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We discuss the model selection problem for inflationary cosmology. We couple ModeCode, a
publicly-available numerical solver for the primordial perturbation spectra, to the nested sampler
MultiNest, in order to efficiently compute Bayesian evidence. Particular attention is paid to the
specification of physically realistic priors, including the parametrization of the post-inflationary
expansion and associated thermalization scale. It is confirmed that while present-day data tightly
constrains the properties of the power spectrum, it cannot usefully distinguish between the members
of a large class of simple inflationary models. We also compute evidence using a simulated Planck
likelihood, showing that while Planck will have more power than WMAP to discriminate between
inflationary models, it will not definitively address the inflationary model selection problem on
its own. However, Planck will place very tight constraints on any model with more than one
observationally-distinct inflationary regime – e.g. the large- and small-field limits of the hilltop
inflation model – and put useful limits on different reheating scenarios for a given model.

I. INTRODUCTION

The prospect that astrophysical observations probe the
properties of the very early universe and test physics
at energies approaching the Planck scale is one of the
most exciting aspects of modern cosmology. Inflation
[1] provides a concrete realization of this possibility, as
the primordial perturbations are generated during a well-
defined epoch in the early universe (in almost all versions
of the scenario) at energies far above the TeV scale.

A common approach to constraining inflationary mod-
els is to project their predictions for the scalar spec-
tral index and tensor amplitude onto the corresponding
likelihood contours (see e.g. Refs [2–4]). This simple
and largely qualitative method is usually sufficient with
present-day data, but has a number of shortcomings. In
particular, it is not easily extended to scenarios with sev-
eral non-trivial observable parameters, e.g. a running
spectral index or features in the power spectrum. Like-
wise, the predictions of inflationary models with two or
more free parameters (e.g. natural inflation) can cor-
respond to domains of the (ns, r) plane with nontrivial
shapes, rendering interpretation difficult. Most impor-
tantly, this approach does not address the model selec-
tion problem for inflation in a rigorous, quantitative way.

Identifying optimal methods for constraining inflation-
ary models is a long-standing problem, and a large num-
ber of schemes have been explored (e.g. Refs [5–23]).
Anticipated developments in observational cosmology –
particularly the Planck cosmic microwave background
(CMB) survey [24] and forthcoming large scale structure
surveys – make it crucial to definitively address this topic.
This is the second in a sequence of papers (begun with
Ref. [25], henceforth referred to as Paper I) that reviews
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and extends previous work, and developsModeCode1, a
publicly available and well-tested suite of computational
tools for constraining inflationary models. In Paper I we
estimated the free parameters of individual inflationary
models, coupling a numerical solver for the primordial
perturbations to the cosmological Monte Carlo Markov
Chain (MCMC) code CosmoMC [26] and the standard
Boltzmann code CAMB [27].
In this paper, we turn to the issue of model selection.

This problem is distinct from parameter estimation, al-
though the tools used here tackle both tasks simultane-
ously. Frequentist approaches to model comparison (e.g.
P -values, ∆χ2 and Nσ deviations from the mean) have
conceptual and practical shortcomings when applied to
the properties of the universe as a whole, given that they
are defined relative to a large and usually unspecified en-
semble (see e.g. Ref. [28]). Conversely, Bayesian meth-
ods naturally rise to the challenges presented by cosmo-
logical model selection.
In Bayesian terminology, an inflationary scenario de-

fines the model prior, which in turn defines the parame-
ter volume of a given model. The prior includes both the
usual “post-inflationary” cosmological parameters, plus
the free parameters within the inflationary sector itself.
We will see that a complete and self-consistent specifica-
tion of the prior is crucial to successfully addressing the
model selection problem for inflation, while the parame-
ter estimation process is typically insensitive to many of
these choices.
The Bayesian model selection statistic, often called the

evidence E, is the “model-averaged likelihood”, i.e. the
integral of the likelihood L over the parameter volume
{α1, · · · , αM},

E =

∫

dαMP (αi)L(αi) , (1)

1 http://zuserver2.star.ucl.ac.uk/∼hiranya/ModeCode/ModeCode
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weighted by the prior P (αi), which is normalized so that
∫

dαMP (αi) ≡ 1. For uniform priors P (αi) is a constant
(or zero), and the weighting is the inverse parameter vol-
ume, or

E =
1

VolM

∫

dαML(αi) . (2)

This is a multidimensional integral over a computation-
ally expensive integrand. Consequently, in what follows
we pay attention to the practical challenges associated
with computing E for inflationary models.
The evidence is not an absolute quantity: the ratio of

the evidence values for two models expresses the relative
“betting odds” that these models are responsible for the
observed state of the universe. A model is a combination
of both a physical parameterization of the early universe
and a set of permitted ranges (priors) for each of the free
parameters. The model specification can include a rel-
ative preference for some parameter values over others,
codified by P (αi). It can also include an overall prefer-
ence for one model over another.
Qualitatively, the role of Bayesian evidence in model

selection can be understood as follows. Restricting our
discussion to uniform priors, if a model M predicts a
“wide” parameter range, the allowed αi enclose a volume
much larger than the peak of L. Consequently, the evi-
dence E computed for M is reduced, relative to E′, com-
puted for an otherwise identical model M ′ where the al-
lowed parameter ranges contain only the region in which
L appreciably different from zero. Physically, the predic-
tions of the model M are less tightly specified than those
of M ′, and the tight match between prediction and ob-
servation for M ′ is “rewarded” by the evidence criterion.
This also underlines the importance of setting the priors
independently of the data, since choosingM ′ a posteriori

is not a prediction. Conversely, a model M ′′ for which
L is small everywhere in αM ′′ will have E′′ ≪ E′ and
E′′ ≪ E, reflecting the inability of M ′′ to fit the data for
any choice of parameters.
Evidence ratios are often compared using the Jeffreys

scale2 [29], which rates ∆ lnE < 1 as being “not worth a
bare mention”, whereas ∆ lnE > 5 is regarded as “highly
significant”. In what follows, we pay careful attention to
the specification of the range of priors associated with a
given inflationary model.
We proceed by adapting ModeCode to use the nested

sampler, MultiNest [30, 31] – an alternative to the
default MCMC exploration of the parameter space in
CosmoMC. ModeCode is based on an algorithm de-
veloped in Ref. [32]; the underlying code was also used
in Refs [33, 34]. MultiNest rapidly computes Bayesian

2 It is important to note that while the Bayesian approach de-
scribed above is the only self-consistent framework for model
selection [28], the Jefferys scale is an ad hoc set of preferences
for where to draw the boundaries – individual scientists can be
more or less conservative in the betting odds at which they will
prefer one model over another.

evidence while simultaneously providing parameter esti-
mates. In addition, nested sampling is often much more
efficient than MCMC sampling when the likelihood sur-
face is significantly non-Gaussian – a situation encoun-
tered with even relatively simple inflationary models.3

The problem of model selection in early universe cos-
mology is not a new one, and has been tackled by a num-
ber of authors (e.g. Refs [23, 35–38]). In particular, the
present analysis overlaps with that of Ref. [23], which
also computed evidence by coupling MultiNest to a
numerical solver for the inflationary perturbation equa-
tions. The specific contributions made by the present
work include a careful discussion of the specification of
both the inflationary models and associated model pri-
ors, and the interplay between the choice of prior and the
computational efficiency of the code. We also analyze in-
flationary models (hilltop and natural inflation) which
occupy non-trivial domains in the (ns, r) plane, and ex-
plore the impact of post-inflationary physics on the model
selection problem. Finally, as part of the “warm-up” for
Planck, we analyze models using both a simulated Planck
likelihood and current Wilkinson Microwave Anisotropy
Probe (WMAP) data [4].
The paper is structured as follows: Section II provides

a very brief review of inflationary phenomenology and
its implementation within ModeCode, and the param-
eterization of the post-inflationary behavior of the uni-
verse. We discuss the specification of priors for inflation-
ary scenarios in Section III, and present evidence ratios
computed with ModeCode for a sample of inflationary
models, for both current WMAP data and a Planck sim-
ulation in Section IV.
This paper is the second in a sequence of articles

that survey, develop and implement theoretically optimal
and computationally efficient methods for applying as-
trophysical constraints to the inflationary phase. Mode-

Code is thus a work in progress, but regularly updated
versions of the code are available for download.

II. MODECODE AND MULTINEST:

NUMERICAL IMPLEMENTATION

Simple models of inflation are governed by the Fried-
man equation and sourced by a minimally coupled scalar
field φ. As reviewed in Paper I, the inflaton obeys the
Klein-Gordon equation in an expanding background

φ̈+ 3Hφ̇+
dV (φ)

dφ
= 0 . (3)

As usual V (φ) is the potential and specifies the model,
while H is the Hubble parameter and dots denote deriva-
tives with respect to time. This formalism implicitly

3 Nested sampling also efficiently explores scenarios where the like-
lihood contours have a nontrivial topology, which can occur in
inflationary models with “features” or steps (e.g. Ref. [34]).
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assumes that inflation lasts long enough to erase any
primordial spatial curvature and other “pre-inflationary”
relics. We specify dimensionful quantities relative to the
reduced Planck mass, MPl = 2.43 × 1018 GeV. Mode-

Code computes the power spectrum by numerically solv-
ing the evolution equations for the scalar and tensor per-
turbations, as described in Paper I and Ref. [32].
Comoving scales in the primordial universe are con-

nected to present-day astrophysical scales by the match-
ing equation [39–41]. The observed power spectrum is a
function of the rate at which modes reenter the horizon
after inflation, which is in turned fixed by the effective
equation of state during this era. Consequently, as ex-
plained in Refs [25, 42], observational tests of inflation-
ary models simultaneously explore both the inflationary
phase and the subsequent expansion history.
For representative models of inflation, Planck can be

expected to constrain the number of e-folds N to within
∆N ∼ ±3 at the 68% confidence level [42]. Consequently,
we wish to work with a version of the matching equation
which explicitly accounts for the relativistic neutrino con-
tribution to the universe (which delays matter-radiation
equality), and the dark-energy driven accelerated expan-
sion of the present-day universe. ModeCode relates the
primordial perturbation spectrum to present day scales
via

aend =
aend
ath

ath
aeq

aeq
a0

a0

=

(

ρth
3
2
Vend

)

1−3wprim
12(1+wprim)

(

ρeq
3
2
Vend

)
1
4 aeq
a0

a0 , (4)

where a(t) is the usual scale factor. Recal that inflation
ends when ä = 0 which, for a scalar field, occurs when
V = Vend = 2

3
ρend, where ρ is the energy density. Follow-

ing Refs [25, 42], we assume that the universe is definitely
thermalized when ρ = ρth and a = ath, and has a con-
ventional thermal history thereafter. Note we are not
stipulating that ρth is the density at which the universe
becomes thermalized, merely that the universe is ther-
malized as the density passes through this value. The eq
subscript refers to values at matter-radiation equality.
Equation (4) assumes that the primordial universe is

dominated by a perfect fluid with density and pressure
related by p = wprimρ at densities ρ > ρth, where wprim

is the effective equation of state during this phase.4

In contrast to Paper I, ModeCode now includes the
minimal thermalization scale ρth as part of the model
specification. The distinction between ρth and the den-
sity at the onset of thermalization is of crucial impor-
tance. Recall that while the “hot big bang” is the basis of

4 The detailed equation of state during the primordial dark age
is needed to compute the amplitude of stochastic gravitational
wave backgrounds at scales inside the horizon while ρ > ρth
[43]. However, for the foreseeable future strong constraints from
stochastic gravitational wave backgrounds are unlikely to be a
practical concern.

modern cosmology, there is no firm evidence that the uni-
verse was thermalized prior to neutrino decoupling and
the onset of nucleosynthesis. The period between these
two epochs – which spans a range of ∼ 1018 in energy –
is the so-called primordial dark age [43].
There is no evidence that the universe is not thermal-

ized during the post-inflationary epoch, but equally we
have no evidence that it is radiation dominated during
this phase. The relevance to this discussion is that the
matching between inflationary and astrophysical scales is
a function of the rate at which modes re-enter the hori-
zon, and this is determined by the expansion rate of the
universe, which is turn fixed by the effective equation
of state. For instance, the primordial universe can in-
clude phases of coherent oscillations [44, 45], resonance
[46, 47], kination [48, 49], secondary or thermal inflation
[50], moduli domination [51, 52], primordial black hole
domination [53], or a frustrated cosmic string network
[54], all of which lead to an expansion rate that differs
from that of a radiation dominated universe. The ef-
fective equation of state wprim is thus an appropriately
weighted average of the instantaneous equation of state
during the primordial dark age.
Physically, the fundamental parameter that sets the

observable perturbation spectrum is the value of φ at
which the pivot mode leaves the horizon. However, φ
can both increase and decrease with time (depending on
the shape of the potential); its absolute value can be
rescaled by a shift φ → φ + φ0; and the overall range of
φ during inflation varies greatly between models. Con-
sequently, we treat the remaining number of e-folds N
after the pivot scale leaves the horizon as a free param-
eter, since this quantity has a consistent interpretation
across models.
The impact of the primordial dark age on large scale

structure and CMB data is thus captured by wprim and
N . ModeCode draws a value of N , then computes
wprim, which is a derived parameter – models for which
wprim lies outside a specified range are excluded from the
prior. The value of ρth is specified as part the prior, as we
discuss in the following Section - it can be fixed by both
data-driven constraints and theoretical inferences about
the thermalization scale.
By definition, at matter-radiation equality, 2ρrad = ρ.

All three neutrino species are relativistic at this transi-
tion [4], and we have the well-known result

ρrad =
π2

15

[

1 +
7

8
Nν

(

4

11

)4/3
]

T 4
CMB . (5)

Since TCMB(t)a(t) is constant through neutrino freeze-
out and the onset of dark energy domination, we obtain

ln(aend) =
1− 3wprim

12(1 + wprim)
ln

(

ρth
ρend

)

−
1

4
ln

(

ρend
M4

Pl

)

+

1

4
ln

[

1 +
7

8
Nν

(

4

11

)
4
3

]

− 71.32 (6)
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using the observational result TCMB,0 = 2.348×10−4 eV.
ModeCode can marginalize overN , the remaining num-
ber of e-folds of inflation as a specified pivot scale leaves
the horizon, and N effectively scales with ln aend. The
effective number of neutrino species Nν only has a small
impact on ln aend, and therefore we do not simultaneously
estimate neutrino number alongside inflationary param-
eters. Consequently, ModeCode fixes Nν = 3.04, mov-
ing the constant in equation (6) to −71.21. At this point,
given the specified value of ρth, equation (6) can be in-
verted to yield wprim.

III. INFLATIONARY PRIORS AND THE

COMPUTATION OF BAYESIAN EVIDENCE

A. Inflationary Models

We consider the same set of models as Paper I. These
include single parameter models based on the potential

V = λ
φn

n
(7)

for fixed n, axion-motivated “natural inflation” [55] with

V (φ) = Λ4

[

1 + cos

(

φ

f

)]

, (8)

and “hilltop inflation” [56–58] with

V (φ) = Λ4 −
λ

4
φ4 , (9)

for which the tensor-scalar ratio can be arbitrarily small.

B. Parameters and Priors

Specifying physically realistic and self-consistent pri-
ors is a key prerequisite to making meaningful state-
ments about the relative merits of competing inflation-
ary models. In Bayesian inference, the prior encodes any
“background knowledge” or physical assumptions that
contribute to the construction of the model. Crucially,
the prior must be specified independently of the data
used to construct the likelihood L. This is a particu-
larly acute problem for inflationary model selection, since
analyses of specific models of the early universe typically
rely on large datasets with well-known properties (e.g.
the WMAP results), making it impossible to perform a
genuinely blind analysis.
A prior consists of both a physical model and the al-

lowed ranges of its free parameters, specified by P (αi).
Choosing these ranges raises several subtle problems.
For example, in ΛCDM cosmology, the primordial power
spectrum is specified by the spectral index ns, amplitude
As and (arbitrary) pivot k⋆, as a function of comoving
wavenumber, k

P (k) = As

(

k

k⋆

)ns−1

. (10)

Model Priors

n = 2/3 −13 < log10 λ < −7

n = 1 −13 < log10 λ < −7

n = 2 −13.5 < log10 m
2 < −8

n = 4 −16 < log10 λ < −10

Natural −5 < log10 Λ < 0

0 < log10 f < 2.5

Hilltop −8 < log10 Λ < −1

−17 < log10 λ < −10

Matching Prior

wprim −1/3 ≤ wprim ≤ 1

N 20 ≤ N ≤ 90

Variable Prior

Baryon fraction 0.015 < Ωbh
2 < 0.035

Dark matter 0.05 < Ωdmh2 < 0.2

Reionization 0.01 < τ < 0.25

Projected acoustic scale 0.8 < θ < 1.2

Sunyaev-Zel’dovich Amplitude 0 < ASZ < 2

TABLE I: We list the inflationary models (values of n refer
to specific cases of equation (7)) and the non-inflationary free
parameters, and the priors for each parameter. We assume
that Ωk is zero in all cases, and all parameters are drawn
from a uniform prior. The matching parameters allow us
to marginalize over the expansion history during the primor-
dial dark age, connecting the inflationary era to astrophysical
scales. We also apply a cut on the amplitude of the primor-
dial power spectrum, as described in the text. The pivot scale
used to compute N is k⋆ = 0.05 Mpc−1.

At the time of writing the default range for ns within
CosmoMC is 0.5 < ns < 1.5. This is a uniform prior,
so this choice stipulates that ns = 0.5 is as likely as
ns = 1.0. This proposition is wildly at odds with even
mild observational constraints on the primordial spec-
trum.5 For MCMC-based parameter estimation this is
a purely formal issue: parameter ranges have no impact
on the results, so long as regions with nontrivial L are
not excluded. MCMC samplers naturally focus on the
region(s) of highest likelihood, and computational per-
formance is governed by the proposal distribution rather
than the total prior volume, and there is no cost to spec-
ifying very wide priors.

Conversely, evidence probes the whole parameter
space, and always depends on the ranges specified in
the prior. In many cases – including ns in the example

5 For example, upper limits on the abundance of primordial black
holes rule out the upper end of this range [59] while large scale
structure constraints rule out the lower end of this range.
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FIG. 1: Parameter ranges for natural (top) and hilltop (bot-
tom) models. The shaded regions shows parameter values for
which the spectral amplitude 10−11

≤ As ≤ 10−7 respectively.
Points outside these regions are excluded from the prior.

above – there is no unambiguous choice for the param-
eter range, effectively inducing a “theory error” in the
computed evidence. For instance, choosing 0 < ns < 2
or 0.8 < ns < 1.2 changes ∆ lnE for ΛCDM by ∼ ±1,
but there is no obvious basis for any of these specific
choices [60]. For very large ∆ lnE this will not signifi-
cantly change the outcome of model selection. However,
in the next Section we find that Planck typically yields
∆ lnE ∼ 2 when evidence is computed for simple infla-
tionary models. Consequently, this ambiguity must be
tightly controlled.

It may appear that inflationary potentials are less ar-
bitrary than equation (10), a purely empirical character-

ization of the spectrum. However, very few inflationary
potentials are derived from a well-controlled fundamental
theory, and in many cases the potential is simply writ-
ten down by the model-builder. Consequently, we have
little a priori information on the likely values of their
free parameters6 and our expectations for their values are
largely determined from the properties of the predicted
power spectrum, rather than fundamental physical con-
siderations.

The strongest empirical constraint on the inflationary
parameter space is the amplitude of the primordial power
spectrum. This is a free parameter in most models, and
successful structure formation in a universe dominated
by cold dark matter has long been known to require pri-
mordial fluctuations with δρ/ρ ∼ 10−5, or As ∼ 10−10

(see e.g. Refs [65, 66]). Thus we can immediately reject
models for which As is far from this value, without ref-
erence to the data used to construct L. Consequently,
in this analysis, regions of parameter space which do not
yield 10−11 ≤ As ≤ 10−7 are excluded via the prior. This
range is generous relative to current estimates of As (e.g.
Ref. [4]) but our results do not depend strongly on the
overall range, and we wish to work with constraints that
reflect only a priori knowledge that is genuinely indepen-
dent of recent high-precision astrophysical data.

For the single parameter models this requirement de-
fines the range of λ in equation (7). For these cases our
approach is equivalent to that of Ref. [23], in which a
prior is specified for ln(As) and the corresponding infla-
tionary variable is then a derived parameter. However,
for generic multi-parameter models an As-based cut may
select a nontrival region of parameter space, as happens
for the two cases considered here (Figure 1). Without
the As-based cut in the prior, the parameter volume
for both natural and hilltop inflation would be rectangu-
lar, and the corresponding evidence values computed for
these models would be lowered accordingly. Conversely,
for these models eliminating one parameter by fixing As

would induce a strongly non-uniform prior on the remain-
ing parameter(s), potentially biasing both the computed
evidence and estimated parameter values.

Generally, the free parameters in the inflationary po-
tentials can take a large range of values corresponding
to unknown scales in high energy particle physics. Con-
sequently, it is appropriate to use logarithmic priors on
these parameters, or equivalently, to impose a uniform
priors on their logs.

As noted previously, the thermalization scale is only

6 One of the few well-motivated constraints on the inflationary pa-
rameter space is the Lyth bound [61]. Naively applied, this rules
out the entire parameter range over which L is non-zero for mod-
els with V (φ) ∼ φn, by excluding parameter choices with a trans-
Planckian field-excursion. However, the Lyth bound is based on
an effective field theory argument, and explicit counter-examples
to this generic prohibition are well known [62–64]. Whether the
Lyth bound is incorporated in the prior thus reflects the judge-
ment of the modeler, as in standard in a Bayesian analysis.
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weakly constrained by direct cosmological measurements
– nucleosynthesis and the cosmological neutrino back-

ground require ρ
1/4
th & O(100) MeV, far below the infla-

tionary scale in almost all models. However, the thermal-
ization mechanism must produce Standard Model parti-
cles from the inflaton or its immediate decay products
which, in almost all scenarios, are not part of the Stan-
dard Model. For this to occur, at least some Standard
Model particles must necessarily couple to fields outside
the Standard Model. The resulting interactions generi-
cally lead to loop corrections to precision electroweak ob-
servables, which must be small in order to avoid conflicts
with existing experiments. The easiest way to guarantee
that these couplings are not problematic is for reheat-
ing to occur at energies far above the electroweak scale.
It is possible to construct models in which reheating oc-
curs at sub-TeV scales, but these scenarios are tightly
constrained – so the “natural” expectation is that the
universe is thermalized at temperatures above 1 TeV.

Setting ρ
1/4
th ∼ O(100) MeV with a flat prior on N

stipulates that it is just as likely that the universe ther-
malizes at (say) 1 GeV as at 1010 GeV. Similarly to the
situation with the “cosmological” parameters, this choice
of prior therefore amounts to a statement that is at odds
with our understanding of fundamental physics. Rather
than quantify the relative likelihood of thermalization at
different scales, we checked that the computed values of
the evidence are not sensitive to the specific choice of ρth.
We also run the sampler with an instant reheating prior,
specifying that thermalization occurs immediately after
the end of inflation. In this case wprim = 1

3
by definition,

rendering N a derived parameter.7

ModeCode allows the user to specify minimal and
maximal values of wprim – we expect wprim ≤ 1 to avoid
a superluminal sound speed and wprim ≥ −1/3, so ä ≤ 0,
and the post-inflationary universe is not undergoing ac-
celerated expansion. Given that the predictions of infla-
tionary models are sensitive to the details of the post-
inflationary expansion, scenarios which make a specific
prediction for the physics of this epoch should be evalu-
ated with an appropriate (and tighter) prior for wprim.

From a practical perspective, if the likelihood is effec-
tively zero over a large fraction of the parameter volume,
parameter estimation with MultiNest is far more com-
putationally intensive than with the MCMC sampler in
CosmoMC, often failing to converge in any reasonable
amount of time. With “realistic” priors the two codes
have similar runtimes (to within factors of a few) for sin-
gle field models, while MultiNest is at least an order of
magnitude faster than an MCMC sampler for natural or
hilltop inflation models, which have nontrivial likelihood
contours. Our full set of priors – for both the inflationary
physics and regular cosmological parameters – is given

7 This approach is again different from that of Ref. [23], where N

is assigned a uniform prior, and a lower bound that corresponds
to an MeV scale reheating temperature.

in Table I. We typically run MultiNest with 800 live
points and and tolerance and efficiency parameters set to
0.3. With non-trivial likelihood topologies or very thin
likelihood contours in some dimensions, we increase the
number of live points by a factor of a few.

IV. BAYESIAN EVIDENCE AND PARAMETER

CONSTRAINTS: RESULTS AND FORECASTS

We have computed Bayesian evidence for both 7 year
WMAP dataset (WMAP7) [4], and a simulated Planck
likelihood, kindly provided by George Efstathiou and
Steven Gratton (also utilized in Paper I). The Planck
simulation assumes a primordial CMB power spectrum
centered on the best fit WMAP5 cosmology (including
ns = 0.963), with contributions from unresolved point
sources and Sunyaev-Zeldovich (SZ) clusters, and in-
strumental noise, along with a tensor component with
r = 0.1.8 The Planck simulation is not used to make
“Fisher-style” forecasts, but instead analysed using the
pipeline as if it were real data. This simulation is ex-
pected to broadly capture the constraining ability of the
real Planck data, although the specific cosmology is, of
course, a pre-launch guess.
Figure 2 shows the evidence computed for the set of

models we consider. Using the WMAP likelihood, only
λφ4 stands out as being strongly disfavoured; for the rest
of our models the ∆ ln(E) is typically only slightly greater
than unity.9 Using the simulated Planck likelihood (Fig-
ure 2) we see ∆ ln(E) ∼ 2 for the same set of models,
confirming our expectations that Planck will make non-
trivial distinctions between models that are effectively
degenerate when tested against present data. Further, it
should be pointed out that the Planck simulation does
not directly match the predictions of any of the scenar-
ios under consideration, so ∆ ln(E) ∼ 2 is a conservative
estimate of Planck’s ability to discriminate between mod-
els.
Parameter estimation for inflationary models using

ModeCode was the focus of Paper I, and we will not
repeat those results here. However, a significant addi-
tion to the current iteration of ModeCode is the ability
to compute wprim, and estimate the posterior distribu-
tion for this parameter. Figure 3 show the constraints on
wprim derived from WMAP7 and the Planck simulation,
respectively. With a quadratic potential the posterior
for wprim is peaked in the region wprim > 1/3, and that
this preference sharpens substantially with the simulated
Planck likelihood. This provides further evidence that
Planck will discriminate between different implementa-
tions of the same model of inflation – these scenarios
will necessarily have the same potential, V (φ) but can

8 Note that the specific realization of the sky generated for this
simulation does not reproduce these central values exactly.

9 Note that these results are broadly consistent with those of Ref.
[23].
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FIG. 2: Bayesian evidence (∆ ln(E)) computed for the WMAP7 likelihood (top) and simulated Planck likelihood (bottom).

The left panels assume instant reheating. The right panels allow −1/3 ≤ wprim ≤ 1 and ρ
1/4
th ≥ 100 MeV. ∆ ln(E) is plotted

relative to V (φ) ∼ φ inflation with instant reheating. The computed evidence values have a typical estimated uncertainty of
∼ 0.2 for the MultiNest settings used. The charts are truncated at ∆ ln(E) = −10; with the Planck simulation we find that

∆ ln(E) = −26.4 and −16.1 for λφ4 with instant reheating and ρ
1/4
th ≥ 100 MeV cases, respectively.

differ in their predictions for the post-inflationary uni-
verse. For example, a scenario where quadratic inflation
was followed by moduli production and a lengthy period
of matter domination followed in turn by thermal infla-
tion will have −1/3 < wprim < 0. Given the simulated
Planck likelihood used here, a universe with this post-
inflationary history would be significantly disfavored rel-
ative to an implementation of quadratic inflation with
prompt thermalization.

The evidence values we have computed for the Planck
simulation suggest that, while the next generation of
CMB experiments will provide substantial insight into
the inflationary model selection problem, they will not
uniquely single out a specific inflationary scenario as be-
ing compatible with the data. However, within scenarios
with two or more distinct inflationary regimes (e.g. the
large and small field limits of hilltop inflation), Planck
will often be able to eliminate one of these possibilities.

For example, the hilltop model has two distinct limits –
the “small field” scenario, where r . 0.001, and a “large
field” limit in which V (φ) ∼ φ. Our prior allows both
cases. In the small field limit ns < 0.95, and in the large
field limit V (φ) ∝ φ [42]. Both limits are compatible
with the WMAP7 likelihood, but Planck would exclude
the small field limit if the real universe conforms to the

parameters of the simulation. Physically, the small field
limit is consistent with the Lyth bound, and we can select
it by fixing log10 Λ < −2.5 in the prior. For this choice
∆ ln(E) ∼ 40 (relative to V (φ) ∝ φ) for the Planck simu-
lation, from which we infer that the small field regime of
the hilltop model is disfavored with very high confidence.

Figure 4 shows posterior distributions obtained from
ModeCode for hilltop inflation with the WMAP7 like-
lihood. This plot demonstrates the ability of the Multi-

Nest sampler to explore models where the likelihood
contours are highly nontrivial: in Paper I, the prior for
the hilltop model was restricted to the small field limit,
so that the MCMC sampler converged in a finite amount
of time.

As implemented here, ModeCode performs parame-
ter estimation and computes evidence in 10–20 hours on a
single cluster node for a simple model – approximately 3-
4 times longer than required for a standard CosmoMC-
based parameter estimation (given a pre-computed co-
variance matrix) on the same hardware. Estimates for
two parameter models with Planck-quality data can re-
quire several node-days. However, MCMC chains become
far less efficient when the parameter contours are topolog-
ically nontrivial: for natural inflation MultiNest-based
parameter estimation is substantially more efficient than
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FIG. 3: Posteriors for wprim from WMAP data (above) and the Planck simulation (below).

with the MCMC chains presented in Paper I. Interest-
ingly, using the WMAP likelihood, the posterior for ns

is strongly bimodal — this parameter changes quickly
in the “elbow” region of the (log10(Λ), log10(λ)) plane
(which is sampled with a uniform prior), leading to the
strongly peaked posterior shown in Figure 4. Conversely,
the simulated Planck data effectively eliminates the small
field branch of the hilltop parameter space, as seen in
Figure 5.

V. DISCUSSION

In this Paper we have described the use of the Mode-

Code solver for inflationary observables with theMulti-

Nest sampler, and the computation of Bayesian evi-
dence for inflationary models. For a representative sam-
ple of single field models, evidence computed using the
WMAP7 likelihood only permits a definitive conclusion
regarding λφ4 inflation – reproducing a well-known re-
sult – while the ∆ ln(E) obtained for other models were
not large enough discriminate between these models even
tentatively.

Our primary motivation here is to survey the issues
associated with specifying physically realistic priors for
inflationary models in advance of the Planck dataset
becoming available. Using evidence computed with a
likelihood derived from a simulated Planck dataset we
have shown that Planck will indeed begin to discrim-
inate between models which are effectively degenerate
from the perspective of WMAP. However, great care
must be taken when specifying the priors, in order to

ensure that these correspond to statements which are a)
physically realistic and b) genuinely independent of the
data used to construct the likelihood, L. In particular,
priors (and notably, the allowed ranges of the free param-
eters) which are acceptable when performing parameter

estimation are not physically justifiable when computing
evidence. Unrealistic prior ranges can bias the computed
values of the evidence, as well as dramatically reducing
the computational efficiency of MultiNest. Further-
more, we have proposed an approach to specifying priors
for multi-parameter inflationary models which simulta-
neously excludes models with grossly unphysical pertur-
bation spectra, while retaining a strictly uniform prior
upon the inflationary parameters themselves.
This is not the first discussion of cosmological model

selection via Bayesian evidence and, in particular, this
topic was recently treated in Ref. [23]. However, the
present analysis breaks new ground in several key direc-
tions. We highlight the importance of choosing physi-
cally reasonable priors – both to produce self-consistent
results, and to ensure the code is numerically efficient. In
addition we provide an algorithm capable of computing
evidence for general multi-parameter potentials, without
which we would be unable to compute evidence for the
natural or hilltop cases. Lastly, since theory does not
specify precise ranges for the parameters in the mod-
els, we propose a method which provides self-consistent,
maximum entropy priors, ensuring that all models are
compared on an equal footing.
Planck is expected to provide an exquisitely accurate

measurement of ns but, given the values of ∆ ln(E) com-
puted for the Planck simulation, it will not necessarily
resolve the inflationary model selection problem. This is
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FIG. 4: Parameter constraints obtained for hilltop inflation, with the WMAP7 likelihood. Blue regions denote the “small
field” limit, while grey denotes the posterior for the full hilltop prior from Table I. Contours correspond to 68 and 95% joint
confidence levels. .

true even for inflationary scenarios which predict values
of ns which differ substantially from one other, relative
to precision with which Planck is expected to measure
this quantity. However, none of the scenarios here yield
values of ns and r which fully overlap with the central
values in the Planck simulation.

In principle, additional data will break any degeneracy
in the evidence values for a set of inflationary models.
Planck-based constraints of inflationary models is pri-
marily are primarily due to the exquisite measurement of
the scalar perturbations expected that this satellite is ex-
pected to provide. Conversely, constraints on the primor-
dial tensor (gravitational wave) amplitude r are likely to
be significantly tightened by several forthcoming balloon
and ground-based experiments. The models evaluated
here generate a range of values of r, and a joint analy-
sis of the Planck dataset and future polarization-sensitive
experiments should significantly increase the range of ev-
idence values, relative to those computed here.

It is clear from our simulations that Planck will put
strong and nontrivial constraints on the parameter val-

ues of specific inflationary scenarios. Thus for mod-
els (natural and hilltop inflation, in our examples) with
two observably distinct inflationary regimes, Planck is
likely to discriminate between these possibilities. Fur-
ther, the predictions of inflationary models necessarily
depend on the assumed post-inflationary expansion his-
tory [25, 42], which we characterize using the effective
equation of state wprim. The posterior distributions ob-
tained for wprim from the simulated likelihood confirms
that Planck should be able provide interesting and non-
trivial constraints on the post-inflationary expansion his-
tory.
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