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The advanced versions of the LIGO and Virgo ground-based gravitational-wave detectors are
expected to operate from three sites: Hanford, Livingston, and Cascina. Recent proposals have
been made to place a fourth site in Australia or India; and there is the possibility of using the
Large Cryogenic Gravitational Wave Telescope in Japan to further extend the network. Using
Bayesian parameter-estimation analyses of simulated gravitational-wave signals from a range of
coalescing-binary locations and orientations at fixed distance or signal-to-noise ratio, we study the
improvement in parameter estimation for the proposed networks. We find that a fourth detector
site can break degeneracies in several parameters; in particular, the localization of the source on the
sky is improved by a factor of ∼ 3–4 for an Australian site, or ∼ 2.5–3.5 for an Indian site, with
more modest improvements in distance and binary inclination estimates. This enhanced ability to
localize sources on the sky will be crucial in any search for electromagnetic counterparts to detected
gravitational-wave signals.

PACS numbers:

I. INTRODUCTION

Gravitational waves and electromagnetic counterparts
from the merger of compact binaries will carry comple-
mentary information, and the successful association of
the two types of merger signatures will allow many cru-
cial questions in stellar and binary evolution and cosmol-
ogy to be answered (see [1, 2] and references therein).
Good sky localization of gravitational-wave sources will
be crucial in searching for associated electromagnetic
transients. In this paper, we discuss ways in which relo-
cating one of the LIGO detectors to a site in Australia
or India could improve the prospects of multi-messenger
gravitational-wave astronomy.

The final S6 science run of the enhanced-LIGO gravi-
tational wave detectors [3], along with the third science
run of the Virgo detector [4] and GEO 600 [5], has re-
cently concluded. Construction of the second generation
of instruments is already underway, with 4 km Advanced
LIGO detectors undergoing installation at the Hanford,
WA and Livingston, LA observatories [6], with sensitiv-
ity expected to improve by about one order of magni-
tude. These two sites in North America are expected to
be joined by the Advanced Virgo [7] detector, located in
Cascina, Italy, to form a second-generation network con-
sisting of three sites. Recently, proposals have been made
to add a fourth site to the network, at Gingin in West-
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ern Australia (- 31◦21′28′′ S, 115◦42′50′′ E) , or outside
Bangalore in India (14◦14′ N, 76◦26′ E). The advantages
and disadvantages of the LIGO Australia and LIGO In-
dia proposals were studied by a working group within the
LIGO Scientific Collaboration, and their conclusions for
LIGO Australia reported in [8]. Kamioka Gravitational
wave detector, Large-scale Cryogenic Gravitational wave
Telescope (KAGRA - formerly known as LCGT) is a
planned interferometer with 3 km arms and cryogenically
cooled mirrors, located in Japan (36◦15′ N, 137◦11′ E)
200 metres below ground to reduce seismic noise [9]. In
addition to the 4-site advanced LIGO/Virgo networks,
we also consider the possible network with two advanced
LIGO detectors at Hanford, one at Livingston; advanced
Virgo at Cascina and KAGRA in Japan. In the follow-
ing, we use an acronym for denoting the network based
on the first initials of the sites involved: Australia (A),
Hanford (H), India (I), Japan (J), Livingston (L) and
Virgo (V); e.g., AHLV is a network consisting of LIGO
detectors in Australia, Hanford and Livingston and the
Virgo detector.

In this study, we make a comparison of the perfor-
mance of the proposed networks with the performance
of the 3-site HHLV network in terms of parameter es-
timation for compact binaries. We focus on binary
neutron-star systems, which are expected to be a preva-
lent source of observable signals for the advanced detector
network [10].

Using independent Bayesian analyses, we compare the
parameter estimation performance of each network for an
ensemble of sources spread throughout parameter space,
and demonstrate the improvement gained from the ad-
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dition of sites to the network. The relative improve-
ment for individual sources is assessed at a fixed dis-
tance or signal-to-noise ratio. Bayesian inference allows
us to extract all of the available information about sys-
tem parameters from the full data set. In contrast with
the timing triangulation method discussed below, all of
the data from all interferometers are taken into account
coherently. And unlike Fisher information matrix tech-
niques, which explicitly only describe the local structure
of the parameter space and are accurate only in the limit
of high signal-to-noise ratio (SNR), Bayesian inference
methods search through the full parameter space, show-
ing the global structure of posteriors, including multiple
modes or near-degeneracies.

Beginning with the work of [11], several other stud-
ies have analyzed sky-localization accuracy with different
network configurations [12–15]. These investigations ei-
ther used only a limited amount of information (e.g., tim-
ing information alone) or Fisher-matrix techniques that
may fail in a multimodal, degenerate parameter space.
A similar method that included second-order corrections
to the Fisher matrix found that these terms tended to
increase the estimated area on the sky [16]. The study
by Nissanke et al. [17] used Bayesian methods to com-
pare HLV, AHLV, HJLV and AHJLV networks, but used
a single detector at Hanford for the HLV case (so some
of their quoted improvements are simply due to greater
SNR accessible with 4 rather than 3 detectors). Further-
more, [17] used a population of sources randomly dis-
tributed in space out to z = 1, whereas we distributed
our sources at constant distance (for nested sampling
[NS] and Markov Chain Monte Carlo [MCMC] methods)
or constant SNR (Fisher matrix method) and varied the
other extrinsic parameters. This was done to ensure good
coverage of the extrinsic parameter space when assess-
ing the relative network performances. Meanwhile, the
study by Klimenko et al. focused on sky localization of
transient burst sources rather than coalescing compact
binaries with known waveforms [18].

The “Report of the Committee to Compare the Sci-
entific Cases for AHLV and HHLV”, which considered
the scientific advantages of moving one of the Hanford
detectors to Australia [8], was based in part on a pre-
liminary version of the work presented here. Ours is the
first study to apply Bayesian techniques to comparisons
of parameter-estimation accuracies with a network in-
cluding an Indian detector as well as networks with Aus-
tralian or Japanese detectors. Furthermore, we analyze
the impact of moving one of the detectors to Australia
or India on the accuracy of measuring masses, distances,
and other parameters in addition to sky localization for
the first time [43].

This paper is organized as follows. In section II, we de-
scribe the network configurations being analyzed. In sec-
tion III, we introduce the analysis techniques employed
in this paper. The simulations and their results are de-
scribed in section IV. We conclude in section V. We also
include an appendix discussing the impact of the change

of network configurations on false alarm probabilities and
detection thresholds for a fully coherent analysis.

II. NETWORK CONFIGURATIONS

Interferometric gravitational wave detectors are notori-
ously bad at determining the direction of incoming radia-
tion from short duration sources when used individually,
as the detector has good sensitivity over a large range
of angles. Although this allows an all-sky search to be
performed without the need for ‘pointing’, it also means
that the amplitude of the incoming signal cannot be used
to determine its location well. To be able to resolve the
position on the sky of a short duration gravitational wave
source, a network of interferometers is needed.

With more than one site it is possible to use triangu-
lation to determine the location of an observed signal us-
ing the observed time delay between different detectors.
With two sites, this method can resolve the position to
within a ring on the sky centered on the axes between
the sites; with three sites this is reduced to two patches;
but the addition of a fourth site allows a unique patch
to be determined for each source. The limiting factors in
the accuracy of the timing method are the distances be-
tween the sites in the network and the timing accuracy of
the sites, which is itself governed by the signal-to-noise
ratio and the effective bandwidth of the signal in each
detector [12]. So, to achieve a better sky resolution for
any particular gravitational wave, a network should con-
sist of detectors with a wide band of sensitivity, with the
longest possible baselines between sites. As the sensitive
band of the noise curve is generally limited by available
technology and fundamental noise sources, we are left
with the option of dispersing the detectors as widely as
possible.

Given the necessity to build detectors on Earth, the
maximum possible baseline would be the diameter of the
Earth, 42.5 ms (distances converted to gravitational-wave
travel times). The existing LIGO-Virgo network of de-
tectors consists of three sites, at Hanford, Livingston and
Cascina, all in the northern hemisphere. The longest
baseline between detectors in this network, Hanford-
Virgo, is 27 ms. With the addition of the Gingin site to
the network, this is increased to 41 ms for the Livingston-
Gingin baseline, close to the maximum possible, and the
two baselines from Gingin to the other sites are all also
of great length. The Japanese and Indian sites similarly
increase the longest baseline, with Japan being closer to
the U.S. sites but India closer to Virgo. All times are
given for reference in table I.

In this study, we compare the networks under the as-
sumption that all detectors are operational at the time of
the observation of a signal. In practice, however, detec-
tors have limited duty factors. The probability of having
at least three non-colocated detectors up at a given time
is higher with the larger networks than with the HHLV
network, increasing the probability for decent source lo-
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H L V A I J

H 0 10 27 39 36 25

L 10 0 26 41 39 32

V 27 26 0 37 22 29

A 39 41 37 0 14 7

I 36 39 22 14 0 21

J 25 32 29 7 21 0

TABLE I: Table of gravitational-wave travel times between
sites (Hanford, Livingston, Virgo, Australia, India, Japan,
identified by their first letters), in milliseconds. The maxi-
mum possible baseline for a terrestrial network is 42.5 ms.

calization.
Although the triangulation method above captures

well the essential reason for desiring a longer baseline,
the methods used in this paper are based on a fully co-
herent Bayesian analysis of the data to extract posterior
probability functions on the parameters of interest. This
method naturally incorporates the information from the
time delays between sites, but it also includes the infor-
mation from the amplitudes and relative phases of the
signals present in each detector. This information can be
used to further restrict the sky location, for example by
eliminating the secondary maximum in the sky location
for the majority of signals in the 3-detector network.

The addition to the network of a fourth site also gives
a fourth separate detector orientation (instead of the
replica of the H1 detector in the HHLV network). This
raises the possibility of improved measurement of the
other parameters of the source, in particular, the mea-
surement of the polarization angle ψ and inclination an-
gle ι of the gravitational wave may be expected to im-
prove in certain cases. We perform a comprehensive com-
parison of measurement accuracies of these and other pa-
rameters encoded in the gravitational-wave signal from
an inspiraling binary composed of non-spinning neutron
stars.

III. ANALYSES

For this study, we used two independent Bayesian in-
ference codes that implement two different techniques:
the LALInferenceMCMC code (based on the SPINspi-
ral code [19–21]) uses a Markov Chain Monte Carlo al-
gorithm (MCMC) [22], while the Inspnest code [23, 24]
uses nested sampling [25].

Both techniques stochastically sample the parameter
space in a search for the parameters that best match the
observed data, simultaneously finding the set of param-
eters that yield the best fit to the data, and determin-
ing the accuracy of the parameter estimation. This is
achieved by calculating the posterior probability density

function (PDF) on the parameter space ~θ of the signal,

given the data in the frequency domain d̃, and a signal

model hypothesis H, which is

p(~θ|d̃, H) =
p(~θ|H)p(d̃|~θ,H)

p(d̃|H)

∝ p(~θ|H) exp

(
−1

2
〈d̃− h̃(~θ)|d̃− h̃(~θ)〉

)
,

(3.1)

where p(~θ|H) is the prior probability density of the pa-

rameters ~θ and h̃(~θ) is the model used to describe the
signal in the frequency domain [26]. The noise-weighted
residuals in the presence of Gaussian noise with power
spectral density Sn(f) are given by

〈d̃− h̃(~θ)|d̃− h̃(~θ)〉 = 4

∫ ∞
0

∣∣∣d̃(f)− h̃(f ; ~θ)
∣∣∣2

Sn(f)
df. (3.2)

For these simulations, for the LIGO and Virgo detec-
tors, including the A and I sites, we used simulated noise
with noise power spectral density Sn(f) similar to the
Advanced LIGO design curve from the LIGO Algorithm
Library (LAL) [27]. Use of the Advanced LIGO noise
curve for the Advanced Virgo detector may change the
absolute results slightly, however the relative improve-
ments ought to be consistent. The noise curve fit has a
functional form of
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 , (3.3)

where S0 = 1049 Hz−1 and f0 = 215 Hz. For the KA-
GRA detector, an interpolated KAGRA design sensitiv-
ity curve was used [9, 28].

The MCMC method used by LALInferenceMCMC ex-
plores the parameter space with a random walk, using
the Metropolis-Hastings algorithm to simulate samples
~θ from the posterior probability distribution function

p(~θ|d,H). LALInferenceMCMC uses a variety of op-
timisation techniques, including parallel tempering, to
converge on the modes of the distribution and ensure ad-
equate mixing of the chain [19–21]. It was started with
randomly offset parameter values to simulate imperfect
initial inputs from the detection pipeline. Five inde-
pendent MCMC chains were run on each event to allow
for tests of convergence. In particular, we checked that
all chains converged to the the same likelihood (within
expected fluctuations), and confirmed that the Gelman-
Rubin statistic was close to unity, R < 1.01 [29].

The nested sampling algorithm used by Inspnest oper-
ates by generating and replacing samples from the prior

distribution p(~θ), gradually shrinking the volume sam-

pled by imposing a limit of minimum likelihood p(d|~θ,H)
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on each replacement sample [25]. Inspnest samples the
prior distribution using an MCMC algorithm, which is
optimised for exploring the structure of the limited prior,
with jumps proposed through differential evolution, and
along possible degeneracies in parameter space [23, 24].
It is designed to compute the evidence p(d|H), but the
output samples from the prior can be weighted appropri-
ately and resampled to produce samples from the poste-
rior distribution. Multiple parallel runs were performed
for each signal to ensure coverage of the parameter space,
and the results merged to form the posterior.

The output from both Bayesian codes is a list of sam-

ples from the posterior distribution p(~θ|d, h), which are
then used to estimate the mean, variance, and percentiles
of the distributions. We performed two-dimensional
binning and used a greedy algorithm to compute two-
dimensional minimum probability intervals, as explained
in section IV.

As well as the two Bayesian methods, we also used the
Fisher information matrix (FIM) to estimate the mea-
surement uncertainties. The FIM technique, which ap-
proximates the likelihood surface quadratically near the
likelihood peak, has a long history in gravitational-wave
parameter estimation (e.g., [30]). It is known to suf-
fer from a number of flaws, particularly in the low-SNR
limit (when the quadratic approximation breaks down),
or when correlations between parameters are very signif-
icant [31]. Furthermore, the Fisher information matrix
is entirely local, and only approximates the shape of the
maximum where it is evaluated, ignoring other maxima
in the global parameter space which are picked up by the
Bayesian analyses. On the other hand, the FIM tech-
nique is computationally inexpensive, and hence allows
a larger number of sources to be simulated in order to
improve statistics.

The signal model for a non-spinning inspiral signal re-
quires nine physical parameters: the chirp mass M =
(m1m2)3/5(m1 + m2)−1/5 and the symmetric mass ra-
tio η = m1m2(m1 + m2)−2 (where m1 and m2 are the
individual masses), right ascension α, declination δ, incli-
nation ι, orientation ψ, the luminosity distance dL, the
time of coalescence tc and the phase at coalescence φ.
For the Bayesian analyses, the prior probability distri-
bution was assumed to be isotropic on the sphere of the
sky, and on the inclination of the binary relative to the
line of sight, and proportional to dL

2. All other priors
are uniform unless otherwise specified.

IV. SIMULATIONS

For this study, we assumed that a successful detection
has already been made, and we have the correct wave-
form model to process the data, so we did not perform
evidence calculations or model selection. The waveform
model used for injection in all cases was generated by
the LIGO Algorithm Library GeneratePPNInspiral rou-
tine [27], which uses a time-domain approximant at 2.0

pN order in phase and 0 pN order in amplitude [32].
All injections used symmetric binary neutron star sig-
nals with masses m1 = m2 = 1.4M� as observed in
the detector frame. For recovery and posterior calcu-
lation, we used the frequency-domain stationary phase
approximation TaylorF2 approximant from LAL at 2.0
pN order (see, e.g., [33, 34] for additional information on
post-Newtonian waveform approximants).

Injections were coherently made into four network
configurations: (i) HHLV, (ii) AHLV, (iii) HILV, (iv)
HHJLV. All injections were performed using Gaussian
colored noise, using the Advanced LIGO power spec-
tral density approximated by Eq. (3.3) for the Advanced
LIGO and Advanced Virgo sites (including Australia and
India), and a fit to the KAGRA noise curve for the J de-
tector in the HHJLV network. In each of the four-site net-
works the noise realizations were kept the same in each
network, although the sites are moved. In the HHJLV
network the noise realisation in the HHLV portion was
the same as in the other 4-site networks. We also exam-
ined the possibility of rotating the Australia detector by
45◦, and found very similar results to the AHLV case,
which are omitted from further discussion for brevity.

The additional A and I detectors were positioned with
their arms oriented along the local North and East vec-
tors projected onto the tangent plane to the Earth’s sur-
face at the site, whose locations are given in section I.
The J detector was aligned with its y-arm 19◦ from the
local North vector as the geometry of the detector is con-
strained by the existing underground tunnels.

As the speeds of the methods differed, we performed a
different set of simulations with each method, with the
following details.

Nested Sampling

The nested sampling implementation was able to run
on a large set of injections. All signals were injected at a
luminosity distance of 180 Mpc, but the inclination an-
gle, polarization angle, right ascension and declination
were located on a 5 × 6 × 5 × 5 rectangular grid in the
α × sin δ × cos ι × ψ parameter space for a total of 750
injections. This resulted in a range of SNRs between 5
and 35, but mostly between 7 and 25. We chose low
and high frequency cutoffs of 30 Hz and 2048 Hz, which
included the maximum frequency of the inspiral signal
as no merger or ring-down components were used. Of
the 750 signals, 728 were detected in all network con-
figurations, and it is these we will use for the summary
statistics throughout the remainder of the paper. The
nested sampling search, by its nature, samples the entire
prior range given for the parameters. In this case, the
total mass M = m1 + m2 was assumed to be between
2 and 35 M�, with component masses allowed to be in
the range m1,m2 ∈ [1, 30]M�. The prior distribution on
M used was p(M) ∝ d2LM−5/6, chosen as an approx-
imation to the Jeffrey’s prior which sets the prior as a
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function of the Fisher matrix Γ on the parameter space,

p(~θ) ∝
√

det Γ(~θ), in order to improve sampling where

the template bank density is highest [35].

MCMC

The MCMC method was used to run on a randomly
chosen subset of the injections that were analyzed with
nested sampling (computational constraints prevented us
from using the full set of injections). Results from 42 in-
jections are used in this analysis. For consistency, the
MCMC runs employed the same priors and frequency
range for the overlap integral as the nested sampling runs.
The MCMC results on individual injections matched the
nested sampling results, therefore allowing us to gain
extra confidence in the Bayesian parameter estimation.
However, because of the concern that smaller numbers
of runs could increase statistical fluctuations, we do not
quote absolute accuracies for MCMC runs, but only com-
pare the expected parameter estimation accuracies for
different network configurations.

Fisher Matrix

The FIM has the advantage of being computationally
inexpensive, and so permits a large Monte Carlo over in-
jections. Therefore, we used the FIM to confirm the re-
sults of our Bayesian analyses. We used a low-frequency
cutoff of 30 Hz and integrated up to the innermost stable
circular orbit frequency, around 1600 Hz.

For this study, we varied all angles in a Monte Carlo
of 4000 points, adjusting the distance to keep the total
network SNR equal to 30 for all injections in all network
configurations. We chose injections with this relatively
high value of SNR, rather than the SNR distribution used
for nested sampling and MCMC studies, because of con-
cerns about the the accuracy of the FIM approach outside
the high-SNR limit. The SNRs were separately normal-
ized to 30 for all networks, including the five-detector
HHJLV network; therefore, results for that network from
the FIM study are expected to be worse than those ob-
tained with Bayesian studies, which would normally have
higher SNRs in the five-detector network than the four-
detector networks for a given injection.

A. Quantities compared

Although our techniques make full nine-dimensional
posterior PDFs available, these are unwieldy to compare
or visualize. So we typically consider only one- or two-
dimensional PDFs marginalized over the remaining pa-
rameters, with examples shown in figures 4 & 3. How-
ever, to allow us to make comparisons, we had to restrict
ourselves to particular estimators for the PDFs, with the

understanding that unless PDFs are extremely narrow
or are described by a simple analytical function (e.g., a
Gaussian), a few estimators are not sufficient to describe
all of the information contained in the PDFs.

We estimated the width of a particular one- or two-
dimensional PDF as follows. For a given fraction 0 <
F < 1, the F -width of a one-dimensional PDF was
defined as the width of the smallest region that con-
tains that fraction F of the posterior PDF. Thus, the
95% width represents the width of the smallest region
of parameter space that contains 95% of the total pos-
terior probability. A similar approach was used for two-
dimensional PDFs in (inclination, distance) space and
(right ascension, declination) space, with pixels of a fixed
size (0.25 deg2) being used in a greedy algorithm to esti-
mate the sky area for sky localization.

We also define a “standard accuracy” (by analogy with
the standard deviation) as the square root of the mean of
the sum of the squared differences between the points in
the PDF (sampled according to the posterior) and the
true value. Thus, for a marginalized one-dimensional
PDF,

standard accuracy =

√√√√ 1

N

N∑
i=1

(xi − xtrue)2.

For a PDF whose mean is equal to the true value, the
standard accuracy is just the standard deviation. For
a delta-function PDF that is biased away from the true
value, the standard accuracy is the error. In general, the
standard accuracy is equal to the sum, in quadrature,
of the standard deviation of the PDF and the difference
between the PDF mean and the true value.

Standard accuracies are sensitive to systematic biases
in parameter estimation. Sources of bias include the ef-
fect of using a different waveform family for injection and
recovery. For the waveforms considered here, we expect
that these differences will not significantly affect sky lo-
calization for non-spinning signals, but could contribute
to biases in the mass parameters. Quantification of the
bias induced by the use of different waveform approxi-
mants is a major goal of future work on parameter esti-
mation.

B. Relative Improvements

In the following sections, we present the results of each
of the three analyses of the differences in parameter es-
timation accuracy between the three networks. In the
case of the two Bayesian codes, we measure the 95% con-
fidence intervals for each parameter and compute the ra-
tio of these in comparison to the result from the HHLV
network for the same injection. The median value of the
ratio is quoted in each table, along with the range incor-
porating the 5% and 95% quantiles of the distribution.
This gives some measure of the spread of the ratios across
different sky positions, locations and orientations.
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AHLV / HHLV HILV / HHLV HHJLV / HHLV

Parameter 95% width std. acc 95% width std. acc 95% width std. acc

M 0.97+2.03
−0.66 0.93+2.59

−0.66 1.00+2.18
−0.65 0.85+2.27

−0.73 0.82+1.92
−0.80 0.72+3.23

−0.69

η 0.93+3.27
−0.70 0.94+3.34

−0.80 0.96+1.26
−0.59 0.80+1.63

−0.55 0.88+1.72
−0.63 0.77+3.61

−0.50

tc 0.62+1.06
−0.47 0.46+1.02

−0.41 0.71+1.86
−0.51 0.62+1.22

−0.56 0.55+0.60
−0.42 0.37+1.98

−0.32

dL 0.93+0.29
−0.23 0.98+0.11

−0.36 0.93+0.38
−0.24 0.96+0.17

−0.35 0.85+0.40
−0.27 0.95+0.19

−0.33

α 0.50+1.23
−0.29 0.43+0.77

−0.41 0.59+0.53
−0.46 0.47+1.87

−0.45 0.50+0.83
−0.43 0.46+1.47

−0.44

δ 0.43+0.74
−0.35 0.27+0.98

−0.23 0.50+0.70
−0.38 0.46+0.97

−0.43 0.55+0.62
−0.42 0.29+1.67

−0.24

ι 0.85+0.51
−0.31 1.01+0.64

−0.56 0.88+0.42
−0.52 1.00+0.35

−0.41 0.82+0.68
−0.45 1.04+0.54

−0.47

ψ 0.98+0.38
−0.60 0.98+0.16

−0.17 0.97+0.38
−0.66 0.99+0.11

−0.25 0.95+0.55
−0.63 0.99+0.17

−0.15

α− δ 0.27+0.65
−0.21 — 0.30+0.89

−0.22 — 0.38+0.77
−0.29 —

dL − ι 0.76+0.49
−0.32 — 0.80+0.36

−0.54 — 0.76+0.57
−0.51 —

TABLE II: Comparative 95% interval widths and standard accuracies for one-dimensional PDFs, and comparative 95% areas
for two-dimensional PDFs (last two lines) averaged over all injections, calculated using the MCMC algorithm. All values are
reported as fractions of the corresponding values for the HHLV network configuration. The median values of the ratios across
all injections are computed; the error bars correspond to the spread between the 5% and 95% quantile values of these ratios
across all injections. See text for details.

AHLV / HHLV HILV / HHLV HHJLV / HHLV

Parameter 95% width std. acc 95% width std. acc 95% width std. acc

M 1.00+0.80
−0.40 1.00+1.92

−0.56 1.00+0.71
−0.47 1.02+1.39

−0.68 0.92+0.33
−0.37 0.98+0.34

−0.42

η 1.00+0.78
−0.38 1.02+1.28

−0.51 1.00+0.70
−0.44 1.01+1.14

−0.56 0.92+0.30
−0.29 0.98+0.35

−0.38

tc 0.73+0.54
−0.47 0.69+1.04

−0.61 0.69+0.61
−0.46 0.62+0.90

−0.52 0.68+0.32
−0.43 0.66+0.49

−0.57

dL 1.00+0.33
−0.21 0.98+0.15

−0.25 1.05+0.45
−0.30 0.91+0.53

−0.30 0.92+0.25
−0.24 0.98+0.16

−0.30

α 0.67+0.58
−0.48 0.61+0.88

−0.55 0.62+0.52
−0.47 0.56+1.00

−0.50 0.60+0.40
−0.44 0.56+0.59

−0.52

δ 0.50+0.70
−0.40 0.39+1.12

−0.34 0.61+0.59
−0.48 0.48+1.02

−0.41 0.67+0.33
−0.49 0.59+0.53

−0.49

ι 0.93+0.24
−0.46 0.91+0.35

−0.58 0.86+0.28
−0.47 0.83+0.56

−0.56 0.86+0.19
−0.44 0.90+0.26

−0.59

ψ 1.00+0.19
−0.52 0.99+0.32

−0.51 0.97+0.11
−0.66 0.91+0.32

−0.63 0.93+0.11
−0.52 0.97+0.22

−0.56

α− δ 0.32+0.78
−0.24 — 0.43+0.87

−0.32 — 0.33+0.51
−0.22 —

dL − ι 0.90+0.29
−0.45 — 0.88+0.44

−0.49 — 0.53+0.24
−0.27 —

TABLE III: Comparative 95% probability interval widths and standard accuracies between alternative network configurations
and the HHLV network, calculated using the nested sampling algorithm. The median values of the ratios across 728 injections
detected in all networks are computed. Errors quoted correspond to the 5% and 95% quantiles of the distribution of ratios, as
in table II. For α− δ plane, 95% probability intervals are calculated using a greedy binning algorithm.

Parameter AHLV/HHLV HILV/HHLV HHJLV/HHLV

M 1.00 1.00 1.02

η 1.00 1.00 1.02

tc (msec) 0.54 0.56 0.65

dL 0.77 0.66 0.71

α (deg) 0.66 0.56 0.50

δ (deg) 0.31 0.57 0.62

ι (deg) 0.76 0.67 0.70

ψ (deg) 0.77 0.67 0.69

φc (deg) 0.88 0.84 0.91

α− δ (deg2) 0.29 0.35 0.47

TABLE IV: Ratios of median standard deviations for each parameter and the sky area as reported by the Fisher information
matrix, as a function of network configuration. All injections are re-normalized to an SNR of 30 in the given network, so the
last column, corresponding to a five-detector network re-normalized to the same SNR as the four-detector networks, can not
be directly compared to similar columns in the tables above.

MCMC results

In table II, we average comparisons of the 95% con-
fidence intervals across the 42 injections analyzed with

the LALInferenceMCMC code. We show the values of
the 95% confidence interval widths for the extended net-
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work configurations as fractions of the same widths for
the HHLV configuration. Table II lists the median ratio
of the size of the 95% probability region over all of our
injection runs, while the 5% and 95% percentiles of the
distribution of ratios are shown in super and subscript,
to indicate the range of the results.

As discussed in more detail below, the accuracy with
which individual masses can be recovered is not signifi-
cantly affected by the network configuration. This con-
forms to our expectation that mass measurements, which
come from waveform phasing, are constrained primar-
ily by the total network SNR. Sky localization accuracy
can be significantly improved in both directions when a
fourth site is added to the network. Timing accuracy at
the geocenter is strongly correlated with sky localization
and is similarly improved. A fourth site also moderately
improves the accuracy of distance measurements.

We should particularly point out the next-to-last line
of the table, “α − δ”. The area of this 2-dimensional
PDF is a direct measure of the uncertainty in estimat-
ing the position of the source on the sky. The error box
shrinks by a factor of∼ 4 when the second Hanford detec-
tor is moved to Australia or India because of the much-
improved north-south baseline. This improvement in sky
localization accuracy will make the detection of an elec-
tromagnetic counterpart to the gravitational-wave source
more feasible, and is perhaps the biggest boon in moving
one of the Hanford detectors to India or Australia.

Inspnest results

In figure 1 we show the results of determining the sky
location of 728 injections with the Inspnest nested sam-
pling code. The lines show the cumulative histograms
for the 95% confidence interval on the sky location of
the binary for each of the network configurations consid-
ered. As expected, the addition of a fourth site to the
network yields a significant improvement in the resolu-
tion of the sky location, due to the increased baseline
for relative timing measurements. The greatest improve-
ment is seen for the addition of the the Australian de-
tector, yielding the longest north-south baseline. HILV
and HHJLV are both great improvements on the HHLV
network, and have similar performance for the majority
of signals, although HHJLV suffers from fewer outliers
with sky resolution greater than 100 square degrees, pos-
sibly due to the increased signal-to-noise ratio from the
additional detector.

This improved performance is reflected in the compari-
son of the median 95% confidence interval for each of the
networks, given in table V. The median resolution for all
sources shrinks from 30.25 square degrees to 6.625 square
degrees between HHLV and the most accurate AHLV net-
work. In addition to the reduction of the median resolu-
tion, these improvements are also reflected in the relative
resolutions of the networks. Table III shows the median
ratio of the 95% probability region size for the extended
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FIG. 1: Cumulative histogram of the 95% confidence interval
for the area of the sky in square degrees, estimated using the
Inspnest analysis of 728 signals which were detected in all net-
work configurations, covering the range of sky locations and
orientations of the binary. Different lines correspond to differ-
ent networks: green dot-dashed line, AHLV; red dashed line,
HHLV; cyan solid line, HILV; black solid line HHJLV. The ex-
tended networks show significantly better performance than
the 3-site network, with AHLV offering the highest fraction of
signals resolved to better than 10 square degrees. HILV and
HHJLV show similar performance to each other for a large
fraction of the signals, but the HHJLV network avoids the
tail of poorly resolved signals located in regions of parameter
space with poor sensitivity in HILV.

networks against HHLV; note that the median of the ra-
tios for the sky location intervals (α − δ row) is not the
same as the ratio of the medians in table V.

The qualitative behavior inferred from the LALInfer-
enceMCMC and Inspnest runs is in excellent agreement.
Some differences between the “typical” results tables III
and II are due to the impact of statistical fluctuations in
the smaller subset of injections analyzed with LALInfer-
enceMCMC ; however, we have confirmed quantitative
agreement between the two methods on the individual
injections being analyzed.

For a more detailed look at the performance of the
networks for the non-sky-location parameters, we show
in figure 5 the cumulative probability distributions for
the fraction of signals found within a given probability
interval width for M, η, dL, ι, ψ and tc. Although our
range of injections at constant distance is astrophysically
unrealistic, these figures give a good idea of the relative
performance of the networks across an isotropic distribu-
tion of sky position, polarisation and inclination angles.
We can see immediately that the improvement in the res-
olution of the chirp mass and η parameters is marginal,
as evident from tables III. The slightly improved perfor-
mance for HHJLV can be attributed to the higher signal-
to-noise ratio in that network thanks to the fifth detector.

With the distance and inclination angle parameters,
we see slight improvements, with the biggest effect again
being produced by the additional SNR in the HHJLV
network. Due to degeneracies in the parameter space,
the effect is more pronounced when the two dimensional
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distribution is considered, as in section IV C. From table
III, we see that the median relative improvement of the
polarization angle ψ resolution is minimal, however in fig-
ure 5 it is apparent that for the 4-site networks there are
a greater fraction of injections which are resolved well.
This is explained by the large fraction of signals (∼ 50%)
which have a very broad distribution where the ψ pa-
rameter is degenerate with the phase of the signal, when
ι is close to 0 or π. Although the median of the im-
provement ratio for individual sources is ∼ 1, the mean
is ∼ 0.95 for HALV and ∼ 0.85 for HILV and HHJLV,
indicating that the sources which can be resolved in ψ are
better resolved in the 4-site networks. The tc distribu-
tion shows similar performance for all 4-site networks for
most signals, with slightly fewer signals poorly resolved
in time with the HILV network than AHLV, reflecting
the shorter tails of the distributions in figures 1 and 2
(sky localization is strongly correlated with the accuracy
of timing the gravitational wave at the geocenter).

Network Median 95% conf. int.

AHLV 6.625 deg2

HHLV 30.25 deg2

HILV 9 deg2

HHJLV 9.5 deg2

TABLE V: Median 95% confidence intervals in square degrees
for each network configuration.

Fisher matrix results

The Fisher information matrix results are presented in
table IV. These are ratios of the median standard de-
viations for each parameter, taken from a Monte Carlo
over angles (with distance adjusted to keep the total net-
work SNR equal to 30). According to the FIM results,
the greatest change in sky localization comes from the
improvement in the measurement of the declination an-
gle with a network that includes an Australian detector.
The declination angle can be measured more accurately
by a factor of ∼ 3 with an AHLV network relative to the
HHLV network, as a detector in the Southern hemisphere
greatly improves the latitudinal baseline of the network,
allowing for superior angular resolution in that direction.
The last line in table IV indicates the Fisher-matrix es-
timate of the sky area, defined following Eq. (43) of [36].
Figure 2 shows a histogram of the sky-area accuracy for
two network configurations.

C. Parameter Degeneracies

In cases where a signal is observed with marginal SNR
in one or more detectors, or when the orientation of the
binary is unfavourable (i.e. ι is close to 90◦), a degen-
eracy between two sky locations often emerges. The ad-
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FIG. 2: A cumulative histogram over injections of the esti-
mated accuracies in sky localization obtained via the Fisher
information matrix technique. Blue, green, red and cyan
are the distributions of sky-localization uncertainties for the
AHLV, HHLV, HHJLV and HILV networks, respectively. All
injections are independently normalized to an SNR of 30 for
each network configuration, to avoid concerns about the trust-
worthiness of FIM results at low SNRs. The relative shapes
of the histograms are thus more relevant than their actual
values.

dition of the fourth site to the network ensures that the
source can be localised to a single region on the sky, as
shown in the 2-dimensional PDFs of figure 4 which com-
pares the 95% probability regions for different networks
but the same injection. Note the two areas on the sky
in the left panel, indicating a degeneracy that exists in
a network with three sites but is removed when a fourth
site is added.

Moderate improvements also appear in inclination
and luminosity distance measurements. Here, the one-
dimensional estimators used in Tables II, III and IV do
not tell the full story because of the strong correlation
between inclination and luminosity distance. The sec-
ondary maximum on the sky position also corresponds to
a secondary mode in the cos ι parameter corresponding
to the transformation ι 7→ π − ι. In fact, the addition of
a fourth site allows this degeneracy to be broken, as can
be seen by comparing the marginalized one-dimensional
PDFs for a sample injection the HHLV and AHLV net-
work configurations, plotted in figure 3. Although the
width did not shrink significantly from red to blue pos-
teriors, with the AHLV network configuration the poste-
riors are unimodal and centered on the true values, as a
degeneracy in the inclination-distance space is broken.

Both these effects are clearly visible in figure 4, which
shows the breaking of the degeneracy in dL–ι–α–δ space
as projected onto the dL–ι and α−δ planes. In this exam-
ple all the expanded networks allow the secondary max-
imum to be eliminated. Figure 6 shows the cumulative
distribution of the 95% probability region for the dL–ι
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space, with the improvement in two dimensions more
prominent than looking at dL or ι individually (c.f. figure
5).

FIG. 3: Comparison of the one-dimensional PDFs for a typi-
cal source as detected by the HHLV network (red) and AHLV
network (blue). Note the bimodal posteriors in right ascen-
sion and declination for the HHLV network vs. unimodal ones
for the AHLV network. The latter network also allows for bet-
ter estimates of the posteriors for inclination and luminosity
distance, which is not properly reflected by the simple estima-
tors of the PDF width used in table II. Dashed lines indicate
the true injected values (different true values of the luminos-
ity distance were used for the HHLV and AHLV injections so
that the total network SNR is 15 in both cases).

On the other hand, the accuracy with which mass
parameters are measured does not improve as a conse-
quence of moving the site of the fourth detector to India
or Australia. We can speculate that the reason for this is
that information about masses comes primarily from the
phase evolution of the signal, and the accuracy in mass
estimation is predominantly set by the overall network
SNR. Meanwhile, masses do not strongly correlate with
extrinsic parameters (with the exception of the time of
coalescence), so their estimation is not significantly im-
proved by better sky localization or inclination measure-
ments.

The results from the Fisher information matrix are in
qualitative agreement with the two Bayesian approaches
regarding the partial breaking of the distance/inclination
degeneracy achieved by moving a detector to Australia or
India (leading to marginal improvements in both param-
eters, see table IV). They also indicate that the accuracy
with which masses can be measured is not affected by the
network choice.

V. CONCLUSIONS

In this paper we studied the effect on parameter es-
timation of different networks of advanced detectors.
We employed two different Bayesian techniques and the
Fisher information matrix to estimate the accuracy of
parameter recovery. We analysed a set of injections dis-
tributed in a grid in the extrinsic parameter space (with-
out varying the mass and distance of injections) with
the Inspnest code, and verified the results with LAL-
InferenceMCMC . We performed a large scale Monte
Carlo simulation using the Fisher matrix method with
constant-SNR injections. We found consistent results be-
tween the three methods, pointing to significant gains in
sky localization (typically by a factor of ∼ 3—4) and
modest gains in distance and inclination measurements
with a network including a fourth site. We found that the
4-site networks are able to better resolve the polarisation
angle of the source, in the cases where this is possible.
We found no significant effect on mass measurements.

Comparing the different network configurations, we
found, as expected, the strongest improvement in sky lo-
calization capability when the longest baseline (namely
AHLV) was used, but that a site in India also provides a
significant improvement in sky resolution. The HHJLV
network, with the shortest extra baseline, provides the
weakest improvement in sky resolution at a fixed signal-
to-noise ratio; however, the fifth detector in this network
can mitigate this, for an overall performance similar to
HILV, but with fewer signals in the tail of the distribution
with poor resolution.

We also find good agreement with previous work. In
particular, Fairhurst [13] finds 20-50% of signals localised
within 20 deg2 for HHLV, and up to 20% within 5 deg2

with HHJLV, for an ensemble of sources at fixed distance
of 160 Mpc, in good agreement with figure 1. Despite the
use of a different population of sources, Nissanke et al
[17] find results which qualitatively agree with our own.
Comparison of the Fisher matrix results in figure 2 with
Wen and Chen [15] shows good qualitative agreement
with their expected distribution for the HLV network at
fixed SNR of 15, when taking into account a factor of
(30/15)2 = 4 for the difference in SNR used (30 in our
case, 15 in theirs).

In the present study, we focused on binary neutron
stars (NS), which are the most “confident” source for the
advanced detectors, but which are not expected to have
significant spins [37]. On the other hand, black holes
(BH) in NS-BH or BH-BH binaries can be rapidly spin-
ning. Previous studies (see, e.g., [20]) have shown that
the presence of spin in one or both binary components
can aid sky localization by providing additional polar-
ization information through the precession inherent in
misaligned spinning binaries. Localization may be fur-
ther enhanced when a signal from a spinning binary is
captured by a four-detector network; on the other hand,
improved resolution of extrinsic parameters with the help
of a fourth detector site may aid in the reconstruction of
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FIG. 4: An example of the ability of a four-site network to break the degeneracy between multiple modes in α−δ and cos ι−dL
parameter space. This example shows the 95% confidence intervals from the HHLV (purple), AHLV (blue), HILV (green)
and HHJLV (orange) networks. The sky position can be confined to one region with the four-site network, while the partial
inclination angle degeneracy upon reflection is broken. The location of the injection in parameter space is indicated with a
star.

astrophysically interesting quantities such as spin-orbit
misalignment angles.

The improved ability to localize sources on the sky will
be crucial in any search for electromagnetic counterparts
to detected gravitational-wave signals (e.g., [1, 2, 38]).
Accurate measurements of the location of the merging
binary can also be useful even in the absence of electro-
magnetic counterparts, for example, in measuring typ-
ical binary kick velocities [39]. We thus conclude that
scientific considerations strongly favor an international
gravitational wave network with four or more sites.
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Appendix: False alarm probabilities in a coherent
search

It is instructive to ask how different network configu-
rations affect false alarm probabilities (FAPs), or, alter-
natively, what the detection thresholds would need to be
for a fixed FAP. We consider only the case of a fully co-
herent search; the FAP of triggers in searches that only
require coincidence between detectors in mass and time
of coalescence parameters, such as [40, 41], should not de-
pend on the accuracy of measuring the sky location and
other extrinsic parameters. If a coherent search is used,
and all detectors are assumed to have independent noise,
we might expect that the coherence constraint would be
stronger for two co-located detectors that should have
the same signal, and therefore HHLV should have a lower
FAP than AHLV or HILV for a fixed network SNR.

We provide a Bayesian treatment of this question by
comparing the odds ratio between the coherent signal
hypothesis GW and the noise hypothesis N for different
network configurations. The odds ratio is just the ratio
of posterior probabilities for the two models,

BGW,N =
P (GW |d)

P (N |d)
=
P (GW )

P (N)

P (d|GW )

P (d|N)
. (A.1)

The only term that depends on the network configura-
tion is the evidence for the presence of a signal, ZGW ≡
P (d|GW ), which can be written as

ZGW =

∫
p(~θ|GW )p(d|~θ,GW )d~θ. (A.2)
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We assume for the sake of simplicity that the prior

p(~θ|GW ) = k is constant in the small region where the

likelihood is significant, and the likelihood p(d|~θ,GW )
is Gaussian in the model parameters about a maximum

Lmax at ~θ0 (as assumed for the Fisher matrix calcula-
tion),

p(d|~θ,GW ) ≈ Lmax exp

[
−1

2
(~θ − ~θ0)C−1(~θ − ~θ0)T

]
.

(A.3)
This yields

ZGW = kLmax(2π)−N/2
√

detC, (A.4)

where C is the covariance matrix of the parameters, N
is the dimensionality of the model, and Lmax is the max-
imum likelihood of the data, given by

Lmax ∝ exp

(
−1

2

〈
d̃− h̃(~θ0)|d̃− h̃(~θ0

〉)
=
ρ2

2
. (A.5)

For a fixed network SNR (maximum likelihood), the ev-

idence is therefore proportional only to
√

detC, which
scales with the size of the region in parameter space to
which a signal’s parameters can be constrained.

Thus, for a fixed SNR, the Bayes factor is larger when
parameters are less precisely estimated. Due to the

shrinking size of the posterior distribution in sky loca-
tion, distance and inclination, we might expect a decrease
by a factor of ∼ 5 in the allowed fraction of the prior vol-
ume between the HHLV and AHLV or HILV networks.
Then, for a fixed detection threshold ρmin, the odds ra-
tio will be a factor ∼ 5 smaller for the AHLV or HILV
network than for the HHLV network. Conversely, if we
want to keep the same false alarm probability (same mini-
mal odds ratio required for detection), the SNR threshold
ρ2min ∼ 2 logLmax for the AHLV or HILV network must
increase by 2 log 5 relative to the HHLV network. This
corresponds to a very modest increase in the SNR: for
example, if the threshold is 12 for the HHLV network, it
will only rise to 12.13 for the AHLV or HILV network.

The analysis above assumes that the noise in all in-
terferometers is uncorrelated. While that is a reasonable
assumption for distant interferometers, various environ-
mental factors can lead to correlated noise in co-located
interferometers, such as the two possible detectors at
Hanford. This correlation can increase the threshold nec-
essary for detection. For example, at times when only
two of the four detectors in our presumed network are
operational, it may not be possible to make a convincing
detection if only the two Hanford detectors are operating
from the HHLV network, while any two detectors from
the AHLV or HILV network have a chance to detect a
sufficiently loud signal.
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FIG. 5: Cumulative histograms comparing the ability of the networks to resolve the individual parameters of main interest.
Plots show fraction of events found within a given width of the confidence interval. The chirp mass M and symmetric mass
ratio η (top row) do not benefit significantly from a 4th site, except through better uniformity of SNR across the sky. The
distance and inclination angle (middle row) show slight improvements in their resolvability but the effect is most marked in the
2D confidence intervals (see figure 6). The polarization angle ψ shows interesting behaviour, with the additional sites able to
resolve a greater fraction of the signal to within a given interval of ψ, but with the median ratio of intervals being approximately
unity (see table III). This is explained by the sizeable fraction of signals where the polarization angle is not well resolved. The
resolution of the time of coalescence parameter tc is similar for all 4-site networks, with 90% of signals resolved within 5 ms.
The longer tail of less well resolved times agrees with figures 1 and 2 which show a hint of longer tail in sky resolution for
AHLV compared to HILV.
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FIG. 6: Cumuative histogram comparing the ability of the
networks to resolve the signal in 2D dL–ι space. The im-
provement in parameter estimation with the 4-site networks
due to elimination of the secondary mode is more striking
here than in the individual dL and ι parameters (c.f. figure
5).


