0,−1) for beams along
the third spatial direction. We find it convenient to use
the same indices for both spin and color, where γµab is
δab for the color indices, to reduce the number of indices.
Since we do not observe the transverse momentum of the
lepton pair, we can integrate over q⊥,

∫
d2q⊥
(2π)2

Hµν = γµabγ
ν
cd

∫
d2q⊥
(2π)2

∫
d4z e−iz+q−/2−iz−q+/2+iq⊥·z⊥ 〈p1p2|ψa(z)ψb(z)ψc(0)ψd(0)|p1p2〉

= γµabγ
ν
cd

∫
dz+dz−d2z⊥

2
e−iz+q−/2−iz−q+/2δ(2)(z⊥) 〈p1p2|ψa(z)ψb(z)ψc(0)ψd(0)|p1p2〉 . (25)

At this point, one can contract the fields with the states in different ways. The momentum of the current at the
point z, which by momentum conservation is equal in size to the momentum of the current at 0, has large − and +
components. Thus one of the fields at z and 0 must be contracted with p1 and the other with p2. Furthermore, quark
number is conserved, so one cannot contract two ψ fields with p1, etc. There are two possible contractions which
remain. The first one is∫

d2q⊥
(2π)2

Hµν = γµabγ
ν
cd

∫
dz+dz−d2z⊥

2
e−iz+q−/2−iz−q+/2δ(2)(z⊥) 〈p1|ψa(z)ψd(0)|p1〉 〈p2|ψb(z)ψc(0)|p2〉

= γµabγ
ν
cd

∫
dz+dz−

2
e−iz+q−/2−iz−q+/2 〈p1|ψa(z+, 0,0⊥)ψd(0)|p1〉 〈p2|ψb(0, z−,0⊥)|p2〉ψc(0)

=
π2

8N2
c

γµabγ
ν
cd /nda/nbc fq

(q−
p−1

)
fq

(q+

p+
2

)
=

π2

2Nc
(nµnν + nνnµ − 2gµν) fq

(q−
p−1

)
fq

(q+

p+
2

)
. (26)

To derive the third line we note that z± ∼ 1/q∓ ∼ 1/Q,
whereas the dependence on z− (z+) of the matrix element
of p1 (p2) is slowly varying and may be set to zero. In

the fourth line we have used the definition of the PDFs,∫
dz+

4π
e−iz

+q−/2 〈p|[ψ(z+)W (z+)]a[W †(0)ψ(0)]b|p〉
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=
/nba
4Nc

[
θ
(q−
p−

)
fq

(q−
p−

)
− θ
(
− q−

p−

)
fq

(
− q−

p−

)]
.

(27)

The Wilson line W (z+) goes to infinity and ensures gauge
invariance, but was not written explicitly in Eq. (26) to
avoid cumbersome notation. In momentum space the
Wilson line is given by

Wn =
∑

perms

exp
[ −g

i∂−
A−n (0)

]
, (28)

where n denotes the direction of the energetic radiation.

Combining Eq. (27) with Eq. (24) yields the familiar
result

dσ

dq2 dY
=

1

2

dσ

dq0 dq3
(29)

=
4πα2Q2

q

3Nc q2s
[fq(x1)fq(x2) + fq(x1)fq(x2)] ,

where we included the additional contribution to Eq. (25)
from the second contraction with ψ ↔ ψ, which ex-
changes the quark and antiquark PDFs. Here xi are the
momentum fractions and Y is the total rapidity of the
lepton pair,

x1 =
q−

p−1
=

√
q2

s
eY , x2 =

q+

p+
2

=

√
q2

s
e−Y . (30)

B. Double Drell-Yan

The leptonic amplitudes for double Drell-Yan are iden-
tical to that of single Drell-Yan, so the cross section is

given by

dσ = 2s
(4πα2Q2

q

3s

)2
∫

d4q1

(2π)4

d4q2

(2π)4
Hµναβ

× 1

q2
1

(qµ1 qν1
q2
1

− gµν
) 1

q2
2

(qα2 qβ2
q2
2

− gαβ
)
, (31)

where the factor 2s ensures that we only count the flux
factor once. For simplicity we will for now assume iden-
tical quark flavors. The hadronic amplitude is shown in

pXq

p1 p2

FIG. 12. Hadronic amplitude for single Drell-Yan.

Fig. 13 and equals

(2π)4δ(4)(q1 + q2 + pX − p1 − p2)Mνβ
X (32)

=

∫
d4z1 d4z2 e

iq1·z1+iq2·z2 〈X|T{Jν1 (z1)Jβ2 (z2)}|p1p2〉 ,

and the corresponding hadronic tensor is

pXq1

p1 p2

q2

FIG. 13. Hadronic amplitude for double Drell-Yan.

Hµναβ =
∑
X

(2π)4δ(4)(q1 + q2 + pX − p1 − p2)Mµα∗
X Mνβ

X

=

∫
d4z1 d4z2 d4z3 e

−iq1·z1−iq2·z2+iq1·z3 〈p1p2|T{Jµ†1 (z1)Jα†2 (z2)}T{Jν1 (z3)Jβ2 (0)}|p1p2〉 . (33)

We now follow similar steps as for single Drell-Yan in order to factor the hadronic matrix element into dPDFs. The
transverse momenta of the lepton pairs are not measured, so we can integrate over q1⊥,q2⊥,∫

d2q1⊥

(2π)2

d2q2⊥

(2π)2
Hµναβ =

1

8

∫
dz+

1 dz−1 dz+
2 dz−2 dz+

3 dz−3 d2z⊥e
−iq+1 z

−
1 /2−iq−1 z

+
1 /2 e−iq+2 z

−
2 /2−iq−2 z

+
2 /2 eiq+1 z

−
3 /2+iq−1 z

+
3 /2

〈p1p2|T{Jµ†1 (z1, z⊥)Jα†2 (z2,0⊥)}T{Jν1 (z3, z⊥)Jβ2 (0)}|p1p2〉 . (34)

Note that one transverse position integral remains, in contrast to single Drell-Yan. This integral would remain even
if one measures the transverse momenta of the lepton pairs. This can be seen from Fig. 2: the momentum r⊥ does
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not affect the transverse momentum of the final states, is arbitrary, and so is integrated over. The remaining d2z⊥
integral in Eq. (34) is the position space version of this r⊥ integral. It is important to note that r⊥ is not an observable
quantity [32].

The d2z⊥ integral means that the correlation function of four currents, Eq. (34), is not local in z⊥. This allows
soft radiation to contribute, since soft radiation can resolve the large distance z⊥. Soft radiation cannot resolve the
short-distance scales z±i ∼ 1/Q. The soft radiation emitted by a quark field exponentiates into an eikonal (soft)
Wilson line that can be factored out [42, 43]

ψ′a(x) = Sn,a′a(x)ψa(x) , (35)

where the soft Wilson line is in the direction n of the quark and a, a′ are color indices.

There are various ways of joining the fields to the incoming particles in the matrix elements, which allow for large
+ and − components of momentum flowing into the four current vertices. For example,

∫
d2q1⊥

(2π)2

∫
d2q2⊥

(2π)2
Hµναβ (36)

=
1

8
γµa′b′γ

α
c′d′γ

ν
e′f ′γ

β
g′h′

∫
dz+

1 dz−1 dz+
2 dz−2 dz+

3 dz−3 d2z⊥e
−iq+1 z

−
1 /2−iq−1 z

+
1 /2 e−iq+2 z

−
2 /2−iq−2 z

+
2 /2 eiq+1 z

−
3 /2+iq−1 z

+
3 /2

×〈p1|T
{
ψa(z1, z⊥)ψc(z2,0⊥)

}
T {ψf (z3, z⊥)ψh(0)} |p1〉

× 〈p2|T {ψb(z1, z⊥)ψd(z2,0⊥)}T
{
ψe(z3, z⊥)ψg(0)

}
|p2〉

× 〈0|S†n,aa′(z1, z⊥)Sn,b′b(z1, z⊥)S†n,cc′(z2,0⊥)Sn,d′d(z2,0⊥)S†n,ee′(z3, z⊥)Sn,f ′f (z3, z⊥)S†n,gg′(0)Sn,h′h(0)|0〉

=
1

8
γµa′b′γ

α
c′d′γ

ν
e′f ′γ

β
g′h′

∫
d2z⊥

×
∫

dz+
1 dz+

2 dz+
3 e
−iq−1 z

+
1 /2 e−iq−2 z

+
2 /2 eiq−1 z

+
3 /2 〈p1|T

{
ψa(z+

1 , 0, z⊥)ψc(z
+
2 , 0,0⊥)

}
T
{
ψf (z+

3 , 0, z⊥)ψh(0)
}
|p1〉

×
∫

dz−1 dz−2 dz−3 e
−iq+1 z

−
1 /2 e−iq+2 z

−
2 /2 eiq+1 z

−
3 /2 〈p2|T

{
ψb(0, z

−
1 , z⊥)ψd(0, z

−
2 ,0⊥)

}
T
{
ψe(0, z

−
3 , z⊥)ψg(0)

}
|p2〉

× 〈0|S†n,aa′(0, 0, z⊥)Sn,b′b(0, 0, z⊥)S†n,cc′(0)Sn,d′d(0)S†n,ee′(0, 0, z⊥)Sn,f ′f (0, 0, z⊥)S†n,gg′(0)Sn,h′h(0)|0〉 .

Here we once again use that z±i ∼ 1/Q varies rapidly, whereas in the matrix element of p1 (p2) the dependence on
z−i (z+

i ) is slow and can be set to zero. The dependence of the soft radiation is slow in both z+
i and z−i and so only

the dependence on z⊥ remains. The last line in Eq. (36) is the soft function S (we omit a subscript qqqq since we
do not consider soft functions with gluons in this paper). The soft function has a lot of indices but also has a lot of
symmetry. When we contract indices below, only four independent soft functions will appear. We identify the dPDFs
Fqq and Fq̄q̄ in Eq. (36) by

Fqq(q
−
1 , q

−
2 , z⊥, p

−
1 )acfh = −4πp−1

∫
dz+

1

4π

dz+
2

4π

dz+
3

4π
e−iq−1 z

+
1 /2 e−iq−2 z

+
2 /2 eiq−1 z

+
3 /2

〈p1|T
{
ψa(z+

1 , 0, z⊥)ψc(z
+
2 , 0,0⊥)

}
T
{
ψf (z+

3 , 0, z⊥)ψh(0)
}
|p1〉 ,

Fqq(q
+
1 , q

+
2 , z⊥, p

+
2 )bdeg = −4πp+

2

∫
dz−1
4π

dz−2
4π

dz−3
4π

e−iq+1 z
−
1 /2 e−iq+2 z

−
2 /2 eiq+1 z

−
3 /2

〈p2|T
{
ψb(0, z

−
1 , z⊥)ψd(0, z

−
2 ,0⊥)

}
T
{
ψe(0, z

−
3 , z⊥)ψg(0)

}
|p2〉 . (37)

The factors p−1 and p+
2 are included to make the dPDFs boost invariant, indicating that each dPDF comes with a

ΛQCD/Q factor in the cross-section. These dPDFs are dimension two objects and of order Λ2
QCD (including the p−1

factor). The overall minus signs in Eq. (37) are due to the ordering of fermion fields. We should point out that we
do not explicitly write out the collinear Wilson lines [as in Eqs. (27) and (28)] for the sake of brevity. Translation
invariance gives

Fqq(q
−
1 , q

−
2 , z⊥, p

−
1 )acfh = Fqq(q

−
2 , q

−
1 ,−z⊥, p−1 )cahf ,

Fqq(q
−
1 , q

−
2 , z⊥, p

−
1 )bdeg = Fqq(q

−
2 , q

−
1 ,−z⊥, p−1 )dbge . (38)
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The other possible ways of connecting the fields with the states in Eq. (34) that contribute are

Fqq(q
−
1 , q

−
2 , z⊥, p

−
1 )adfg = −4π p−1

∫
dz+

1

4π

dz+
2

4π

dz+
3

4π
e−iq

−
1 z

+
1 /2 e−iq

−
2 z

+
2 /2 eiq

−
1 z

+
3 /2

〈p1|T
{
ψa(z+

1 , 0, z⊥)ψd(z
+
2 , 0,0⊥)

}
T
{
ψf (z+

3 , 0, z⊥)ψg(0)
}
|p1〉 ,

Fqq(q
−
1 , q

−
2 , z⊥, p

−
1 )bceh = −4π p−1

∫
dz+

1

4π

dz+
2

4π

dz+
3

4π
e−iq

−
1 z

+
1 /2 e−iq

−
2 z

+
2 /2 eiq

−
1 z

+
3 /2

〈p1|T
{
ψb(z

+
1 , 0, z⊥)ψc(z

+
2 , 0,0⊥)

}
T
{
ψe(z

+
3 , 0, z⊥)ψh(0)

}
|p1〉 ,

Iqq(q
−
1 , q

−
2 , z⊥, p

−
1 )adeh = 4π p−1

∫
dz+

1

4π

dz+
2

4π

dz+
3

4π
e−iq

−
1 z

+
1 /2 e−iq

−
2 z

+
2 /2 eiq

−
1 z

+
3 /2

〈p1|T
{
ψa(z+

1 , 0, z⊥)ψd(z
+
2 , 0,0⊥)

}
T
{
ψe(z

+
3 , 0, z⊥)ψh(0)

}
|p1〉 ,

Iqq(q
−
1 , q

−
2 , z⊥, p

−
1 )bcfg = 4π p−1

∫
dz+

1

4π

dz+
2

4π

dz+
3

4π
e−iq

−
1 z

+
1 /2 e−iq

−
2 z

+
2 /2 eiq

−
1 z

+
3 /2

〈p1|T
{
ψb(z

+
1 , 0, z⊥)ψc(z

+
2 , 0,0⊥)

}
T
{
ψf (z+

3 , 0, z⊥)ψg(0)
}
|p1〉 . (39)

Iqq is the interference double PDF, corresponding to the contribution shown in Fig. 5. The origin of this name will
become clearer in Sec. IV D. Translation invariance leads to the relations

Fqq(q
−
1 , q

−
2 , z⊥, p

−
1 )adfg = Fqq(q

−
2 , q

−
1 ,−z⊥, p−1 )dagf ,

Iqq(q
−
1 , q

−
2 , z⊥, p

−
1 )adeh = Iqq(q

−
2 , q

−
1 ,−z⊥, p−1 )dahe . (40)

The soft functions that correspond to these other contractions can be expressed in terms of the soft function S. For
FqqFqq and IqqIqq respectively, we have

〈0|S†n,aa′(z⊥)Sn,b′b(z⊥)S†n,cc′(0)Sn,d′d(0)S†n,ee′(z⊥)Sn,f ′f (z⊥)S†n,gg′(0)Sn,h′h(0)|0〉 = Saa′bb′gg′hh′ee′ff ′cc′dd′ ,

〈0|S†n,aa′(z⊥)Sn,b′b(z⊥)S†n,cc′(0)Sn,d′d(0)S†n,ee′(z⊥)Sn,f ′f (z⊥)S†n,gg′(0)Sn,h′h(0)|0〉 = Saa′bb′ee′ff ′cc′dd′gg′hh′ . (41)

Combining all these ingredients, we find that the cross section is given by

dσDPS

dq2
1 dY1 dq2

2 dY2
=
(4πα2Q2

q

3s

)2 1

q2
1

(qµ1 qν1
q2
1

− gµν
) 1

q2
2

(qα2 qβ2
q2
2

− gαβ
)
γµa′b′γ

α
c′d′γ

ν
e′f ′γ

β
g′h′

×
∫

d2z⊥
[
Fqq,acfhFqq,bdegSaa′bb′cc′dd′ee′ff ′gg′hh′ + Fqq,adfgFqq,bcehSaa′bb′gg′hh′ee′ff ′cc′dd′

+I
(1)
qq,adehI

(2)
qq,bcfgSaa′bb′ee′ff ′cc′dd′gg′hh′ + (q ↔ q)

]
, (42)

where the first dPDF is for the first hadron, and the second for the second hadron. This expression can be simplified
using the color and spin decompositions of the dPDFs, discussed in Sec. IV A. (This is analogous to e.g. 〈p1|ψaψb|p1〉 ∼
δab by color invariance, which we encountered in single parton scattering.) Using the decomposition in Sec. IV A, we
find the result presented earlier,

dσDPS

dq2
1 dY1 dq2

2 dY2
=
(4πα2Q2

q

3Nc s

)2 1

q2
1q

2
2

∫
d2z⊥

{[
(F 1
qqF

1
qq + F 1

∆q∆qF
1
∆q∆q) + (F 1

qqF
1
qq + F 1

∆q∆qF
1
∆q∆q)

]
S11

+
2Nc
CF

[
(FTqqF

T
qq + FT∆q∆qF

T
∆q∆q) + (FTqqF

T
qq + FT∆q∆qF

T
∆q∆q)

]
STT

+
1

2

[
(I1
qq + I1

∆q∆q)(I
1
qq + I1

∆q∆q) + I1
δqδqI

1
δqδq

]
S11
I

+
Nc
2

[
(ITqq + IT∆q∆q)(I

1
qq + I1

∆q∆q) + ITδqδqI
1
δqδq + (1↔ T )

]
ST1
I

+
Nc
CF

[
(ITqq + IT∆q∆q)(I

T
qq + IT∆q∆q) + ITδqδqI

T
δqδq

]
STTI + (q ↔ q)

}
, (43)

The soft functions are defined below in Eqs. (44)-(46) and are normalized to be 1 at tree-level (except for ST1
I which

vanishes at tree-level). We suppressed the arguments of the functions for brevity. The arguments of the dPDFs are the
transverse separation z⊥ and the momentum fractions, given by equations analogous to Eq. (30). The soft functions
only depend on z⊥. Eq. (43) reduces to the familiar result in the literature given in Eq. (1), when spin and color
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correlations as well as the interference dPDF are ignored. A rigorous proof of factorization requires one to show that
Glauber gluons do not contribute, which we assume here.

The factorized form Eq. (43) contains soft functions from the soft Wilson lines in Eq. (35). The soft function for
the color-summed dPDF is

S11 =
1

N2
c

δfaδhc δbeδdg δa′b′δc′d′δe′f ′δg′h′ Sqqqq,aa′bb′cc′dd′ee′ff ′gg′hh′

=
1

N2
c

〈0|tr[S†n(z⊥)Sn(z⊥)S†n(z⊥)Sn(z⊥)]tr[S†n(0)Sn(0)S†n(0)Sn(0)]|0〉 = 1 , (44)

using unitarity of the soft Wilson line. The color-summed soft function S11 is trivial and receives no QCD corrections.
The soft function for the color-correlated dPDF is

STT =
2

CFNc
TAfaT

A
hc T

B
beT

B
dg δa′b′δc′d′δe′f ′δg′h′ Sqqqq,aa′bb′cc′dd′ee′ff ′gg′hh′

=
2

CFNc
〈0|tr[TAS†n(z⊥)Sn(z⊥)TBS†n(z⊥)Sn(z⊥)]tr[TAS†n(0)Sn(0)TBS†n(0)Sn(0)]|0〉 . (45)

The color-correlated soft function is nontrivial, and has been normalized to unity at tree-level, STT = 1 +O(αs). The
soft functions for the interference terms are given by

S11
I =

1

N2
c

〈0|tr[S†n(z⊥)Sn(z⊥)S†n(0)Sn(0)]tr[S†n(z⊥)Sn(z⊥)S†n(0)Sn(0)]|0〉 ,

ST1
I =

2

CFN2
c

〈0|tr[TAS†n(z⊥)Sn(z⊥)S†n(0)Sn(0)]tr[TAS†n(z⊥)Sn(z⊥)S†n(0)Sn(0)]|0〉 ,

STTI =
2

CFNc
〈0|tr[TAS†n(z⊥)Sn(z⊥)TBS†n(0)Sn(0)]tr[TAS†n(z⊥)Sn(z⊥)TBS†n(0)Sn(0)]|0〉 . (46)

Defining

W = S†n(z⊥)Sn(z⊥)S†n(0)Sn(0)

Y = S†n(z⊥)Sn(z⊥)S†n(0)Sn(0) , (47)

and using the identity

TAabT
A
cd =

1

2
δadδcb −

1

2Nc
δabδcd , (48)

they can be written as

STT =
1

CFNc
〈0|tr[TAW TAW†]|0〉 (49)

=
1

2CFNc
〈0|tr[W]tr[W†]|0〉 − 1

2CFNc
,

S11
I =

1

N2
c

〈0|tr[Y]2|0〉 ,

ST1
I =

2

CFN2
c

〈0|tr[TAY] tr[TAY]|0〉 ,

= − 1

CFN3
c

〈0|tr[Y]2|0〉+
1

CFN2
c

〈0|tr[Y2]|0〉 ,

STTI =
1

CFNc
〈0|tr[TAY TAY]|0〉

− 1

CFN2
c

〈0|tr[TAY] tr[TAY]|0〉

=
N2
c + 1

2CFN3
c

〈0|tr[Y]2|0〉 − 1

CFN2
c

〈0|tr[Y2]|0〉 .

None of these soft functions are trivial. STT , S11
I and

STTI are normalized to 1 at tree-level. The soft function
ST1
I connects interference dPDFs with color structures
TA ⊗ TA and 1 ⊗ 1, and only starts to contributes at
order αs. The three interference soft functions are not
independent, but satisfy

ST1
I = S11

I − STTI , (50)

so only two independent interference soft functions exist.

C. WW

We now present analogous formulas for single W pro-
duction and WW production through DPS. The cross
section for pp→W (including its decay) is given by

dσW

dq2 dY
=

dσW0
dq2 dY

[fq(x1)fq(x2) + fq(x1)fq(x2)] ,

dσW0
dq2 dY

=
πα2 |ViVf |2 q2

12Nc sin4 θW [(q2−m2
W )2+m2

WΓ2
W ] s

, (51)

where mW and ΓW are the mass and width of the W bo-
son. The quark flavors of the PDFs are suppressed in the
above equation and are summed over. The CKM matrix
element Vi depends on the flavor of the initial quarks. For
example, the PDFs with CKM matrix element Vi = Vud
and V ∗ud are

dσW

dq2dY
=

dσW0
dq2dY

[fufd + fdfu + fdfu + fufd] . (52)
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If the W decays hadronically, their is also a CKM matrix
element Vf for the final state. [For a leptonically decaying
W , one should set Vf = 1 in Eq. (51).]

The corresponding expression for WW production (in-
cluding decay of the W s) through double parton scatter-
ing is given by

dσWW,DPS

dq2
1 dY1 dq2

2 dY2
=

dσW0
dq2

1 dY1

dσW0
dq2

2 dY2

∫
d2z⊥

{[(
F 1
qq + F 1

∆q∆q

) (
F 1
q̄q̄ + F 1

∆q̄∆q̄

)
+
(
F 1
qq̄ + F 1

∆q∆q̄

) (
F 1
q̄q + F 1

∆q̄∆q

)]
+

2Nc
CF

[(
FTqq + FT∆q∆q

) (
FTq̄q̄ + FT∆q̄∆q̄

)
+
(
FTqq̄ + FT∆q∆q̄

) (
FTq̄q + FT∆q̄∆q

)]
STT

+
[(
I1
qq̄ + I1

∆q∆q̄

) (
I1
q̄q + I1

∆q̄∆q

)]
S11
I +Nc

[(
ITqq̄ + IT∆q∆q̄

) (
I1
q̄q + I1

∆q̄∆q

)
+ (1↔ T )

]
ST1
I

+
2Nc
CF

[(
ITqq̄ + IT∆q∆q̄

) (
ITq̄q + IT∆q̄∆q

)]
STTI + (q ↔ q̄)

}
, (53)

where we suppress the quark flavors in the dPDFs. Note
that in contrast to Eq. (43), the spin structure Iδqδq does
not contribute.

IV. DOUBLE PDF

In this section, we classify the allowed color and spin
structures for the dPDF. The Fqq dPDF matrix element
has the schematic form

〈p|ψaψcψfψh|p〉 , (54)

where the subscripts represent color and spin indices,
with similar expressions for the other dPDFs given in
Sec. III B. The allowed color and Lorentz structures
for these four-quark matrix elements are derived in this
section. The possibility of nontrivial color and spin
structures for unpolarized dPDFs was first discussed in
Ref. [27]. Our decomposition in Sec. IV A is essentially
the same as in Ref. [26], but the normalizations are
slightly different.

A. Classification

The qq dPDF has two possible color structures, since
the proton is a color singlet state,

δaf δch , T
A
af T

A
ch . (55)

These are used to decompose the double PDF into the
color-summed and color-correlated dPDFs as

(Fqq)acfh =
1

N2
c

δfaδhcF
1
qq +

2

CFNc
TAfaT

A
hc F

T
qq ,

(Fqq)bdeg =
1

N2
c

δbeδdgF
1
qq +

2

CFNc
TAbeT

A
dg F

T
qq ,

(Fqq)adfg =
1

N2
c

δfaδdgF
1
qq +

2

CFNc
TAfaT

A
dg F

T
qq ,

(Fqq)bceh =
1

N2
c

δbeδhcF
1
qq +

2

CFNc
TAbeT

A
hc F

T
qq , (56)

and similarly for Iqq and Iqq. The double PDF with the
TA⊗TA color structure can be interpreted as measuring
diparton color correlations. This is clear from decompos-
ing Fqq into the 6 (symmetric tensor) and 3 (antisym-
metric tensor) and Fqq into the 1 and 8 (adjoint) color
structures:

F (6)
qq =

1

N2
c

F 1
qq +

2

Nc(Nc + 1)
FTqq ,

F (3)
qq =

1

N2
c

F 1
qq −

2

Nc(Nc − 1)
FTqq ,

F
(1)
qq =

1

N2
c

F 1
qq +

2

Nc
FTqq ,

F
(8)
qq =

1

N2
c

F 1
qq −

2

Nc(N2
c − 1)

FTqq . (57)

There are several spin structures that can appear in
the double PDFs of unpolarized hadrons:

/naf /nch , (/nγ5)af (/nγ5)ch , /naf (iσµ−⊥ γ5)ch ,

(/nγ5)af (iσµ−⊥ γ5)ch , (iσµ−⊥ γ5)af (iσν−⊥ γ5)ch , (58)

where

iσµ−⊥ γ5 = /nγµ⊥γ5 . (59)

The free indices µ and ν in Eq. (58) can be contracted
with z⊥ or with each other, as shown in Eq. (61). In
SPS only the spin structure /n contributes for unpolar-
ized hadrons. The structures /nγ5 and iσµ−⊥ γ5 enter only
for longitudinally and transversely polarized protons, re-
spectively. They contribute to the g1(x) polarized struc-
ture function in DIS, and the transversity distribution
h1(x), respectively. In the dPDF we have two partons,
and the last two structures can appear for unpolarized
protons due to diparton spin correlations. The decom-
position of the dPDF into the various spin structures is
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given by (see also Ref. [26])

(Fqq)acfh =
1

16

[
/nfa/nhcFqq + (/nγ5)fa(/nγ5)hcF∆q∆q

−/nfa(iσ⊥µ+γ5)hcF
µ
qδq − (iσ⊥µ+γ5)fa/nhcF

µ
δqq

−(/nγ5)fa(iσ⊥µ+γ5)hcF
µ
∆qδq − (iσ⊥µ+γ5)fa(/nγ5)hcF

µ
δq∆q

+(iσ⊥µ+γ5)fa(iσ⊥ν+γ5)hcF
µν
δqδq

]
, (60)

with 4

Fµqδq = Mεµν⊥ z⊥νFqδq , Fµδqq = Mεµν⊥ z⊥νFδqq , (61)

Fµ∆qδq = Mzµ⊥F∆qδq , Fµδq∆q = Mzµ⊥Fδq∆q ,

Fµνδqδq =
1

2
gµν⊥ Fδqδq +M2

(
zµ⊥z

ν
⊥ −

1

2
z⊥ · z⊥gµν⊥

)
F tδqδq ,

where M is the proton mass. The resulting dPDFs
Fqδq etc. depend on z2

⊥ and the momentum fractions.
The numerical factors have been chosen to match with
the conventional normalization of the PDFs. Translat-
ing in the ⊥ direction by −z⊥ followed by −z⊥ → z⊥
gives the relations Fqδq(x1, x2, z⊥) = −Fδqq(x2, x1, z⊥),
F∆qδq(x1, x2, z⊥) = −Fδq∆q(x2, x1, z⊥).

To clarify the spin structures, it is helpful to write out
the double PDFs in terms of quark creation and annihi-

lation operators. For example,

Fqq ∼ 〈p|(a†1Ra1R + a†1La1L)(a†2Ra2R + a†2La2L)|p〉 ,
F∆q∆q ∼ 〈p|(a†1Ra1R − a†1La1L)(a†2Ra2R − a†2La2L)|p〉 ,
Fδqδq ∼ 〈p|2(a†1Ra1La

†
2La2R + a†1La1Ra

†
2Ra2L)|p〉 , (62)

where we have assumed that the proton is in the nµ =
(1, 0, 0, 1) direction. Fqq measures the joint probability
to find two partons in the proton, F∆q∆q measures the
correlation between the longitudinal polarization of two
partons in the proton, and Fδqδq measures the correlation
between the transverse polarization of two partons in the
proton. Fδqδq does not enter the leading-order factoriza-
tion formula Eq. (9), but can contribute at higher order
in αs.

B. Definitions

Starting from the dPDFs with uncontracted indices in
Eqs. (36) and (39), we now apply the spin and color de-
compositions of Sec. IV A. This leads to a large number
of dPDFs, most of which contribute to the cross section
in Eq. (43). We show a small sample of these for illus-
trative purposes below:

F 1
qq

(q−1
p−1
,
q−2
p−1
, z⊥

)
= −4π p−1

∫
dz+

1

4π

dz+
2

4π

dz+
3

4π
e−iq−1 z

+
1 /2 e−iq−2 z

+
2 /2 eiq−1 z

+
3 /2

〈p1|T
{[
ψ(z+

1 , 0, z⊥)
/n

2

]
a

[
ψ(z+

2 , 0,0⊥)
/n

2

]
b

}
T
{
ψa(z+

3 , 0, z⊥)ψb(0)
}
|p1〉 ,

FTqq

(q−1
p−1
,
q−2
p−1
, z⊥

)
= −4π p−1

∫
dz+

1

4π

dz+
2

4π

dz+
3

4π
e−iq

−
1 z

+
1 /2 e−iq

−
2 z

+
2 /2 eiq

−
1 z

+
3 /2

〈p1|T
{[
ψ(z+

1 , 0, z⊥)
/n

2
TA
]
a
ψb(z

+
2 , 0,0⊥)

}
T

{
ψa(z+

3 , 0, z⊥)
[
ψ(0)

/n

2
TA
]
b

}
|p1〉 ,

F 1
∆q∆q

(q−1
p−1
,
q−2
p−1
, z⊥

)
= −4π p−1

∫
dz+

1

4π

dz+
2

4π

dz+
3

4π
e−iq

−
1 z

+
1 /2 e−iq

−
2 z

+
2 /2 eiq

−
1 z

+
3 /2

〈p1|T
{[
ψ(z+

1 , 0, z⊥)
/n

2
γ5

]
a
ψb(z

+
2 , 0,0⊥)

}
T

{
ψa(z+

3 , 0, z⊥)
[
ψ(0)

/n

2
γ5

]
b

}
|p1〉 ,

ITqq

(q−1
p−1
,
q−2
p−1
, z⊥

)
= 4π p−1

∫
dz+

1

4π

dz+
2

4π

dz+
3

4π
e−iq

−
1 z

+
1 /2 e−iq

−
2 z

+
2 /2 eiq

−
1 z

+
3 /2

〈p1|T
{
ψb(z

+
1 , 0, z⊥)

[
ψ(z+

2 , 0,0⊥)
/n

2
TA
]
a

}
T

{
ψa(z+

3 , 0, z⊥)
[
ψ(0)

/n

2
TA
]
b

}
|p1〉 ,

Iδqδq

(q−1
p−1
,
q−2
p−1
, z⊥

)
= 4π p−1

∫
dz+

1

4π

dz+
2

4π

dz+
3

4π
e−iq

−
1 z

+
1 /2 e−iq

−
2 z

+
2 /2 eiq

−
1 z

+
3 /2

〈p1|T
{
ψb(z

+
1 , 0, z⊥)

[
ψ(z+

2 , 0,0⊥)
iσµ−⊥

2
γ5

]
a

}
T

{
ψa(z+

3 , 0, z⊥)
[
ψ(0)

iσ⊥µ−
2

γ5

]
b

}
|p1〉 . (63)

4 Our sign convention for ε⊥ follows from εµν⊥ ≡ −ε
µναβnαnβ/2

and ε0123 = +1. For nµ = (1, 0, 0, 1) and nµ = (1, 0, 0,−1), we
have ε12⊥ = +1. Note that interchanging n and n flips the sign of

ε⊥. We also use g11⊥ = g22⊥ = −1, so raising or lowering ⊥ indices
gives a minus sign.
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We have written the arguments as q−1 /p
−
1 and q−2 , p

−
2 ,

since by boost invariance the dPDFs can only depend on
these combinations. In addition to the color and spin
structures, we also have different quark flavors, which
have been suppressed. For example, one can have dPDFs
Fuu, Fud, F∆u∆d, etc. Taking moments of the dPDF with
respect to the momentum fractions xi = q−i /p

−
1 turns the

dPDF into the matrix element of a bilocal operator.

C. Discrete symmetries

In this section we study the properties of the double
PDFs under discrete symmetries, for which it will be con-
venient to use the dPDFs with uncontracted indices. We
start by considering the complex conjugate of the double
PDF:

Fqq(q
−
1 , q

−
2 , z⊥, p

−
1 )∗acfh = −4π p−1

∫
dz+

1

4π

dz+
2

4π

dz+
3

4π
eiq−1 z

+
1 /2 eiq−2 z

+
2 /2 e−iq−1 z

+
3 /2

×〈p1|T
{

[ψ(0)γ0]h[ψ(z+
3 , 0, z⊥)γ0]f

}
T
{

[γ0ψ(z+
2 , 0,0⊥)]c[γ

0ψ(z+
1 , 0, z⊥)]a

}
|p1〉

= −4π p−1

∫
dz+

1

4π

dz+
2

4π

dz+
3

4π
e−iq−1 z

+
1 /2 e−iq−2 z

+
2 /2 eiq−1 z

+
3 /2

×〈p1|T
{

[ψ(z+
1 , 0, z⊥)γ0]f [ψ(z+

2 , 0,0⊥)γ0]h
}
T
{

[γ0ψ(z+
3 , 0, z⊥)]a[γ0ψ(0)]c

}
|p1〉 . (64)

The last line was obtained by interchanging z1 ↔ z3 and using momentum conservation to change the field in which
the z+

2 coordinate appears. From

γ0(/n)†γ0 = /n , γ0(/nγ5)†γ0 = /nγ5 , γ0(/nγµ⊥γ5)†γ0 = /nγµ⊥γ5 , (TA)† = TA , (65)

it follows that spin and color structures are unaffected. We thus conclude that Fqq is real. This is true for the other
double PDFs, except for Iqq and Iqq which satisfy

Iqq(q
−
1 , q

−
2 , z⊥, p

−
1 )∗ = Iqq(q

−
1 , q

−
2 , z⊥, p

−
1 ) . (66)

Thus the individual interference double PDFs are not necessarily real, but their contribution to the cross section is.
This is not surprising, given their interpretation in the context of a quark model in Sec. IV D.

Under parity

Fqq(q
−
1 , q

−
2 , z⊥, p

−
1 )Pacfh = −4π p−1

∫
dz+

1

4π

dz+
2

4π

dz+
3

4π
e−iq−1 z

+
1 /2 e−iq−2 z

+
2 /2 eiq−1 z

+
3 /2 (67)

×〈pP1 |T
{

[ψ(0, z+
1 ,−z⊥)γ0]a[ψ(0, z+

2 ,0⊥)γ0]c
}
T
{

[γ0ψ(0, z+
3 ,−z⊥)]f [γ0ψ(0)]h

}
|pP1 〉 .

Using equations analogous to Eq. (65), we find that the spin and color structures are unchanged (with n ↔ n),
yielding Fqq for a proton in the n direction with z⊥ → −z⊥. This is not particularly useful, since the double PDF for
a proton in the n and n direction are already related by a rotation.

Under charge conjugation

Fqq/P (q−1 , q
−
2 , z⊥, p

−
1 )Cacfh = −4π p−1

∫
dz+

1

4π

dz+
2

4π

dz+
3

4π
e−iq−1 z

+
1 /2 e−iq−2 z

+
2 /2 eiq−1 z

+
3 /2

×〈p1|T
{

[γ0γ2ψ(z+
1 , 0, z⊥)]Ta [γ0γ2ψ(z+

2 , 0,0⊥)γ0]Tc
}
T
{

[ψ(z+
3 , 0, z⊥)γ0γ2]Tf [ψ(0)γ0γ2]Th

}
|p1〉

= Fqq/P (q−1 , q
−
2 , z⊥, p

−
1 )fhac . (68)

relating the double PDF for the proton and the antiproton. Using equations analogous to Eq. (65), we find that the spin
and color structures are almost unchanged: For each ∆q ↔ ∆q the overall sign flips. For example, FT∆q∆q/P = FT

∆q∆q/P

and FT∆qδq/P = −FT
∆qδq/P

. This is because ∆q and ∆q are defined in terms of chirality rather than helicity. For massless

particles, chirality is the same as helicity, whereas for anti-particles they are opposite.

D. Interpretation

We will now provide an interpretation of the double
PDF using a nonrelativistic quark model. Alternatively,
the interpretation of dPDFs becomes clearer when they

are written in terms of light-cone wave functions of the
colliding hadrons [44]. As a warm up we start with the
single PDF in Eq. (27). Since it is boost invariant, we



16

can work in a frame where p is at rest,

|p〉 →
√

2Ep
∑
s

∫
d3k

(2π)3
φq(k, s) |k, s〉 ⊗ |p− k〉 . (69)

Here |k, s〉 is a quark with momentum k and spin/color
s, and |p− k〉 represents everything else that makes up
the total momentum of the proton. We have switched
to a nonrelativistic normalization for the states. The
normalization of the wave function φq is given by

∑
s

∫
d3k

(2π)3
|φq(k, s)|2 = 1 . (70)

Writing the fields in the PDF in terms of creation and
annihilation operators,

fq

(q−
p−

)
= 2Ep

∫
dz+

4π
e−iz+q−/2

×
∑
s

∫
d3k

(2π)3
φq(k, s)

∑
s′

∫
d3k′

(2π)3
φq(k

′, s′)∗

×
∑
r

∫
d3l

(2π)3

∑
r′

∫
d3l′

(2π)3
eiz+l′−/2

×〈k′, s′ ⊗ p− k′|
a†l′,r′√
2El′

al,r√
2El
|k, s⊗ p− k〉

×u(l′, r′)
/n

2
u(l, r) . (71)

The matrix element is

δr,sδr′,s′(2π)3δ(3)(k′ − k)(2π)3δ(3)(k′ − l′)(2π)3δ(3)(k− l)

2Ek
,

(72)

leading to

f
(q−
p−

)
= 2Ep

∫
dz+

4π
e−iz+q−/2

∫
d3k

(2π)3
|φq(k)|2 eiz+k−/2

× 1

2Ek

∑
s,s′

u(k, s′)
/n

2
u(k, s)

=
∑
s

∫
d3k

(2π)3
|φq(k, s)|2 δ

(q−
p−
− k−

p−

)
. (73)

This gives the single PDF its probabilistic interpretation.
It is the probability to find a parton in the proton for a
given value of x = q−/p−.

We will now show that a similar probabilistic interpre-
tation is possible for the double PDF. Boost invariance
allows us to go to the rest frame again, where we write
the wave function for two quarks in a proton as

|p〉 →
√

2Ep

2

∑
s1,s2

∫
d3k1

(2π)3

∫
d3k2

(2π)3
φqq(k1, s1,k2, s2)

× |k1, s1,k2, s2,p− k1 − k2〉 . (74)
We are assuming a single quark flavor for simplicity, and
accordingly included an overall factor of 1/2 in the above
equation. The normalization of the wave function φqq is

1

2

∑
s1,s2

∫
d3k1

(2π)3

∫
d3k2

(2π)3
|φqq(k1, s1,k2, s2)|2 = 1 . (75)

Following the same steps as for the single PDF, we find

F 1
qq(x1, x2, r⊥) =

∑
s1,s2

∫
d3k1

(2π)3

d3k2

(2π)3
φqq

(
k1 +

1

2
r⊥, s1;k2 −

1

2
r⊥, s2

)∗
φqq

(
k1 −

1

2
r⊥, s1;k2 +

1

2
r⊥, s2

)
×δ(x1 − k−1 /p−)δ(x2 − k−2 /p−) . (76)

We see that r⊥ corresponds to a transfer of transverse momentum between the two double PDFs (see Fig. 2). In
this form the double PDF does not have a probabilistic interpretation. However, if we first switch to a wave function
that depends on k− and k⊥ (in which we absorb the Jacobian) and then Fourier transform to position space for all
transverse variables, the dPDF does have a probabilistic interpretation,

F 1
qq(x1, x2, z⊥) =

∑
s1,s2

∫
dk−1 d2k1⊥

(2π)3

dk−2 d2k2⊥

(2π)3
φqq

(
k−1 ,k1⊥ +

1

2
r⊥, s1; k−2 ,k2⊥ −

1

2
r⊥, s2

)∗
×φqq

(
k−1 ,k1⊥ −

1

2
r⊥, s1; k−2 ,k2⊥ +

1

2
r⊥, s2

)
δ(x1 − k−1 /p−)δ(x2 − k−2 /p−)

=
(p−)2

4π2

∑
s1,s2

∫
d2y⊥

∣∣∣φqq(x1p
−,y⊥ + z⊥, s1;x2p

−,y⊥, s2

)∣∣∣2 . (77)
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Likewise, for the other double PDFs we find

F 1
qq(x1, x2, r⊥) =

∑
s1,s2

∫
d3k1

(2π)3

d3k2

(2π)3
φqq

(
k1 +

1

2
r⊥, s1;k2 −

1

2
r⊥, s2

)∗
φqq

(
k1 −

1

2
r⊥, s1;k2 +

1

2
r⊥, s2

)
×δ(x1 − k−1 /p−)δ(x2 − k−2 /p−) ,

I1
qq(x1, x2, r⊥) =

∑
s1,s2

∫
d3k1

(2π)3

d3k2

(2π)3
φqq

(
k2 −

1

2
r⊥, s2;k1 +

1

2
r⊥, s1

)∗
φqq

(
k1 −

1

2
r⊥, s1;k2 +

1

2
r⊥, s2

)
×δ(x1 − k−1 /p−)δ(x2 − k−2 /p−) . (78)

By swapping the momenta, we can write Iqq as φ∗qqφqq,
which makes it clear why it is called the interference dou-
ble PDF. The interpretation of the various spin and color
correlations was given in Eqs. (57) and (62).

V. RENORMALIZATION GROUP EVOLUTION

In this section, we compute the renormalization group
evolution of the dPDFs and soft functions using a re-
cently introduced rapidity regulator [36, 37].

A. Rapidity RGE

In the calculation of the RG evolution of the dPDFs
and soft functions, we will encounter so-called rapidity
divergences. These arise because the collinear degrees of
freedom (the dPDFs) and soft degrees of freedom (soft
functions) are only separated in rapidity and not in in-
variant mass. Typically, rapidity divergences arise in in-
tegrals such as∫ Q

k⊥

dk−

k−
=

∫ ρ

k⊥

dk−

k−
+

∫ Q

ρ

dk−

k−

→
∫ ∞
k⊥

dk−

k−
+

∫ Q

0

dk−

k−
. (79)

In the factorized cross section this integral gets split into
a contribution from the soft and from the collinear re-
gion, as shown on the first line. On the second line we
systematically expand in the power counting, where in
the soft region ρ→∞ and in the collinear region ρ→ 0.
Both the soft and collinear contributions have a rapid-
ity divergence. Rapidity divergences only appear when
one factorizes the cross section, and must cancel between
the collinear and soft contributions. These divergences
need to be regulated and the corresponding series of large
(single) logarithms of k⊥/Q in the cross section need
to be resummed for a reliable prediction. We achieve
this using the recently developed rapidity renormaliza-
tion group [36, 37], which was introduced in the frame-
work of soft-collinear effective theory (SCET) [43, 45–47].

We emphasize that QCD and SCET are equivalent
ways of describing double parton scattering and we have
purposefully kept our discussion as general as possible.

There are a lot of similarities between either approach:
For example, the graphs in this section may be calculated
using QCD or SCET Feynman rules, since each collinear
sector in SCET is essentially a boosted copy of QCD.
The two approaches can differ in that terms are moved
between the collinear, soft, and hard contributions, even
though the total is the same, which is essentially a scheme
dependence. One difference, compared to the rapidity
regulator of Ref. [36, 37], is that in the usual CSS formal-
ism [48] the rapidity divergences do not cancel between
the soft and collinear contributions and thus appear in
the hard subprocess as well (see the discussion in Section
5.8 of Ref. [37]).

Note that factorization already splits momentum inte-
grals by invariant mass,∫ Q

Λ

d4k

k4
=

∫ ρ

Λ

d4k

k4
+

∫ Q

ρ

d4k

k4

→
∫ ∞

Λ

d4k

k4
+

∫ Q

0

d4k

k4
, (80)

where Λ is an infrared scale of order ΛQCD. One may
think of the first and second term as (roughly) corre-
sponding to the PDF and the partonic cross section. In
dimensional regularization the ultraviolet divergence of
the first term cancels the IR divergence of the second
term. The ultraviolet divergence leads to an anomalous
dimension (for the PDF this would yield the usual split-
ting functions), which can then be used to sum the large
logarithms of Q/Λ. The problem with rapidity diver-
gences is that they are not regulated by dimensional reg-
ularization.

The rapidity renormalization group modifies the
collinear Wilson lines [see Eq. (28)] and the soft Wilson

FIG. 14. Real and virtual contributions to the PDF evolution.
The Wilson line is denoted by a double line.
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lines,

Wn = 1− gw2 νη

(i∂−)1+η
A−n (0) + . . . ,

Sn = 1− gw νη/2

i∂+(2i∂3)η/2
A+
s (0) + . . . . (81)

Here η is the rapidity regulator, ν a new renormalization
scale and w a bookkeeping parameter. The proper ex-
tension of Eq. (81) beyond one-loop, where you can have
multiple emissions, is discussed in Refs. [36, 37]. Ra-
pidity divergences arise as 1/η poles in calculations and
will lead to a ν-anomalous dimension, in complete anal-
ogy to 1/ε poles and the µ anomalous dimension. The
parameter w plays a role in deriving the ν-anomalous di-
mensions analogous to the running coupling αs for the
µ-anomalous dimensions,

µ
dαs
dµ

= −2ε αs +O(ε0) , ν
dw

dν
= −η

2
w +O(η0) . (82)

In contrast to αs, the running of w does not have a fi-
nite term and at the end of the calculation one takes
w = 1. The rapidity logarithms will be summed using
the ν-RGE [36, 37]. One advantage of the rapidity reg-
ulator is that the zero-bin subtraction [49] vanishes for
our calculation.

We will illustrate the use of the rapidity regulator by
calculating two diagrams that arise for the single PDF.
The PDF has no rapidity divergences, so the rapidity di-
vergences cancel when you add these diagrams. However,
these same diagrams appear with different color factors
for the color-correlated dPDF. In that case the rapidity
divergences will no longer cancel. We start by consider-
ing the left graph in Fig. 14. Summing over the external
polarization and introducing a gluon mass M to regulate
the IR divergences,

I1A = −
(µ2eγE

4π

)ε 1

2p−

∫
ddk

(2π)
2πδ(k2 −M2)δ

(
x− p− − k−

p−

)
tr
[−gw2nρν

ηTA

(k−)1+η

/n

2

i(/p− /k)

(p− k)2
igγρTA/p

]
=
g2w2CF

2π

(µ2eγE

4π

)ε( ν

p−

)η x

(1− x)1+η

∫
dd−2k⊥
(2π)d−2

1

k2
⊥ + xm2

=
αsw

2CF
2π

Γ(ε)eεγE
( µ2

m2

)ε( ν

p−

)η x1−ε

(1− x)1+η

=
αsw

2CF
2π

{[
− 1

η
Γ(ε)eεγE

( µ2

m2

)ε
− 1

ε
ln

ν

p−

]
δ(1− x) +

1

ε

x

(1− x)+
+O(ε0η0)

}
. (83)

To obtain the expanded expression on the last line, we
used the distribution identity

1

(1− x)1+η
= −1

η
δ(1− x) +

1

(1− x)+
. (84)

[The definition of the (standard) plus distribution was
given in Eq. (12).]

Absorbing the divergences on the last line of Eq. (83)
into the renormalization factor Z1A, the contribution

from this diagram to the anomalous dimension is

γ1A,µ = −µdZ1A

dµ
=
αsCF
π

[ x

(1− x)+
− δ(1− x) ln

ν

p−

]
,

γ1A,ν = −ν dZ1A

dν
= −αsCF

2π
ln

µ2

M2
δ(1− x) . (85)

Here we used Eq. (82), illustrating the role of w. Graph
1A also has a mirror image and thus contributes with a
combinatorial weight of 2.

Note that the anomalous dimension contains an ex-
plicit dependence on p−, indicating the breaking of boost
invariance. This is required, since any rapidity regulator
must break boost invariance [see e.g. Eq. (79)]. Of course
the cross section is still boost invariance.

The second graph in Fig. 14 is

I1B =
(µ2eγE

4π

)ε 1

2p−
δ(1− x)

∫
ddk

(2π)
tr
[ /n

2

gw2nρν
ηTA

(k−)1+η

i(/p− /k)

(p− k)2
igγρTA /p

] −i

k2 −M2

= 2ig2w2CF δ(1− x)
(µ2eγE

4π

)ε
νη
∫

ddk

(2π)

p− − k−
(k−)1+η[(k− − p−)k+ − k2

⊥ + i0][k−k+ − k2
⊥ −M2 + i0]
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= −g
2w2CF

2π
δ(1− x)

(µ2eγE

4π

)ε
νη
∫ p−

0

dk−

p−
p− − k−
(k−)1+η

∫
dd−2k⊥
(2π)d−2

1

k2
⊥ + xm2

= −αsw
2CF

2π
δ(1− x) Γ(ε)eεγE

( µ2

M2

)ε( ν

p−

)η ∫ 1

0

du
1− u
u1+η

=
αsw

2CF
2π

δ(1− x) Γ(ε)eεγE
( µ2

M2

)ε 1

η(1− η)

( ν

p−

)η
=
αsw

2CF
2π

δ(1− x)
[1

η
Γ(ε)eεγE

( µ2

m2

)ε
+

1

ε
ln

ν

p−
+

1

ε
+O(ε0η0)

]
. (86)

In the second step we performed the k+ integral by con-
tours. This leads to 0 ≤ k− ≤ p−, since the poles are
otherwise on the same side of the real axis. We then
subsequently perform the k⊥ and k− integrals, and ex-
pand in η and ε. The contribution of this diagram to the
anomalous dimension is given by

γ1B,µ =
αsCF
π

(
ln

ν

p−
+ 1
)
δ(1− x)

γ1B,ν =
αsCF

2π
ln

µ2

M2
δ(1− x) (87)

This graph also has a mirror image and so has a combina-
torial weight of 2. As we anticipated, γ1A,ν + γ1B,ν = 0.
However, this will no longer be true for color-correlated
and interference double PDFs. In those cases, we get
essentially the same graphs as discussed here. The first
graph still has color factor CA, but the second graph has
a different color factor, e.g. CF − CA/2 for the color-
correlated dPDF. The ν anomalous dimension no longer
vanishes for the dPDF, but cancels against the ν anoma-
lous dimension of the soft function.

B. Double PDF

In the previous section we gave a brief introduction
to rapidity regulator and illustrated its use for two ex-
plicit examples. Here we simply tabulate our results for
the various diagrams. The diagrams involving a single
quark line are shown in table I, with separate columns
listing the color factors for the 1⊗ 1 and TA ⊗ TA color
structures. Since no transverse momentum can be trans-
ferred these graphs are all proportional to δ(2)(r⊥). The
diagrams connecting both quark lines are shown in ta-
ble II. In principle these diagrams allow for mixing be-
tween color structures, but this cancels in the sum over
diagrams. Here we used the color factors Cd and C1,

Cd =
N2 − 4

N
, C1 =

N2 − 1

4N2
, (88)

and the standard plus distribution defined in Eq. (12).

Adding up these diagrams, we obtain the anomalous

dimensions of the dPDFs. The corresponding RGE is

µ
d

dµ
F (x1, x2, r⊥) =

∫
dy1

y1

dy2

y2
d2k⊥γµ

(x1

y1
,
x2

y2
, r⊥−k⊥

)
×F (y1, y2,k⊥) ,

ν
d

dν
F (x1, x2, r⊥) =

∫
dy1

y1

dy2

y2
d2k⊥γν

(x1

y1
,
x2

y2
, r⊥−k⊥

)
×F (y1, y2,k⊥) , (89)

where we have chosen not to put any factors of 2π in the
convolution integral. It is convenient to write our one-
loop results for the dPDF anomalous dimensions using
γ̂µ,ν defined by

γµ(x1, x2, r⊥) =
αs(µ)

π
δ(2)(r⊥)

[
γ̂µ(x1)δ(1− x2)

+δ(1− x1)γ̂µ(x2)
]
,

γν(x1, x2, r⊥) =
αs(µ)

π
γ̂ν(r⊥)δ(1−x1)δ(1−x2) . (90)

For the color-summed dPDF F 1, the total anomalous
dimensions are

γ̂F
1

µ (x) = CF

[ 2x

(1− x)+
+ (1− x)ζ +

3

2
δ(1− x)

]
= CFPqq(x) ,

γ̂F
1

ν (r⊥) = 0 . (91)

which is the usual evolution for each of the individual
quarks. It is understood that the splitting function is
modified, depending on the spin structure. The splitting
function for the longitudinal polarization is the same as
for the unpolarized case, P∆q∆q(x) = Pqq(x). For the
transverse polarized case, Pδqδq(x) = Pqq(x) − (1 − x).
For mixed spin structures such as Fqδq(x1, x2, r⊥), the
Pqq splitting function is used for x1 and the Pδqδq spitting
function is used for x2.

For the color-correlated dPDF we then find

γ̂F
T

µ (x) =

(
CF −

1

2
CA

)
Pqq(x)

+CA

(
ln

ν

p−
+

3

4

)
δ(1− x) ,

γ̂F
T

ν (r⊥) = −CA
π

1

µ2

1

(r2
⊥/µ

2)
+

. (92)
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Graph 1⊗ 1 TA ⊗ TA γ̂µ γ̂ν Wt.

IA CF CF − 1
2
CA

x
(1−x)+

− δ(1− x) ln ν
p− −δ

(2)(r⊥) ln µ2

M2 2

IB CF CF
(

ln ν
p− + 1

)
δ(1− x) δ(2)(r⊥) ln µ2

M2 2

II CF CF − 1
2
CA (1− x)ζ 0 1

W CF CF
1
2
δ(1− x) 0 −1

TABLE I. Double PDF renormalization from diagrams involving a single quark line. The columns show the graph, the color
factors for the 1⊗1 and TA⊗TA color structures, the µ and ν anomalous dimension and the weight factor for each contribution.
Only Graph II depends on the spin structure through ζ, where ζ = 1 for q, q,∆q,∆q and ζ = 0 for δq, δq.

Graph 1⊗ 1 TA ⊗ TA γ̂µ γ̂ν Wt.

0 (1⊗ 1) 1
4
(Cd + CA)TA ⊗ TA 0 − 1

π
1
µ2

1
(r2⊥/µ

2)+
− δ(2)(r⊥) ln µ2

M2 2

IA′ TA ⊗ TA C1 1⊗ 1

0 (1⊗ 1) 1
4
(Cd − CA)TA ⊗ TA 0 1

π
1
µ2

1
(r2⊥/µ

2)+
+ δ(2)(r⊥) ln µ2

M2 2

IB′ TA ⊗ TA C1 1⊗ 1

TABLE II. Double PDF renormalization from diagrams involving both quark lines. The columns show the graph, the color
factors for the 1 ⊗ 1 and TA ⊗ TA color structures, the µ and ν anomalous dimension and the weight factor. The graphs do
not depend on spin. The diagrams are not diagonal in color, and the anomalous dimensions are weighted by the sum of both
color factors for a given graph.
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Note that the gluon mass M drops out in the sum over
diagrams and does not appear in the anomalous dimen-
sions, as it should. A simple cross-check on these results
is provided by

ν
dγµ
dν

= µ
dγν
dµ

, (93)

which can be verified using

µ
d

dµ

1

µ2

1

(r2
⊥/µ

2)
+

= −2δ(r2
⊥) = −2πδ(2)(r⊥) . (94)

From the anomalous dimension in Eq. (92) we read off
that the natural scales to evaluate FT are µ ∼ |r⊥| ∼
ΛQCD and ν ∼ p− ∼ Q. By evaluating FT at this scale
and running it to some common scale (µ, ν) for all the
functions in the factorization theorem, the large loga-
rithms are summed.

C. Soft Function

We now calculate the anomalous dimension of the soft
function STT in momentum space. We remind the reader
that the soft function S11 = 1 and so does not receive any
QCD corrections.

The one-loop contribution from gluon exchange be-

tween Wilson lines at the same position, e.g. S†n(0) and
Sn(0), is the left graph shown in Fig. 15 and is given by

IS1 = −2(2π)2ig2w2δ(2)(r⊥)
(eγEµ2

4π

)ε
νη
∫

ddk

(2π)d

× |2k3|−η
(−k− + i0)(k2 −M2 + i0)(−k+ + i0)

=
αsw

2

π
(2π)2δ(2)(r⊥)

[
− 1

η
eεγEΓ(ε)

( µ2

M2

)ε
+

1

2ε2

+
1

2ε
ln
µ2

ν2
+O(η0ε0)

]
, (95)

where we left out the color factor. We calculated this loop
integral by first performing the k0 integral by contours,
followed by the k3 integral and the standard k⊥ integral.
We have checked that the result is independent of the i0-
prescription of the soft Wilson lines (the difference is a
scaleless integral), implying that the result for this graph
is the same for incoming quarks or outgoing anti-quarks,
and vice versa.

The exchange between Wilson lines at different posi-

tions, e.g. S†n(z⊥) and Sn(0), is the right graph shown in

Fig. 15 and is given by

IS2 = −2(2π)2ig2w2
(eγEµ2

4π

)ε
νη
∫

ddk

(2π)d
δ(2)(k⊥ − r⊥)

× |2k3|−η
(−k− + i0)(k2 −M2 + i0)(−k+ + i0)

=
αsw

2

π

[
− 4π

1

η

1

r2
⊥ +M2

+O(η0, ε0)

]
=
αsw

2

π

{
− 1

η

[
4π

1

µ2

1

(r2
⊥/µ

2)
+

+ln
µ2

M2
(2π)2δ(2)(r⊥)

]
+O(η0, ε0)

}
. (96)

The calculation is very similar, except that this time the
k⊥ integral is performed using the delta function. In the
last step we take the limit M2 → 0 to isolate the IR
divergences.

The RG equations for the soft function are given by

µ
dS(r⊥)

dµ
=

∫
d2k⊥ γ

S
µ (k⊥)S(r⊥ − k⊥) ,

ν
dS(r⊥)

dν
=

∫
d2k⊥ γ

S
ν (k⊥)S(r⊥ − k⊥) . (97)

For STT the color factors for graphs S1 and S2 are

2

CFNc
× 4 tr[TATC [TC , TB ]] tr[TATB ] = 2CA , (98)

2

CFNc
× 4 tr[TATCTB ] tr[TA[TC , TB ]] = −2CA ,

leading to the anomalous dimensions

γS
TT

µ (r⊥) =
2αs(µ)CA

π
ln
µ2

ν2
δ(2)(r⊥) ,

γS
TT

ν (r⊥) =
2αs(µ)CA

π2

1

µ2

1

(r2
⊥/µ

2)
+

. (99)

Note that the IR divergences again cancel in the sum
of the diagrams. From Eq. (99) we conclude that the
natural scales for evaluating the soft function are ν ∼
µ ∼ |r⊥| ∼ ΛQCD. An important cross check is provided
by

2γF
T

ν + γS
TT

ν δ(1− x1)δ(1− x2) = 0 , (100)

since the rapidity divergences should cancel between the
collinear and soft sectors.

D. Rapidity Resummation

We now turn to solving the ν-RGE. For definiteness we
discuss this for the color-correlated soft function, whose
RGE and anomalous dimension are given in Eqs. (97)
and (99). This is most easily solved in Fourier space,
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z⊥

0⊥

FIG. 15. One-loop soft function diagrams. Only the Wilson
lines with gluons attached are shown.

where the convolution becomes a product. The anoma-
lous dimension in position space is given by

γS
TT

ν (z⊥) ≡
∫

d2r⊥ e
ir⊥· z⊥ γS

TT

ν (r⊥)

=
2αsCA
π2

∫
d2r⊥ e

ir⊥· z⊥ 1

µ2

1

(r2
⊥/µ

2)
+

= −2αsCA
π

ln
z2
⊥µ

2e2γE

4
, (101)

where there is no 1/(2π)2 in the Fourier transform since
there is none in Eq. (97). It is now straightforward to
solve the RGE, since it is local in z⊥,

ν
dSTT (z⊥)

dν
= γS

TT

ν (z⊥)STT (z⊥) , (102)

yielding the evolution kernel

US
TT

ν (z⊥, ν, ν0) =
(z2
⊥µ

2e2γE

4

)−ω
,

ω =
2αs(µ)CA

π
ln

ν

ν0
. (103)

Transforming back to momentum space, we find

STT (r⊥, ν) =

∫
d2k⊥ U

STT

ν (k⊥, ν, ν0)STT (r⊥ − k⊥, ν0) ,

US
TT

ν (k⊥, ν, ν0) =
ω e−2γEω

π

Γ(1− ω)

Γ(1 + ω)

1

µ2ω (k2
⊥)1−ω .(104)

This solution is only valid for ω < 3
4 , though it can be

analytically continued for ω < 1. The singularity for
ω → 1 has been observed before in transverse momentum
resummation for Drell-Yan like processes [50]. The prob-
lem is that Eq. (103) develops a singularity at z⊥ = 0.
This UV region should not contribute and in Ref. [51] it
was essentially cut off. We resolve this issue through our
choice of renormalization scale: Rather than ν0 ∼ |r⊥|,

we choose ν0 = 2e−γE/|z⊥|. This scale choice leads to

US
TT

ν

(
z⊥, ν,

2e−γE

|z⊥|
)

= exp
[
−αs(µ)CA

π

(
L2+2L ln

ν

µ

)]
,

L = ln
z2
⊥µ

2e2γE

4
. (105)

Its Fourier transform is given by

STT (r⊥, ν) =

∫
dk⊥ U

STT

ν

(
k⊥, ν,

2e−γE

|z⊥|
)

(106)

×STT
(
r⊥ − k⊥,

2e−γE

|z⊥|
)
,

US
TT

ν

(
k⊥, ν,

2e−γE

|z⊥|
)

=
1

4π

∫
dz2
⊥J0(|z⊥||k⊥|)

× exp
[
−αs(µ)CA

π

(
L2+2L ln

ν

µ

)]
,

STT
(
r⊥,

2e−γE

|z⊥|
)

=

∫
d2z⊥ e

−ir⊥· z⊥ STT
(
z⊥,

2e−γE

|z⊥|
)
.

The argument 2e−γE/|z⊥| is kept in momentum space
evolution kernel and soft function as a reminder of our
original scale choice for ν0, though z⊥ is of course no
longer a variable, since it has been integrated over. In

the integral for US
TT

ν in Eq. (106), only the region where
|z⊥| ∼ 1/µ ∼ 1/|r⊥| contributes. We emphasize that the
scale choice for ν0 cancels between the evolution and the
soft function up to the order in αs that one is working
at. Our choice for ν0 rearranges the resummed pertur-
bation theory, which is required to make the evolution in
Eq. (104) well behaved.

Our solution is similar to the one proposed in Ref. [52].
There an analytic expression for the leading (1−ω) piece

of US
TT

ν in Eq. (106) was also obtained, using Borel re-
summation.

E. Interference Double PDF

In Sec. V B we calculated the anomalous dimension for
the regular dPDF, which we repeat here for the interfer-
ence dPDF. The results are shown in table III. Graph
II contains a matrix in spin space,

X =



1 −1 0 0 0 0 0 0

−1 1 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 1 0 i 0 0

0 0 0 0 1 0 i 0

0 0 0 −i 0 1 0 0

0 0 0 0 −i 0 1 0

0 0 0 0 0 0 0 0


(107)

where the rows and columns correspond to the spin struc-
tures Iqq, I∆q∆q, Iδqδq, Iqδq, Iδqq, I∆qδq, Iδq∆q, and Itδqδq.

Summing up these diagrams, we find that the anoma-
lous dimension is given by
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Graph Singlet Octet γ̂µ γ̂ν Wt.

0 (1⊗ 1) 1
4
(CA − Cd)TA ⊗ TA x

(1−x)+
− δ(1− x) ln ν

p− −δ2(r⊥) ln µ2

M2 2

IA −TA ⊗ TA −C11⊗ 1

IA′ CF CF − 1
2
CA 0

− 1
π

1
µ2

1
(r2⊥/µ

2)+

−δ(2)(r⊥) ln µ2

M2

2

IB CF CF
(

ln ν
p− + 1

)
δ(1− x) δ2(r⊥) ln µ2

M2 2

0 (1⊗ 1) 1
4
(CA + Cd)T

A ⊗ TA 0
− 1
π

1
µ2

1
(r2⊥/µ

2)+

−δ(2)(r⊥) ln µ2

M2

2

IB′ TA ⊗ TA C11⊗ 1

II 0 (1⊗ 1) 1
4
(CA − Cd)TA ⊗ TA 1

2
(1− x)X 0 1

−TA ⊗ TA −C11⊗ 1

W CF CF
1
2
δ(1− x) 0 −1

TABLE III. Diagrams for the interference dPDF. The columns show the graph, the color factors for the 1 ⊗ 1 and TA ⊗ TA
color structures (which mix), the µ and ν anomalous dimension and the weight factor. The only spin dependence is in the
matrix X, given in Eq. (107).

γ̂Iµ(x) =
[
2 ln

ν

p−
+

3

2

]
δ(1− x)

(
CF 0

0 CF

)
+
[
2 ln

ν

p−
δ(1− x)− 2x

(1− x)+
− 1

2
(1− x)X

](
0 1

C1
1
4 (Cd − CA)

)
,

γ̂Iν(r⊥) = − 2

π

1

µ2

1

(r2
⊥/µ

2)+

(
CF 1

C1 CF + 1
4 (Cd − CA)

)
, (108)

as a matrix in color space {1⊗1, TA⊗TA}. Repeating the analysis around Eq. (14) and noting that for Nc > 2 the
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matrix multiplying ln(ν/p−1 ) has positive eigenvalues, we
infer that all the interference contributions are Sudakov
suppressed.

F. Interference Soft Function

In this section we calculate the renormalization of the
interference soft functions. The graphs are the same as in
Sec. V C, but the color structures are different. We find
that the the anomalous dimensions of the interference
soft function are

γSI
µ (r⊥) =

αs(µ)

π
ln
µ2

ν2
δ(2)(r⊥)

(
6CF −2CF
2CF 10CF − 4CA

)
,

γSI
ν (r⊥) =

αs(µ)

π2

1

µ2

1

(r2
⊥/µ

2)
+

(
6CF −2CF
2CF 10CF − 4CA

)
.

(109)

We will now verify the correctness of this result by
checking that the interference contribution to the cross
section is ν independent. Ignoring irrelevant factors,

dσ

dν
∝ d

dν

(
I1 IT

)( S11 CA(S11 − STT )

CA(S11 − STT ) 2CA

CF
STT

)(
I1

IT

)

∝ 2× (−2)
(
I1 IT

)( S11 CA(S11 − STT )

CA(S11 − STT ) 2CA

CF
STT

)(
CF 1

C1 CF + 1
4 (Cd − CA)

)(
I1

IT

)

+
(
I1 IT

)( 6CFS
11 − 2CFS

TT CA[4CFS
11 + (4CA − 12CF )STT ]

CA[4CFS
11 + (4CA − 12CF )STT ] 2CA

CF
[2CFS

11 + (10CF − 4CA)STT ]

)(
I1

IT

)
= 0 , (110)

using the anomalous dimensions for the interference
dPDFs and soft functions in Eqs. (108) and (110). This
provides a cross-check of our results.

G. One-Loop Soft Function

We now give expressions for the perturbative one-loop
soft functions, which are valid for r2

⊥ � Λ2
QCD. From the

finite terms in Eqs. (95) and (96), we find

S(r⊥) = (2π)2δ(2)(r⊥)− αsC

π

{
2π
[ ln r2

⊥/ν
2

r2
⊥

]
µ2

+
π2

24
(2π)2δ(2)(r)

}
. (111)

The [ ]µ2 distribution is defined so that the integral from
0 to µ2 vanishes. In terms of standard plus distributions,[ ln r2

⊥/ν
2

r2
⊥

]
µ2

=
1

µ2

[ ln r2
⊥/µ

2

r2
⊥/µ

2

]
+
+

1

µ2

lnµ2/ν2

(r2
⊥/µ

2)
+

. (112)

The color factor C for the soft functions in this paper is

STT : 2CA ,

S11
I : 4CF ,

STTI : 12CF − 4CA . (113)

The soft function ST1
I = S11

I − STTI and only starts at
one loop order.

VI. CONCLUSIONS

In this paper we studied double parton scattering from
the point of view of QCD factorization and renormaliza-
tion. We presented a detailed derivation of the cross sec-
tion for double Drell-Yan production in terms of double
PDFs. Spin and color correlations, as well as interference
effects, lead to a large number of different contributions.
In the color-correlated and interference terms, the effects
of soft radiation are nontrivial, and are given by soft func-
tions in the factorization formula. We also derived the
QCD evolution of the dPDFs and soft functions, treat-
ing both the ultraviolet and rapidity divergences. The
solution of these equations shows that color-correlated
and interference contributions are Sudakov suppressed,
and thus small for double parton scattering at high en-
ergies. We also discussed several basic properties of dou-
ble PDFs, such as their classification, properties under
discrete symmetries and interpretation. In a forthcom-
ing publication [32], we will discuss the mixing of single
PDFs into double PDFs and the related issue of double
counting between single and double parton scattering.
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