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Abstract: We introduce field theory techniques through which the deconfinement

transition of four-dimensional Yang-Mills theory can be moved to a semi-classical

domain where it becomes calculable using two-dimensional field theory. We achieve

this through a double-trace deformation of toroidally compactified Yang-Mills theory

on R2 × S1
L × S1

β. At large N , fixed-L, and arbitrary β, the thermodynamics of the

deformed theory is equivalent to that of ordinary Yang-Mills theory at leading order

in the large N expansion. At fixed-N , small L and a range of β, the deformed theory

maps to a two-dimensional theory with electric and magnetic (order and disorder)

perturbations, analogs of which appear in planar spin-systems and statistical physics.

We show that in this regime the deconfinement transition is driven by the competition

between electric and magnetic perturbations in this two-dimensional theory. This

appears to support the scenario proposed by Liao and Shuryak [1] regarding the

magnetic component of the quark-gluon plasma at RHIC.



1. Introduction

Through numerical simulations on the lattice [2, 3] and the experimental program

at the Relativistic Heavy Ion Collider (RHIC) [4–7], we know that QCD has a high

temperature deconfined quark-gluon plasma phase at temperatures above Tc = β−1
c ≈

170 MeV, where Tc is parametrically of the order of the strong scale of the theory.

Through lattice simulations, it is also known that the pure gauge sector of QCD,

Yang-Mills theory, has a low temperature confined phase and a high temperature

deconfined phase [8]. While symmetry and universality arguments are useful [9], to

date, there is no direct continuum field theory technique to address most aspects of

this transition due to its non-perturbative nature.1

Our goal in this paper is to make progress in understanding the microscopic

mechanism driving the deconfinement transition of QCD and related theories, hope-

fully providing new insights into the structure of the quark-gluon plasma in the

temperature region around Tc. As reviewed in Ref. [12], this is one of the important

problems concerning the physics of the nuclear collisions at RHIC.

Recently, two new methods have been introduced for studying aspects of the de-

confinement transition in a variety of gauge theories. The gauge/gravity correspon-

dence, as realized by string theory, is a powerful tool for studying certain strongly

coupled gauge theories [13–15]. The theories for which a semi-classical limit of string

theory is useful usually differ from QCD in some way such as the existence of a

non-decoupled KK-tower of states or an absence of asymptotic freedom. Regardless,

this approach has the remarkable virtue of allowing one to do detailed calculations

in a host of strongly coupled systems, many of which are plausibly in the same uni-

versality class as QCD or a QCD-like theory. For some recent applications to finite

temperature properties, see [16–18]. A second approach for studying deconfinement

was developed in [19–22], where one considers the large N limit of four dimensional

SU(N) gauge theories compactified on S3 × S1. For a small S3, the theory reduces

to a matrix model, and there is a calculable deconfinement transition. In this sec-

ond approach the large N limit is important for achieving the thermodynamic limit.

Motivated by these two inspiring examples we pose the following questions:

Can we find a calculable deconfinement transition in an asymptotically

free and confining gauge theory by using field theory techniques? Is this

even possible as the transition itself is non-perturbative? Can we give

a simple physical picture of the mechanism behind the deconfinement

transition?

1The deconfinement transition can also be studied by using strong coupling lattice models [10],

however, it is not known how to extend this to phases continuously connected to the continuum.

The existence of a deconfined phase (in continuum) can be established in perturbation theory [11].
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The small S3×S1
β example provides an existence proof that finding calculable exam-

ples of deconfinement transitions in asymptotically free gauge theories is possible, at

least at N =∞ [20–22].

In this work we introduce field theory techniques through which the deconfine-

ment transition of four-dimensional Yang-Mills theory can be moved to a semi-

classical domain where it becomes calculable using two-dimensional field theory.

We achieve this by studying a double-trace deformation of Yang-Mills theory on

R2 × S1
L × S1

β, which we refer to as the “ΩL-deformed Yang-Mills” theory or simply

deformed Yang-Mills. Our deformation is similar to the one studied in the context

of large N volume independence [23].

The ΩL-deformation has the effect that at large N , fixed-L, and arbitrary β, the

thermodynamics of the deformed theory is equivalent to that of ordinary Yang-Mills

at leading order in the large N expansion. This thermal generalization of volume

independence is depicted in Fig.1 and described in Section 2. At finite N , thermal

volume independence implies that the phase and thermal properties of the deformed

theory in the interval:

volume independence : L & (ΛN)−1 (1.1)

for a given β must coincide with the finite temperature properties of ordinary Yang-

Mills theory up to O(1/N2) corrections. In the regime (1.1) the deformed theory re-

mains incalculable (without using lattice simulations) and the deconfinement transi-

tion cannot be studied analytically. However at smaller L, a calculable, semi-classical

regime opens up:

semiclassical domain : L . (ΛN)−1. (1.2)

In this interval and at β = ∞, we have analytic control over the three-dimensional

long distance dynamics, and a weakly coupled (yet non-perturbative) semi-classical

realization of confinement [23–25].2 For finite β, the effective description of the

thermal theory is a two dimensional system with electric and magnetic perturbations,

in which β appears as a parameter. The confinement-deconfinement transition can

be studied analytically within this 2d model by varying β, for arbitrary rank Yang-

Mills theory, in contradistinction with [20].3 The transition is plausibly smoothly

connected to the deconfinement transition of the fully four-dimensional Yang-Mills

theory. 4

In this sense we find that the deconfinement transition of four dimensional Yang-

Mills can be studied via a two dimensional field theory with electric and magnetic

2Such calculable regimes of QCD are, of course, not new. An analogous situation occurs in

describing hadronic matter at high density, where asymptotic densities provide a weak coupling

(but again non-perturbative) calculable framework where expected features of hadronic matter at

lower density is reproduced [26, 27]. Our deformation is, of course, more abstract, but morally

similar.
3The thermodynamic limit is achieved without need for N =∞ as our set-up is at infinite spatial
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Figure 1: (Left) At N = ∞, the thermodynamics of the deformed and undeformed

Yang-Mills theories are equivalent. (Right) Unlike pure Yang-Mills, the deformed theory

has, at finite N , a semi-classical domain (defined by LNΛ . 1) where the confinement-

deconfinement transition is analytically calculable.

(order and disorder) perturbations. This two dimensional system has parallels to

the statistical mechanical systems studied in [28]. In this framework the microscopic

mechanism behind the deconfinement transition is a competition between electric and

magnetic objects in a manifest and calculable way. At higher temperatures the elec-

tric objects are more relevant resulting in deconfinement, while at low temperatures

magnetic objects are more relevant, resulting in confinement.

The fact that the deconfinement transition is manifestly driven by a competition

of electric and magnetic degrees of freedom we feel is the most interesting qualitative

aspect of our work, and the one most prone to generalization to other four dimen-

sional gauge theories, perhaps including QCD. In fact, the idea of deconfinement as

a competition between electric versus magnetic objects has already been introduced

into real world QCD by Liao and Shuryak as a possible way to explain some of the

most interesting features of the quark gluon plasma at RHIC, in particular its rela-

tively low viscosity to entropy ratio. Within the context of a simple toy model [1,30]

(also see [31]) Liao and Shuryak argue that the viscosity to entropy ratio of a plasma

of electric and magnetic excitations is minimized when the densities of magnetic and

electric objects are comparable.

The organization of this paper is the following. In Section 2 we elaborate on

volume.
4We emphasize that the existence of a semi-classical domain in the deformed Yang-Mills theory

and the absence of such a domain in ordinary thermal Yang-Mills theory does not contradict thermal

large-N equivalence, and volume independence. The semi-classical regime is LNΛ . 1, i.e., the

scaling regime L ∼ (NΛ)−1 as N → ∞, while the domain of large-N equivalences is the regime

L = O(N0) as N →∞. As N is increased, the semi-classical domain shrinks to a narrow sliver and

the thermal large-N equivalence holds for any L = O(N0).
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thermal large N volume independence and introduce the deformed Yang-Mills theory.

In Section 3 we discuss how the deformed Yang-Mills theory experiences weakly

coupled confinement on R3 × S1
L at small L. In Section 4 we describe the calculable

deconfinement transition and the role of electric and magnetic objects. In Section 5

we conclude and discuss novel directions suggested by this work.

2. Thermal large-N equivalence

Consider ordinary four-dimensional Yang-Mills theory compactified on R2×T2, pa-

rameterized as:

M4(L, β) = R2 × S1
L × S1

β , (2.1)

where S1
β is a thermal circle of size β while S1

L is an ordinary circle of radius L. The

action is:

SYM =

∫
M4

[
1

2g2
trF 2

µν(x) + iθ
1

16π2
trFµνF̃

µν

]
, (2.2)

where Fµν = F a
µνt

a is non-Abelian field strength, F̃ µν = 1
2
εµνρσFρσ, g is 4d gauge

coupling, and θ is the theta angle.5 For simplicity we henceforth set the θ-angle to

zero.

This theory possesses a global (ZN)β × (ZN)L center symmetry. This symmetry

is the set of local SU(N) rotations periodic up to an element of the center group of

SU(N):

g(x1, x2, x3 + β, x4) = zβ g(x1, x2, x3, x4),

g(x1, x2, x3, x4 + L) = zL g(x1, x2, x3, x4), zNβ = zNL = 1. (2.3)

moded out by the set of local gauge rotations (which are by definition single-valued

on S1
L × S1

β). The order parameters for the (ZN)β × (ZN)L center symmetry are the

non-local Wilson lines:

ΩL = exp[i

∫
S1
L

A4dx4], Ωβ = exp[i

∫
S1
β

A3dx3] (2.4)

along the S1
L × S1

β circles, respectively. The center symmetry acts on the order

parameters as:

(ZN)β × (ZN)L : trΩβ → zβ trΩβ

: trΩL → zL trΩL (2.5)

We define the “ΩL-deformed Yang-Mills” theory or simply ”deformed Yang-

Mills” as:

SdYM = SYM + ∆S , ∆S ≡
∫
M4

1

L4

bN/2c∑
n=1

an |tr (Ωn
L)|2 , (2.6)

5We normalize the generators ta of the Lie algebra in the defining representation as: tr(tatb) =
1
2δ
ab .
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with sufficiently positive coefficients {an} and bN/2c denoting the integer part of

N/2.6

In the decompactifcation limit β → ∞, the deformed theory enjoys volume

independence [23]:

Large-N volume independence: Yang-Mills theory on R4 is equiva-

lent to the deformed Yang-Mills theory on R3 × S1
L for any finite value

of L, up to 1/N2 corrections, provided the (ZN)L center symmetry is not

spontaneously broken.

Our deformed theory satisfies the condition that (ZN)L remain unbroken by con-

struction. Equivalent means that correlation functions of neutral sector observables

- operators which are neutral under the (ZN)L center symmetry - are the same in

the two theories up to O(1/N2) corrections. Volume independence does not ap-

ply to correlators containing non-neutral sector observables, the simplest example of

which is trΩL. Since many interesting physical observables are in the neutral sector,

many interesting observables in pure YM theory can be extracted by studying the

correlators in the deformed and volume reduced theory.

The large-N volume independence theorem has an immediate generalization to

general β ∈ (0,∞):

Thermal large-N equivalence: Yang-Mills theory on R3×S1
β is equiv-

alent to deformed Yang-Mills theory on R3−k × (S1
L)k × S1

β for any finite

value of L and for a given β, up to 1/N2 corrections, provided that the

[(ZN)L]k center symmetry is not spontaneously broken.

As before, in our deformed theory where k = 1 the condition that (ZN)L remain

unbroken is satisfied by construction. Also as before, the equivalence only applies

to correlation functions of neutral sector observables. This important corollary to

the volume independence theorem can be proven by a simple modification of the

arguments of [23]. Instead of discussing the proof, we will state its main physical

implications.

Perhaps the most important part of the thermal equivalence is that the (ZN)β-

center symmetry is a spectator symmetry. It is left intact during the projections and

deformations which are used in the chain of equivalences that are used to prove the

volume independence theorem. Thus, the expectation values and connected correla-

tors of topologically non-trivial Polyakov loops (which are neutral under (ZN)L, but

charged under (ZN)β) are also part of the neutral sector to which the thermal large-N

6Double-trace operators are also used in the works of Ogilvie et.al. to study phases with partial

center symmetry breaking [42–44]. Pisarski and collaborators give a phenomenological effective

theory description of deconfinement by using such deformations [40], and study various aspects

in [41].
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equivalence applies. Thus these observables must agree in ΩL-deformed Yang-Mills

and pure YM theory at any β. This means, the thermodynamics of the two theories

are part of their respective neutral sector dynamics.

Thus, at leading order in N , the thermal Polyakov loops must agree, both in the

confined and deconfined phases:

〈 tr
N

trΩβ〉dYM(L) = 〈 tr
N

trΩβ〉YM =

{
0, β > βc, confined

zβ, β < βc deconfined
(2.7)

where zβ is some N -th root of unity. Furthermore the deconfinement temperature

and the latent heat associated with the phase transition must also agree:

βdYM
c = βYM

c

[
1 +O(

1

N2
)

]
, QdYM

l = QYM
l

[
1 +O(

1

N2
)

]
(2.8)

These agreements hold in the strongly coupled LNΛ� 1 domain where volume in-

dependence applies. As a consequence of this volume independence, these quantities

are independent of L at leading order in N .7

2.1 Why bother?

A common criticism of large-N volume independence and in particular of deformation

equivalences is that it maps a strongly coupled gauge theory to another strongly

coupled gauge theory, neither of which is analytically calculable. So, why bother?

It is true that in the strict N → ∞ limit, neither of the equivalent pairs seem

to be any easier. However, as we shall explain in the next two sections, at finite-N ,

the same deformation serves to engineer a semi-classical domain at small L. This

semi-classical domain is continuously connected to the strongly coupled regime of the

undeformed theory. Such a step usually cannot be achieved within the undeformed

theory itself. What the deformation achieves is a generalization of Yang-Mills theory

that depends smoothly on an extra-parameter.8

In this way one obtains a new weakly coupled regime of locally four dimen-

sional gauge theories. Based on our experience with our best understood examples

of non-perturbative quantum field theory, it is often useful to understand the various

weakly coupled domains before attempting to understand the theory at strong cou-

pling. Furthermore, the extension of calculations to the border of their validity can

sometimes yield interesting information about the physics in the incalculable coupled

domain.

7The matching of the deconfinement temperature is numerically tested in lattice regularized

theory by simulating Yang-Mills theory with heavy adjoint fermions, a theory which emulates

deformed Yang-Mills, on a [(1)3]L × 2β [47], and agrees with large-scale lattice studies [8].
8Small-volume or reduced formulation are also useful numerically. For example, QCD with

adjoint fermions satisfies volume independence if one uses periodic boundary conditions for all

fields [39]. Simulations and studies of the reduced QCD and related models appears in recent

works [45–49].
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3. Weak coupling confinement

It is easily seen that in the regime LNΛ . 1, the resulting effective long distance

theory is a three-dimensional theory which enjoys weakly coupled confinement for a

wide range of β. We consider first the limit β →∞ which has been studied in [23].

We briefly review their derivations to establish the context and notations for the next

section.

In the zero temperature, weakly coupled domain, the deformed theory has a

unique center-symmetric minimum for the Wilson line, ΩL. The fourth component

of gauge field A4 behaves as a compact adjoint Higgs field, and the theory reduces

to a 3d Yang-Mills-Higgs system. The vacuum expectation value of the Wilson line

is

ΩL = η Diag
(
1, e2πi/N , e4πi/N , . . . , e2πi(N−1)/N

)
, (3.1)

where η = eπi/N for even N and η = 1 otherwise, up to conjugation by gauge

rotations. This leads to Abelianization (or adjoint Higgsing):

SU(N)→ U(1)N−1, (3.2)

of the long distance dynamics. Since the fluctuations of eigenvalues are small due to

the weak ’t Hooft coupling, the Abelianization holds quantum mechanically.

Due to gauge symmetry breaking, the off-diagonal components of the gauge field

acquire masses. The spectrum of the gauge fluctuations in perturbation theory is

composed of levels each of which is N -fold degenerate. The level spacing is 2π
LN

. The

masses and charges of the lightest W -bosons are

mWi
=

2π

LN
, QWi

= gαi, i = 1, . . . , N. (3.3)

Here, αi ∈ ∆0
aff −{αN} are the simple roots of the Lie algebra and αN = −

∑N−1
i=1 αi

is the affine root (which is there due to compactness of the adjoint Higgs). ∆0
aff is

called the affine (extended) root system of the the associated Lie algebra,

∆0
aff ≡ {α1, α2, . . . , αN−1, αN} . (3.4)

The roots αi ∈ ∆0
aff obey:9

αi · αj = δi,j − 1
2
δi,j+1 − 1

2
δi,j−1 , i, j = 1, . . . N . (3.5)

Since the gauge symmetry is broken as SU(N) → U(1)N−1 due to the compact

Wilson line (3.1), there are N species of monopole-instantons. The topological and

magnetic quantum numbers of these instantons are:(∫
S2

F ,

∫
1

16π2
trFµνF̃

µν

)
=

(
4π

g
αi,

1

N

)
(3.6)

9We changed the normalization with respect to Ref. [23] for convenience, such that the simple

roots normalize to unity.
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and the negation of those for the anti-instantons.10

In three dimensions, Abelian duality relates a photon to a compact scalar. With

σj(x) the compact scalar dual to the photon Ajµ(x) of the j-th U(1) subgroup, the

Abelian duality relation is:

Fµν =
g2

4πL
εµνρ ∂ρσ . (3.7)

To all orders in perturbation theory, (ignoring topological sectors), the long distance

description is free Maxwell theory in 3d, and is given by:

Spert.th. =

∫
R3

L

4g2
(Fµν)

2 =

∫
R3

1

2L

( g
4π

)2

(∇σ)2 (3.8)

The proliferation of these instantons leads to interaction terms in the Lagrangian

of the compact scalar [32]. This is the generalization of Polyakov’s mechanism to a

locally four dimensional gauge theory [23]. The action for the low energy effective

theory (the dual Lagrangian) in the small S1
L domain is

Sdual =

∫
R3

[ 1

2L

( g
4π

)2

(∇σ)2 − ζ
N∑
i=1

cos(αi · σ) + · · ·
]
, (3.9)

where ζ ≡ C e−S0 = Am3
W (g2N)−2 e−8π2/(g2N(mW )) is the monopole fugacity, and S0

is the instanton action.

The action (3.9) is a non-renormalizable low energy effective theory valid at

distances larger than m−1
W ∼ LN . Ellipsis stands for higher order terms in the semi-

classical expansion as well as terms due to the omission of W -bosons.

The existence of a mass gap and linear confinement can easily be derived using

the dual Lagrangian (3.9). The mass gap for the (N − 1) photon species is:

mp = mσ sin
(πp
N

)
, mσ = AΛ

(
LNΛ

2π

)5/6 ∣∣∣∣ln(LNΛ

2π

)∣∣∣∣8/11

, p = 1, . . . , N−1

(3.10)

where A is an O(1) coefficient. The result of the semi-classical analysis is reliable in

the
LNΛ

2π
� 1 (3.11)

10These monopoles are finite action topological configurations in the Euclidean formulation, and

hence instantons [32] . N − 1 of them are ordinary 3d instantons, and the extra instanton, which

has no counterpart in a microscopically 3d theory and which is pertinent to locally 4d nature of

the theory, is sometimes called a twisted instanton. In a center symmetric background, all of these

instantons carry equal action. Sometimes, they are also referred to as BPS and KK monopoles, or

monopole-instantons. Some results about Bogomolny-Prasad-Sommerfield (self-duality) equations,

and relation between these 3d and 4d instantons are reviewed in the Appendix.A.
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domain.11 Obviously, the precise quantitative features of the mass spectrum and

the string tensions have a non-trivial L dependence in the semi-classical domain. At

strong coupling LNΛ � 2π and at leading order in the large-N expansion, all the

neutral sector observables must saturate to constants independent of L due to volume

independence (see Section 2). Naturally, one expects the semi-classic description to

match the strong coupling description around LNΛ ∼ 1.

4. Calculable deconfinement

The deformed Yang-Mills theory on S1
L×R3 exhibits weakly coupled confinement in

the semi-classical domain (LNΛ . 1), where the theory experiences adjoint Higgsing.

This “Higgsed” regime is analytically connected to the LNΛ� 1 regime and to the

theory on R4 in the sense that there exist no order parameters which can distinguish

the two-regimes. In this section, we develop a formalism in the semi-classical domain

which permits us to study the thermal phase transition. To do so, we consider a finite

temperature compactification of the deformed theory on S1
L×R3 which corresponds

to the theory on M4(L, β) = S1
L ×R2 × S1

β at arbitrary β. 12

First, let us momentarily ignore W -bosons. (This assumption and its region of

validity will be examined below.) At asymptotically low temperatures, β � m−1
σ ,

the dynamics is that of the 3d dual theory (3.9). A more interesting regime is

m−1
W � β � m−1

σ ∼ m−1
W eS0/2 , (4.1)

where the size of the monopoles is much smaller than β which in turn is much

smaller than the inter-monopole separation. In this regime the potential induced

by a monopole which is 1/r in 3d is enhanced to log(r) at large distances which is

the Coulomb potential of a charge in 2d. This can be seen by using the method of

images from electrostatics. To incorporate this effect in field theory, it suffices to

compactify the low energy effective theory (3.9) down to 2d. In this domain, the

theory reduces to a well-known two dimensional theory of “vortices”, which are the

dimensional reduction of 3d instantons. The action is:

Sdual =

∫
R2

[a
2

(∇σ)2 − ζM
N∑
i=1

cos(αi · σ) + · · ·
]
, a ≡ β

L

( g
4π

)2

(4.2)

where ζM = βζ. For N = 2, this is the sine-Gordon model in d = 2 dimensions, and

it is its generalization for N ≥ 3. Whether a mass gap for the σ field is generated or

11The power of logarithm, given in given in Eq.(3.37) of [23] as 9/11, is a minor error. More

importantly, the small parameter in the the discussion of Ref. [23] is actually
(
LNΛ

2π

)
, not LNΛ.

Although the former is manifest in the formulae, the factor of 2π was not explicitly written. It is

actually useful to restore it.
12The analysis of the thermodynamics of the deformed Yang-Mills theory is analogous to the one

of the finite temperature 3d Georgi-Glashow model [33–36] however, our set-up differs from it in

the sense of being locally four dimensional.
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not is tied with the question of the relevance of the eiαi·σ operator. The conformal

dimension of the operator eiαi·σ about the free scalar fixed point is:

∆[eiαi·σ] =
α2
i

4πa
=

1

4πa
=

4πL

βg2
; , (4.3)

Note that for all αi ∈ ∆0
aff , the conformal dimensions are identical, because the

algebra is simply-laced, α2
i = 1, i = 1, . . . , N .13

The perturbation of the free theory by the vortices is relevant if the confor-

mal dimension ∆ is less than two, irrelevant for ∆ greater than two, and marginal

otherwise. The quantum theory of (4.2) undergoes a phase transition at ∆ = 2,

βm =
2πL

g2
(4.4)

where subscript m stands for magnetic, between a phase of finite correlation length

at low temperatures ∆ < 2 (β > βm), and a phase of infinite correlation length at

high temperatures ∆ > 2 (β < βm). This is the well-known Berezinsky-Kosterlitz-

Thouless (BKT) transition [37, 38], albeit with an inverted temperature. In other

words, the high temperature phase is populated by neutral magnetic vortex-anti-

vortex pairs and these pairs dissociate at low temperature, opposite to the conven-

tional BKT transition. This means, in the low and zero temperature phase, the mass

gap is induced by the magnetic defects in the ΩL-deformed Yang-Mills theory.

However, the effect described above is not the whole picture - the gapless phase

is an artifact associated with the omission of electrically charged W-bosons, as noted

in the context of the 3d Georgi-Glashow model in [34, 35]. The W-bosons are not

important in the long distance regime of the gauge theory on R3 × S1
L because

they are finite energy (mass) particles, as opposed to 3d instantons which are finite

action defects. However, when the space is further compactified to R2 × S1
β × S1

L,

W-bosons traveling around the thermal S1
β circle have finite action, equal to βmW .

Their Boltzman weight is e−βmW and has an interpretation as a W-boson fugacity.

The W-bosons are a small perturbation (with respect to topological defects) when

13 The ellipsis in (4.2) stand for perturbations sub-leading in the semi-classical expansion. Here,

there are some subtle issues. Even at order k in the expansion, there is a sub-class of operators which

has the same scaling dimension as the leading term, for example, ∆[e
−k 8π2

g2N ei(αi+αi+1+...αi+k)·σ] =

∆[e
− 8π2

g2N eiαi·σ] due to a Lie algebra identity, (αi + αi+1 + . . . αi+k)2 = 1 for k 6= N . In the

effective theory, these and a plethora of others are there, generated and relevant in the sense of

Wilsonian renormalization group. Although the scaling dimensions of these operators are identical

to the ones that appeared in our effective Lagrangian (4.2), in the weak coupling domain, their

prefactors are suppressed by extra-powers of e
− 8π2

g2N . Hence, they remain as small perturbations at

distances where the leading magnetic perturbation becomes strong. Thus, the effect of sub-leading

terms are negligible there. Close to the boundary of semi-classical window, these operators may

and will become important, as well as possibly near the critical temperature for the deconfinement

transition.
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e−βmW � e−S0 or β � 4πL
g2

. Clearly, the scale at which monopoles become irrelevant

is outside this regime.

∆ [      α  σ ] < 2 

β

cos

0

cos
βm

βe

∆ [      α  σ ] < 2 i

i
Figure 2: For β > βm, eiαi·σ is relevant, and for β < βe, e

iαi·σ̃ is relevant. In βm < β < βe
interval, both perturbations are relevant.

If one ignores the topological sectors of gauge theory, which is justified if e−βmW �
e−S0 (β � 4πL

g2
), the proliferation of the two-dimensional gas of W -bosons generates

an effective theory

Sp.t. =

∫
R2

[ ã
2

(∇σ̃)2 − ζW
N∑
i=1

cos(αi · σ̃) + . . .
]
, ã ≡ 1

16π2a
=

L

βg2
(4.5)

where ζW ∼ 1
β2 e
−βmW and 1

4πa
∗ dσ̃ = dσ is the dual of σ field in 2d. The conformal

dimension of the W -boson operator is

∆[eiαi·σ̃] =
α2
i

4πã
= 4πa =

βg2

4πL
, (4.6)

The ellipsis in (4.5) stands for electric perturbations sub-leading in e−βmW expansion,

and the analog of the discussion in footnote (13) applies. This theory has a BKT

transition at ∆[eiαi·σ̃] = 2 or:

βe =
8πL

g2
, (4.7)

where subscript e stands for electric. It has a gapped phase at high temperatures

β < βe induced by free electrically charged excitations and a gapless phase at low

temperatures where electrically charged excitations form neutral molecules. This

makes sense because in the absence of topological defects, the large-β theory is the

compactification of the free Maxwell theory (3.8) which is related to the gapless phase

of (4.5) via an a↔ 1/a or T-duality.

The magnetic monopoles are a small perturbation (with respect to W -bosons)

when e−S0 � e−βmW or β � 4πL
g2

. Clearly, the scale at which W -bosons become

irrelevant is outside this regime. This implies that neither electric nor magnetic

BKT is actually there while (4.2) and (4.5) are valid descriptions. 14

14If, in Fig.2, βm were larger than βe within the regions of validity of (4.2) and (4.5), this would

have implied the presence of two genuine BKT transitions with an intermediate gapless phase.

Indeed, in the planar Heisenberg model of ferromagnetism with a symmetry breaking perturbation

(which reduces the symmetry of the theory to ZN ), such a phenomena takes place for all N > 4 [29].
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At arbitrary β, and in particular, in a domain where both electric and magnetic

perturbations are relevant, we should instead consider a Lagrangian of the form:

S =

∫
R2

[a
2

(∇σ)2 − ζM
N∑
i=1

cos(αi · σ)− ζW
N∑
i=1

cos(αi · σ̃) + . . .
]
, (4.8)

where in the path integral we have to impose the duality relation 1
4πa
∗ dσ̃ = dσ

as a constraint. The electric-magnetic Coulomb gas representation associated with

the field theory has the form Vint = Ve−e + Vm−m + Ve−m where Ve−e (Vm−m) is

the mutual logarithmic Coulomb interaction of electrically (magnetically) charged

excitations and Ve−m is the interaction between electrically and magnetically charged

excitations. For a detailed description and references to earlier related works, we

recommend the reader Ref. [36].

4.1 Electric-magnetic competition and relation to Polyakov order param-

eter

In the deformed Yang-Mills theory, the confinement-deconfinement transition is ex-

plicitly realized as a competition between electric and magnetic perturbations. This

is a calculable realization of the scenario proposed in Ref. [1]. There are three regimes

as a function of β, as shown in Fig.2. For β > βe, the eiαi·σ are relevant while the

eiαi·σ̃ are irrelevant. In this phase, magnetic defects are free and dominate the long-

distance dynamics, while the electrically charged particles are confined. For β < βm,

the situation is reverted: the eiαi·σ are irrelevant while the eiαi·σ̃ are relevant, which

means that electric charges are free while magnetic defects are confined. In the in-

terval βm < β < βe, both eiαi·σ and eiαi·σ̃ are relevant - we discuss this domain in

more detail in Sec.4.2.

In the small LNΛ domain, since the IR theory Abelianizes, the fundamental

Polyakov loop may be identified with a “ fundamental Quark”-operator. We define

the following mapping

tr

N
Ωβ !

1

N

N∑
i=1

eiνi·σ̃ (4.9)

where νi, i = 1, . . . , N are the weights associated with the electric charges of the

quarks in the fundamental representation. 15 If the external charge sourcing the

15Conventions: The N weights νi are N − 1 dimensional vectors forming an (N − 1)-simplex.

They satisfy

νi · νj = 1
2

(
δij −

1

N

)
, i, j = 1, . . . , N . (4.10)

(N − 1)-simplex is the figure associated with the defining representation of the algebra. At this
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Polyakov loop is in some other representation, the mapping generalizes straightfor-

wardly.16

The Lagrangian (4.5) apart from the obvious periodicity identification σ̃ ∼ σ̃ +

4παj, is also invariant under a discrete ZN which we identify with the ordinary center

symmetry, (ZN)β. A shift in the weight lattice Λw acts as

(ZN)β : σ̃ → σ̃ − 4πµk
: eiνi·σ̃ → e+i 2π

N
k eiνi·σ̃ (4.14)

In reaching the second step, we used the identities given in footnote.15. Let us now

calculate the the expectation value of the Polyakov loop.

4.1.1 Low temperature

In the β � βe domain, we can safely use the Lagrangian (4.2) to describe the

dynamics. The electric perturbations are highly suppressed and also irrelevant in

the renormalization group sense. The insertion of an electric charge into the medium

may be viewed as a vortex in the σ field theory. The vorticity is the electric charge

associated with the probe, i.e.,

Q

g
=

1

2π

∫
C

dσ = νj (4.15)

where C is a closed curve encircling the test charge. Thus, we have

σ(θ) ∼ νiθ, ∇σ ∼ νi
r
.eθ (4.16)

To evaluate the action of a vortex in the free theory, we regularize the R2 space

to a disk D2(R) with radius R. (We also need a short distance cut-off. The finite

stage, it is also useful to define the fundamental weights µk,

µk =

k∑
j=1

νj , k = 1, . . . , N − 1 (4.11)

Fundamental weights form the weight lattice Λw, and the simple roots form the dual root lattice

Λr. Λr is a sub-lattice of Λw and the quotient is isomorphic to Λw/Λr = ZN . The generators of

the (Λw,Λr) obey

αi · µj = 1
2α

2
i δij = 1

2δij i, j = 1, . . . , N − 1, (4.12)

the reciprocity relation.
16The generalizations of this mapping to anti-symmetric, symmetric and adjoint representations

are:

trΩβ,AS !
N∑

i<j=1

ei(νi+νj)·σ̃ trΩβ,S !
N∑

i≤j=1

ei(νi+νj)·σ̃ trΩβ,Adj !
N∑

i,j=1

ei(νi−νj)·σ̃ .(4.13)
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size of vortex core serves this goal, but this short-distance divergence is unimportant

for what follows.) It is:

S(R) =

∫
D2(R)

d2x (∇σ)2 ∼
∫ R

rdr
1

r2
∼ logR (4.17)

This is, indeed, the Coulomb potential of a test charge in 2d and it clearly diverges

as R → ∞. When we take into account the potential (4.2), we observe that the

action grows quadratically: Sint.(R) ∼
∫
D2(R)

d2x cos(αi · σ) ∼ R2. However, this is

an overestimation due to the form of the ansatz (4.16). The minimization of action in

the space of possible σ(θ) with the given vorticity generates a linearly rising action as

R is increased. This is a configuration where σ is constant everywhere, but exhibits

a jump along a cut. The punch-line is, in the confined phase, we have

〈 1

N

N∑
i=1

eiνi·σ̃〉 = lim
R→∞

[
1

N

N∑
i=1

(
e−S[in the presence of 1

2π

∫
C dσ=νj ]−S[in its absence ]

)]
= 0

(4.18)

4.1.2 High temperature

In the β � βm domain, we can use the Lagrangian (4.5) reliably. The magnetic

excitations are suppressed and irrelevant. Here we wish to calculate the expectation

value of the eiνi·σ̃ operator in a description where σ̃ is the local field describing

Lagrangian. The periodicity identification of the σ̃ field is σ̃ ∼ σ̃ + 4παj. The

potential V (σ̃) = −ζW
∑N

i=1 cos(αi · σ̃) is also invariant under the (ZN)β center

symmetry (4.14), and has N isolated minima within the unit-cell of the root lattice.

This means that the theory has N thermal equilibrium states in this phase. The

expectation value of Polyakov loop is:

〈 1

N

N∑
i=1

eiνi·σ̃〉 = e+i 2π
N
k , k = 0, 1, . . . , N − 1 . (4.19)

These N -minima can be rotated into each other by the action of spontaneously

broken (ZN)β symmetry.

This is precisely the picture that we believe should hold in Yang-Mills theory. In

deformed Yang-Mills, we analytically demonstrated the existence of the two phases.

Remark: The main novelty of this description is following: The effective dual La-

grangians, (3.9), (4.2) and (4.5), are already long-distance descriptions. The non-

perturbative phenomena, such as a mass gap, linear confinement in the confined

phase, and the existence of a deconfinement transition, are already in the tree-level

description of the dual theory. This is a main difference between studies of de-

confinement to date and our description. In our dual formulation, the long-ranged
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correlations are already built into the dual Lagrangians and correlation functions

can be easily evaluated via these actions. This progress is possible because toroidal

compactification with deformation introduces a new parameter, LNΛ, in the theory.

When this parameter is taken large, we face the conventional problems of strong

gauge dynamics.

4.2 Estimate for phase transition scale

In the semi-classical domain, the theory has at least two phases, β < βm where elec-

tric charges are free and magnetic charges are confined, and β > βe where magnetic

charges are free and electric charges are confined. The phase transition must occur

at some:

βc ∈ [βm, βe] =
[2πL

g2
,

8πL

g2

]
. (4.20)

In this domain, we do not have a good tool to find the value of the transition

temperature, as both perturbations are relevant.

Despite the fact that we can demonstrate the existence of two phases (confined

and deconfined) in a semi-classical approximation, the transition itself takes place in

a regime (4.20) where the theory again becomes strongly coupled!

We conjecture that the transition should occur when both electric and magnetic

perturbations simultaneously become order one following [36]. To argue this, note

that if one perturbation is order one while the other is small, then the system is

gapped either due to electric excitations or magnetic excitations, which is to say

the system is in one of the two phases. In such a case, the smaller effect may be

treated within non-degenerate perturbation theory, and should not alter the behavior

of the theory drastically. The two types of perturbations become comparable when

the densities (i.e., fugacities) of electrically and magnetically charged quasi-particles

become comparable. This is also argued to be the case in the scenario of Ref. [1]

within the context of QCD. Indeed, for SU(N), e−βmW = e−β
2π
LN ∼ e−S0 = e

− 8π2

g2N at:

βc =
4πL

g2
=

4πLN

λ
, (4.21)

which is actually the midpoint of the (4.20).

It is also instructive to study the conformal dimensions of the electric and mag-

netic perturbations around the deconfinement temperature. We find:

∆e ≡ ∆[eiαi·σ̃] =
Q2
Wi
β

4πL
=
g2β

4πL
, ∆m ≡ ∆[eiαi·σ] =

Q2
Mi
L

4πβ
=

4πL

g2β

∆e∆m =
(QWi

QMi
)2

(4π)2
= 1 [no sum over i] (4.22)
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where the reciprocity of the dimensions of electric and magnetic perturbations is a

consequence of the Dirac quantization condition

QWi
·QMj

= gαi ·
4π

g
αj = 4π

(
δij − 1

2
δi,j+1 − 1

2
δi,j−1

)
(4.23)

At the critical point, the dimensions of both perturbations are equal to one,

∆[eiαi·σ̃]
∣∣∣
βc

= ∆[eiαi·σ]
∣∣∣
βc

= 1 . (4.24)

In this sense, the theory as a function of β has four interesting domains and plausibly

  ∆   < 1/2 
  ∆   < 2 

  ∆   < 2 

0

  ∆   > 2 m

e  ∆   < 1/2 

β
m

e  ∆   < 1 
m

e

m  ∆   < 1 

βeβc

β  ∆   > 2 
m
e

Figure 3: A more refined version of Fig.2. The putative phase transition is expected to

occur at βc where ∆e = ∆m = 1. For βc < β < βe, magnetic operators dominate, and

βm < β < βc, electric operators dominate.

a single phase transition at βc, as depicted in Fig.3. The theory exhibits confinement

for β > βc, which corresponds to ∆m < 1, ∆e > 1 and deconfinement for β < βc
which corresponds to ∆m > 1, ∆e < 1.

This provides a more refined version of the domains of the thermal gauge the-

ory relative to the Polyakov order parameter. We will speculate on the possible

significance of βm in the conclusions.

4.3 Extrapolation to larger L or larger N

The appearance of N in (4.21) is rather crucial, because the region of validity of the

semi-classical analysis is LNΛ . 1, not LΛ . 1 (otherwise this would clash with

large-N volume independence). At the boundary of the semi-classical domain, the

transition temperature approaches βc ∼ Λ−1, the expected result based on numerical

simulations and dimensional analysis. For LNΛ� 1, by volume independence, this

value must be saturated, up to 1/N2 corrections, hence the plateau shown in Fig.4.

The critical temperature is, Tc = β−1
c :

βdYM
c =

{
11
3

Λ−1
(
LNΛ

2π

) ∣∣ln (LNΛ
2π

)∣∣ , LNΛ . 1

cΛ−1 (1 +O(1/N2)) LNΛ & 1
(4.25)

In order to reach to the volume independence domain, we do not necessarily need

to increase L. We can keep L-fixed while increasing N . The base space remains

macroscopically two dimensional, but the dynamics (and thermodynamics) of the
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Figure 4: Simplest possible phase diagram of SU(N) deformed Yang-Mills theory on

R2×S1
β ×S1

L. Above (below) the solid line, the theory is in the (ZN )β unbroken (broken)

confined (deconfined) phase. Between the solid and dashed line Tc < T < 2Tc, and at least

in the semi-classical domain, although the theory is in deconfined phase, magnetic defects

are still relevant. Below the dashed line, they are irrelevant.

theory interpolates to that of Yang-Mills theory on R3×S1
β. In particular, the value

of βc saturated in this regime must agree with ordinary Yang-Mills theory on R3×S1
β

due to the finite temperature version of large-N equivalence.

In Fig.4, we plotted the simplest possible phase diagram of the theory. The

semi-classical analysis is reliable in the LNΛ . 1 domain. We extrapolated the

semi-classical result up to LNΛ/2π = e−1 ∼ 0.367 where semi-classical function

reaches to its local maximum. 17

In the strongly coupled LNΛ� 1 domain, the transition temperature must be a

constant due to large-N volume independence. Matching the transition temperature

to the one of semi-classical analysis at the boundary of its region of validity, we

obtained the phase diagram Fig.4. It should be stated that in this phase diagram,

the conjectural region is the vicinity of the matching point. Given Tc at a value few

times larger than the matching point, its L-independence at leading order in N is

dictated by volume independence.

We also quote the numerical value for deconfinement temperature at LNΛ/2π =

e−1 which we call the boundary of semi-classical window. If we use as the strong

scale that of QCD, ΛMS = 213MeV, this gives us an estimate for SU(N) pure gauge

theory

Tc = 0.74Λ ≈ 158MeV (4.26)

17It is reasonable to ask up to what value of LNΛ one may expect that the semi-classical analysis

will provide an accurate description. We guess (but do not have a solid argument) that this will

be the case up to LNΛ ∼ 2πe−1 ≈ 2.31. This question is in principle answerable by simulating

deformed Yang-Mills theory and comparing it with our semi-classical results.
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which is in the same ball-park with the lattice results, quoted in the Introduction. 18

A final remark is in order for the SU(2) theory. Substituting α1 = −α2 = 1 in

(4.2) and (4.5), we observe that the discussion reduces to the one given in Ref. [34,36]

for the 3d Georgi-Glashow model up to a trivial rescaling of the fugacity. (For SU(N)

with N ≥ 3, this is no longer the case, the analog of the αN monopole, which is on

the same footing with α1, . . . , αN−1 does not exist in a locally 3d theory.) Ref. [34,36]

argue that critical point resides in the βm < β < βe interval. They exhibit, by using

fermionization, that the spectrum has a massless particle at criticality, and is of Ising

universality. This agrees with universality arguments [9] and the numerical lattice

studies for the SU(2) pure YM theory on R3×S1
β, and we expect the deconfinement

transition to remain second order as the radius of S1
L is increased. (See Fig.4). For

the SU(N) case with N ≥ 3, we were not able to determine the order of transition

with confidence. We leave this for future work.

5. Conclusions

We introduced new techniques which enable us to continue the deconfinement tran-

sition of pure Yang-Mills theory to a calculable semiclassical domain. This was

achieved by exploiting the recent developments in large-N volume independence and

semi-classical confinement in gauge theories on R3 × S1
L [23–25].

Our approach uses a toroidal compactification of gauge theory on R2 × S1
L ×

S1
β, where at long-distances, the theory reduces to two dimensional field theory. A

striking feature of this approach is that the deconfinement transition is manifestly

seen to be due to a competition between magnetic and electric perturbations in the

two-dimensional field theory. At high temperatures the electric objects dominate,

resulting in a deconfined phase. At low temperatures magnetic objects dominate,

resulting in a confined phase. The order parameter distinguishing the two phases is

the Polyakov loop, which is calculable in our framework away from the transition

temperature, in both phases.

The picture of the deconfinement transition as due to a competition between

electric and magnetic objects, is a pleasing one. Confinement due to monopole in-

stantons in 3d and due to a magnetic Higgs mechanism in 4d has a long precedent.

More recently, Liao and Shuryak suggested the competition of electric and magnetic

objects as a new way to look at the phase diagram of QCD. In our calculable de-

formation of Yang-Mills theory, their scenario is explicitly realized, at least in the

semi-classical domain.

18Fixing the strong scale of Yang-Mills theories with nf fermions, one finds, for nf = O(N0), that

Tc(nf ) = T dYM
c /(1− 2nf

11N ). Numerically, these are Tc(nf = 1) ≈ 168 MeV, Tc(nf = 2) ≈ 180 MeV,

Tc(nf = 1) ≈ 193 MeV. Since for nf ≥ 1, the center symmetry is no longer an exact symmetry, the

phase transition is replaced by a rapid-crossover.
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In the semi-classical regime, both electric and magnetic perturbations are rele-

vant in the
Tc
2
< T < 2Tc, equivalently βm < β < βe, (5.1)

window. In this regime, the densities of both electric and magnetic components of

the plasma are comparable, while for T > 2Tc the contribution of magnetic objects

to the plasma is negligible. Could this window extrapolate to R3×S1
β of Yang-Mills

theory? Below, we assume this logical possibility and speculate on its consequences.

In Ref. [1] a plasma of electric and magnetic charges was studied using a classical

molecular dynamics simulation with a variable electric to magnetic density ratio. The

measured shear viscosity and diffusion constant were found to be lowest when the

densities of electric and magnetic components are equal, and increased otherwise.

Comparable densities of electric and magnetic components arise naturally in our

field theoretic description in the window (5.1). Our analysis implies that at T & 2Tc,

the magnetic perturbations become irrelevant. In this domain, magnetic excitations

are confined to neutral molecules. If the model of Ref. [1] is a reasonable description

of the relevant features of the quark-gluon plasma, and if we extrapolate our semi-

classical results to the strong coupling domain, then we expect that for temperatures

T > 2Tc (which will be probed at ALICE detector at the Large Hadron Collider

at CERN) a rapid increase of shear viscosity and diffusion constant with respect to

RHIC results.

5.1 Open problems

There are many interesting directions that arise from our construction. Here, we sort

a few which are most pertinent:

1) It would be interesting to study the effect of fermionic matter on deconfinement in

the semi-classical domain. In the presence of fermionic matter, the index theorem on

R3 × S1
L [50, 51] implies that the mechanism of confinement is no longer necessarily

due to simple monopoles, but rather due to magnetic bions and other non-self dual

topological defects. (A classification of confinement mechanisms in semi-classical

domain is given in [24].) 19

19The index theorem of Refs. [50,51] is a variant of the well-known APS index for Dirac operator

on R3×S1
L, a manifold with boundary. The index of a 4d instanton is a sum of indices of N -types

of 3d monopole instantons, I4d,inst. =
∑N
i=1 IMαi

, each of which carry fractional topological charge

1/N in the center symmetric background. A recent lattice simulation [52] calculates the index for

some topological configurations and gives evidence for the existence of fractional topological charge

objects. Outside the semi-classical window, the index theorem is still valid. However, since the

topological defects are no longer dilute at large LNΛ or a large four-torus (which is suitable for

lattice studies), it may be harder to probe fractional topological charge defects in this domain, see

for example, [53]. Interestingly, the index obtained from lattice [52] and the one in [51] agrees. This

is non-trivial and merits further study.
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2) It would be useful to understand the order of phase transition in the NLΛ . 1

regime, and if possible, in the LNΛ ∼ 1 domain for SU(N) with N ≥ 3, both

numerically and analytically.

3) It would be interesting to generalize to orthogonal, symplectic and exceptional

gauge groups, and in particular, to the groups for which the cover group has a trivial

center symmetry, such as G2.

4) We have predictions for the L dependence of the critical temperature βc(L) (4.25),

and mass gap (3.10) [23] in the semi-classical domain, and for their L-independence

in the LNΛ� 1 domain. It would be very interesting to test both regimes in lattice

gauge theory and see up to what value of LNΛ the semi-classical description is in

good agreement with lattice results, and at what value of LNΛ volume independence

sets in.

5) Supersymmetric gauge theories compactified on R3 × S1
L are not expected to

have any phase transition as a function of L [54]. A sub-class of supersymmetric

theories such as pure N = 1 SYM, with gauge boson and adjoint fermion (Aµ, λα),
20 also possess a semi-classical window in the LNΛ . 1 domain where confinement

can be shown analytically. It would be useful to understand how deconfinement sets

in when one consider this class of theories on R2×S1
L×S1

β, with periodic boundary

conditions for bosons and mixed

λ(x1, x2, x3 + β, x4) = − λ(x1, x2, x3, x4),

λ(x1, x2, x3, x4 + L) = + λ(x1, x2, x3, x4). (5.2)

boundary conditions for fermions. It may also be useful to understand how imposing

periodic (supersymmetry preserving) boundary conditions in all directions avoids the

phase transition.

A. Yang-Mills in chiral basis and topological defects

In this appendix, we remind the reader the topological defects pertinent to locally

four dimensional gauge theories, in particular to R3× S1
L. It is useful to express the

Yang-Mills action in a chiral basis which makes the role of self-duality manifest. We

define τ and the chiral field strengths F± (which furnishes (3, 1)⊕(1, 3) representation

of the Euclidean Lorentz group SO(4) ∼ SU(2)L × SU(2)R) as

τ =
4πi

g2
+

θ

2π
, F±µν = Fµν ± F̃µν = Fµν ± 1

2
εµνρσF

ρσ . (A.1)

The Yang-Mills action (2.2) can be rewritten as

SYM =

∫
i

32π

(
τ trF 2

+µν − τ trF 2
−µν
)

(A.2)

20N = 1 mass deformation of N = 2 or N = 4 SYM will work similarly.
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The τ → i∞ limit is the weak coupling limit. In the chiral basis, the instanton

equation reads

F−µν = 0 or Fµν = F̃µν (A.3)

For a 4d instanton, F 2
+µν = 4F 2

µν = 4FµνF̃µν , and topological charge is 1
16π2

∫
trFµνF̃µν =

1. Its action and θ angle dependence appears as

S =
i

32π

∫
τ trF 2

+µν =
i

8π

∫
τ trFµνF̃µν = 2πiτ

Thus, in the semi-classical expansion in 4d, the amplitude appears as

e−SI = e−2πiτ = e
− 8π2

g2
−iθ

(A.4)

On small S1
L × R3, due to the center-symmetric Wilson line (3.1) associated

with the boundary |x| → ∞, , there are more solutions to F−µν + O(g2) = 0,

Fij − 1
2
εijkDkA4 + O(g2) = 0, i, j, k = 1, 2, 3, where O(g2) part, which is there due

to deformation and one-loop potential, is omitted in weak coupling. The magnetic

and topological charges of these N -types of monopole instantons are given in (3.6).

In the semi-classical expansion, the amplitudes associated with these instantons are

Mαi = e−2πiτ/Neiαi·σ = e
− 8π2

g2N
−i θ

N eiαi·σ (A.5)

Notice that, the 4d instanton on R3 × S1
L may be viewed as a composite of these

N -types of 3d instantons associated with simple roots αi = 1, . . . , N − 1 and the

twisted-instanton associated with affine root αN . These are sometimes referred to as

“fractional instantons”. The corresponding amplitudes obey

N∏
i=1

Mαi = e−2πiτ = e
− 8π2

g2
−iθ

. (A.6)

The semi-classical expansion on a center symmetric background is an expansion in

e2πiτ/N = e
− 8π2

g2N
+i θ

N . The 4d instanton appears in this expansion at N th order. In

particular, at large-N , instantons are suppressed as e−SI = e−O(N1) whereas the

fractional instantons of center-symmetric background are e−SMαi = e−O(N0), hence

they are part of large-N dynamics.
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[47] T. Azeyanagi, M. Hanada, M. Ünsal and R. Yacoby, “Large-N reduction in QCD-like

theories with massive adjoint fermions,” arXiv:1006.0717 [hep-th].
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