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Features in the inflaton potential that are traversed in much less than an e-fold of the expansion can
produce observably large non-Gaussianity. In these models first order corrections to the curvature
mode function evolution induce effects at second order in the slow roll parameters that are generically
greater than ∼ 10% and can reach order unity for order unity power spectrum features. From a
complete first order expression in generalized slow-roll, we devise a computationally efficient method
that is as simple to evaluate as the leading order one and implements consistency relations in a
controlled fashion. This expression matches direct numerical computation for step potential models
of the dominant bispectrum configurations to better than 1% when features are small and 10% when
features are order unity.

I. INTRODUCTION

Features in the inflaton potential can give rise to large
non-Gaussianity [1, 2]. In order to also satisfy cosmic
microwave background (CMB) constraints on the power
spectrum, observability in the bispectrum of an individ-
ual feature requires that it be traversed when the hori-
zon was of order the current horizon in a small fraction
of an e-fold [3]. As this represents a strong violation of
the slow-roll limit, corrections to the leading-order bis-
pectrum expression can approach order unity. Curiously
such models are in fact favored by the WMAP 7-year
CMB power spectrum data and so further tests require
more accurate techniques [3]. The improvement of the
fit due to these models is not due to the glitch in the
CMB data at ` = 20−40 [4–7], but comes predominantly
from the region around first peak. Similar improvements
have also been noted arising from transplanckian mod-
ifications to the power spectrum [8], axion monodromy
inflation [9] and non-trivial initial vacuum choices [10].
While the polarization power spectrum is likely to pro-
vide the next test of such models [3, 11], the bispectrum
of these models may also provide an important consis-
tency check.

Features in the inflationary potential have a long his-
tory and have been considered by many authors going
back to Starobinsky [12] who first calculated the power
spectrum due to a potential with a discontinuous first
derivative. The bispectrum due to such a feature was
calculated by [13], see also [14]. The fluctuations in
the power spectrum due to a step feature in the po-
tential were considered by [15, 16] and their resulting
non-Gaussian signatures in the bispectrum were calcu-
lated numerically by [1, 2] and an analytic approxima-
tion was found by [3, 17]. Steps in the warp factor and
potential in the context of brane inflation were consid-
ered by [18]. Features in the power spectrum and large
non-Gaussianities arising from resonant effects in the in-
flationary potential were first proposed by [2] and then
discovered in axion monodromy inflation [9, 19, 20].

An exact calculation of the bispectrum for such models
requires a computationally intensive direct integration of

the curvature fluctuations for each Fourier space config-
uration [1, 2] and is impractical for analysis purposes.
In [17], a fast approximate method was developed based
on the generalized slow roll (GSR) approach. Here the
curvature fluctuation mode functions are iteratively cor-
rected due to the presence of the feature. The leading-
order expression was shown to be accurate to typically
ten percent for small amplitude features and up to order
unity for large amplitude features. In the small ampli-
tude feature limit, this error is associated with slow-roll
corrections that change the phase of the modefunctions
[3]. Even without a feature, these corrections typically
generate 10% changes to the bispectrum [21]. A full cal-
culation of all first-order correction terms is computation-
ally cumbersome [17] and again becomes impractical.

In this paper we show that the dominant first-order
correction can be simply computed. In §II, we review the
GSR approach and give all next to leading-order terms in
the power spectrum and bispectrum. In §III, we isolate
the dominant terms, test them against exact calculations,
and establish their compatibility with power spectrum
corrections in the squeezed limit. We discuss these results
in §IV.

II. GSR APPROXIMATION

In this section we review the GSR formalism [16, 22]
for computing the power spectrum [23] and bispectrum
[17] for inflationary models with relatively large ampli-
tude features including next to leading-order corrections.
Such corrections are first-order in the GSR iteration and
second order in the deviations from slow-roll.

A. Power Spectrum

Beyond the slow-roll approximation, the curvature
power spectrum can be computed exactly in linear theory
as

∆2
R ≡

k3PR
2π2

= lim
x→0

∣∣∣∣xyf
∣∣∣∣2 , (1)



where x = kη and η is the conformal time to the end of
inflation. The modefunction y satisfies the Mukhanov-
Sasaki equation,

d2y

dx2
+

(
1− 2

x2

)
y =

g(lnx)

x2
y, (2)

where

g ≡ f ′′ − 3f ′

f
, (3)

with ′ ≡ d/d ln η = d/d lnx and

f = 2πzη =

√
8π2

εH
H2

aHη. (4)

Here εH is the slow-roll parameter

εH ≡
1

2

(
dφ

d ln a

)2

, (5)

which is not necessarily small or constant. Throughout
we set the reduced Planck mass Mpl = (8πG)−1/2 = 1
as well as h̄ = c = 1. Note that f ′′/f in the source
function g involves first derivatives of the second slow
roll parameter

ηH = −δ1 ≡ εH −
1

2

d ln εH
d ln a

. (6)

Up to this point, no assumptions have been made be-
yond the validity of linear theory but the modefunction
y remains an implicit functional of εH . Briefly, the GSR
approach to solving the modefunction equation (2) is to
consider the RHS as an external source with an iterative
correction to y [16]. To lowest order, we replace y → y0

where

y0 =

(
1 +

i

x

)
eix, (7)

is the solution to the equation with g → 0. The first-order
mode function y can then be obtained through the Green
function technique. The result is an approximation that
still requires εH to be small in an absolute sense but
allows it to evolve rapidly with large fractional changes
to its value. Hence |g| can be large in an absolute sense.

To leading order, the curvature power spectrum is
given by

ln ∆2
R0 = G(ln η∗) +

∫ ∞
η∗

dη

η
W (kη)G′(ln η), (8)

where kη∗ � 1 and

W (u) =
3 sin(2u)

2u3
− 3 cos(2u)

u2
− 3 sin(2u)

2u
. (9)

The source function for the power spectrum is given by

G = −2 ln f +
2

3
(ln f)′, (10)

and thus

G′ = −2(ln f)′ +
2

3
(ln f)′′ =

2

3
g − 2

3
[(ln f)′]2. (11)

Note that the leading order expression for the power spec-
trum is already first-order in the deviations from slow
roll.

The addition of the term quadratic in (ln f)′ to g in
Eq. (11) makes G′ a total derivative and guarantees that
the power spectrum is independent of the arbitrary epoch
η∗ after horizon crossing, ensuring that the curvature re-
mains constant thereafter [23].

To first order in the mode function iteration and second
order in the slow-roll parameters [22, 23]

∆2
R1 = ∆2

R0

{
[1 +

1

4
I2
1 (k) +

1

2
I2(k)]2 +

1

2
I2
1 (k)

}
, (12)

where

I1(k) =
1√
2

∫ ∞
0

dη

η
G′(ln η)X(kη),

I2(k) = −4

∫ ∞
0

du

u
[X +

1

3
X ′]

f ′

f
F2(u), (13)

with

F2(u) =

∫ ∞
u

dũ

ũ2

f ′

f
, (14)

and

X(u) =
3

u3
(sinu− u cosu)2. (15)

When f ′′/f controls the large deviations in G′, the dom-
inant term is I1 [23]

∆2
R1 ≈ ∆2

R0

{
1 + I2

1 (k)
}
. (16)

For a wide range of models, this has been shown to be a
good approximation when |I1| <∼ 1/

√
2 [24]. In this ap-

proximation, the power spectrum depends only on a sin-
gle source function G′ through two single integrals over
the functions W and X. We seek a similarly simple but
accurate approximation for the bispectrum in what fol-
lows.

B. Bispectrum

For models in which large slow-roll corrections arise
from a sharp feature where η′H or f ′′/f becomes large,
the bispectrum can be approximated as [17]

BR(ki) = 4<

{
iRk1(η∗)Rk2(η∗)Rk3(η∗) (17)

×

[∫ ∞
η∗

dη

η2
a2εH(εH − ηH)′(R∗k1R

∗
k2R

∗
k3)′

+
a2εH
η∗

(εH − ηH)(R∗k1R
∗
k2R

∗
k3)′
∣∣∣
η=η∗

]}
,
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where the curvature fluctuation is given by√
k3

2π2
Rk =

xy

f
, (18)

the shorthand convention ki = k1, k2, k3, and η∗ is an
epoch well after all modes have left the horizon.

Using the same iterative GSR approach to evaluate y,
the bispectrum to first-order in the modefunction correc-
tion or second order in the slow-roll violation becomes
[17]

BR(ki) =
(2π)4

4

∆R0(k1)

k2
1

∆R0(ki)

k2
2

∆R0(k3)

k2
3

×
∫ ∞
η∗

dη

η
gB(ln η)[U0 + U1A + U1B + U1C

+ U1D + U1E ](kiη), (19)

where the source

gB(ln η) =
(εH − ηH)′

f
. (20)

The leading order response to this source comes from

U0(kiη) =

(
d

d ln η
+ 3

)
<[y0(k1η)y0(k2η)y0(k3η)]. (21)

The first-order correction terms again involve G′ and
f ′/f

U1A(kiη) =
I1(k3)√

2

(
d

d ln η
+ 3

)
×=[y0(k1η)y0(k2η)[y∗0(k3η) + y0(k3η)]]

+ cyc.,

U1B(kiη) =− 1

2

∫ ∞
η

dη̃

η̃
G′(ln η̃)W (k3η̃)

×
(

d

d ln η
+ 3

)
<[y0(k1η)y0(k2η)y∗0(k3η)]

+ cyc.,

U1C(kiη) =

[
−I1(k3)√

2
+

1

2

∫ ∞
η

dη̃

η̃
G′(ln η̃)X(k3η̃)

]
×
(

d

d ln η
+ 3

)
=[y0(k1η)y0(k2η)y∗0(k3η)]

+ cyc.,

U1D(kiη) =− 3

4

∫ ∞
η

dη̃

η̃
G′(ln η̃)

(
1

k3η̃
+

1

(k3η̃)3

)
×
(

d

d ln η
+ 3

)
=[y0(k1η)y0(k2η)

[y∗0(k3η) + y0(k3η)]] + cyc.,

U1E(kiη) =− 3<[y0(k1η)y0(k2η)y0(k3η)]

× f ′

f

[
1− 1

2gB

(
f ′

f

)2
]
, (22)

where cyc. denotes the 2 additional cyclic permutations
of the k indices. This first-order expansion has been
shown to be highly accurate even for large amplitude
features but has the drawback that it is cumbersome to
compute since the nested integrals in U1B−D involve con-
figuration dependent quantities [17].

III. FAST BISPECTRUM COMPUTATION

While first-order corrections to the bispectrum for
models with features are generally at least of order 10%
and hence important for accurate computation, most of
the first-order terms in Eq. (22) are irrelevant where the
bispectrum is observably large. On the other hand some
of these terms are important for maintaining physicality
in the superhorizon and squeezed limits. In §III A and
III B, we devise and then test a first-order methodology
that both efficiently corrects the bispectrum where it is
large and implements physicality constraints in a con-
trolled fashion.

A. Methodology

An observably large bispectrum arises if potential fea-
tures are sufficiently sharp that they are traversed in
much less than a Hubble time. In this case, the dominant
contributions to the bispectrum arise when the modes
are well inside the horizon kη � 1. Even if the features
themselves are of small amplitude, first-order corrections
from the slow-roll contributions to G′ make substantial
fractional corrections to the bispectrum [3]. In this case
G′ is nearly constant and we can evaluate the expressions
in Eq. (22). We derive our method from these two as-
sumptions but show that the resulting expressions remain
a good approximation even when features in the power
spectrum reach order unity or when one of the sides of
the triangle is outside the horizon.

Under these two assumptions, all the nested integrals
contribute very little to the integrand in Eq. (19) in that
most of their impact is around or after horizon crossing
rather than before. In addition, models with large bispec-
tra contribute mainly through the f ′′/f terms in gB and
G′ and so U1E is negligible. The remaining terms are the
ones proportional to I1(k) in U1A and U1C . In fact the
y0y0y

∗
0 contributions of these two terms cancel exactly

leaving only y0y0y0 contribution similar to the zeroth or-
der term (21). As noted in [3], this fact means that for
triangles where all three kη � 1, the first-order correc-
tions can be cast in the same form as that of the zeroth
order term, namely in terms of single integrals involving
only the perimeter of the triangle K = k1 + k2 + k3.

As kη decreases, the I1 and integral contributions to
U1C cancel, leaving the U1A term as the dominant cor-
rection. However as kη → 0, the other first-order correc-
tions ensure that the bispectra remain constant in accord
with conservation of the comoving curvature Rk. This
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FIG. 1. Equilateral bispectrum for a small amplitude step c = 10−5 with d = 0.0001 (left) and 0.0003 (right). Upper panel
shows the GSR1 first order approximation versus the full numerical computation. Lower panel shows the percentage difference
between the two as well as between the zeroth order approximation GSR0 and the numerical one.

condition can be alternately enforced by replacing the
bispectrum source with a total derivative [17]

gB → G′B(ln η) =

(
εH − ηH

f

)′
, (23)

just as in the case of the power spectrum. Combining
these considerations, our fast first-order bispectrum ex-
pression becomes

BR(ki) ≈
(2π)4

k3
1k

3
2k

3
3

∆R0(k1)∆R0(k2)∆R0(k3)

4[
− IB0(K)k1k2k3 − IB1(K)

∑
i 6=j

k2
i kj

+ IB2(K)K
∑
i

k2
i +

∑
m

I1(km)√
2

×
(
− IB3(K)k1k2k3 − IB4(K)

∑
i 6=j

k2
i kj

+ IB5(K)K
∑
i

k2
i (24)

+ IB4(K − 2km)
∑
i 6=j

k2
i kj(1− 2δmj)

− (K − 2km)IB5(K − 2km)
∑
i

k2
i

)]
,

where

IBn(K) = GB(ln η∗)WBn(Kη∗) +

∫ ∞
η∗

dη

η
G′BWBn(Kη)

(25)

and

WB0(x) = x sinx, WB3(x) = −x cosx,

WB1(x) = cosx, WB4(x) = sinx,

WB2(x) = sinx/x, WB5(x) = −cosx/x.

The lack of a K−2kk term in IB3 comes from the x� 1
cancellation of the U1A and U1C terms.

We shall call the n = 0 − 2 terms the zeroth order
approximation and the full set n = 0 − 5 the first or-
der approximation, denoting these GSR0 and GSR1 re-
spectively. Note that the boundary term at Kη∗ � 1
is formally only defined correctly for the n = 1, 2 terms
where WBn → 1 but we retain the others for notational
compactness as their contributions vanish in this limit.
While the IB5 term diverges as Kη∗ → 0 we shall see
that the differencing construction in Eq. (24) guarantees
that this divergence or the corresponding dependence on
the arbitrary scale η∗ has no observable consequence.

The computational cost of GSR1 is only double that of
GSR0 involving 6 rather than 3 one dimensional integrals
in addition to the power spectrum correction I1(k) from
Eq. (13). That the corrections are all proportional to
I1(k) is an important feature in our construction and
we shall see enforces compatibility between the power
spectrum and bispectrum approximations.

Although this construction is motivated by the slow-
roll corrections to the bispectrum, we shall see next that
it also works quite well for case where the correction is
dominated by the feature itself.
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FIG. 2. Equilateral bispectrum for a large amplitude step c = 5.75 × 10−4 with d = 0.0003 (left) and 0.0001 (right). Upper
panels shows the GSR1 first order approximation versus the full numerical computation. Lower panels shows the percentage
difference between the two as well as between the zeroth order approximation GSR0 and the numerical one.

B. Configuration Tests

As an example of a feature model with a possibly ob-
servable bispectrum, we consider the potential [15]

V (φ) =
1

2
m2φ2

[
1 + c tanh

(
φ− φs
d

)]
, (26)

which corresponds to a smooth step at φ = φs of frac-
tional height c and width d. Given the WMAP7 pref-
erence for a large scale feature, we set φs to repro-
duce the scale of the maximum likelihood (ML) solution
η(φs) = 8.163 Gpc [3]. For the amplitude, we take the
case where c → 0 and the maximum likelihood solution
for the WMAP7 data c = 5.75 × 10−4. For the width d
we take several cases that would lead to observable bis-
pectra with this amplitude and position. We choose m
to be compatible with the WMAP7 slope for the under-
lying slow-roll potential m = 7.126× 10−6 such that the
underlying tilt from the smooth part of the potential is
n̄s ≈ 0.963. Following the notation of the existing litera-
ture [1, 2], we construct the bispectrum statistic

G(k1, k2, k3) =
k3

1k
3
2k

3
3

(2π)4Ã2
S

BR(k1, k2, k3), (27)

where we take ÃS = 2.39× 10−9 which is approximately
the amplitude of the power spectrum in the absence of
the feature.

Most of the observable impact of features in the bispec-
trum comes from equilateral triangles where k1 ∼ k2 ∼ k3

[3]. In this limit

BR(k, k, k) ≈ (2π)4

k6

∆3
R(k)

4
(28)

×
{
− IB0(3k)− 6IB1(3k) + 9IB2(3k)

+
3I1(k)√

2

[
− IB3(3k)− 6IB4(3k) + 9IB5(3k)

+2IB4(k)− 3IB5(k)
]}
.

Note that

3IB5(3k)− IB5(k) =

∫ ∞
η∗

dη

η
G′B

[
−cos(3kη)− cos(kη)

kη

]
(29)

and so as kη → 0 the quantity in brackets vanishes and
the expression becomes independent of the arbitrary end
point η∗.

In Fig. 1 (upper), we compare the first order approxi-
mation (GSR1) to the full numerical calculation for the
equilateral case and a small amplitude step c = 10−5 with
d = 0.0001 and 0.0003. Differences in the upper panel
are quoted as percentages of a smooth envelope

27

4

c

(ε0 + 3c)

∆3
R0(k)

Ã
3/2
S

(kηf )2 k/kD
sinh(k/kD)

, (30)

in the lower panel to avoid dividing by an oscillatory
quantity. Here the equilateral damping scale

kD =
2

3

√
2ε0 + 6c

πdηf
, (31)
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and ε0 = 0.00925 is the value calculated on the slow-
roll background in the absence of the step. The form of
the envelope is derived from the analytic solutions in [3]
and is accurate at the several percent level for all models
considered here.

For c = 10−5, the agreement of GSR1 and the exact
numerical treatment is excellent, with differences below
the 1% level between the first oscillation and the damp-
ing scale set by the finite width d (upper panel). The first
order correction eliminates the 10% errors of the GSR0

approximation that appear mainly as a phase error (lower
panel). Deep in the damping tail, the first order solution
develops a small phase difference leading to larger frac-
tional errors but controlled amplitude errors. This error
can be attributed to terms in the first order expansion
at Eqn. (22) that are not captured by the approximation
at Eqn. (24). In particular, contributions due to some
of the nested integrals are damped more slowly than the
leading order contributions. This means that deep in the
damping tail they can become a significant fraction of
the leading order result. However, since this effect only
becomes important in the region where the bispectrum is
already small, we conclude that it can be safely ignored.

This good agreement persists until the feature makes
order unity changes to the power spectrum. In Fig. 2, we
show the maximum likelihood amplitude model. Here the
oscillations take on a modulated form where every third
extrema is reduced in amplitude reflecting the strong os-
cillations in the power spectrum. These are well captured
by the first order approximation between the first oscil-
lation and the damping tail with residuals around ∼ 6%
correcting the ∼ 40% errors of the zeroth order approx-
imation. Errors in the damping tail grow again mainly
due to a phase error but remain small until the bispec-
trum amplitude has damped to an unimportant level.
Note that in this example the maximum of |I1| ≈ 0.25.
Like the power spectrum, this quantity monitors the ac-
curacy of the first order computation. The criteria for
equilateral bispectrum is slightly more stringent than the
power spectrum due to the 3 k-modes that can be cor-
rected and hence

|I1| <∼
1

3
√

2
(32)

is the rough criteria for better than 10% percent level
accuracy.

An important check of the physicality of the bispec-
trum is the squeezed limit where k1 = kS � k2 ≈ k3 =
kL and the the bispectrum must satisfy consistency with
the power spectrum [25]

ns(kL)− 1 ≡ d ln ∆2
R

d ln k

∣∣∣
kL

= −BR(kS , kL, kL)

PR(kS)PR(kL)

≡ −12

5
fNL(kS , kL, kL). (33)

Note that this is a non-trivial check on our construction
even for small amplitude features since we retained only

FIG. 3. Squeezed limit bispectrum for a step with small
amplitude c = 10−5, d = 0.0003. Shown here is
12fNL(kL, kL, kS)/5 for various values of the short side, kS .
In the upper panel, we show the result of evaluating the first
order approximation GSR1 versus the full numerical compu-
tation. The lower panels here show the slow roll kS rescaling
GSR1S from Eq. (43).

the leading order corrections when all three modes are
subhorizon scale during feature crossing.

For squeezed configurations, our first-order approxima-
tion (24) becomes

BR(kS , kL, kL) ≈ (2π)4

k3
Lk

3
S

∆R(kS)∆2
R(kL)

4
(34)

×
{
− 2IB1(2kL) + 4IB2(2kL) +

4I1(kL)√
2

×
[
− IB4(2kL) + 2IB5(2kL)− kS

kL
IB5(kS)

]}
.

Since

2IB5(2kL)− kS
kL
IB5(kS)

=

∫ ∞
η∗

dη

η
G′B

[
−cos(2kLη)

kLη
+

cos(kSη)

kLη

]
≈
∫ ∞
η∗

dη

η
G′B

[
−cos(2kLη)− 1

kLη

]
, (35)

the expression becomes independent on the arbitrary end
point η∗.

To check the consistency relation, it is useful to com-
bine all of the terms to form a single integral over the
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FIG. 4. Squeezed limit bispectrum for a step with large ampli-
tude c = 5.75×10−4 and d = 0.0003. Shown here is the GSR1

and slow-roll corrected GSR1S approximations compared with
the numerical computation as in Fig. 3. Note that the latter
corrects all of the kS dependent error.

source

BR(kS , kL, kL) ≈ (2π)4

k3
Lk

3
S

∆R(kS)∆2
R(kL)

4
Isq(kL), (36)

where

Isq(k) = GB(ln η∗)Wsq(kη∗)+

∫ ∞
η∗

dη

η
G′BWsq(kη), (37)

and

Wsq(x) = −2

[
cos(2x)− sin(2x)

x

]
−4I1√

2

[
sin(2x) +

cos(2x)− 1

x

]
, (38)

with I1 = I1(kL). Using the approximation of Eq. (16)
in the |I1| � 1 limit

d ln ∆2
R

d ln k
≈
∫
d ln ηW ′P (kη)G′(ln η), (39)

where

WP (x) = W (x) +
2I1√

2
X(x). (40)

To establish the consistency relation, we need to relate
Wsq to WP and G′B to G′. We can manipulate the latter
pair via integration by parts∫ ∞

η∗

d ln ηW ′P (x)G′(ln η)

= −2

∫ ∞
η∗

d ln ηW ′P (x)

[
f ′

f
− 1

3

(
f ′

f

)′]

= −2

∫ ∞
η∗

d ln η
f ′

f
[W ′P +

1

3
W ′′P ]

= 2
f ′

f
[WP +

1

3
W ′P ](x∗)

+2

∫ ∞
η∗

d ln η

(
f ′

f

)′
[WP +

1

3
W ′P ] . (41)

For bispectra that are dominated by f ′′/f , GB ≈
−(f ′/f2). If we further take the approximation that
f ≈ ∆−1

R ≈ const., the consistency relation is satisfied
since

2WP +
2

3
W ′P = Wsq. (42)

Thus the consistency relation holds in our first order bis-
pectrum approximation as long as f remains nearly con-
stant.

Of course f remains constant only at zeroth order in
slow roll so there are additional correction in a full first
order calculation. In Fig. 3 (upper), we show that corre-
spondingly there is a small amplitude mismatch between
the numerical and the GSR1 results which grows loga-
rithmically with decreasing kS . Recall that the quan-
tity fNL(kS , kL, kL) should become independent of kS as
kS → 0 to satisfy the consistency relation.

One can gain further insight into the missing term by
re-examining the slow-roll limit of the full first-order ex-
pression in Eq. (22) beyond the subhorizon approxima-
tion. Here G′ ≈ 1 − n̄s, where recall n̄s is the tilt that
describes the power spectrum in the absence of the slow-
roll violating feature. The leading contributions are from
the U1B and U1D terms and account for the evolution of
f between horizon crossing η ≈ 1/kS , when the curvature
fluctuation for kS froze out, and ηf , the epoch of slow-
roll violation. They form a multiplicative correction to
I1B and I2B of

R ≈
{

1 + n̄s−1
2 ln

(
kSηf
xmax

)
, kSηf < xmax,

1, kSηf ≥ xmax,
(43)

with xmax = e2−γE/2 ≈ 2.07 where γE is the
Euler-Mascheroni constant. Note that the ln(kηf )
term is simply the leading order slow-roll expansion of
∆R(kS)/∆R(η−1

f ) as one might expect. Furthermore,
the GSR technique can be shown to imply a slow-roll
freeze out at kη = e7/3−γE/2 rather than = 1 (see [16],
Eq. 105). In Fig. 3 (lower), we demonstrate the effect of
this rescaling with Eq. (43), denoted GSR1S. Here the
kS dependent discrepancy disappears entirely.

Applying this correction does not impact any triangle
where all three modes are subhorizon at ηf and hence has
very little impact on high signal-to-noise modes. Further-
more given that ηf must be comparable to the horizon
size for the bispectrum features to be detectable in the

7



FIG. 5. Consistency relation test for a large amplitude step
c = 5.75 × 10−4 and d = 0.0003 (upper) and 0.0001 (lower).
Here the change in the power spectrum slope due to the fea-
ture n̄s − ns and the squeezed bispectrum from the feature
fNL are both evaluated numerically. For the latter we take
kSηf = 1.38 × 10−2, though the results are independent of
this choice.

CMB, observable triangles cannot acquire large logarith-
mic corrections. We conclude that for practical purposes,
this correction can be safely ignored.

At higher values of the step height, c, our scaling still
removes the kS dependent errors (see Fig. 4). This is be-
cause these errors correspond to the slow evolution of f
between η = 1/kS and ηf rather than the feature itself.
On the other hand, a new scaling offset develops that can
be attributed to the change the feature makes on f at ηf .
In principle these could be corrected by integrating the
feature contributions to G′ in the first order U1B and U1D

terms. However this offset is of the same order and na-
ture as those found for the equilateral cases. Given that
squeezed triangles do not dominate the signal-to-noise,
we again conclude that further correction is unnecessary.

In Fig. 5, as a test of the consistency relation itself
for a large amplitude step, we compare the numerical
power spectrum slope to the squeezed bispectrum. The
operator which dominates the bispectrum in the case of
a feature is a subleading contribution to the usual slow-
roll consistency relation. Thus, we subtract off the slow-
roll contribution to the slope of the numerical power
spectrum, and instead compare the squeezed limit bis-
pectrum with the deviation away from the slow roll re-
sult for the slope of the power spectrum, n̄s − ns(kL),
where n̄s ≈ 0.963 is the slope of the power spectrum
in the absence of the feature. In practice this correc-

FIG. 6. Flat limit bispectrum for a large amplitude step
c = 5.75 × 10−4 with d = 0.0003. Flat triangle agreement
between the GSR1 approximation and numerical evaluation
is comparable to equilateral triangles.

tion is negligible if kLηf � 1 or more generally when
|fNL| � O(1 − n̄s). It is only that the agreement is so
good that we take it into account here. Furthermore, the
excellent agreement checks the accuracy of the numerical
bispectrum calculation.

Finally it is interesting to note that flat configurations
where k1 = 2k2 = 2k3 = kF are somewhat special in
Eq. (24), since the argument to the I5 integrals vanishes
leaving the expression ill-defined. It is in fact well-defined
if we take instead the limit of a flat triangle kε = K −
2kF → 0

BR(kF , kF /2, kF /2) ≈ (2π)4

k6
F

4∆R(kF )∆2
R(kF /2){

− IB0(2kF )− 7IB1(2kF ) + 12IB2(2kF )

+
I1(kF )√

2

[
− IB3(2kF )− 7IB4(2kF ) + 12IB5(2kF )

−6
kε
kF

IB5(kε)
]

(44)

+
2I1(kF /2)√

2

[
− IB3(2kF )− 7IB4(2kF ) + 2IB4(kF )

+12IB5(2kF )− 6IB5(kF )
]}
,

which again becomes independent of η∗ as the triangle
flattens. In Fig. 6, we compare our first order approxima-
tion to the numerical results. For scales between the first
oscillation and the damping tail, the approximation cap-
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tures the flat and equilateral bispectrum behavior com-
parably well.

IV. DISCUSSION

We have devised an efficient method to compute first-
order corrections to the bispectrum of inflationary models
with features. First order corrections to the bispectrum
are generically at least ∼10% and can reach order unity
for order unity features in the power spectrum.

Based on the GSR approach, we have shown that cor-
rections in the high k limit, where the bispectrum ampli-
tude is set well within the horizon, take on a simple form
involving only single integrals over the slow-roll param-
eters. This limit is observationally important since it is
here that the bispectrum can become large if the inflaton
crosses a feature in the potential in much less than an
e-fold of the expansion. We have constructed these cor-
rections such that they implement consistency relations
at low k in a controlled fashion.

Comparison with direct numerical computation of the
bispectrum shows that the approximation works ex-
tremely well for the full range where the bispectrum is
large. For cases where the zeroth order expressions devi-
ate by 50%, the first order approximation deviates by less
than 10%. These techniques should be useful for analyz-
ing any model where inflaton potential features provide
observably large non-Gaussianity.
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