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1Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México,
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We numerically investigate the solutions to the effective equations of the Bianchi II model within
the “improved” Loop Quantum Cosmology (LQC) dynamics. The matter source is a massless scalar
field. We perform a systematic study of the space of solutions, and focus on the behavior of several
geometrical observables. We show that the big-bang singularity is replaced by a bounce and the
point-like singularities do not saturate the energy density bound. There are up to three directional
bounces in the scale factors, one global bounce in the expansion, the shear presents up to four
local maxima and can be zero at the bounce. This allows for solutions with density larger than the
maximal density for the isotropic and Bianchi I cases. The asymptotic behavior is shown to behave
like that of a Bianchi I model, and the effective solutions connect anisotropic solutions even when
the shear is zero at the bounce. All known facts of Bianchi I are reproduced. In the “vacuum limit”,
solutions are such that almost all the dynamics is due to the anisotropies. Since Bianchi II plays an
important role in the Bianchi IX model and the Belinskii, Khalatnikov, Lifshitz (BKL) conjecture,
our results can provide an intuitive understanding of the behavior in the vicinity of general space-like
singularities, when loop-geometric corrections are present.

PACS numbers: 04.60.Pp, 04.60.Bc, 98.80.Qc

I. INTRODUCTION

Loop Quantum Gravity (LQG) [1] has recently emerged as a strong candidate for a quantum theory of gravity.
One of the main motivations for such a theory is to provide a solution to the big-bang singularity. Even when the
full theory has still little to say about the initial singularity, a symmetry reduced theory, namely Loop Quantum
Cosmology (LQC) [2–4], has been extremely successful at providing precise answers to that question. The theory
is constructed by applying the methods of LQG to a symmetry reduced sector of general relativity. As examples
of these reduced configurations, several authors have studied cosmological models with a massless scalar field and
geometrically isotropic [5–9], homogeneous and anisotropic [10–13], and some inhomogeneous cosmologies [14]. The
common theme among these models is that they resolve the big bang singularity [15]. The way singularity resolution
occurs is by means of physical observables (in the sense of Dirac) whose expectation values (or spectrum) have been
shown to be bounded [16–19]. These results benefit from uniqueness results that guaranty the consistency of the so
called “improved dynamics” [19, 20].

In a sense, isotropic LQC can be seen as a realization of one of the main objective of LQG, namely, to solve the
big-bang singularity. In this case the singularity is replaced by a bounce that occurs precisely when the matter density
enters the Planck regime. At this energy density, the quantum effects create a repulsive force, the would-be singularity
is avoided and the resulting ‘quantum’ spacetime is larger than one might be led to believe. As has been shown in
detail, when the density decreases, the state very quickly leaves this quantum regime, and the universe returns to
being well described by general relativity [2]. With the final goal in mind of investigating the most general issue of
singularity resolution within LQG, one expects to gain useful insights from results obtained for less symmetric models.
The simplest such model is given by Bianchi I cosmologies [11] where no spatial curvature exists. Even for this case
we do not possess yet a full exact evolution of the quantum equations of motion.

For both isotropic and anisotropic models, a very useful tool has been the use of the so-called effective description,
a ‘classical theory’ (in the sense that it does not contain ~) that has information about the geometric discreetness
contained in loop quantum gravity. In isotropic models, the solutions to the effective equations have been shown to
approximate the dynamics of semiclassical states in the full quantum theory with very good accuracy [7–9, 21]. In
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the case of anisotropic models we also expect that the effective solutions play an important role for describing the
evolution of semiclassical states. Thus, we shall adopt the viewpoint that it is justified to study the effective dynamics
for those cosmological models, as a way to learn about the full ‘loopy’ quantum dynamics.

So far, the anisotropic models that have been explored in detail, through the so called effective equations, is the
LQC Bianchi I model [10], the Bianchi II and Bianchi IX models [22]. In this last work the authors perform an
analytical analisis on a set of observables, namely density, expansion and shear, which allows them to find universal
bounds on these quantities. In this paper we will study the numerical solutions to effective equations obtained
from the “improved” LQC dynamics of the Bianchi II model [12]. The Bianchi II cosmological model represents
the simplest case that posses spatial curvature, from which the Bianchi I model can be recovered when a parameter
measuring the spatial curvature contribution is ‘switched off’. The Bianchi II model possesses another interesting
feature, namely, it lies at the heart of the Belinskii, Khalatnikov, Lifshitz (BKL) conjecture [23–25], which suggest
that, as one approaches space-like singularities, the behavior of the system undergoes Bianchi I phases with Bianchi II
transitions. One question that remains open though is whether this BKL behavior will survive in the effective theory.
That is, will the oscillations between Bianchi I phases occur far from the Planck scale? or will the loop-geometric
effects prevent this ‘mixmaster’ behavior to manifest itself? From this point of view, it is important to study in
detail the Bianchi II solutions. The most natural strategy to gain this intuition is to perform a systematic study of
the solutions to the effective equations, under the assumption that they describe correctly the quantum dynamics.
But even if the effective solutions do not describe correctly the quantum dynamics of the semiclassical states in some
regime, we need to study them in detail in order to compare them to the full quantum dynamics –when available–
and prove their validity. One can also expect that this study will shed some light on the larger issue of understanding
generic space-like singularities in LQG.

The purpose of this paper is to study in a systematic way the space of solutions of the effective equations. The
matter source that we shall consider is a massless scalar field that plays the role of internal time. The objective is to
understand the singularity resolution, the asymptotic behavior and the relation between the Bianchi II and Bianchi
I models. The strategy will be to take limiting cases and compare them with known solutions. This will allow us
to understand the new insights of the Bianchi II model. All the information will come from the set of observables
that we define, namely, directional scale factors, Hubble parameters, expansion, matter density, density parameter,
shear, shear parameter, Ricci scalar, curvature parameter and Kasner exponents. With these tools in hand we shall
compare the classical and the effective solutions. Later on, the isotropic limit will offer interesting new insights into
the Bianchi II dynamics, while the Bianchi I limit will allow us to confirm that our solutions agree with the previous
results of [10, 22]. The symmetry reduction to the Locally Rotationally Symmetric (LRS) Bianchi II model will give
us a way to find generic solutions with maximal density, at the bounce, larger than the critical density derived in the
isotropic case [7, 18]. Further, the vacuum limit will allows us to study the extreme solutions where all the dynamical
contributions come from the anisotropies and verify the upper bounds found in [22]. Finally, due to the fact that our
work is numerical we will show that our solutions converge and evolve on the constraint surface. The convergence
is an important issue that needs to be shown, because one needs to ensure that the numerical methods are well
implemented, and that the numerical solutions converge to the analytical solutions.

The structure of the paper is as follows. In Sec. II we recall the classical theory in metric and connection variables,
together with the basic observables to be studied. In Sec. III we introduce the effective theory and compute its
equations of motion. Numerical solutions are explored in Sec. IV, where they are systematically studied taking the
classical, isotropic, Bianchi I, maximal density and vacuum limits. We end with a discussion in Sec. V. There is one
Appendix where we study the convergence and evolution of the conserved quantities. Throughout the manuscript we
assume units where c = 1, the other constants are written explicitly.

II. CLASSICAL DYNAMICS

The metric for a Bianchi II model can be written as

ds2 = −N(τ)2dτ2 + a1(τ)2 (dx− αz dy)2 + a2(τ)2 dy2 + a3(τ)2 dz2 , (2.1)

where the parameter α allows us to distinguish between Bianchi I (α = 0) and Bianchi II (α = 1) cases. Bianchi I
cosmological solutions are also interesting, since they give information about the asymptotic behavior of Bianchi II.
Classically, the Bianchi I case with a massless scalar field has solutions given by [26],

ds2 = −dt2 + t2k1 dx2 + t2k2 dy2 + t2k3 dz2 (2.2)
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the so-called Jacobs stiff perfect fluid solutions.1 Here, the parameters ki are known as the Kasner exponents satisfying
k1 + k2 + k3 = ±1 (the minus sign is inserted, for future reference, as we want to take into account the change of
direction of the expansion at the bounce) and k21 + k22 + k23 + k2φ = 1. In the literature, a massless scalar field is also

known as “stiff matter”,2 and satisfies the equation of state P = ρ, where P is pressure and ρ is the energy density.
All these solutions have an initial singularity at t = 0, that can be of four types [26]:

1. Point type singularity. This means that a1, a2, a3 → 0 as t → 0. This happen in the Jacobs solutions when
k1, k2, k3 > 0.

2. Cigar type singularity. These occur when a1, a2 → 0 and a3 →∞ as t→ 0. This happens when k1, k2 > 0 and
k3 < 0. (cyclic on 1,2,3)

3. Barrel type singularity. Defined by a1, a2 → 0 and a3 approaching a finite value as t → 0. This happen when
k1, k2 > 0 and k3 = 0. (cyclic on 1,2,3)

4. Pancake type singularity. In this case, a1 → 0 and a2, a3 approaches a finite value as t → 0 (cyclic on 1,2,3).
This kind of singularity is not realized in the Jacobs solutions (nor the Bianchi II with a massless scalar field,
or “stiff” matter) [28]. This can be understood easily. This singularity happens when k1 > 0 and k2 = k3 = 0
(cyclic on 1,2,3) in the Bianchi I case, satisfying the constraint equations: k1 + k2 + k3 = 1 that gives k1 = 1.
Now, the condition k21 + k22 + k23 + k2φ = 1 implies that kφ = 0, which means that there is no matter. Thus, this
type of singularity is not possible if there is stiff matter present.

These names for the different types of singularities, introduced by Thorne in [29], refer to the change of the shape
of a spherical element as the singularity is approached. The Jacobs solutions will be useful in our analysis, since
Bianchi II is past and future asymptotic to Bianchi I3 (see, for instance [30, 31] and section 9.3 of [32]). Additionally,
Bianchi II is a limiting case for the effective equations of Bianchi II that come from its quantization [12] in the loop
quantum cosmology (LQC) framework. Then, in the classical region, Bianchi I (Jacobs) solutions are limiting cases
for the effective Bianchi II that arises from LQC.

We will now rewrite the classical theory in terms of triads and connections in order to connect with the effective
theory that comes from the quantum theory. To do this we use the fiducial triads and co-triads and introduce a
convenient parametrization of the phase space variables, Eai , A

i
a given by

Eai = piLiV
−1
0

√
|oq| oeai and Aia = ciL

−1
i

oωia, (2.3)

without sum over i, where V0 = L1L2L3 is the fiducial volume and Li the fiducial lengths with respect to the fiducial
metric oqab := δij

oωia
oωjb with co-triads

oω1
a = (dx)a − αz(dy)a,

oω2
a = (dy)a

oω3
a = (dz)a (2.4)

and triads

oea1 =

(
∂

∂x

)a
, oea2 = αz

(
∂

∂x

)a
+

(
∂

∂y

)a
, oea3 =

(
∂

∂z

)a
, (2.5)

with Lie bracket [oe2,
oe3] = −oe1,4, with α = 1. A point in the phase space is now coordinatized by eight real numbers

(pi, ci, φ, pφ), with φ the scalar field and pφ its conjugate momentum. The Poisson brackets are given by

{ci, pj} = 8πGγ δij {φ, pφ} = 1 , (2.6)

1 The metric form (2.2) is taken from [27], where one can find a large class of analytical solutions to spatially homogeneous cosmological
models.

2 In the original article [26], this solution is called “Zel’dovich universe”.
3 This is true when the matter is a massless scalar field. For other matter the asymptotic solutions are different.
4 We are using the notation from [12] and chapter 11 of [33]. Note that this is not the typical choice ([oe2, oe3] = oe1) for Bianchi II. This

choice only implies a change from one invariant set (n1 = 1) of Bianchi II to the other one (n1 = −1), but the physical properties are
the same, given that the equations of motion have this discrete symmetry. For more details see [32–34].
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where γ is the Barbero-Immirzi parameter. The Hamiltonian formulation will be complete with the Hamiltonian
constraint, which for a lapse function N =

√
|p1p2p3| reads [12],

CH =
1

8πGγ2

[
p1p2c1c2 + p2p3c2c3 + p1p3c1c3 + αεp2p3c1 − (1 + γ2)

(
αp2p3
2p1

)2
]
−
p2φ
2

= 0 (2.7)

where again α distinguish between Bianchi I and Bianchi II, ε = ±1 depending on whether the frame eai is right or
left handed (in our solutions we assume ε = 1, i.e. pi > 0). The equations of motion are given by the Poisson brackets
with the Hamiltonian constraint

ṗ1 = γ−1(p1p2c2 + p1p3c3 + αεp2p3), (2.8)

ṗ2 = γ−1(p2p1c1 + p2p3c3), (2.9)

ṗ3 = γ−1(p3p1c1 + p3p2c2), (2.10)

ċ1 = −γ−1
[
p2c1c2 + p3c1c3 +

1

2p1
(1 + γ2)

(αp2p3
p1

)2]
, (2.11)

ċ2 = −γ−1
[
p1c2c1 + p3c2c3 + αεp3c1 −

1

2p2
(1 + γ2)

(αp2p3
p1

)2]
, (2.12)

ċ3 = −γ−1
[
p1c3c1 + p2c3c2 + αεp2c1 −

1

2p3
(1 + γ2)

(αp2p3
p1

)2]
, (2.13)

ṗφ = 0 ⇒ pφ = constant, (2.14)

φ̇ = −pφ ⇒ φ = −pφτ, (2.15)

where τ is called the harmonic time (with lapse N =
√
|p1p2p3|). The last equation shows that the field φ can be

used as internal time. The harmonic time τ is related to the cosmic time t (with lapse N = 1) by the equation

d

dt
=

1√
|p1p2p3|

d

dτ
. (2.16)

It is with respect to this time that we will define the observable quantities. The derivative respect to the cosmic time
will be denoted by dO/dt = O′, then O′ = Ȯ/

√
|p1p2p3|. From the equations of motion it is straightforward to show

that the classical solutions posses the constants of motion

c1p1 + c2p2 =: α12 , (2.17)

c1p1 + c3p3 =: α13 , (2.18)

c3p3 − c2p2 = α32 = α13 − α12 , (2.19)

with α12, α13 constants. This will allow us to solve analytically equations (2.9) and (2.10),

ṗ2 = γ−1p2(p1c1 + p3c3) = γ−1p2α13 ⇒ p2 = p02 exp

(
α13τ

γ

)
, (2.20)

ṗ3 = γ−1p3(p1c1 + p2c2) = γ−1p3α12 ⇒ p3 = p03 exp

(
α12τ

γ

)
. (2.21)

The existence of this exact solutions gives us the opportunity to compare the numerical solutions with the analytical
ones for p2 and p3. Also, we can check that during the evolution, for the numerical solutions, α12 and α13 remain
constant.

In order to determine how the classical singularities are resolved and how the effective equations evolve, the quantities
that we will study are:

1. The directional scale factors

ai = L−1i

√
pjpk
pi

,

with i 6= j 6= k 6= i and pi > 0, i = 1, 2, 3. This makes easy the comparison between the classical and the effective
solutions.
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2. The directional Hubble parameters

Hi =
a′i
ai

=
1

2

(
p′j
pj

+
p′k
pk
− p′i
pi

)
,

with i 6= j 6= k 6= i. This quantity tells us when each direction bounces (Hi = 0) or if these directions are
contracting (Hi < 0) or expanding (Hi > 0).

3. The expansion

θ =
V ′

V
= H1 +H2 +H3.

This quantity gives the total expansion rate and determines when there is a global bounce (θ = 0). An equivalent
quantity is the mean Hubble parameter

H =
θ

3
=

1

3
(H1 +H2 +H3).

4. The matter density

ρ =
p2φ

2V 2
=

p2φ
2p1p2p3

.

If the singularities are resolved then this quantity must be finite thoughout the evolution. Other quantity that
measures the dynamical importance of the matter content is the density parameter Ω, defined by

Ω :=
8πG

3

ρ

H2
. (2.22)

This parameter is related to the Kasner exponents in Bianchi I by the equation Ω = 3
2k

2
φ = 3

2 (1− k21 − k22 − k23)

(see, for instance [26]).

5. The shear

σ2 = σabσ
ab =

1

3
[(H1 −H2)2 + (H1 −H3)2 + (H2 −H3)2] =

3∑
i=1

H2
i −

1

3
θ2 .

Note that this definition of σ2 differs from the standard definition σ2 = 1
2σabσ

ab. Another important quantity
is the shear parameter

Σ2 :=
3σ2

2θ2
=

σ2

6H2
, (2.23)

that measures the rate of shear (i.e. anisotropy) in terms of the expansion. In Bianchi I the expansion satisfies
θ = t−1 (using the fact that V = a1a2a3 = tk1+k2+k3 = t, without putting explicitly the units). Then, the shear
parameter reduces to the relation Σ2 = 3

2 t
2σ2 = 3

2V
2σ2 = 3

2a
6σ2 = 9Σ2

BI, where Σ2
BI := 1

6σ
2a6 was the shear

parameter used in Bianchi I [10, 11], with a := (a1a2a3)1/3 the mean scale factor.

6. The Ricci scalar for the Bianchi II metric, Eq. (2.1), is given by

R = 2

(
a′′1
a1

+
a′′2
a2

+
a′′3
a3

+
a′1a
′
2

a1a2
+
a′1a
′
3

a1a3
+
a′2a
′
3

a2a3

)
− α2 a21

2a22a
2
3

. (2.24)

When α = 0 it reduces to the Ricci scalar for Bianchi I. In terms of the new variables (ci, pi) it has a simple
expression

R =
p′′1
p1

+
p′′2
p2

+
p′′3
p3
− 1

2
x2 , (2.25)
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where x = α
√

p2p3
p31

. This equation can be rewritten in terms of other observables,

R = 2θ′ + σ2 +
4

3
θ2 − 1

2
x2 . (2.26)

This relation provides the easiest way to calculate the Ricci scalar numerically. On the classical solutions θ′ is
given by the Raychaudhuri equation

θ′ = −1

2
θ2 − σ2 − 16πGρ . (2.27)

One important feature of the Bianchi II model is that the spatial curvature is different from zero. thus, we
can introduce other quantity that give us information about the dynamical contribution due to the extrinsic
curvature, namely the curvature parameter K, given by

K =
3x2

4θ2
=

x2

12H2
. (2.28)

Our choice of Ω,Σ2 and K is motivated by the fact that, on the classical solutions for Bianchi II, they satisfy
the equation

Ω + Σ2 +K = 1 . (2.29)

These parameters have the ‘problem’ that they are infinity at the bounce (θ = 0) by definition, so they are not
very useful to explore that regime. But, since we are interested in its asymptotic behavior for large volume, and
the information they can give us there, this pathological behavior at the bounce is not relevant and does not
reflect any problem with the singularity resolution.

7. The Kasner exponents

ki =
Hi

|θ|
. (2.30)

These parameters are very useful to determine when the solutions have a Bianchi I behavior. We have taken the
absolute value in θ because we want that different signs in Hi specify if the directions are expanding (ki > 0)
or contracting (ki < 0). In order to prove Eq. (2.30) we use that, in Bianchi I, ai = tkiLi (using explicitly the
fiducial lenghts), then

ki =
a′it

1−ki

Li
=

a′it

tkiLi
=
a′it

ai
=
a′iV0t

aiV0
=
a′iV

aiV0
=

a′iV

aiV ′
=
Hi

θ
, (2.31)

with V = a1a2a3 = V0t.

One important remark is that all the previous expressions to calculate the observable quantities apply also to the
effective solutions. The only difference is the calculation of θ′ in the effective theory, for which it is necessary to use
the effective equations of motion. That will be shown in the next section.

To complete the classical picture we give the relations between phase space variables and metric variables, which
are given by

p1 = a2a3L2L3 , p2 = a1a3L1L3 , p3 = a1a2L1L2 , (2.32)

and

c1 = γL1a1H1 +
α

2

a21L
2
1

a2a3L2L3
, (2.33)

c2 = γL2a2H2 −
α

2

a1L1

a3L3
, (2.34)

c3 = γL3a3H3 −
α

2

a1L1

a2L2
, (2.35)

6



assuming ai > 0, pi > 0 and ε = 1. Relations (2.32) are satisfied at the kinematical level whereas Eqs. (2.33,2.34,2.35)
are satisfied at the dynamical level, i.e., on the space of solutions. These relations can be shown using the Hubble
parameters (with explicit fiducial lenghts),

Hi =
1

ai

dai
dt

=
1

2
√
p1p2p3

(
ṗj
pj

+
ṗk
pk
− ṗi
pi

)
(2.36)

dai
dt

=
1

2piLi

(
ṗj
pj

+
ṗk
pk
− ṗi
pi

)
, (2.37)

with i 6= j 6= k 6= i. If we put the equations of motion (2.8, 2.9, 2.10) into this expression, we get

dai
dt

=
ci
γLi

+ fsign(i)
1

2piLi

α

γ

p2p3
p1

, (2.38)

where fsign(i) = −1 if i = 1 and fsign(i) = 1 if i = 2, 3. Using the relations between ai and pi, Eq. (2.32), and the
definition of the Hubble parameters we get

ci = γLi
dai
dt
− fsign(i)

1

2pi
αL2

1a
2
1 (2.39)

= γLiaiHi − fsign(i)
α

2

L2
1a

2
1

LjLkajak
. (2.40)

These are precisely Eqs. (2.33, 2.34, 2.35).

III. EFFECTIVE DYNAMICS

As our starting point we will take the effective Hamiltonian of Bianchi II (Eq. (4.2) in [12]), which was considered
before in [22] to perform some analytical studies. Taking a right-hand frame eai (i.e. ε = 1) and the lapse function
N =

√
p1p2p3, the effective Hamiltonian constraint is given by,

CH =
p1p2p3

8πGγ2λ2

[
sin µ̄1c1 sin µ̄2c2 + sin µ̄2c2 sin µ̄3c3 + sin µ̄3c3 sin µ̄1c1

]
+

1

8πGγ2

[
α(p2p3)3/2

λ
√
p1

sin µ̄1c1 − (1 + γ2)

(
αp2p3
2p1

)2
]
−
p2φ
2

= 0 , (3.1)

with

µ̄1 = λ

√
p1
p2p3

, µ̄2 = λ

√
p2
p1p3

, µ̄3 = λ

√
p3
p1p2

. (3.2)

The value of λ is chosen such that λ2 = ∆ corresponds to the minimum eigenvalue of the area operator in loop quantum
gravity (corresponding to an edge of “spin 1/2”). With this choice the free parameter becomes ∆ = 4

√
3πγ`2Pl. Since

sin µ̄ici ≤ 1 the matter density ρ =
p2φ
2V 2 =

p2φ
2p1p2p3

satisfies

ρ ≤ 3

8πGγ2λ2
+

1

8πGγ2

[
x

λ
− (1 + γ2)x2

4

]
, with x = α

√
p2p3
p31

. (3.3)

The maximum of the expression in square brackets is attained at x = 2
(1+γ2)λ ≈ 0.83, then

ρmatt . 1.315ρcrit ≈ 0.54ρPl , (3.4)

with ρcrit = 3
8πGγ2λ2 ≈ 0.41ρPl the critical density found in the isotropic case [6] and ρPl = mPl/`

3
Pl is the Planck

density. This shows that the matter density is bounded. This bound is higher than the one found in Bianchi I
ρmatt . 0.41ρPl and the isotropic case ρmatt ≈ 0.41ρPl. Furthermore, the density in all the solutions in Bianchi I with
shear different from zero has a bounce density less than its value in the isotropic solution. Then there is an open
question: Are there generic solutions in which the matter density is larger that its value in the isotropic solutions?
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We will show that the answer is in the affirmative, which leaves us with another open question: How do we find the
solutions that saturate the matter density? These kind of solutions are shown in section IV D.

If we set α = 0 into Eq. (3.1) we recover the Hamiltonian constraint for Bianchi I [11]. Also, if we take the Bianchi
II case, α = 1, we can recover Bianchi I as a limiting case when x→ 0, or equivalently p31 � p2p3 (in metric variables
this condition is expressed as a2a3 � a1). It is important to have in mind that the Bianchi I model is a limiting case
and is not contained within the Bianchi II model.

The equations of motion for the effective theory are given by Poisson brackets with the Hamiltonian constraint,

ṗ1 =
p21
γµ̄1

(sin µ̄2c2 + sin µ̄3c3 + λx) cos µ̄1c1, (3.5)

ṗ2 =
p22
γµ̄2

(sin µ̄1c1 + sin µ̄3c3) cos µ̄2c2, (3.6)

ṗ3 =
p23
γµ̄3

(sin µ̄1c1 + sin µ̄2c2) cos µ̄3c3, (3.7)

ċ1 = − p2p3
2γλ2

[
2(sin µ̄1c1 sin µ̄2c2 + sin µ̄1c1 sin µ̄3c3 + sin µ̄2c2 sin µ̄3c3)

+ µ̄1c1 cos µ̄1c1(sin µ̄2c2 + sin µ̄3c3)− µ̄2c2 cos µ̄2c2(sin µ̄1c1 + sin µ̄3c3)

− µ̄3c3 cos µ̄3c3(sin µ̄1c1 + sin µ̄2c2) + λ2x2(1 + γ2)

+λx(µ̄1c1 cos µ̄1c1 − sin µ̄1c1)
]
, (3.8)

ċ2 = − p1p3
2γλ2

[
2(sin µ̄1c1 sin µ̄2c2 + sin µ̄1c1 sin µ̄3c3 + sin µ̄2c2 sin µ̄3c3)

− µ̄1c1 cos µ̄1c1(sin µ̄2c2 + sin µ̄3c3) + µ̄2c2 cos µ̄2c2(sin µ̄1c1 + sin µ̄3c3)

−µ̄3c3 cos µ̄3c3(sin µ̄1c1 + sin µ̄2c2)]− λ2x2(1 + γ2)

−λx(µ̄1c1 cos µ̄1c1 − 3 sin µ̄1c1)
]
, (3.9)

ċ3 = − p1p2
2γλ2

[
2(sin µ̄1c1 sin µ̄2c2 + sin µ̄1c1 sin µ̄3c3 + sin µ̄2c2 sin µ̄3c3)

− µ̄1c1 cos µ̄1c1(sin µ̄2c2 + sin µ̄3c3)− µ̄2c2 cos µ̄2c2(sin µ̄1c1 + sin µ̄3c3)

+µ̄3c3 cos µ̄3c3(sin µ̄1c1 + sin µ̄2c2)]− λ2x2(1 + γ2)

−λx(µ̄1c1 cos µ̄1c1 − 3 sin µ̄1c1)
]
, (3.10)

Finally, for the matter we have

ṗφ = 0 ⇒ pφ = constant, (3.11)

φ̇ = −pφ ⇒ φ = −pφτ. (3.12)

Note that the equations for the matter part are equal to the classical ones, so the field φ also plays the role of internal
time. The field momentum pφ is conserved, and its value coincides with the classical value. From the triad equations
(ṗi) we can see that the bounce in direction i occurs when cos(µ̄ici) = 0, which can be satisfied at different times for
each direction. These assertions do not imply that there is more than one bounce in the matter density; the density
only bounces one time, which is when the expansion θ is zero. This is called the global bounce.

We can use the equations of motion to give an explicit formula for θ′ (derivative of the expansion with respect to
cosmic time), which is necessary to calculate the Ricci scalar. It is straightforward to show that

θ′ =
1

2γλ

{
3∑
i=1

[
2 sin µ̄ici + cos µ̄ici(sin

′ µ̄jcj + sin′ µ̄kck)
]

+λx+
λx

2
cos µ̄1c1

(
p′2
p2

+
p′3
p3
− 3p′1

p1

)}
, (3.13)
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where j 6= i 6= k 6= j and sin′(µ̄ici) = cos(µ̄ici)[µ̄
′
ici + µ̄ic

′
i], with µ̄′i = −µ̄iHi. It would be interesting if one

could rewrite Eq. (3.13) in terms of observable quantities (Hi, θ, ρ, σ
2), which would represent a generalization of the

Raychaudhuri equation. Also, from the equations for ṗi and ċi we get that

c3p3 − c2p2 =: α32 (3.14)

is conserved and its value is the same than the classical one, as given by Eq. (2.19). The conserved quantities (pφ
and α32) can be used to check that numerical solutions are evolving correctly on the constraint surface.

IV. NUMERICAL SOLUTIONS

In this section we show the numerical solutions for the Bianchi II model. These equations admit different limits
than can be used to check the accuracy of the solutions and explore the new insights that Bianchi II offers. In order
to systematically study the solutions we need to have in mind the following

1. In all the solutions, the constraint (or equivalently pφ) and α32 = c3p3 − c2p2 are conserved quantities.

2. In the classical solutions α12 and α13 are conserved quantities.

3. When α = 0 or x =
√
p2p3/p31 → 0 (with α = 1), Bianchi II reduces to Bianchi I.

4. When p1 = p2 = p3 and c1 = c2 = c3, Bianchi I reduces to the isotropic case.

5. In the isotropic case all the solutions to the effective equations have a maximal density equal to the critical
density ρcrit = 3

8πGγ2λ2 ≈ 0.41ρPl.

6. In the Bianchi I limit we will expect a maximal density less than the critical density.

7. Classical and effective solutions must be equal far away from the bounce. In fact the effective solutions to
Bianchi I must connect two classical solutions with Kasner exponents related by

k1, k2, k3 → k1 −
2

3
, k2 −

2

3
, k3 −

2

3
(4.1)

as was shown by Choiu [10].

8. In the Bianchi II model we expect a maximal density less than 1.315ρcrit.

9. The classical solutions diverge.

10. The numerical solutions must converge.

Using these facts we shall now explore the Bianchi II solutions. We start from the classical limit showing that the
effective solutions have a bounce and reduce to the classical ones far away from the bounce. Next, we explore the
isotropic limit included into the Bianchi I limit when there are no anisotropies. Later on, we shall add anisotropies to
the Bianchi I limit and show that they reproduce the known solutions [10]. Then we pass to the Locally Rotationally
Symmetric (LRS) model of Bianchi II and explore how to find the solutions with maximal density at the bounce.
Finally we study the solutions in the vacuum limit with maximal shear.

To perform the analysis, solutions are plotted as functions of the cosmic time. All the integrations were made using
a Runge-Kutta 4 method5. The units are: ~ = 1, c = 1, G = 1, γ = 0.23753295796592, L1 = 1, L2 = 1, L3 = 1, ε = 1,
the time step used is dt = 5× 10−6. In all figures the density is plotted with normalization ρ/ρcrit.

5 The program is available by request.
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FIG. 1: Comparison between classical and effective solutions. Here it can be appreciated that near the big bang the classical
solutions have an infinite density because the scale factors go to zero.

A. Comparison Between Classical and Effective Solutions

In figure 1 the density and two scale factors (the third one is not shown for visualization purposes) are compared
for the classical and effective solutions, it is clear that, far from the bounce, the classical and effective solutions agree.
Near to the bounce we can see that the classical density diverges in a finite time while the effective one bounces. This
also happens to the shear (that is not shown in the plot). The finiteness of these quantities is due to the bounce in
the scale factors that now are not going to zero in a finite time (there are solutions where some scale factors do not
bounce and continue approaching zero, but they need an infinite time to do so). This illustrates the manner in which
the classical singularities are resolved.

We understand by singularity resolution in the effective framework the possibility to evolve the solutions for an
arbitrary time and that the solutions remain finite, thus signaling that the geodesics are inextendible. Classically,
for homogeneous and anisotropic universes, the singularities are present when the scale factor goes to zero in a finite
time. This is related with an infinite density (expansion and shear) and incompleteness of geodesics. If the density,
expansion and shear remain finite and can be evolved for any time then we say that singularities are resolved, i.e., the
scale factors are not equal zero in a finite time or, equivalently, the space-times are geodesically complete [16, 19].

The initial conditions for effective and classical solutions at t = 100 are: c1 = 0.01, c2 = 0.02, c3 = 0.03, p1 =
10000, p2 = 2000, p3 = 200 (it is evolved back in time), the field momentum pφ = 108.9 is calculated from the
Hamiltonian constraint. The initial conditions for the other classical solution at t = 0 are: c1 = −1.920756×10−3, c2 =
−7.971627× 10−2, c3 = −19.61028, p1 = 15864.53, p2 = 635.5782, p3 = 4.317425 (and it is evolved forward in time).

B. Isotropic Limit

When x → 0 Bianchi II has Bianchi I as a limit. Furthermore, in this limit when p1 = p2 = p3 and c1 = c2 = c3
Bianchi I reduced to the isotropic case. Bianchi II solutions near the isotropic limit are shown in figure 2,
where we can see that solutions to the effective equations have a maximal density equal to the critical density
ρcrit [7, 18]. The shear is close to zero (in this case it is less than 1.2 × 10−10 in Planck units) and presents
a non trivial behavior because it has four maxima and vanishes when the density bounces. This is the first
solution that is completely different from the known solutions in the isotropic and Bianchi I cases. The shear is
small but not zero because this is not an isotropic solution, but it is only very close to it. One should keep in
mind that the Bianchi I model and, therefore, the isotropic solutions are not contained within the Bianchi II solutions.

In order to have control on the isotropy, we set the initial conditions at the bounce, i.e. when µ̄1c1 = µ̄2c2 =
µ̄3c3 = π/2 (if the solution is isotropic the three directions bounce at same time, but the opposite is not true) and
then evolve back and forward in time, with these relations we only need three additional initial conditions, that can
be either (c1, c2, c3) or (p1, p2, p3) or a combination of them. We take p1 = 1 × 105, p2 = p3 = 1 × 103 (which
satisfy that x → 0, i.e., p31 � p2p3) and using the fact that we are starting at the bounce (µ̄ici = π/2) we calculate
c1 = 2.185, c2 = c3 = 2.185× 102 and from the Hamiltonian constraint pφ = 2.86× 105.
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FIG. 2: Isotropic limit. The density at the bounce is ρ/ρcrit = 1; the shear is close to zero; the Kasner exponents are equal and
change from 1/3 to 1/3− 2/3 = −1/3 when they are evolved back in time; the Ricci scalar strongly changes its behavior near
to the bounce and has its maximal value at the bounce.

Note that in this case it is not true that p1 = p2 = p3 and c1 = c2 = c3. Then, one might why is this solution
isotropic? The answer is that c1 and p1 are a rescaling of c2,3 and p2,3 that can be translated into a rescaling of the
scalar factors such that the real criteria to say that it is isotropic are that the relations a1/a2, a2/a3, a1/a3 remain
constant and H1 = H2 = H3, which are satisfied by our initial conditions. This can be imagined like an isotropic
universe described by the evolution of a fiducial cuboid. The best way to see that this is an isotropic solution is to
look at the Kasner exponents (Fig. 2), which are the same k1 = k2 = k3 = ±1/3. The different signs specify when
the directions are expanding (ki > 0) or contracting (ki < 0).

C. Bianchi I Limit

When x → 0 the Bianchi II model has Bianchi I as a limit, which has been extensively studied [10] and can be
used as a reference point. In this limit we expect a maximal density less than the critical density ρcrit and a non
zero shear with a maximal value at the bounce, also Σ2 and Ω must be conserved in the classical region (where
Σ2 + Ω = 1, since K = 0 in Bianchi I). The Kasner exponents must satisfy the constraint equations for Bianchi I
solutions (k1 + k2 + k3 = ±1 and k21 + k22 + k23 + k2φ = 1) and must change like ki → ki − 2/3 when evolved back in

time, as was shown in [10]. All these facts are shown in figure 3, which tells us that in the Bianchi I limit, the effective
dynamics of Bianchi II reproduces the know behavior for Bianchi I.

A new and important feature of this solution is that it presents a maximal value of the shear for Bianchi I, as can
be seen in figure 3, where the value of shear at the bounce is 11.57 = 10.125

3γ2λ2 , as reported in [22]. Moreover, it can be

noticed that just one direction a1 bounces and the other two directions a2, a3 do not, i.e., H2, H3 are not zero in a
finite time. This implies that these directions continue going to zero (or infinite) but now they need an infinite time
to reach these values. Note that in the classical region not all the directions are expanding (or contracting). This
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FIG. 3: Bianchi I limit. The density and shear have a dynamical contribution (Ω 6= 0,Σ2 6= 0); the shear reaches its maximal
value (for bianchi I) at the bounce; the Kasner exponents change from ki to ki − 2/3 when they are evolved back in time, as
was shown by [10]; one direction is expanding (a3), one contracting (a2) and one bounces (a1); the expansion has one zero
(bounce) and it is finite all the time; the Ricci scalar presents a slower changes in its behavior in comparison to the isotropic
limit and it is finite too.

kind of universes have a classical singularity too, but it is a cigar-like singularity and it is different from the one in
which all the directions are contracting (or expanding), called point-like singularity. Our simulations then show that
this kind of singularity is resolved too, with the notion of ‘singularity resolution’ as explained in section IV A.

In this case the choice of initial conditions is: µ̄1c1 = π/2, µ̄2c2 = π/6, µ̄3c3 = 5π/6 and p1 = 1 × 106, p2 = 100,

p3 = 100 (which imply that x =
√
p2p3/p31 ≈ 0). With these initial conditions we get c1 = 0.069, c2 = 230.28,

c3 = 1151.39 and pφ = 5.84× 104. The initial time is at the global bounce (θ = 0), from which the solution is evolved
back and forward in time.
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FIG. 4: LRS solution. The density reaches its maximal value when the shear is zero at the bounce, but the shear is different
from zero in the rest of the evolution; the dynamical observables ai, Hi, ki for directions 2 and 3 are equal, this shows that it is
a LRS solution; the directional scale factor a1 bounces one time and has two turn-around points; the curvature parameter K
is different from zero and asymptotically it satisfies Ω + Σ2 +K = 1.

D. Locally Rotationally Symmetric (LRS) Solutions to Bianchi II

These subclass of models are characterized by the directional scalar factors a1, a2, a3 such that a2 = a3. In
particular, this means that at each point the space-time is invariant under rotation about a preferred spacelike axis.
In our variables this is written as p2 = p3 and c2 = c3 (if these equalities are satisfied by the initial conditions then
they are satisfied through the evolution). These solutions will be useful to study the limit when the density is equal to
the maximal density. In Bianchi II one might expect a maximal density strictly less than 1.315ρcrit in all the solutions
due to the presence of anisotropies. Here we show that this is not the case, and the density can achieve the maximal
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value as a consequence of the shear being zero at the bounce. This is very different from Bianchi I models where the
presence of anisotropies makes the shear at the bounce always greater than zero.

In order to have control on the density to make it maximal we put the initial conditions at the bounce, i.e., when
µ̄1c1 = µ̄2c2 = µ̄3c3 = π/2 and then evolve back and forward in time. Also, we need to make x equal to the value that
makes the density maximal, namely x = 2

(1+γ2)λ ≈ 0.83. If we take p2 = p3 = 1000 (LRS condition) then p1 = 113

and using the fact that we are starting at the bounce (µ̄ici = π/2), we calculate c1 = 64.98, c2 = c3 = 7.34 and, from
the Hamiltonian constraint, pφ = 11029.97.

The solution is plotted in figure 4, where it is shown that in fact the solution has a maximal density at the bounce.
The shear is zero at the bounce and has a non trivial behavior, such as two maxima. In the evolution of the Kasner
exponents we can see (looking from left to right) that two directions (a2, a3) are contracting and one direction (a1)
is expanding, and the Kasner exponents look like Bianchi I exponents far away from the bounce. This is because
classically Bianchi II approaches Bianchi I when time goes to infinity [30–32], then in the classical region the Kasner
exponents of LRS Bianchi II have as a limit the Kasner exponents of LRS Bianchi I. In figure 4 we plot the Hubble
parameter H1, which is the one that presents a new behavior. From the plot it can be seen that the direction a1 has
a bounce and two turn around points, which indicates also a new behavior that was not present in the isotropic and
Bianchi I cases. The other two directions (a2, a3) bounces just one time for a total of three directional bounces and
one global bounce (θ = 0).

There is a valid question at this point. Why can the density reach its maximal value in Bianchi II and not in
Bianchi I when there are anisotropies? This question arises because in both models there are new degrees of freedom
due to the anisotropies, so in principle they will have a similar behavior respect to the distribution of the energy in
gravitational waves. But the new feature in Bianchi II –not present in Bianchi I– is the nontrivial spatial curvature.
This curvature gives a new degree of freedom with respect to the possible ways the energy density can be distributed.
Now, the dynamical contribution not only comes from the matter density and the shear but also from the spatial
curvature. This fact can be quantitatively understood from the fact that the curvature parameter K is non zero
in Bianchi II. As we can see in figure 4, the plot for (Ω,Σ2,K) shows that the curvature parameter K is different
from zero. Thus, this provides also a qualitative explanation for the important difference between these two models,
namely that the density can reach its maximal value at the bounce. This behavior must also occur in the Bianchi IX
case [35] where there is spatial curvature as well.

E. Vacuum Limit

Finally we study the solutions in the vacuum limit with maximal shear. As in the previous limiting cases, we do
not want to study the vacuum case (ρ = 0), but rather we want to study it as a limit approaching Bianchi II with a
massless scalar field. That is, we shall study the solutions where ρ→ 0 (or equivalently pφ → 0). The problem is that
the density goes to zero when the time goes to ±∞ in all these solutions. Then we need to clarify what the vacuum
limit means. In order to do this, we need to have in mind that the density has a maximal at the bounce, then we
are interested in taking the vacuum limit ρ → 0 in a finite time (near to the bounce). That is, we want solutions
with density near zero at the bounce or, equivalently, solutions where Ω ≈ 0 asymptotically. Among these class of
solutions we select those with maximal shear, this allows us to study the extreme solutions where all the dynamical
contribution comes from the anisotropies.

To obtain the initial conditions we found numerically the values of x and −π/2 < µ̄1c1, µ̄2c2, µ̄3c3 < 3π/2 that
makes the shear maximal with a density near to zero. To do this we use the analytical expression for the shear found in
[22] and the Hamiltonian constraint Eq. (3.1). The values found are: x = 1.69, µ̄1c1 = 0.5616, µ̄2c2 = µ̄3c3 = 1.94618.
These values fix 4 initial conditions, namely p1, c1, c2, c3, as functions of the other two parameters that are (in some
sense) not relevant for the behavior that we want to study. In our simulations, we take p2 = 100 and p3 = 100. The
initial time is at t = 0 (vertical line in the plots). The solution is shown in figure 5. The first unexpected behavior is
that the shear is zero at the bounce and reaches its maximal value on one side of the bounce. Moreover, p2 and p3
have a new behavior because ṗ2 and ṗ3 are zero three times, these zeros can be seen in the plot for µ̄ici, where µ̄2c2
(and µ̄3c3) cross the π/2 line three times. This behavior is not present in Bianchi I nor in the solutions to Bianchi
II studied in the previous sections. From the density plot we can see that it has a small value at the bounce and
from the plot for the parameters (Ω,Σ2,K), it can be appreciated that all the dynamical contribution comes from
the anisotropies, as was expected.
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FIG. 5: Vacuum limit. The shear reaches its maximal value at one side of the bounce and it is zero on the other side (the
zero is not at the bounce); the density is not zero but has a small value (even at the bounce); µ̄ici evolve from one classical
solution (µ̄ici ≈ 0) to other one (µ̄ici ≈ π); ṗ2 and ṗ3 are zero three times; all the dynamical contributions come from the shear
(Ω ≈ 0,K ≈ 0,Σ2 ≈ 1); the Ricci scalar reaches its maximal value at one side of the bounce and a local minimum on the other
side.

V. DISCUSSION

In this paper, we analyzed the numerical solutions of the effective equations that come from the improved LQC
dynamics of the Bianchi II model [12]. We choose a massless scalar field as the matter source. This effective theory
comes from the construction of the full quantum theory and we expect that it gives some insights about the quantum
dynamics of semiclassical states. The accuracy of the effective equations has been established in the isotropic cases
and thus we expect that they should give an excellent approximation of the full quantum evolution for semiclassical
states.
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Let us summarize our results. We considered the Bianchi II case at the classical and effective level. As Bianchi I
is a limiting case for Bianchi II, we use the previous results for Bianchi I in order to have control on our model. As
we have seen, we recover Bianchi I as a limiting case when x→ 0 or equivalently p31 � p2p3. It is important to keep
in mind that the Bianchi I model is a limiting case and is not contained within the Bianchi II model. The Bianchi I
solutions are interesting by themselves, since they give information about the asymptotic behavior of Bianchi II.

In order to determine how the classical singularities are resolved and how the effective equations evolve, we choose
a set of observable quantities like density, shear, expansion, Ricci scalar, etc., and studied their evolution numerically.
The equations of motion admit different limits that can be used to check the accuracy of the solutions and explore
some new insights that the Bianchi II model offers. In order to systematically study these solutions, we started from
the classical limit showing the way in which the effective solutions solve the singularities and reduce to the classical
ones far away from the bounce. Next, we explored the isotropic limit included into the Bianchi I limit when there are
no anisotropies. We found that these solutions have a maximal density equal to the critical density ρcrit, the shear is
close to zero and presents a non trivial behavior because it has four maxima and vanishes when the density bounces.
The shear is not zero because this solution is not an exactly isotropic solution, but it is a solution very close to it.
Recall that Bianchi I and, therefore, the isotropic solutions are not contained within the Bianchi II solutions. Later
on, we added anisotropies to the Bianchi I limit and showed that they reproduce the known solutions [10]. Here
we have shown that the classical cigar-like singularities are resolved like the point-like singularities, with singularity
resolution understood in terms of geometrical observables being well behaved. We could not show numerically the
resolution of the barrel-like singularities because showing this implies a fine-tuning in the initial conditions, but we
studied the limit of this kind of singularities, and there is nothing that indicates that they are not resolved, too. Then,
we considered the Locally Rotationally Symmetric (LRS) model of Bianchi II and explored how to find the solutions
with maximal density at the bounce. In this model at each point the space-time is invariant under rotation about a
preferred spacelike axis. Here we showed that the density can have the maximal value as a consequence of the shear
being zero at the bounce. This shear has a non trivial behavior, such as two maxima. The Kasner exponents look like
Bianchi I exponents far away from the bounce, which is consistent with the fact that classically Bianchi II approaches
Bianchi I when proper time goes to infinity [30–32]. It was then shown that one directional scale factor (a1) can
change its behavior up to three times (it has one bounce and two turn-around points) and the other two directions
(a2, a3) bounce once, for a total of three directional bounces and one global bounce (when the expansion is zero).

We also studied the solutions in the vacuum limit with maximal shear. This allowed us to study the extreme
solutions where all the dynamical contributions come from the anisotropies. These solutions present a small value of
the density at the bounce and unexpected shear and Ricci scalar behaviors because they are asymmetrical, reaching
their maximal value on one side of the bounce. We found that there are generic solutions in which the matter density
is larger that its value in the isotropic solutions, with point-like and cigar-like singularities. Some important solutions
are LRS, such as the one with maximal density and the vacuum limit.

In order to have control over the solutions we found that the best way to do it is to put the initial conditions at
the bounce (or near to it). There are also two important points that we have checked in this numerical work. The
first one is the convergence of the solutions and the second one is the evolution of conserved quantities, additionally
to the physical tests that the program must pass.

Finally, these results can be used as a starting point to study the Bianchi IX model in order to know if the approach
to the singularity of the effective solutions present Bianchi I behavior with Bianchi II transitions, as happens with the
classical solutions in the BKL conjecture. In case of the full LQC dynamics it would be interesting to know whether
the evolution of the semi-classical states reproduce all the new rich behavior that we get from the effective theory.
From this point of view our work can be seen as the first step in this direction, since we already have a systematic
study of the solutions of the effective theory. A similar study for the Bianchi IX model in underway [35].
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Appendix A: Convergence and Conservation

There are two important points that need to be cover when there is a numerical work: one is the convergence of
solutions and other is the evolution of conserved quantities. This means that, additionally to the physical tests that
the program must pass, also must present a convergence of solutions, i.e., numerical solutions approach to analytical
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ones when the accuracy is improved, this say us that we are near to the analytical solution with a small relative
error. Remember that numerical solutions (in general) are never on the analytical solutions, all we can say is that
they converge to them. Numerical solutions must also evolve on the constraint surface and they must preserve the
conserved quantities, this ensures that they are evolving on the physical phase space. In figure 6 it is shown the
convergence of Hamiltonian constraint (CH ≈ 0) when the time step is reduced, this also show that the constraint (or
equivalently pφ) is conserved. The quantities plotted in figure 6 are the relative error for the constraint

|(CH)init − CH(t)|
(CH)init

⇔ |(pφ)init − pφ(t)|
(pφ)init

, (A1)

with different resolutions, and the error functions

L1 = Max|CH(t)2 − CH(t)1| , L2 = Max
√
|C2H(t)2 − C2H(t)1| , (A2)

where the subindices in the Hamiltonian constraint mean resolution 2 (with dt2) and resolution 1 (with dt1), where
dt2 = dt1/2. The method used to integrate the equations is a Runge-Kutta 4 (RK4), while the resolutions used for
the convergence tests are dt = 0.01, 0.005, 0.0025, 0.00125, 0.000625. The error functions for (ci, pi) present similar
behaviors. We can define the convergence order as

n =
f1 − f2
f2 − f3

, (A3)

where fi is any evolved function at resolution i, with dti > dti+1. The convergence factor n for a RK4 must be
n = 24 = 16. We obtain in our solutions n ≈ 16.2, which say us that solutions convergence as fast as expected.

FIG. 6: Convergence of the constraint. The first plot shows the convergence of the solutions and that the constraint is conserved.
The second plot shows the error functions versus the bigger resultion used to calculate their.
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