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Jet Quenching via Gravitational Radiation in Thermal AdS

Edward Shuryak, Ho-Ung Yee, and Ismail Zahed
Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794

We argue that classical bulk gravitational radiation effects in AdS/CFT, previously ignored be-
cause of their subleading nature in the 1/Nc-expansion, are magnified by powers of large Lorentz
factors γ for ultrarelativistic jets, thereby dominating other forms of jet energy loss in holography at
finite temperature. We make use of the induced gravitational self-force in thermal AdS5 to estimate
its effects. In a thermal medium, relativistic jets may lose most of their energy through longitudinal
drag caused by the energy accumulated in their nearby field as they zip through the strongly coupled
plasma.

PACS numbers:

I. INTRODUCTION

This paper stems from two different motivations. One
is a (century old) quest to understand the radiation re-
action force in classical electrodynamics and general rel-
ativity, especially in higher space-time dimensions. The
second (practical) motivation is the need to estimate the
magnitude of such a classical force on a falling gravi-
tational body in thermal AdS5 space-time. This latter
problem is related to the empirically important issue of
jet quenching in strongly coupled quark-gluon plasma as
unravelled by recent collider experiments at RHIC and
LHC.

Because of these two different motivations, we make
the introduction a bit large to allow for a brief descriptive
of the history of both subjects which is perhaps needed
for some diverse readers. A more thorough analysis of
the radiation reaction force in electrodynamics in higher
even-space+time dimensions will be presented in a com-
panion paper [1].

A. Radiation reaction force

One general theoretical problem, with which theorists
such as Abraham, Lorentz, Dirac and others struggled
from about the beginning of 20-th century, deals with
the understanding of the radiation reaction force. The
concept of non-relativistic and relativistic classical radi-
ation loss can be found in most textbooks on classical
electrodynamics. For instance, the relativistic form of
the Larmor formulae for the power radiated by an accel-
erated charge reads

P = −2e2

3
ẍ · ẍ, (1.1)

with xa(τ) being the particle trajectory parameterized
by its proper time τ . The double dots reflect the proper
acceleration. It is not difficult to write down a longitu-
dinal force that drags the charged particle matching the
energy loss (1.1). This procedure refers to the radiation
or large distance derivation of the local foce, based es-
sentially on the energy-momentum flux radiated on an

asymptotic surface at infinity (large sphere). However,
there are many reasons for why a local derivation of the
self-force that only makes use of the local fields acting on
the accelarated charge is warranted.

There is a large body of research on this approach
for both scalar, vector (electromagnetism) and tensor
(gravity) radiation both in flat and curved space-time.
Once the energy loss is accounted for, the radiation
reaction force is fixed by the condition of balancing loss.
Putting aside some known paradoxes related to this
particular construction, we would like to focus on the
following specific questions:

(i) Is the radiation reaction force amenable to a
local definition from a regulated self-field at the instan-
taneous position of the charge?
(ii) In electrodynamics the radiation reaction force is
expressed via the acceleration, but in general relativity
particles move along geodesics for which the covariant
acceleration is zero. So what makes up the force?
(iii) The Larmor formula involves the acceleration
thanks to the dipole approximation in non-relativistic
electrodynamics, but what about higher derivatives in
higher dimensional settings and general relativity?

While we do not address all of these difficult issues
here, we aim at exploring the practical importance of
some theoretical proposals already in the literature. If
(i) is true, it would simplify calculations considerably,
especially in the case of general relativity since defining
distant surfaces in curved backgrounds is in general elu-
sive. More specifically, can the radiation reaction force
be the self-interaction force following from the charge’s
own field due to its past trajectory?

The closest to formulating an answer to a local defini-
tion of the self-force in four-dimensional gravity was the
work of Mino, Sasaki and Tanaka and also Queen and
Wald [2, 3], where the gravitational radiation reaction
force was obtained in a closed form

mẍa = Gm2ẋbẋc
∫ τ−

−∞
dτ ′ (1.2)(

1

2
∇aG−bca′b′ −∇bG

−a
c a′b′ −

1

2
ẋaẋd∇dG−bca′b′

)
ẋ′
a
ẋ′
b
,
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whereby the integral is carried over the past world line
of the particle up to a regulated time τ−. Here G− is
the retarded propagator for the Einstein equation with
the particle’s own stress tensor acting as a source. While
more details on this equation will be given below, here we
just note that the bracket in (1.2) is just the Christoffel’s
force from a metric perturbation as induced by the past
history of the particle. Note that the result (1.2) was
derived in harmonic gravitational gauge: in this work we
will ignore all subtleties that may be associated with this
particular gauge choice.

Does this force or its simplified analogues really work?
Clearly, for synchrotron radiation in flat four dimensional
space-time, a force given by an analogous expression
would vanish. The simplest way to see this is to note that
the retarded propagator in flat four-dimensional space-
time reads

G−(x, x′) =
1

2π
θ(x0 − x′0) δ((x− x′)2),

which is totally localized on the light cone. As a result,
there are simply no points on the synchrotron world line
that intersect the past light cone. However this drawback
is short lived if we are to notice that: 1) In curved space-
times the retarded propagator gets contributions from
light rays reflecting on the curved background thereby
causing intersections with the past light cone; 2) In even-
space+time dimensions the retarded propagator has sup-
port on the entire interior of past light cone even in flat-
space, causing contributions from the past history of the
particle. (1.2) is a valid local radiative self-force in grav-
ity.

We will use (1.2) to address the issue of jet quenching
in the AdS/CFT correspondence. Our main observation
is that for ultrarelativistic jets, (1.2) is to be used in the
regime of very short proper times such that the Taylor
expansion of all the factors in the numerator in proper
time would provide the first finite term after all infinities
are subtracted and renormalized. In our analysis, the
magnitude of the proper time ε is

ε ≈ 1/γ2 � 1, (1.3)

as will be made clear in later sections. In the small ε-
expansion the radiative self-force in curved and thermal
AdS5 follows from the finite term in (1.2) after using the
leading singularity of the retarded propagator G− with
the appropriate Taylor coefficient.

B. Jet quenching

Jets are the most spectacular aspect of QCD physics
in high energy setting. Their interaction with the
quark-gluon plasma in heavy ion collision has long been
deemed very interesting, starting from the early work
by Bjorken [4]. Indeed the phenomenon known as jet
quenching has been observed in heavy ion collisions at
RHIC; see early summary in Refs.[5, 6]. The observed

magnitude of jet quenching was significantly stronger
than predicted by the perturbative estimates.

A more spectacular jet quenching phenomenon has
been reported in the first LHC heavy ion run in November
2010: events with huge energy (≈ 100 GeV) having been
lost and dissipated into the quark gluon plasma. Many
surviving jets retaining a fraction of the initial energy
and travelling back-to-back to the trigger jet appear to
fragment outside the medium in the standard way. There
is no indication of collinear radiation in the jet cone or
nearby. The energy loss appears to be due to some longi-
tudinal force applied to the moving charge as opposed to
the expected transverse kicks due to perturbative QCD
(pQCD).

These observations strongly suggest the notion that
the quark-gluon plasma is strongly coupled and that it
needs to be treated in the AdS/CFT setting in trying to
understand the mechanism of energy loss. Some of the
previous works on this line will be briefly reviewed below.
What seems particularly important is the dependence of
the jet energy loss per unit length dE/dx on the jet en-
ergy E. For discussion purposes, let us assume that the
energy loss is of some power p of the energy:

dE/dx ∼ Epk(x) (1.4)

In pQCD the energy loss through radiation results in
splitting of the leading parton into many partons, each
carrying a fraction of the leading energy. The scaling na-
ture of pQCD implies that jet quenching is proportional
to the energy itself; −dE/dx ≈ E with p = 1. This is
radically different from e.g. standard synchrotron radia-
tion in accelerators which has a power p = 4. As noted
by Pomeranchuck in 1939 and more recently by Kharzeev
[8], the energy loss with p > 1 leads to the following

1

(p− 1)Ep−1
f

=
1

(p− 1)Ep−1
i

+

∫
k(x)dx. (1.5)

The interesting result is a finite final energy Ef even
if the initial jet energy is very large Ei → ∞. If so,
then all companion jets will have nearly same energy,
independent of the energy of the original (trigger) jet!

As we will show in this paper, the self-force from clas-
sical gravitational radiation of a falling ultrarelativistic
object in the holographic bulk does in fact produce a
power p > 1 of the Lorentz factor. Thus this interest-
ing behavior with higher energy jets stopping at shorter
distances seems to be also a feature of the AdS/CFT
correspondence.

C. Jet quenching in AdS/CFT

The idea that strong coupling physics is at work in
jet quenching and could be addressed in the context of
AdS/CFT was initially put forward by one of us (with
Sin) [9]. Since then, the number of applications and dis-
cussions along these lines is rather large, see in particular



3

[10–12] . For completeness, we briefly review these dis-
cussions of jets in the AdS/CFT context.

In QCD the simplest process in which jets have been
first seen is e+e− → hadrons. The newborn quark-
antiquark pair moves in random direction, and create
two back-to-back jets. Its description started from string
breaking models at low energies (e.g. the so called Lund
model) and later developed into an elaborate pQCD de-
scription of the partonic coherent cascade at high ener-
gies. The outcome is a good description of the data.

Therefore it is not surprising that the first papers ad-
dressing some of the issue in AdS/CFT set-up have the
same setting: two charged particles moving with veloc-
ity v back-to-back from each other [13, 14]. (The same
problem with non back-to-back velocities was addressed
earlier in the context of the pomeron problem [15]). As
the charged particles recede in thermal AdS, a light-like
string between them falls gravitationally in the bulk. The
gravitational hologram on the boundary CFT shows no
sign of a falling string, but rather a point-like explosion.
Indeed, the boundary energy-momentum tensor Tµν in
the comoving frame yields a spatial (pressure) part which
is not isotropic. The falling string has nothing to do with
a hydrodynamical explosion as no black-hole is formed.
The strong coupling regime does not tolerate jets, even
if the two charges move by straight lines as in e+e− →
hadrons. More details about this point-like explosion,
termed as “conformal collider physics”, was then dis-
cussed by Hofman and Maldacena [16].

Ultrarelativistic jets in holography are well approxi-
mated by light-like rays travelling near the UV boundary
of AdS. Their demise comes at the hands of holographic
bulk gravity which cause them to ultimately fall towards
the horizon and be absorbed by the standing black hole.
This scenario was put forward originally in [9], and re-
cently revisited and sharpened by many [17–19] (and ref-
erences therein). Although colored objects (gluons or
quarks) are the ends of the bulk strings, it was found
[10, 11, 17, 18] that their falling path, toward the black
hole in thermal AdS, is close to a geodesic. In this work,
for simplicity, we approximate the jet by an ultrarela-
tivistic body which falls on near-null geodesics, as ini-
tially suggested in [9]. We do not of course suggest that
the strings do not exist, but we simply do not focus on
its role in this work: obviously the gravitational radiation
and the braking force are there even without strings.

The current issue on jet physics in the context of the
AdS/CFT set up has now shifted to the question of what
exactly are the masses of these objects and how the jet
process is initiated. One of the main results is that the
shape of the geodesic describes “scale evolution” of a jet,
and is related to the jet quenching strength versus the
length x travelled since its production. The geodesic path
consists of two parts: a near horizontal one suggestive of a
very nonlinear rise of energy loss −dE/dx ≈ x2, followed
by a near-vertical plunge into the horizon, finished by
a jet explosion as it splashes on the black hole horizon.
Needless to say, both results need to be carefully tested

against the phenomenologically accessible information at
both RHIC and LHC. We will postpone this to the future.

D. synchrotron versus gravitational radiation

The first step toward relating the two very different
motivations mentioned in the earlier part of introduction
has been done by one of us (with Khriplovich) nearly 40
years ago [20], applying the same method to 4 problems:
synchrotron electromagnetic/gravitational radiations in
flat or curved 3+1 dimensional spaces in the ultrarel-
ativistic regime γ � 1. The results for the radiation
intensity are

Iflat
e.m. ≈ e2γ4/R2, Iflat

grav ≈ G4m
2γ4/R2,

Icurv
e.m. ≈ e2γ2/R2, Icurv

grav ≈ G4m
2γ2/R2, (1.6)

where the Schwarzschield metric was used for the curved
space. An ultrarelativistic particle was set to rotate at
the (unstable) circular orbit of radius R ≈ (3/2)rh. Note
the decrease of the powers of γ as we go from synchrotron
radiation in flat space to gravitational radiation around
a Schwartzchield black hole. Also note that the powers
of energy in the formulae consistently exceed one. In
the last case of (1.6), Newton’s constant G4 appears in
combination with the particle energy E = γ m. As a
result, if the particle is small and the massless limit m→
0, γ →∞,mγ =drag fixed is considered, the limit is non-
singular and thus the answer is the only possible one
which makes sense physically.

For pedagogical reasons, we would like to discuss the
problem, i.e. gravitational radiation and self-force in
AdS5 , in two steps. In this subsection we will com-
pare the settings of the synchrotron radiation with that
in pure or empty AdS5. Then in later section, we will
introduce thermal AdS5, and study our problem in two
different coordinate frames complementarily; the plasma
rest frame and the jet comoving frame.

The familiar setting for synchrotron radiation consists
of a point charge rotating on a circle of fixed radius R
with γ = E/m � 1. The ratio of the proper time τ to
the coordinate time t is fixed, and e.g.

ẋa =
dxa

dτ
= γ

dxa

dt
. (1.7)

The 4-velocity is tangent to the world line, while the ac-
celeration (induced by appropriate magnetic field) is or-
thogonal to it and is directed radially toward the circle’s
center. All odd derivatives of coordinates share same
direction with ẋa while all even ones with ẍa. An ex-
tra power of gamma appears for each derivative over the
proper time. While the synchrotron radiation is a text-
book example in 3+1 dimensional space-time, it is not so
in other dimensions. The difference, in respect to the self-
force issue, will be discussed in 2+1 and 4+1 space-times
in the companion paper [1]. We note that these space-
time dimensions are the relevant ones for holographic
models of QCD in 1+1 and 3+1 dimensions.
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E. Motion in Schwarzschield versus AdS5

space-times

In the gravity setting the problem discussed in Ref.[20]
is that of an ultrarelativistic particle rotating in (unsta-
ble) circular orbit of a 3+1 dimensional Schwarzschield
metric in polar coordinates (t, r, θ, φ). In contrast, an
empty AdS5 space is defined by the metric

ds2 =
1

z2

[
−dt2 + (dx1)2 + (dx2)2 + (dx3)2 + dz2

]
,(1.8)

which is a near-horizon limit of the 9+1 dimensional
black three-brane solution. The brane itself is extended
in 3 coordinates x1, x2, x3, and the metric is independent
of them. These three coordinates are the analogue of the
polar coordinates θ, φ of the Schwarzschield metric, with
z playing the role of the radial coordinate r. Unlike the
Schwarzschield black hole, the empty AdS5 has no hori-
zon since it originates from the so called extremal black
hole with maximal possible charge.

In the next section we will derive an expression for
the self-force containing multiple derivatives of the local
trajectory over the proper time based on (1.2). To un-
derstand its origin, we recall the geodesic equation for
free falling in general gravity

ẍa = −1

2
gab (gcb,d + gdb,a − gcd,b) ẋcẋd, (1.9)

where the right-hand side is driven by the Christoffel
symbols. Since the Schwarzschield metric depends only
on r, and the empty AdS5 metric only on z, the acceler-
ation is directed only along these coordinates. The large
tangent components of the 4-velocity on the right-hand
side are of order γ2 and so is the acceleration.

For the Schwarzschield case, equatorial geodesics fol-
low by setting ẋθ = uθ = 0. Thus

ẍr = −1

2

(
1− rh

r

) (
−rh
r2

(u0)2 + 2r(uφ)2
)
, (1.10)

using ẋ = u. The radius of interest for the ultrarelativis-
tic circular orbit is a textbook result

rc =
3rh
2

(
1 +

1

2γ2

)
. (1.11)

Repeated differentiations of rc yields further derivatives
over proper time τ if needed. Analogous expressions for
AdS5 can readily be obtained using similar arguments
after setting the path in the geodesic inside the (t, x1, z)
plane with ẋ2 = ẋ3 = 0.

In order to find the geodesic path itself, it is however
more convenient to use existing integrals of motion rather
than solving the second order differential equations for
the acceleration just mentioned. The Schwarzschield
metric does not depend on t, θ, φ and thus the lower-
indexed momenta (per mass) u0, uθ, uφ are conserved:
those can be called the energy and two components of

the angular momentum, respectively. The AdS5 met-
ric is independent of the 4 coordinates of the (bound-
ary Minkowski world) (t, x1, x2, x3). As a result, all 4-
momentum components ua = Pa, a = 1, 2, 3, 4 are con-
served.

The geodesic line follows from the on-shell condition
for the squared 4-velocity

g00(u0)2 + grr ṙ
2 + gφφ(uφ)2 = RHS, (1.12)

where RHS = −1 for a massive particle and 0 for a
massless one, and expressing all components in terms of
the conserved momenta. For the Schwarzschield case one
should use u0 = g00γ, uφ = gφφL and for AdS5

ua = gaaPa, a = 1, 2, 3, 4. (1.13)

As a result, the respective radial velocities ṙ or ż can be
expressed in terms of the coordinates. The result is a first
order equation that is readily integrated. For instance,
the trajectory in AdS5 is

dx5

dx1
=
ż

ẋ
=

1

P

√
(E2 − P 2)− 1/z2, (1.14)

which integrates to the path

x1 =

∫ z

zi

dz′
P√

E2 − P 2 − 1/z′2
. (1.15)

There is a qualitative difference between falling in a
Schwarzschield background and in an AdS5 background.
Indeed, while in the former a trapped circular orbit is
possible, it is not in the latter. Particles fall indefinitely
in AdS5 irrespective of their initial conditions. A jet in
AdS5 assumes a particle being very energetic with γ � 1
along x1 with 4-momentum conservation. The falling tra-
jectory is composed of two parts: 1) an almost straight
initial path with the x-momentum much larger than the
z-momentum with ẋ1 � ż; 2) a final diving or almost
vertical plunge into the horizon.

Falling in the Schwarzschield and in the AdS5 involves
transverse spatial acceleration which is normal to the ve-
locities (at least initially in AdS5). In the Schwarzschield
case the circular fall produces a radiation intensity of or-
der γ2 as shown in (1.6). Is the fall in the empty AdS5

also accompanied by a γ2 radiation? The answer is neg-
ative and one can readily see that there is no dependence
of the radiation on γ. Indeed, since the AdS5 metric is
Lorentz invariant, we can switch to a frame where P1 = 0.
The trajectory is then confined to the (t, z) plane with no
transverse acceleration. This is not the case for thermal
AdS5 as we discuss in later sections.

II. SELF-FORCE IN GENERAL RELATIVITY

The local self-force in 3+1 gravity with zero cosmolog-
ical constant was derived originally by Mino, Sasaki and
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Tanaka and also Queen and Wald [2, 3]. As we noted in
the introduction and now we repeat for completeness,

mẍa = G5m
2ẋbẋc

∫ τ−

−∞
dτ ′ (2.1)(

1

2
∇aG−bca′b′ −∇bG

−a
c a′b′ −

1

2
ẋaẋd∇dG−bca′b′

)
ẋ′
a
ẋ′
b
,

with G− being the graviton retarded propagator,

�G−aba′b′ − 2Rc d
ab G−cda′b′ = −16π gaa′gbb′ δ5(x, x′),

(2.2)

where x = x(τ), x′ = x(τ ′), δ5(x, x′) = δ5(x − x′)
√
−g

and g is DeWitt’s bilocal for parallel displacement along
the geodesic [21]. Although the original derivation of
(2.1) was carried in 3+1 dimensional space with zero
cosmological constant and matter, its physical interpre-
tation is applicable in any dimensions: the right-hand
side is simply a modification of Christoffel symbols due
to the retarded metric perturbation of the particle trajec-
tory. Therefore we assume it to hold in general, especially
for thermal AdS5 in 4+1 dimensions.

For ultrarelativistic jets, the eikonal limit is appropri-
ate

G−aba′b′(x, x
′) ≈ 16π gaa′ gbb′G

−(x, x′), (2.3)

with �G−(x, x′) = −δ5(x, x′). Inserting (2.3) in (2.1)
yields

mẍa ≈ 4π2G5m
2

∫ τ−

−∞
dτ ′ (2.4)(

(∇aG− − ẋaẋd∇dG−)(ẋ · ẋ′)2 − 2 ẋ · ẋ′ẋ′aẋd∇dG−
)
.

In the above, we have dropped terms of the type ∇ag
as they are subleading in small proper time ε-expansion
than ∇aG−.

The scalar retarded propagator in a curved background
of 4+1 dimensions can be related to the one in 2+1 di-
mensions. Explicitly,

G−(x, x′) = − 1

2π

d

dσ

(
Θ(x′, x)

θ(−σ)

2π

√
∆√
−2σ

)
, (2.5)

where the expression inside the bracket is the retarded
propagator in 2+1 dimensions. Θ(x′, x) is the generalized
heaviside step-function with a space-like surface through
x (the final form (2.5) doesn’t depend on the choice of
this surface), and ∆ is the Van-Vleck determinant

∆(x, x′) = (g(x)g(x′))
1/2

det (∇a∇a′σ(x, x′)) , (2.6)

which is a scalar two-point function. σ is another two-
point scalar function

σ(x, x′) =
1

2
(τ − τ ′)

∫ τ

τ ′
dτ ′′ ẋ(τ ′′) · ẋ(τ ′′), (2.7)

which is defined by the geodesic between x and x′. It is
negative for time-like geodesics

σ(x, x′) = −1

2
(τ − τ ′)2 =

1

2
d(x, x′)2, (2.8)

where d(x, x′) is the chordal distance. While the latter
is only defined locally for general curved space-times, it
can be defined globally for dS and AdS spaces because of
their spherical and hyperbolic nature. Indeed, for AdS5

the finite distance is

cos (d(x, x′))− 1 =
(x− x′)2

2zz′
, (2.9)

with z being the conformal direction and x2 = −t2 + x2.
This relation is readily derived by embedding AdS5 in
R6 with a hyperbolic constraint. We further note that
the retarded propagator in AdS5 is the known function of
(2.5) derived in [22], and our generic small time expansion
is consistent with it.

III. GRAVITY SELF-FORCE IN ADS5

A. The expansion in ε

For ultrarelativistic jets, the trajectory is character-
ized by small proper times, and one can expand in it.
Inserting (2.5) into (2.4) and following our arguments for
the self-force in 4+1 dimensions show that the gravita-
tional self-force for ultrarelativistic jets is dominated by
the leading singularity in the (covariant) gradient of the
propagator,

∇aG− ≈ − 3

4π2

√
∆σa

ε5
, (3.1)

with small ε = (τ − τ ′) � 1 and σa = ε ẋa where ẋa is
tangent to the jet geodesic. The smallness of ε will be
explained further below. The problem is then reduced
to a covariant expansion of

√
∆ for x′ near x. For that

we follow [21, 23] and expand
√

∆ first covariantly in
terms of the world function σ and then proceed to Taylor
expand σ. Specifically

√
∆ = 1 +

1

12
Rab σ

aσb − 1

24
Rab;c σ

aσbσc (3.2)

+

(
1

288
RabRcd +

1

360
Rm

a
n
bRmcnd +

1

60
Rab;cd

)
×σaσbσcσd + · · · ,

For both empty and thermal AdS spaces there are sig-
nificant simplifications, which come from the fact that
the Ricci tensor Rab is proportional to the metric, since
the Einstein equation with cosmological constant tells us

Rab −
1

2
gabR =

Λ

2
gab, (3.3)
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with the scalar curvature R = −5Λ/3. As a result, the
covariant derivatives of the Ricci tensor simply vanish

Rab;c = Rab;cd = 0, (3.4)

which yields

√
∆ = 1− 1

18
σ +

1

648
σ2 (3.5)

+
1

360
Rm

a
n
bRmcnd σ

aσbσcσd + · · · ,

after using the identity σaσa = 2σ.
For a bulk object falling in AdS5 a tremendous simpli-

fication takes place when rewriting (3.5) in terms of jet
trajectory proper time difference. Indeed, since it follows
a geodesic at zero’th order, the bilocal σ(x, x′) uniquely
determines the distance travelled for short or small ε.
The geodesic definition and length are unique when x′ is
in the neighborhood of x. Thus σ = ε2/2 and σa = ε ẋa

where ẋa is tangent to the jet geodesic.
Another way to say this is to note that the covariant

Taylor expansion of σ along the particle trajectory (and
not the graviton trajectory) to fourth order is

σ ≈ −ε
2

2
− ε4

12
Dẋ ·Dẋ, (3.6)

with Dẋa ≡ ẍa + Γabcẋ
bẋc, the covariant or long deriva-

tive. The covariant derivative and its higher order vari-
ants vanish along the falling jet geodesic making the first
contribution exact. Thus along geodesic jet trajectories
in AdS5

√
∆ ≈ 1 +

ε4

360
Rm

a
n
bRmcndẋ

aẋbẋcẋd, (3.7)

neglecting renormalizations taking care of divergences
and subleading terms in the large γ-expansion. In terms
of (3.7) the gravitational self-force (2.4) simplifies

mẍa ≈ −G5m
2

30π

(∫
dε

)
Rm

e
n
bRmcnd ẋ

eẋbẋcẋd ẋa,

(3.8)

The final integration along the proper time
∫
dε will

be explained shortly, and is of order 1/γ2. The drag-
ging gravitational covariant self-force on the falling jet is
longidudinal and of order γ3. It is entirely driven by a
(squared) Riemann tensor.

B. Final integration and magnitude of ε

So far we have assumed ε, the proper time between the
emission of the graviton and its action on the charge, to
be small. We have not yet specified why and how small
it is. A qualitative answer follows from the fact that
the more relativistic the jet, the more localized its own
trailing field. Indeed, the localization in time is expected

to be t ≈ 1/γ and thus a localization in propertime τ ≈
ε ≈ 1/γ2.

A way to see this is to note that the final ε integration
needs to be cutoff at large ε. Indeed, (3.6) in flat space-
time reduces to

σ|flat ≈ −
ε2

2
− ε4

12
ẍ · ẍ (3.9)

For ultrarelativistic motion, we can make the substitu-
tion

ε→ ε

(
1 +

1

6
ε2 ẍ · ẍ

)1/2

(3.10)

leading to a finite resummed result

∫ ∞
0

dε

(
1 +

1

6
ε2 ẍ · ẍ

)−5/2

=
4√

6 ˙̇x · ˙̇x
(3.11)

with most of the contribution stemming from the range
ε ≈ 1/γ2. As a result, the dropped terms in our quasi-
local analysis of the gravitational self-force are all sub-
leading in 1/γ. This argument shows how a schematic
resummation of the subleading corrections yields a finite
result for

∫
dε. The qualitative character of this subtitu-

tion does not fix the overall coefficient exactly. For that,
more quantitative work is needed.

The scaling of ε ≈ 1/γ2 is also in effect in the syn-
chrotron analysis in even-space+time dimensions as we
discuss in the companion paper [1]. This underlines again
the analogy between synchrotron and gravitational radi-
ation as we have noted above.

C. Holographic gravitational force estimate

The previous analysis is purely 5-dimensional, and
to apply that to AdS/CFT, we have to translate 5-
dimensional results into 4-dimensional gauge theory ones.
The holographic duality holds in the double limit in
which the number of colors is large compared to ’t Hooft
coupling Nc � λ = g2Nc � 1 taken also to be large. In
AdS/CFT

G5 =
πL3

2N2
c

. (3.12)

The string length ls and the AdS radius L are tied by
L4/l4s = λ in the double holographic limit. For a mean-
ingful gauge theory result, L which involves ls should
drop at the end, and we will show this explicitly in our
result shortly.

The 5d metric has the form

ds2 =
L2

z2

(
dz2

f
− fdt2 + d~x2

)
, (3.13)
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the main moral is that z0 need not be small, and if around 1 it means the mass of the particle is 1. 

my jet energy is 20 and zh=5 which means 5=1/pi T or T=1/15 or so 

if mass is Gev then T is a bit low but length is about 30 *gev^-1 or 6 fm, this is fine.

let me now also calculate the 2 and 3 dot vectors, notations 0=t, 1=x,2=z other coordinates do not matter

zh:=5: oned[0]:=E*z^2/f: oned[1]:=P*z^2: oned[2]:=sqrt(z^8*
P^2/zh^4+z^4*E^2-z^4*P^2-z^2+z^6/zh^4);

oned
2

:= 2.564102563 z
8
K 2.564102 z

4
K z

2
C

1

625
 z

6

for a from 0 to 2 do; twod[a]:=diff(oned[a],z)*oned[2]; od;

twod
0

:=
80. z

1K
1

625
 z

4

FIG. 1: (color online) Example of a geodesic trajectory for a
falling particle in the (inverted) 5-th coordinate −z as a func-
tion of x1. The open (black) circles are for massive particle,
(blue) asteriks are for massless geodesic. The parameters are
explained in the text

where the gauge theory spacetime is measured by (t, ~x).
From this, one can obtain relations between the local 5d
energy EAdS and the 4d energy E as follows

EAdS =
z

L
E. (3.14)

Similarly, the 5d (proper) time and the 4d (proper) time
are related as

tAdS =
L

z
t. (3.15)

As a result, the 4-velocity ẋ in the above result which is
defined in terms of the 5d proper time is roughly

ẋ ≈ z

L
γ, (3.16)

where γ is the ordinary Lorenz factor in 4-dimensions.
Also, sincem is the 5d rest energy it should be rescaled by
z/L to tie with the 4d rest energy m4. We now note that
the square of the Riemann tensor in (3.8) is of dimension
but independent of L,

R2 ≈ P(z/zh)

z4
, (3.17)

with P a polynomial of z/zh ≈ T/Qs. Qs is the jet satu-
ration scale to be fixed below. The final integration

∫
dε

is of order L/γ2 times some function of T/Qs. The 1/γ2

was explained before, whereas the factor L follows the
factor L2 in ds2, since the geodesic motion is indepen-
dent of the overall factor of L2.

With these considerations, the 5-dimensional non-
covariant force which is equal to 5-dimensional gravita-
tional energy-loss takes the form

dEAdS
dtAdS

=
( z
L

)2 dE

dt
∼ G5m

2R2

(∫
dε

)
(ẋ)

4

∼ L3

N2
c

(
m4

z

L

)2 1

z4

L

γ2

( z
L
γ
)4

F(z/zh)

=
( z
L

)2 (m4γ)2

N2
c

F(z/zh). (3.18)

with F a universal function of the ratio of the initial to
horizon (final) values of z. With this, one can make a
safe massless limit by replacing m4γ = E as it makes
sense physically. Thus

dE

dt
∼ E2

N2
c

F(z/zh), (3.19)

with F(0) = 0. L drops in the final result for the bound-
ary observables. We set L ≡ 1 in the rest of our paper.
In thermal AdS5 the universal function F appears solely
dependent on the ratio z/zh with the holographic direc-
tion playing the role of a renormalization scale evolution.
Indeed, along the longitudinal direction, the jet forms
at zi ≈ 1/Qs and ends at zh = 1/(πT ) the black-hole
horizon.

Although (3.19) is subleading in 1/Nc, it is magnified
by a large factor γ2 � 1 thereby dwarfing this suppres-
sion. We note that the work following from (3.19) yields
a power or intensity

I ≈ E2

N2
c

∫ zh

zi

dz

ż
F(z/zh), (3.20)

in agreement with (1.6). We cannot however completly
trace the origin of this agreement, at this time.

Finally, we note that the longitudinal covariant force
following from a dragging colored string is of the order of
γ
√
λT 2 [17, 18]. The ratio of the longitudinal drag from

gravitational radiation (or selfforce) to color is

gravity − radiation− drag

color− drag
≈ γ2

N2
c

√
λ
≈ 102..4

10× 5
,(3.21)

not small, for typical jets at RHIC and LHC with γ =
10− 100. Of course, the derivation given is perturbative,
without back reaction explicitly included. (It means it is
only formally valid for Nc, λ exceeding the realistic values
of Nc = 3 and λ ≈ 25.)

In summary, we argue that the gravitational radiation
drag is comparable to the color drag at RHIC, and is
perhaps the dominant mechanism for jet loss at the LHC.

(Other effects subleading in 1/Nc, such as the fur-
ther terms supergravity Lagrangian beyond the Einstein-
Hilbert Lagrangian, may also in principle lead to higher
power of γ: we have not yet inverstigated their effect.)
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IV. MATTER VERSUS WIND FRAME FOR
THERMAL ADS5

We now proceed to analyze in detail the radiative grav-
itational force for thermal AdS5 described by a black-
brane with a horizon located at some value zh in the
5-th coordinate. Holography asserts that this classical
set up is dual to thermal N=4 supersymmeteric gauge
theory at the boundary with temperature T = 1/(πzh).

A. The geodesics in the (plasma) matter rest frame

To assess the effect of the thermal bath on the longitu-
dinal induced gravitational self-force, we use in this sec-
tion the standard thermal AdS5 metric with plasma mat-
ter at rest. In terms of the coordinates (t, x1, x2, x3, z)
the metric is

ds2 =
1

z2

(
−fdt2 + (dx1)2 + (dx2)2 + (dx3)2 +

dz2

f

)
,

(4.1)

with f = 1− (z/zh)4. In this frame the jet is represented
by a point particle moving with some 4-velocity ẋµ = uµ.
At the start, the jet moves ultra-relativistically in the x1

direction, so that ut, ux = γ1 with γ � 1, while uz is
small. As it proceeds, its longitudinal velocity decreases
while its velocity along the holographic direction z direc-
tion increases, till finally it approaches the vicinity of the
horizon.

Using conservation of the 4-momentum of the particle
one can readily derive the following expressions for the
components of the 4-velocity

ṫ = z2E/f, ẋ = z2P, (4.2)

ż2 = z4(E2 − fP 2)− z2f, (4.3)

from which the path

x1 =

∫ z

zi

dz′
P√

E2 − fP 2 − f/z′2
. (4.4)

In pure AdS5, f = 1 leading to the Lorentz invariant
combination E2−P 2 in the integrand. This is no longer
the case in a thermal medium with f 6= 1.

An example of the corresponding trajectory in the x-z
plane is shown in Fig.1 by the open circles. For compar-
ison we also show a geodesic for massless particles (blue
asterisks). Note that a jet here as a particle starts from
the initial value of the holographic coordinate zi, taken
to be 1, and ends at z = zh. In this example zh = 5.
After selecting the jet gamma factor E = 40 and fixing
the initial zi = 1, the value of the jet momentum follows
from the on-shell condition as usual. What we see in
Fig.1 is qualitatively similar to the standard trajectory
of a stone thrown from a cliff. The trajectory turns down
as the increasing z-momentum takes over the conserved
x-momentum.

The choice of zi is a choice of the particle mass or jet
scale (in the renormalization group sense) which is also
referred to as the saturation scale Qs. Phenomenology
sets it to be 1-2 GeV at RHIC and 2-3 GeV at LHC.
With the units thus fixed, the jet energy in this exam-
ple should correspond to 40-80 GeV at RHIC and 80-120
GeV at LHC. The corresponding matter temperature is
in this example T = Qs/5π, which is lower than the tem-
perature occuring in real hadronic matter. We selected
it, however, in order the stopping distance (about 24/Qs)
be (for Qs = 1 GeV ) about 5 fm, or comparable to the
size of heavy nuclei used in the experiments.

The elapsed time (not shown) follows closely the dis-
tance except for a divergence as z → zh. Any falling ob-
ject freezes in the distant observer frame as it approaches
the horizon. In jet experiments, the time is usually lim-
ited by the matter freezeout time, thereby the falling jet
remains close to zh but never crosses it.

The metric and thus all tensors are independent of
gamma, and thus the counting of the power of gamma
is straightforward. It is reduced to counting the powers
of the 4-velocities. For example

ẍa ≈ Γabcẋ
bẋc ≈ γ2, (4.5)

so that ẍ · ẍ ≈ γ4. Of course, one should check that
one gets nonzero result for an ultrarelativistic particle.
An important exception involves contractions with the
the Ricci tensor which has a special property Rab ≈ gab.
Therefore its contraction Rabẋ

aẋb ≈ γ0 and not γ2 as
naively expected.

Unlike the Ricci terms, the one with the squared Rie-
mann tensor does not have a simplified structure and
thus retains its naive order of magnitude ≈ γ4. More
specifically, we found

RRuuuu = Rσγκδ g
σνgκµRµανβ u

αuβuγuδ (4.6)

=
γ4P

z4(1− z4/z4
h)2

,

where P is some lengthy polynomial of degree 4 in the
velocities with coefficients depending on γ, z. Instead of
presenting it as such, we show in Fig .2 its dependence on
the longitudinal distance x1 travelled rather than z. As
we see from the plot, this contribution to the self-force
not only depend strongly on the jet energy γ but varies
rapidly with the longitudinal distance crossed by the jet.
It takes extremely large values near the jet final stopping
point. Clearly, the back reaction from this force on the
travelling jet needs to be taken into account.

B. The “hot wind” frame

The dependence of all parameters in question on the
jet energy (Lorentz factor γ) is also instructive to study
in an alternative frame, in which the longitudinal jet mo-
mentum Px can be set to zero. Such boosted frames were
used before, e.g. in the study of moving charmonium [24].
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note that here I divided out gamma^4, and thus the first part of the path it is smaller than 1, but becomes 

large after

FIG. 2: Dependence of the combination of two Riemann ten-
sor and four velocities normalized to the leading power of the
jet Lorentz factor γ, namely RRuuuu/γ4, versus the longitu-
dinal distance (in the x1 direction) travelled by the jet, for the
numerical example displayed in Fig.1. The units, as explained
in the text, are fixed by the particle mass or Qs.

First, it is instructive to see how the synchrotron elec-
tromagnetic radiation is recovered in this frame. In the
original frame all powers of γ follow from the velocity,
while in the boosted frame the velocities are γ0. The
enhancement in this frame is transferred to the magnetic
field which is magnified by γ.

The same happens with the boosted metric. In empty

AdS5 the combination −dt2 +dx12
turns to −dt′2 +dx1′2

after boosting, which is clearly Lorentz scalar. In the
boosted frame, the jet is at rest with all γ’s gone. Empty
AdS5 is Lorentz invariant with free particle motion being
uneventful.

At finite temperature, manifest Lorentz invariance in
the metric is lost with

dt2 = (γdt′ −
√
γ2 − 1dx1′)2, (4.7)

and dx12
= 0 after the boost. Thus the metric gets

enhanced by γ2 in this case. This amounts to effectively
boosting the energy density. In the rest frame of the jet
the effective temperature is enhanced

T ′ = T
√
γ. (4.8)

Note that at large γ the boosted metric in (4.7) has non-
zero g12 . There is ”wind” in the x-direction. This has
obvious consequences on the particle motion. While it is
still true that there is conserved energy and momentum
given by the lower components u0 = E, u1 = P , the
upper components are mixed by the non-diaginal metric.
As a result, even if P = 0, one gets a nonzero velocity in
the x direction since

u0 = g00E, u1 = g10E. (4.9)
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irrelevent, then all u are O(1)
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but then an interplay of  large components kills it 

u:=array(1..5): u[1]:=ut; u[2]:=ux; u[3]:=0; u[4]:=0; u[5]:=uz;

FIG. 3: (color online) The same example of a geodesic trajec-
tory for a falling particle as in the previous figure, but in the
boosted “hot wind” frame. The points are in the (inverted)
5-th coordinate −z as a function of x1, which is now also
negative as the “hot wind” blows in the negative direction.

The upper component metric is obtained in the standard
way with

ut =
dt

dτ
= E

z2(z4
h + z4γ2 − z4)

z4 − z4
h

, (4.10)

ux =
dx

dτ
= E

√
γ2 − 1

z6

z4 − z4
h

.

The geodesic path is again derived from the on-shell con-
dition gabu

aub = −1 after solving for the z-velocity

(uz)2 = (
dz

dτ
)2 (4.11)

=
(
−z6E2 + z6γ2E2 + z4 + E2z4

hz
2 − z4

h

) z2

z4
h

.

This is readily integrated. As usual, the ratio (ux/uz)2

eliminates the proper time and yields the falling trajec-
tory x(z).

Fig.3 shows the falling jet geodesic in the hot wind
frame for the parameters used in the matter rest frame.
The motion is a free fall along the z-direction, accompa-
nied by a horizontal motion along the wind direction. Ini-
tially, the particle is nearly standing and non-relativistic
with ut ≈ 1 and all other components zero. Then these
components get larger with typically ua ≈ γ.

In the initial time, all the γ dependence is carried by
the wind term in the metric ≈ (z/zh)4γ2. Note that for
our two Figures, the numerical value of the wind term
is ≈ 402/54 = 2.56 which is not very large compared to
1. It is 10 times more for twice more energetic jets. we
now detail how this combination is enetring the various
contributions to the gravitational self-force in this frame.

First, let’s consider the particle acceleration along the
geodesic

ẍa ≈ Γabcẋ
bẋc. (4.12)
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Initially the velocities are of order γ0, with all powers of
γ carried by the Christoffels. Typically,

Γ5
11 =

(−z4
h + z4)(z4

h + z4γ2)

z8
hz

. (4.13)

Even when the particle is at rest with ẋt = 1 (and all
others zero) there is an acceleration of order γ2 along
the z-direction. The calculation of the Riemann tensor
contribution to the self-force is straightforward in this
frame. To leading order, the result is

Rσγκδg
σνgκµRµανβu

αuβuγuδ ≈ γ44z4P′, (4.14)

where P′ is another fourth order polynomial in the ve-
locities. For zh = 1 it is

P′ = +3z8(ut)4 + 3z8(ux)4

−12z8(ut)3ux + 18z8(ux ut)2

−12z8(ux)3ut − 8z4(ux)4

−48z4(ux ut)2 + 32z4(ux)3ut

−8z4(ut)4 + 32z4(ut)3ux

+42(ux ut)2 − 28(ut)3ux

+7(ut)4 − 28(ux)3ut + 7(ux)4.

(4.15)

It is non-zero even in the initial part of the trajectory
when the particle is nearly at rest ut = 1, ux = uz = 0,
as it has the (ut)4 term. However, as the wind accelerates
the falling jet, the polynomial is seen to keep the same
power of γ. The quantity plotted in Fig.2 is of course a
scalar, so it is same in both frames.

V. SUMMARY AND DISCUSSION

Starting with a companion paper [1] we first mention
its main result: the longitudinal selfforce in flat even-
space+time

2 + 1 : (mẍa)L ≈ −
2e2

√
3

ẍ · ẍ√
ẍ · ẍ

ẋa,

4 + 1 : (mẍa)L ≈ −
e2

10
√

3

...
x · ...x√
ẍ · ẍ

ẋa, (5.1)

for an electromagnetically charged particle undergoing
circular motion in 2+1 and 4+1 dimensions respectively.
Both of these induced forces match the expected radia-
tion asymptotically.

Our main result is the (leading) longitudinal gravita-
tional selfforce (3.8) with (3.11), i.e.

mẍa ∼ −
(
G5m

2

√
˙̇x · ˙̇x

)
Rm

e
n
bRmcnd ẋ

eẋbẋcẋd ẋa,

(5.2)

derived using similar arguments, starting from (1.2). The
structure itself appears from the leading short distance

singularity of the propagator in 4+1 dimensions. Its part
in brackets, coming from resummation of the higher order
terms, is schematic and we do not claim exactness of its
coefficient, just the power of γ. The convergence of the
expansion follows from ε ≈ 1/γ2 which is expected in
the ultrarelativistic limit. Indeed, at large γ the fields
are Lorentz contracted causing them to be localized over
a proper time of order 1/γ2. In (3.11) we have shown
how this cutoff in ε is obtained through a qualitative
resummation of the higher order terms. More work is
required to fix this resummation quantitatively.

It is interesting to note the fundamentally different na-
ture of the approximations leading to the radiation/self-
force in the non-relativistic versus the relativistic limit.
In the former, the radiation proceeds through large wave-
lengths or small frequencies via a multipole expansion at
large distances away from the charge/mass. In the latter,
the expansion is dominated by the short wavelengths or
frequencies, that is by the field in the immediate vicinity
of the charge/mass. In a way, the two approaches are ex-
pected to be tied by the structures of energy-momentum
conservation.

To assess the magnitude of the gravitational self-force
in AdS5 we have used two different frames: the plasma
matter rest frame and the jet rest frame. While scalars
and vectors are expected to transform according to the
expected lore of relativity, the use of these two distinct
frames shed light on the nature of the contributions to the
self-force. The dominant contribution to the covariant
longitudinal gravitational drag is of order γ3.

The longitudinal self-force we have discussed is very
different from those discussed so far in the context of
holography. In particular, it has nothing to do with the
color charge of the jet but rather with its energy. The
massive amount of excitation left behind by the jet pro-
duces backward gravitational drag or pull, which we have
found to be growing dramatically with the jet energy.
This effect is classical, large and physically well separated
from the variety of other subleading effects one may think
of. It is by no means subleading although in holography
it is formally down by a power of Newton’s gravitational
constant G5 ≈ 1/N2

c .

The present work is the first indication for the exis-
tence of strong self-induced gravitational forces in ther-
mal AdS5 that have a power of the Lorentz factor γ larger
than one. Many of the terms with higher powers do ap-
pear for arbitrary paths but are canceled out in the re-
sult, mostly because on geodesics there is no covariant
acceleration. The more involved problem of a dropping
string with a longitudinal color drag is likely to depart
from the geodesic motion and therefore involves higher
powers. This issue will be addressed elsewhere.

It is amusing to note that the γ2 dependence of the
non-covariant force and hence the intensity radiated by
energy conservation is the same as in 3+1 Schwarzschield
case [20]. We cannot trace the connection except the
fact that the combination (γ m)2 = E2 in the radiated
intensity is the only one that is finite in the massless limit
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m→ 0 and γ →∞ with E fixed.
This paper is intended as a qualitative indication for

the existence and importance of classical gravitational
self-forces in studying jet quenching via AdS/CFT cor-
respondence. We have not tried to assess their effects on
jets trajectories in the bulk or their stopping distance on
the boundary quantitatively. For realistic values of Nc
and λ, (3.8) appears to be somewhat too strong for ul-
trarelativistic jets to be treated in perturbation theory.
Therefore more work is needed to ascertain the role of
these forces in a reliable calculational framework.

It is very challenging to try to understand the origin of
this effect from the gauge theory side without recourse to
holography and bulk gravity. As a parting comment, let
us speculate that bulk gravitons and gravity are perhaps
related to Pomerons and effective Pomeron field theory,
which practitioners in the field have tried to construct
for the past many decades.
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VI. APPENDIX

The structure of the singular terms in even-space+time
dimensions can be readily obtained using the same ar-

guments as in odd-space+time dimensions. Indeed, the
retarded propagator in arbitrary space-time dimensions
follows from

G−(x, x′) = −Θ(x, x′) ImGF (x, x′)

= −Θ(x, x′) ImGH(x, x′)|σ+i0, (6.1)

following DeWitt’s prescription between the Feynman
and Hadamard propagator. In general AdS5 the singular
part of the Hadamard propagator reads

GH(x, x′) =
g(σ)

(−2σ)3/2
+ w(σ), (6.2)

where σ is the world function bi-scalar (2.7). Both g(σ)
and w(σ) are regular functions of σ. g(σ) is fixed by
�GH = 0 in leading order

2 ∂ag σa + g(�σ − 5) = 0, (6.3)

after using that σaσa = 2σ. Since

�σ = 5− σa∂a ln∆, (6.4)

it follows that

∂a ln (g/
√

∆) = 0, (6.5)

which fixes g up to an overall normalization.
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