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I. INTRODUCTION

The phase diagram of Quantum Chromodynamics (QCD) has been under intense studies in recent years [1]. At
extremely high densities and low temperatures color superconductivity (CS) has been established as the favored phase
[2]. The only known natural environment where this state of matter may occur is the superdense core of compact
stars. The low-temperature/high-density conditions needed for the formation of a CS ground state might be also
produced in low-energy RHIC experiments or in the planned heavy-ion collision experiments at Nuclotron-based Ion
Collider (NICA) at JNIR and the Facility for Antiproton and Ion Research (FAIR) at GSI [3].
Both the natural and laboratory circumstances where a CS state could be formed can be accompanied by the

presence of strong magnetic fields. Compact stars are usually strongly magnetized objects. In the case of magnetars,
surface magnetic fields can reach values ∼ 1014 − 1015 G [4]. Because of the high electric conductivity of the stellar
medium, during the formation of the neutron star the magnetic flux is conserved. Thus, it is reasonable to expect
much stronger magnetic fields in the star core where the matter density is much larger. However, the interior magnetic
fields of neutron stars are not accessible to direct observation, so their magnitudes can only be estimated with the
help of heuristic methods. Estimates based on macroscopic and microscopic analysis have led to maximum fields in
the range 1018 − 1020 G, depending on the nature of the inner medium, that is, whether it is formed by neutrons
[5], or quarks [6]. On the other hand, large magnetic fields of the order of m2

π ∼ 1018 − 1019 G can be produced in
non-central heavy-ion collisions [3]. If, as claimed in [7], nontrivial topological configurations can separate different
charged particles, the existing magnetic field could produce a current that may cause observable consequences in the
final states. Moreover, it has been shown that a sufficiently strong magnetic field can significantly influence the CS
state [8–10, 12–14].
At this point, it is worth to recall that despite the original electromagnetic U(1)em symmetry is broken by the

formation of quark Cooper pairs in the Color-Flavor-Locked (CFL) phase [15] of CS, a residual U(1) symmetry still
remains. The massless gauge field associated with this symmetry is given by the linear combination of the conventional
photon and the 8th gluon fields Ãµ = cos θAµ − sin θG8

µ [15, 16]. The field Ãµ plays the role of an in-medium or
rotated electromagnetic field, as the color condensate is neutral with respect to the corresponding rotated charge.
Thus, a magnetic field associated to Ãµ can penetrate the color superconductor and not being subject to the Meissner
effect.
In the presence of an external magnetic field, a less symmetric realization of the CFL pairing, known as the Magnetic

CFL (MCFL) phase [8], takes place. The MCFL phase has similarities, but also important differences with the CFL
phase [8–10, 12]. For example, the ground state has different symmetry and is characterized by two antisymmetric
gaps ∆ and ∆B , instead of just one, as in the regular CFL case [8]. The change of the ground state symmetry of
the three-flavor paired quark matter can be traced back to the rotated charges of the quarks that pair and to their
interaction with the rotated magnetic field. One should keep in mind that even though all the diquarks are neutral
with respect to the rotated electromagnetic charges, they can be formed either by pairs of neutral or charged quarks
with opposite rotated charges. As shown in [8], the gap ∆ only gets contributions from pairs of neutral quarks, while
∆B has contributions from both charged and neutral quarks, thus, it can directly feel the background field through
the minimal coupling of the charged quarks with B̃. At fields large enough that only the lowest Landau level (LLL) is
occupied, the field substantially modifies the density of states of the charged quarks and the energy gap ∆B becomes
significantly enhanced by the penetrating field [8]. At moderate magnetic fields (henceforth when we say magnetic

field, we actually mean the rotated magnetic field) the energy gaps exhibit oscillations when ẽB̃/µ2 [10] is varied,
owed to the de Haas-van Alphen effect. In the MCFL phase, as well as in the CFL one, the fermion excitations are
gapped, and the gluon fields acquire masses thanks to the Meissner-Anderson-Higgs mechanism, but the symmetry
breaking that gives rise to MCFL leaves a smaller number of Nambu-Goldstone fields, all of which are neutral with
respect to the rotated electric charge [9]. Hence, the MCFL phase behaves as an insulator, as it has no low-energy
charged excitations at zero temperature.
The presence of the magnetic field explicitly breaks the spatial rotational symmetry O(3) to the subgroup O(2) of

rotations about the axis parallel to the field. In a recent paper [12], we proved that this symmetry reduction has non-
trivial consequences for the ground state structure of the MCFL superconductor. Performing Fierz transformations
in a quark system with both Lorentz and rotational O(3) symmetries explicitly broken, we uncovered new pairing
channels that favor the formation of new condensates. Of particular interest is an attractive channel that leads to a
spin-one condensate of Dirac structure ∆M ∼ Cγ5γ

1γ2. A gap of this type does not break any symmetry that has
not been already broken, so it is not forbidden in principle. This condensate corresponds to an average magnetic
moment of the Cooper pairs in the medium. From a physical point of view, it is natural to expect the formation of
this extra condensate in the magnetized system because the diquarks formed by oppositely charged quarks will have
a net magnetic moment that may point parallel or antiparallel to the magnetic field. Diquarks formed by quarks
lying on any non-zero Landau level can have magnetic moments pointing in both directions, because each quark in
the pair may have both spins. Hence the contribution of these diquarks to the net magnetic moment should tend to
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cancel out. On the other hand, diquarks from quarks in the zero Landau level can only have one orientation of their
magnetic moment with respect to the field, because the quarks in the pair have only one possible spin projection.
This implies that the main contribution to the new condensate should come from the quarks at the zero Landau
level, an expectation that is consistent with our numerical results [12]. The new gap was obtained to be negligibly
small at weak magnetic fields, where the zero Landau level occupation is not significant. On the other hand, at
strong magnetic fields, the condensate became comparable in magnitude to the original condensates, ∆ and ∆B, of
the MCFL ground state [8], because the majority of the quarks occupy the zero Landau level in that case. Although
this new condensate is zero at zero magnetic field, we cannot ignore it even at very small magnetic fields because a
self-consistent solution of the gap equations with ∆ 6= 0, and ∆B 6= 0, but ∆M = 0 is not allowed. This is easy to
understand since there is always some occupation of the zero Landau level, as long as the magnetic field is not zero.
Thus, once a magnetic field is present, ∆M has to be considered simultaneously with the spin-zero MCFL gaps. The
∆M condensate of the MCFL phase shares a few similarities with the dynamical generation of an anomalous magnetic
moment recently found in massless QED [17].
In a recent letter [13], we reported the peculiar electromagnetic response of the MCFL medium, which exhibits a

magnetoelectric (ME) effect. The ME effect is the capacity of certain materials to have an electric polarization that
depends on an applied magnetic field and/or a magnetization that depends on an applied electric field. The ME effect
has been known in condensed matter for many years (see Ref. [18] for a review), but to the best of our knowledge it
had not been previously found in the context of QCD. Neither the CFL [19] nor the MCFL [13] phases have Debye
screening, because no infrared electric screening can be produced by diquark condensates that are neutral.
In the present paper we provide the details of the calculations that lead to the photon self-energy in the MCFL

phase with two scalar and one spin-one diquark condensates and use it to obtain the linear electromagnetic response
of the system in the strong magnetic field region. As it will be shown, in this region the MCFL phase exhibits an
anisotropic electric polarization, manifested by a different dielectric behavior in the directions parallel and transverse
to the magnetic field. Thus, the MCFL phase behaves at strong magnetic fields as a highly anisotropic dielectric
medium.
The paper is organized as follows. In Sec. II, the expression for the one-loop polarization operator in the presence of

a rotated magnetic field is obtained in momentum space using Ritus’s method. In Sec. III, we calculate the full quark
propagator for the MCFL phase at strong magnetic field. Using this propagator and Pauli-Villars regularization,
the polarization operator tensor in the strong-field limit is obtained in Sec. IV. In Sec. V, we obtain the electric
permittivity and magnetic permeability of the MCFL phase from the different components of the polarization tensor
at strong magnetic field in the infrared limit, p0 = 0, p3 → 0. In Sec. VI, the covariant structure of the polarization
operator tensor in momentum space is obtained and the gauge invariance in the strong-field region is verified. Our
conclusions are given in Sec. VII. Finally, in Appendix A, the transversality of the in-medium photon polarization
operator in the strong-field approximation is independently proved on general grounds.

II. THE PHOTON SELF-ENERGY AT B̃ 6= 0

Let us consider a NJL three-flavor model of massless quarks with Lagrangian density

L = ψ̄(i/∂ + µγ0)ψ −G(ψ̄Γa
µψ)(ψ̄Γ

µ
aψ). (1)

and baryon chemical potential µ. The ground state of this theory is the CFL color superconducting phase. In the
presence of an external magnetic field the ground state of the theory (1) changes into the less symmetric MCFL
ground state [8]. As mentioned in the Introduction, the explicit breaking of the rotational symmetry by the external
magnetic field allows for new attractive channels and, as shown in [12], the MCFL ground state turns out to have
three independent gaps: two scalar (∆ and ∆B) and one spin-one (∆M ). All the diquarks in the MCFL phase are
neutral with respect to the rotated electromagnetism, so the in-medium electromagnetic gauge symmetry that exits
in the CFL phase also remains intact in the MCFL one.
In this paper we are interested in investigating the static electromagnetic linear response of the MCFL supercon-

ductor in the region of strong magnetic fields. For that, we need to calculate the rotated photon self-energy (i.e. the

polarization operator for the in-medium (rotated) photon) in the presence of the external rotated magnetic field, B̃.
Only the quarks with non zero rotated charge can contribute to the polarization operator. Then, the polarization
operator for the rotated photon in coordinate space is

Πµν(x, y) =
ẽ2

2

∑

Q̃=±

Tr
[
ΓµS(Q̃)(x, y)Γ

νS(Q̃)(y, x)
]
, (2)
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with

S(Q̃)(x, y) =

(
G+

(Q̃)
(x, y) Ξ−

(Q̃)
(x, y)

Ξ+

(Q̃)
(x, y) G−

(Q̃)
(x, y)

)
, (3)

the Nambu-Gorkov (NG) full quark propagator of the charged quarks and

Γµ =

(
Q̃γµ 0

0 Q̃γµ

)
, (4)

the in-medium electromagnetic vertex. In the above formulas ẽ is the rotated electromagnetic coupling, Q̃ = ± is the
eigenvalue of the rotated charge operator Q̃ = Q× 1+1×T8/

√
3 with Q = diag(−1/3,−1/3, 2/3) for (s, d, u) flavors,

and T8 = diag(−1/
√
3,−1/

√
3, 2/

√
3) for (b, g, r) colors (for details see [12]). Notice that the polarization operator

(2) gets separate contributions from the positively and negatively charged NG spinors

Ψ+ =

(
ψ(+)

ψ(−)C

)
, Ψ− =

(
ψ(−)

ψ(+)C

)
, (5)

with subindex (±) indicating the sign of the rotated electric charge [8].
The diagonal and off-diagonal elements in (3) are given respectively by

G±

(Q̃)
(x, y) =

{
[G±

(Q̃)0
]−1(x, y)− Φ∓

(Q̃)
G∓

(Q̃)0
(x, y)Φ±

(Q̃)

}−1

(6)

Ξ±

(Q̃)
(x, y) = −G∓

(Q̃)0
(x, y)Φ±

(Q̃)
G±

(Q̃)
(x, y) (7)

with [G±

(Q̃)0
]−1(x, y) = (iγµ∂µ + ẽQ̃γµÃµ ± µγ0)δ

4(x− y) the bare inverse propagators for quarks (+) and antiquarks

(−), and Φ±

(Q̃)
the gap matrix whose explicit form will be given later.

We can use the so-called Ritus’s method [8, 20, 21] to transform the polarization operator (2) to momentum space.

In this approach, the transformation is carried out by the eigenfunctions El(Q̃)
p (x), which correspond to the asymptotic

states of the charged fermions in a uniform magnetic field. Assuming a magnetic field pointing along the positive

x3-direction, the E
l(Q̃)
p (x) can be written as

El(+)
p (x) = El(+)

p (x)∆(+) + El−1(+)
p (x)∆(−), (8)

El(−)
p (x) = El−1(−)

p (x)∆(+) + El(−)
p (x)∆(−), (9)

Here ∆(σ) = (1 + iσγ1γ2)/2 are spin up (σ = +) and down (σ = −) projectors that satisfy the following relations

∆(σ) + ∆(−σ) = 1, ∆(σ)∆(−σ) = 0, ∆2(σ) = ∆(σ), ∆(σ)γµ‖ = γµ‖∆(σ), ∆(σ)γµ⊥ = γµ⊥∆(−σ), (10)

where ‖ refers to the longitudinal components (0,3) and ⊥ to the transverse ones (1,2) with respect to the direction
of the magnetic field. The non-negative integer l = 0, 1, 2, ... denotes the Landau levels and the eigenfunctions

El(±)
p (x) = Nle

−i(p0x
0+p2x

2+p3x
3)Dl(ρ(±)), (11)

have normalization constant Nl = (4π|ẽB̃|)1/4/
√
l!. The functions Dl(ρ(±)) are the parabolic cylinder functions of

argument ρ(±) =
√
2|ẽB̃|(x1 ± p2/ẽB̃) and index given by Landau level numbers.

The E
l(±)
p functions satisfy the equation

∫
d4xĒl(±)

p (x)E
l′(±)
p′ (x) = (2π)4δ̂(4)(p− p′)Π(±)(l), (12)

with Ēl
p ≡ γ0(E

l
p)

†γ0, δ̂
(4)(p− p′) = δll

′

δ(p0 − p′0)δ(p2 − p′2)δ(p3 − p′3), and Π(±)(l) = ∆(±)δl0 + (1− δl0).
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The E
l(±)
p functions (9) satisfy

(i∂µ ± ẽÃµ)γ
µEl(±)

p (x) = El(±)
p (x)(γµp̄(±)

µ ), (13)

with p̄(±) given by

p̄(±) = (p0, 0,±
√
2|ẽB̃|l, p3). (14)

Since photons are neutral, the transformation to momentum space of the LHS of (2) can be carried out by the usual
Fourier transform, where we assume translational invariance of the photon self-energy in the presence of a uniform
magnetic field

(2π)4δ(4)(p− p′)Πµν(p) =

∫
d4xd4x′e−i(p·x−p′·x′)Πµν(x, x′). (15)

In terms of the Ep functions, the charged quark propagator can be written as

S(Q̃)(x, x
′) =

∫∑ d4p

(2π)4
El(Q̃)

p (x)Π(Q̃)(l)S̃
l
(Q̃)

(p̄(Q̃))Ēl(Q̃)
p (x′), (16)

where

S̃l
(Q̃)

(p̄(Q̃)) =


 G+

(Q̃)

l
(p̄(Q̃)) Ξ−

(Q̃)

l
(p̄(Q̃))

Ξ+

(Q̃)

l
(p̄(Q̃)) G−

(Q̃)

l
(p̄(Q̃))


 . (17)

and
∫∑ d4p

(2π)4 ≡ ∑l

∫
dp0dp2dp3

(2π)4 . The matrix Π(Q̃)(l) in (16) ensures that only one spin projection contributes at the

LLL.
Hence, in momentum space the rotated photon self-energy reads

(2π)4δ(4)(p− p′)Πµν(p) =
ẽ2

2

∑

Q̃

∫
d4xd4x′

∫∑ d4k

(2π)4

∫∑ d4q

(2π)4
e−i(p·x−p′·x′)

× Tr
[
γµE

l(Q̃)
k (x)Π(Q̃)(l)S̃

l
(Q̃)

(k̄(Q̃))Ē
l(Q̃)
k (x′)γνEl′(Q̃)

q (x′)Π(Q̃)(l
′)S̃l′

(Q̃)
(q̄(Q̃))Ēl′(Q̃)

q (x)
]
.

(18)

The integrations in the spatial coordinates give [21]
∫
d4xĒl′(Q̃)

q (x)γµE
l(Q̃)
k (x)e−ip·x =(2π)4δ(3)(q + p− k)e−ip1(k2+q2)/2ẽB̃e−p2

⊥
/2

×
∑

σ,σ′

1√
n!n′!

eisgn(ẽB̃)(n−n′)ϕJnn′(p̂⊥)∆(σ)γµ∆(σ′), (19)

and similarly,
∫
d4x′Ē

l(Q̃)
k (x′)γνEl′(Q̃)

q (x)eip
′·x =(2π)4δ(3)(q + p′ − k)eip

′

1
(k2+q2)/2ẽB̃e−p′2

⊥
/2

×
∑

σ̄,σ̄′

1√
n̄!n̄′!

eisgn(ẽB̃)(n̄−n̄′)ϕJn̄n̄′(p̂′⊥)∆(σ̄)γν∆(σ̄′). (20)

with n ≡ n(l, σ), n′ ≡ n(l′, σ′), n̄ ≡ n(l, σ̄) and n̄′ ≡ n(l′, σ̄′), defined according to

n(l, σ) = l+ sgn(ẽB̃)
σ

2
− 1

2
, (21)

The normalized transverse momentum and the polar angle are defined as p̂⊥ ≡
√
p̂21 + p̂22 and ϕ ≡ arctan(p̂2/p̂1),

respectively, where p̂µ ≡ pµ/
√
2|ẽB̃|; the delta function

δ(3)(q + p− k) = δ(q0 + p0 − k0)δ(q2 + p2 − k2)δ(q3 + p3 − k3), (22)
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and

Jnn′(p̂⊥) =

min(n,n′)∑

m=0

n!n′!

m!(n−m)!(n′ −m)!

[
isgn(ẽB̃)p̂⊥

]n+n′−2m

. (23)

The presence of the delta functions in (19) and (20) enable integrations over k0, k2 and k3 in (18) yielding δ(3)(p−p′) =
δ(p0−p′0)δ(p2−p′2)δ(p3−p′3) and the integral over q2 gives rise to δ(p1−p′1), which combined match the delta function
on the LHS of (18). Thus, we have

Πµν(p) =
ẽ2

2
|ẽB̃|

∑

Q̃

∑

l,l′

∑

[σ]

∫∑ d3q

(2π)3
eisgn(ẽB̃)(n−n′+n̄−n̄′)ϕ

√
n!n′!n̄!n̄′!

e−p̂2

⊥Jnn′(p̂⊥)Jn̄n̄′(p̂⊥)

× Tr
[
∆(σ)γµ∆(σ′)Π(Q̃)(l)S̃

l
(Q̃)

(p̄(Q̃) − q̄(Q̃))∆(σ̄)γν∆(σ̄′)Π(Q̃)(l
′)S̃l′

(Q̃)
(q̄(Q̃))

]
. (24)

where [σ] means summing over σ, σ′, σ̄ and σ̄′. Because of the factor e−p̂2

⊥ in the integrand, contributions from large
values of p̂⊥ are suppressed. This allows us to keep only the terms with the smallest power of p̂⊥ in Jnn′(p̂⊥) [21]

Jnn′(p̂⊥) →
[max(n, n′)]!

|n− n′|! [ip̂⊥]
|n−n′| → n!δn,n′ , (25)

Then, the self-energy becomes

Πµν(p) =
ẽ2

2
|ẽB̃|

∑

Q̃

∑

l,l′

∑

[σ]

∫∑ d3q

(2π)3
e−p̂2

⊥δn,n′δn̄,n̄′

× Tr
[
∆(σ)γµ∆(σ′)Π(Q̃)(l)S̃

l
(Q̃)

(p̄(Q̃) − q̄(Q̃))∆(σ̄)γν∆(σ̄′)Π(Q̃)(l
′)S̃l′

(Q̃)
(q̄(Q̃))

]
. (26)

Taking into account that

δn,n′ = δl′,lδσσ′ + δl′+σ,lδ−σ,σ′ ,

δn̄,n̄′ = δl′,lδσ̄,σ̄′ + δl′+σ̄′,lδ−σ̄′,σ̄, (27)

we can sum in [σ] and l′. Introducing the finite temperature formulation by replacing
∫
dq0 → T

∑
q0
, with Matsubara’s

frequencies, q0 = (2r + 1)πT , r = 0,±1,±2, ..., we find

Πµν(p) =
ẽ2

2
|ẽB̃|

∑

Q̃

∑

l

T
∑

q0

∫
dq3
(2π)2

e−p̂2

⊥

{
Tr
[
∆(+)γµ∆(+)Π(Q̃)(l))S̃

l
(Q̃)

(p− q)∆(+)γν∆(+)Π(Q̃)(l)S̃
l
(Q̃)

(q̄)
]

+Tr
[
∆(+)γµ∆(+)Π(Q̃)(l)S̃

l
(Q̃)

(p− q)∆(−)γν∆(−)Π(Q̃)(l)S̃
l
(Q̃)

(q̄)
]
+Tr

[
∆(−)γµ∆(−)Π(Q̃)(l)S̃

l
(Q̃)

(p− q)

× ∆(+)γν∆(+)Π(Q̃)(l)S̃
l
(Q̃)

(q̄)
]
+Tr

[
∆(−)γµ∆(−)Π(Q̃)(l)S̃

l
(Q̃)

(p− q)∆(−)γν∆(−)Π(Q̃)(l)S̃
l
(Q̃)

(q̄)
]

+Tr
[
∆(+)γµ∆(−)Π(Q̃)(l)S̃

l
(Q̃)

(p− q)∆(−)γν∆(+)Π(Q̃)(l − 1)S̃l−1

(Q̃)
(q̄)
]
+Tr

[
∆(−)γµ∆(+)Π(Q̃)(l)S̃

l
(Q̃)

(p− q)

× ∆(+)γν∆(−)Π(Q̃)(l + 1)S̃l+1

(Q̃)
(q̄)
]}

. (28)

Here, for simplicity we defined p− q = p̄(Q̃) − q̄(Q̃).

III. THE FULL QUARK PROPAGATOR AT STRONG MAGNETIC FIELD

In order to calculate (28), we first need to find the full quark propagator in momentum space S̃l
(Q̃)

(k̄). Since we

are interested in the strong-field region, it is enough to find the LLL propagator S̃l=0
(Q̃)

(k̄), since at strong fields all the

charged quarks are constrained to the LLL.
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The diagonal

G±

(Q̃)

l
(k̄) =

(
[G±

(Q̃)0

l
]−1(k̄)− Φ∓

(Q̃)
G∓

(±)0

l
(k̄)Φ±

(Q̃)

)−1

(29)

and off-diagonal

Ξ±

(Q̃)

l
(k̄) = −G∓

(Q̃)

l
(k̄)Φ±

(Q̃)
G±

(Q̃)0

l
(k̄). (30)

elements of (17) can be found from the inverse bare propagator [G±

(Q̃)0

l
]−1(k̄) and the gap matrix Φ±

(Q̃)
of the charged

quarks, with Φ−

(Q̃)
= γ0[Φ

+

(Q̃)
]†γ0.

The color-flavor structure of the MCFL gap matrix is [12]

Φαβ
ij = ∆̂ǫαβ3ǫij3 + ∆̂B(ǫ

αβ1ǫij1 + ǫαβ2ǫij2) + ∆̂M [ǫαβ1(δi2δj3 + δi3δj2) + ǫαβ2(δi1δj3 + δi3δj1)], (31)

where α, β and i, j denote color and flavor indices respectively. Notice that all the coefficients in (31) are actually

matrices in Dirac space, for which we defined ∆̂ = ∆Cγ5, ∆̂B = ∆BCγ5 and ∆̂M = ∆MCγ5σ12. In the subspace of
the positively ψT

(+) = (ub, ug, srC , drC) and negatively ψT
(−) = (sr, dr, ubC , ugC) charged NG quarks, the corresponding

gap matrices Φ+
(±) are proportional to the identity in color and flavor and have Dirac structure

Φ+
(±) = (−∆B ±∆M )Cγ5∆(+) + (−∆B ∓∆M )Cγ5∆(−). (32)

In the LLL limit (l = 0), for positively charged quarks we have

[G±
(+)0

l=0
]−1(k‖) = (k0 ± µ)γ0 − k3γ3 = γ0

∑

e=±

[k0 − (ek3 ∓ µ)]Λe
k3
. (33)

and

Φ∓
(+)[G

∓
(+)0

l=0
]Φ±

(+) = γ0
∑

e=±

Λe
k3

k0 − (ek3 ± µ)
[(∆B −∆M )2∆(±) + (∆B +∆M )2∆(∓)]. (34)

with Λe
k3

= (1 + eγ0γ3k̂3)/2 being the projectors into states of positive (e = +) or negative (e = −) energy. At this
point we concentrate in the propagator for the positively charges quarks, because the calculation is totally analogous
for the negatively charged quarks. Then, taking into account (33) and (34), we can easily obtain G± and Ξ± in the
LLL, given respectively by

G±
(+)

l=0
(k‖) =

∑

e=±

k0 ∓ (µ− ek3)

k20 − [ǫek3
]2

Λ±e
k3
γ0∆(+) +

∑

e=±

k0 ∓ (µ− ek3)

k20 − [ǭek3
]2

Λ±e
k3
γ0∆(−), (35)

and

Ξ±
(+)

l=0
(k‖) = ±

∑

e=±

∆0

k20 − [ǫek3
]2
γ5Λ

∓e
k3

∆(+)∓
∑

e=±

∆̄0

k20 − [ǭek3
]2
γ5Λ

∓e
k3

∆(−). (36)

where we defined ∆0 = ∆B −∆M and ∆̄0 = ∆B +∆M . The quasiparticle energies are ǫek3
≡
√
(µ− ek3)2 +∆2

0 and

ǭek3
≡
√
(µ− ek3)2 + ∆̄2

0.

IV. REGULARIZED POLARIZATION OPERATOR AT STRONG MAGNETIC FIELD

Now we consider the in-medium photon polarization operator in the strong magnetic field limit, in which all particles
are restricted to the LLL only. In this limit, the propagators for both positively and negatively charged particles only
differ in the spin projection of their condensates [12]. Moreover, as we shall see below, the trace over Dirac space
is independent of the spin projection and thus the contribution to the polarization operator of the propagators for
positively and negatively charged particles are identical. Therefore, it is enough to calculate the contribution from
the positively charged particles and multiply it by two.
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In the LLL the charged quark propagators only depend on the Dirac structure q̄‖ · γ‖, with q̄‖ = (q0, q3) and

γ‖ = (γ0, γ3). Taking into account the relation (10), the polarization operator (28) in the LLL reduces to

Πµν(p
‖) = ẽ2|ẽB̃|T

∑

q0

∫
dq3
(2π)2

Tr
[
∆(+)γ‖µS̃

l=0
(+) (p

‖ − q‖)∆(+)γ‖ν S̃
l=0
(+) (q

‖)
]
. (37)

In (37), the approximation p̂⊥ ≃ 0 was already used, since we are mainly interested in the infrared behavior of the

polarization operator, so the exponential e−p̂2

⊥ was eliminated (i.e. e−p̂2

⊥ ≃ 1) in (28). From (37), one can see that
the theory has been effectively reduced to (1 + 1) dimensions. Obviously, the integral (together with the Matsubara
sum) in (37) is ultraviolet divergent by simple power counting analysis. In order to obtain meaningful results, we
need to regularize (37). Because the Lorentz symmetry breaking at finite density, dimensional regularization is not
appropriate. There is an extra subtlety with using dimensional regularization in this case that concerns to the γ5
dependence of the condensates. As known, γ5 is an intrinsically four-dimensional object with no analog in the higher
dimensions required in the dimensional regularization approach [22]. Thus, in the following, we will use the Pauli-
Villars regularization by introducing a counterterm in the polarization operator, which corresponds to free fermions
with zero gap but with a large regulator Λ playing the role of a mass. At the end, the regulator Λ will be set to infinity,
eliminating the introduced degrees of freedom that should not contribute to the physical results. In the Appendix,
we prove the legitimacy of this regularization scheme in securing the gauge invariance of the polarization operator of
the rotated photon. Under those prescriptions, the regularized polarization operator reads

Πµν(p
‖)R =ẽ2|ẽB̃|T

∑

q0

∫
dq3
(2π)2

×
{
Tr
[
∆(+)γ‖µS̃

l=0
(+) (p

‖ − q‖)∆(+)γ‖ν S̃
l=0
(+) (q

‖)
]
− Tr

[
∆(+)γ‖µS̃Λ(p

‖ − q‖)∆(+)γ‖ν S̃Λ(q
‖)
]}

, (38)

Here, S̃Λ(q
‖) is the propagator of the regularization counterpart, whose inverse reads

[
S̃Λ(k

‖)
]−1

=

(
[G+

0 ]
−1
Λ (k‖) 0
0 [G−

0 ]
−1
Λ (k‖)

)
, (39)

with

[G±
0 ]

−1
Λ (k‖) = k0γ0 − k3γ

3 − Λ. (40)

Obviously, it is not difficult to calculate the counterpart contribution to the polarization operator. It is actually
similar to the (real) photon self-energy in QED with the electron mass replaced by Λ, for which the results can be
found in the literature [23]. We therefore will not present the detailed calculation of this regularization counterpart
and only give the final results.
The trace in (38) extends to Nambu-Gorkov, color-flavor and Dirac space. First, performing the trace over Nambu-

Gorkov space, and using the notation (17), we have

Πµν(p
‖) =ẽ2|ẽB̃|T

∑

k0

∫
dk3
(2π)2

Trc,f,s

[
∆(+)γ‖µG

+
(+)

l=0
(k‖)∆(+)γ‖νG

+
(+)

l=0
(k‖ − p‖)

+ ∆(+)γ‖µG
−
(+)

l=0
(k‖)∆(+)γ‖νG

−
(+)

l=0
(k‖ − p‖) + ∆(+)γ‖µΞ

−
(+)

l=0
(k‖)∆(+)γ‖νΞ

+
(+)

l=0
(k‖ − p‖)

+ ∆(+)γ‖µΞ
+
(+)

l=0
(k‖)∆(+)γ‖νΞ

−
(+)

l=0
(k‖ − p‖)

]
+Πµν(Λ). (41)

Where Πµν(Λ) corresponds to the contribution of the second term in the RHS of (38).
Let’s introduce the mixed representation for the quark propagator in the LLL (see Ref. [24] for a similar represen-

tation at zero field)

G±
(+)

l=0
(τ, k3) ≡ T

∑

k0

e−k0τG±
(+)

l=0
(k‖), (42)

and its inverse

G±
(+)

l=0
(k‖) ≡

∫ 1/T

0

dτek0τG±
(+)

l=0
(τ, k3). (43)
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Then, after performing the Matsubara sum in terms of a contour integral in the complex k0 plane, we have

G+
(+)

l=0
(τ, k3) =

∑

e

Λe
k3
γ0

{
ne
k3

[
θ(−τ)−N(ǫek3

)
]
eǫ

e
k3

τ − (1− ne
k3
)
[
θ(τ) −N(ǫek3

)
]
e−ǫe

k3
τ
}
, (44)

G−
(+)

l=0
(τ, k3) =−

∑

e

γ0Λ
e
k3

{
ne
k3

[
θ(τ) −N(ǫek3

)
]
e−ǫe

k3
τ − (1− ne

k3
)
[
θ(−τ) −N(ǫek3

)
]
eǫ

e
k3

τ
}
. (45)

with N(x) = (ex/T + 1)−1 and ne
k3

= (ǫek3
+ µ − ek3)/2ǫ

e
k3

being respectively the fermion distribution function and
occupation numbers of particles (e = +1) or antiparticles (e = −1) at zero temperature. Substituting (42) into (41),
and making use of the Kubo-Martin-Schwinger relation for fermions

G±
(+)

l=0
(1/T − τ,k3) = −G±

(+)

l=0
(−τ,k3) (46)

and the identity

T
∑

k0

ek0τ =

∞∑

m=−∞

(−1)mδ(τ − m

T
). (47)

we obtain

T
∑

k0

Trs

[
∆(+)γ‖µG

±
(+)

l=0
(k‖)∆(+)γ‖νG

±
(+)

l=0
(q‖)

]
=−

∫ 1/T

0

dτep0τTrs

[
∆(+)γ‖µG

±
(+)

l=0
(τ, k3)

× ∆(+)γ‖νγ0G
∓
(+)

l=0
(τ, q3)γ0

]
. (48)

Here, we used that ep0/T = 1 for bosonic Matsubara frequencies p0 = −i2rπT and defined qµ = kµ−pµ. Now inserting
(44)-(45) into (48) and integrating over τ , we have

T
∑

k0

Trs

[
∆(+)γ‖µG

+
(+)

l=0
(k‖)∆(+)γ‖νG

+
(+)

l=0
(q‖)

]

=−
∑

e,e′

T +
µν

{(
ne
k3
(1− ne′

q3
)

p0 + ǫek3
+ ǫe′q3

− ne′

q3
(1− ne

k3
)

p0 − ǫek3
− ǫe′q3

)
×
[
1−N(ǫek3

)−N(ǫe
′

q3
)
]

+

(
(1 − ne

k3
)(1− ne′

q3
)

p0 − ǫek3
+ ǫe′q3

− ne
k3
ne′

q3

p0 + ǫek3
− ǫe′q3

)
×
[
N(ǫek3

)−N(ǫe
′

q3
)
]}

, (49)

and

T
∑

k0

Trs

[
∆(+)γ‖µG

−
(+)

l=0
(k‖)∆(+)γ‖νG

−
(+)

l=0
(q‖)

]

=−
∑

e,e′

T −
µν

{(
(1− ne

k3
)ne′

q3

p0 + ǫek3
+ ǫe′q3

− ne
k3
(1− ne′

q3
)

p0 − ǫek3
− ǫe′q3

)
×
[
1−N(ǫek3

)−N(ǫe
′

q3
)
]

+

(
ne
k3
ne′

q3

p0 − ǫe
k3

+ ǫe′q3

−
(1− ne

k3
)(1 − ne′

q3
)

p0 + ǫe
k3

− ǫe′q3

)
×
[
N(ǫek3

)−N(ǫe
′

q3
)
]}

, (50)

In (49)-(50) we introduced the notation

T ±
µν = Trs

[
γ0γ

‖
µΛ

±e
k3

∆(+)γ0γ
‖
νΛ

±e′

q3
∆(+)

]
. (51)

The same procedure can be applied to the off-diagonal components in (41) to end up with

T
∑

k0

Tr
[
∆(+)γ‖µΞ

∓
(+)

l=0
(k‖)∆(+)γ‖νΞ

±
(+)

l=0
(q‖)

]

=−
∑

e,e′

U±
µν

∆2

4ǫek3
ǫe′q3

{(
1

p0 + ǫek3
+ ǫe′q3

− 1

p0 − ǫek3
− ǫe′q3

)
×
[
1−N(ǫek3

)−N(ǫe
′

q3
)
]

−
(

1

p0 − ǫek3
+ ǫe′q3

− 1

p0 + ǫek3
− ǫe′q3

)
×
[
N(ǫek3

)−N(ǫe
′

q3
)
]}

, (52)
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with

U±
µν = Trs

[
γ‖µγ5Λ

±e
k3

∆(+)γ‖νγ5Λ
∓e′

q3
∆(+)

]
. (53)

Putting everything together, the polarization operator (41) for rotated photons reads

Πµν(p
‖) =− 2ẽ2|ẽB̃|

∫
dk3
(2π)2

∑

e,e′

×
{[(

n1(1− n2)

p0 + ǫ1 + ǫ2
− (1− n1)n2

p0 − ǫ1 − ǫ2

)
(1−N1 −N2) +

(
(1 − n1)(1− n2)

p0 − ǫ1 + ǫ2
− n1n2

p0 + ǫ1 − ǫ2

)
(N1 −N2)

]
T +
µν

+

[(
(1− n1)n2

p0 + ǫ1 + ǫ2
− n1(1− n2)

p0 − ǫ1 − ǫ2

)
(1−N1 −N2) +

(
n1n2

p0 − ǫ1 + ǫ2
− (1− n1)(1− n2)

p0 + ǫ1 − ǫ2

)
(N1 −N2)

]
T −
µν

+

[(
1

p0 + ǫ1 − ǫ2
− 1

p0 − ǫ1 − ǫ2

)
(1−N1 −N2)−

(
1

p0 − ǫ1 + ǫ2
− 1

p0 + ǫ1 − ǫ2

)
(N1 −N2)

]

×
(
U+
µν + U−

µν

) ∆2

4ǫ1ǫ2
+Πµν(Λ)

}
. (54)

Here some compact notations, similar to those used in [24], were introduced: 1 stands for subscript k3 and superscript
e, and 2 for subscript q3 and superscript e′. Notice that the prefactor 2 comes from the trace in color-flavor, since
the RHS of (41) is diagonal in color-flavor space.
The remaining trace over Dirac space in (51) and (53) can be easily performed to obtain

T ±
00 = −U±

00 =
1

2
(1 + ee′k̂3q̂3), (55a)

T ±
03 = T ±

30 = −U±
03 = U±

30 =
1

2
(∓ek̂3 ∓ e′q̂3), (55b)

T ±
33 = U±

33 =
1

2
(1 + ee′k̂3q̂3). (55c)

Notice that we would end up with the same results if we replace the spin projectors ∆(+) in (51) and (53) by ∆(−).
That shows that the contribution of the positive and negative charged particles with corresponding spin up (∆(+))
and spin down (∆(−)) projectors respectively, to the polarization operator are identical, as we discussed previously.
The different components of the rotated-photon polarization operator (54) can be explicitly given as

Π00R(p
‖) =− ẽ2|ẽB̃|

∫ ∞

−∞

dk3
(2π)2





∑

e,e′

(1 + ee′k̂3q̂3) ×
[
(

1

p0 + ǫ1 + ǫ2
− 1

p0 − ǫ1 − ǫ2
)(1−N1 −N2)

ǫ1ǫ2 − ξ1ξ2 −∆2
0

2ǫ1ǫ2

+ (
1

p0 − ǫ1 + ǫ2
− 1

p0 + ǫ1 − ǫ2
)(N1 −N2)

ǫ1ǫ2 + ξ1ξ2 +∆2
0

2ǫ1ǫ2

]
+

[(
1

p0 + E1 + E2
− 1

p0 − E1 − E2

)

× (1−NE1
−NE2

)
E1E2 − k3q3 − Λ2

E1E2
+

(
1

p0 − E1 + E2
− 1

p0 + E1 − E2

)
(NE1

−NE2
)
E1E2 + k3q3 + Λ2

E1E2

]}
,

(56)

Π03R(p
‖) =− ẽ2|ẽB̃|

∫ ∞

−∞

dk3
(2π)2





∑

e,e′

(ek̂3 + e′q̂3)×
[(

1

p0 + ǫ1 + ǫ2
+

1

p0 − ǫ1 − ǫ2

)
(1 −N1 −N2)

(
ξ2
2ǫ2

− ξ1
2ǫ1

)

+

(
1

p0 − ǫ1 + ǫ2
+

1

p0 + ǫ1 − ǫ2

)
(N1 −N2)

(
ξ1
2ǫ1

+
ξ2
2ǫ2

)]
+ i

[(
1

p0 + E1 + E2
+

1

p0 − E1 − E2

)

× (1−NE1
−NE2

)

(
q3
E2

− k3
E1

)
+

(
1

p0 − E1 + E2
− 1

p0 + E1 − E2

)(
q3
E2

+
k3
E1

)
(NE1

−NE2
)

]}
,

(57)
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and

Π33R(p
‖) =− ẽ2|ẽB̃|

∫ ∞

−∞

dk3
(2π)2




∑

e,e′

(1 + ee′k̂3q̂3)×
[(

1

p0 + ǫ1 + ǫ2
− 1

p0 − ǫ1 − ǫ2

)
(1 −N1 −N2)

ǫ1ǫ2 − ξ1ξ2 +∆2
0

2ǫ1ǫ2

+

(
1

p0 − ǫ1 + ǫ2
− 1

p0 + ǫ1 − ǫ2

)
(N1 −N2)

ǫ1ǫ2 + ξ1ξ2 −∆2
0

2ǫ1ǫ2

]
−
[(

1

p0 + E1 + E2
− 1

p0 − E1 − E2

)

× (1−NE1
−NE2

)
E1E2 − k3q3 + Λ2

E1E2
+

(
1

p0 − E1 + E2
− 1

p0 + E1 − E2

)
(NE1

−NE2
)
E1E2 + k3q3 − Λ2

E1E2

]}
.

(58)

Here, we used the notation E1 =
√
k23 + Λ2, E2 =

√
q23 + Λ2 and ξ1 = ek3 − µ, ξ2 = e′q3 − µ.

V. ELECTRIC PERMITTIVITY AND MAGNETIC PERMEABILITY IN THE STRONG-FIELD

APPROXIMATION

In the following, we will consider the zero temperature limit, T = 0, of the polarization operator components
(56)-(58), and consequently all the Fermion distribution functions vanish. Moreover, we can drop the contribution
of the antiparticles because it is always much smaller than that of the particles. Because we are interested in the
infrared behavior of the photon self-energy, we expand (56)-(58) in powers of the photon momentum components p0
and p3, up to quadratic terms

Π00R = − lim
Λ→∞

ẽ2|ẽB̃|p23
6π2

(
1

∆2
0

+
1

Λ2

)
= − ẽ

2|ẽB̃|p23
6π2∆2

0

, (59)

Π33R = − lim
Λ→∞

ẽ2|ẽB̃|
6π2

[(
3 +

p20
∆2

0

)
−
(
3 +

p20
Λ2

)]
= − ẽ

2|ẽB̃|p20
6π2∆2

0

. (60)

and Π30R = Π03R ≃ 0. As we expected, the regulator introduced through the Pauli-Villars regularization scheme
does not appear in the final results once we take Λ → ∞.
Because Π00 has no constant contribution in the infrared limit p0 = 0, p3 → 0, one immediately concludes that there

is no Debye screening in the strong-field region, as it was the case at zero field in the CFL phase [19]. This is simply
because all quarks are bound within the rotated-charge neutral condensates. There is also no Meissner screening
(i.e. Π33 is zero in the zero-momentum limit), as it should be expected from the remnant Ũ(1) gauge symmetry.
However, the condensates have electric dipole moments and could align themselves in an electric field. Hence, this
should modify the dielectric constant of the medium. Since the quadratic term in the effective Ũ(1) Lagrangian is

given by Ãµ(−p)[D−1
µν (p) +Πµν(p)]Ãν(p), with D

−1 being the bare rotated photon propagator, the effective action of

the Ũ(1) field in the strong-field region is given by

Seff =

∫
d4x[

ǫ‖

2
Ẽ‖ · Ẽ‖ +

ǫ⊥
2
Ẽ⊥ · Ẽ⊥ − 1

2λ‖
H̃‖ · H̃‖ −

1

2λ⊥
H̃⊥ · H̃⊥], (61)

where the separation between transverse and longitudinal parts is due to the O(3) → O(2) symmetry breaking

produced by the strong magnetic field B̃. In (61), Ẽ, H̃ are weak electric and magnetic field probes, respectively. In
(61) the coefficients ǫ and λ denote the electric permittivity and magnetic permeability of the medium respectively.
From (59)-(60) it is straightforward that in the infrared limit the transverse and longitudinal components of the

electric permittivity and magnetic permeability become

λ⊥ = λ‖ ≃ 1, ǫ⊥ = 1, ǫ‖ = 1 + χ
‖
MCFL = 1 +

ẽ2|ẽB̃|
6π2∆2

0

, (62)

where χ
‖
MCFL is the longitudinal electric susceptibility. Notice that the longitudinal electric susceptibility is much

larger than one because in the strong-magnetic-field limit ẽB̃ ≫ ∆2
0 [12].

Although a static Ũ(1) charge cannot be completely Debye screened by the Ũ(1) neutral Cooper pairs, it can still be
partially screened along the magnetic field direction because the medium is highly polarizable on that direction. This
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is due to the existence of Cooper pairs with opposite rotated charges Q̃ that behave as electric dipoles with respect
to the rotated electromagnetism of the MCFL phase. Moreover, the electric susceptibility depends on the magnetic
field. When the magnetic field increases in the strong-field region, the susceptibility becomes smaller, because the

coherence length ξ ∼ 1/∆0 decreases (i.e. ∆0 increases) with the field at a quicker rate than
√
ẽB̃ [12], and the

pair’s coherence length ξ plays the role of the dipole length. Hence, with increasing magnetic field the polarization
effects weaken in the strong-field region. The tuning of the electric polarization by a magnetic field is what is called
in condensed matter physics the magnetoelectric effect. We have discussed this phenomenon in highly magnetized CS
in detail in [13]. From (62), we also see that at strong magnetic fields the medium turns out to be very anisotropic.
The fact that the electric permittivity is only modified in the longitudinal direction is due to the confinement of the
quarks to the LLL at high enough fields.

VI. COVARIANT STRUCTURE AND GAUGE INVARIANCE OF THE POLARIZATION TENSOR

The photon polarization operator should be gauge invariant. That is, in the strong-field approximation, it should

satisfy the transversality condition in the reduced (1 + 1)-D space (pµ
‖Π

‖
µν(p‖) = 0). As known, the polarization

operator tensor can be expanded in a superposition of independent transverse Lorentz tensors. The number of these
basic transverse tensors depends on the symmetries of the system under consideration. For example, in vacuum, where
the only available tensorial structures are the four-momentum and the metric tensor, there is only one gauge invariant
structure. When a medium is under consideration (i.e. at finite temperature or finite density), since the Lorentz
symmetry is broken, there is an additional gauge invariant structure that can be formed by taking into account a
new four-vector, the four-velocity of the medium center of mass, uµ, [25]. When a magnetic field is applied on that
medium, then the structure of the polarization operator is enriched by an additional tensor, Fµν . Then, at finite
density and in the presence of a magnetic field, there are nine independent gauge-invariant tensorial structures [26].
At strong magnetic field, when the particles are confined to the LLL, due to the fact that the transverse momentum

is zero, there is a dimensional reduction leaving only the tensors g
‖
µν , p

‖
µ and u

‖
µ = (1, 0) at our disposal. The original

nine structures of Ref. [26] now reduce to only two

T (1)
µν = (p‖)2g‖µν − p‖µp

‖
ν , (63)

and

T (2)
µν =

[
u‖µ − p

‖
µ(u‖ · p‖)
(p‖)2

] [
u‖ν −

p
‖
ν(u‖ · p‖)
p2

]
. (64)

Moreover, one can readily check that the two tensors (63) and (64) are equivalent, which indicates that the rotated-
photon polarization operator tensor, at strong magnetic field, only has one independent structure

Π‖
µν(p

‖) = Π(p‖, µ, B)
[
(p‖)2g‖µν − p‖µp

‖
ν

]
, (65)

with Π(p‖, µ, B) being a scalar coefficient depending on the photon longitudinal momentum, baryonic chemical po-
tential and magnetic field.

Contracting with the tensor g
‖
µν both sides of Eq. (65), we will obtain the scalar function Π(p‖, µ, B) by substituting

Eqs. (35)-(36) into Eq. (37) and performing the traces in all spaces,

Π(p‖, µ, B) =
4ẽ2|ẽB̃|T
(p‖)2

∑

q0

∫
dq3
(2π)2

∑

e,e′

(1 + ee′q̂3k̂3)×
∆2

0(
q20 − [ǫeq3 ]

2
) (
k20 − [ǫe

′

k3
]2
) . (66)

Then, after performing the Matsubara sum, we end up with

Π(p‖, µ, B) =− 4ẽ2|ẽB̃|
(p‖)2

∫
dq3
(2π)2

∑

e,e′

(1 + ee′q̂3k̂3)
∆2

0

4ǫeq3ǫ
e′
k3

×
[(

1

p0 − ǫeq3 − ǫe
′

k3

− 1

p0 + ǫeq3 + ǫe
′

k3

)
× (1−N(ǫeq3)−N(ǫe

′

k3
))

−
(

1

p0 + ǫeq3 − ǫe
′

k3

− 1

p0 − ǫeq3 − ǫe
′

k3

)
× (N(ǫeq3)−N(ǫe

′

k3
))

]
. (67)
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Now, if we expand the components of the polarization operator (65), after substituting the coefficient Π(p, µ,B) with
(67), to quadratic orders in powers of p0 and p3, we will obtain exactly the same results as those of Eqs. (59) and
(60). Notice that we do not have to regularize the scalar function (67), because the divergent terms cancel out when
taking the trace in (66). Hence, the medium electric permittivity and magnetic permeability obtained from (59)-(60),
have a gauge-invariant nature, as they are obtained from the gauge covariant form of the polarization operator tensor
(65).

VII. CONCLUDING REMARKS

In this paper we investigate the polarization effects that affect the in-medium photons in the strongly magnetized
MCFL phase of CS. With this purpose, we studied the self-energy of the rotated photons associated with the unbroken
Ũ(1) symmetry of the MCFL phase in the presence of a very strong magnetic field. In calculating the one-loop
photon polarization operator we used the Pauli-Villars regularization scheme to regularize the diagram’s ultraviolet
divergencies. The use of this regularization scheme was crucial to get rid of some unphysical results. We call attention
that, without such a convenient regularization we would have ended up with a constant Meissner mass, which is of
course in contradiction with the remaining Ũ(1) gauge invariance of the theory. This simply indicates that it is not
allowed to take the infrared limit of the Feynman’s diagram while it is not regularized. The regularization procedure
in this case is however more subtle than in vacuum; where it is possible to use dimensional regularization, hence
preserving the gauge symmetry of the polarization operator. In CS, nevertheless, dimensional regularization is not a
suitable regularization procedure, since in this high-dense medium, Lorentz-symmetry is broken, and besides, there
is an extra complication due to the presence of γ5 in the Cooper-pair condensates. As known, γ5 is an intrinsically
four dimensional object that cannot be generalized to higher dimensions. We thus use the Pauli-Villars regularization
scheme. This regularization procedure is not in general gauge invariant for diagrams with internal lines of gauge
bosons, since the addition of an auxiliary boson propagator with a mass term (i.e. given by Λ in (40)) will break the
gauge symmetry. However, for CS in the hard-dense-loop approximation, the diagrams are formed only by internal
fermion lines, and then the Pauli-Villars regularization becomes an appropriate gauge invariant approach.

Notwithstanding the difference between the photon polarization in magnetized QED in vacuum and the one we are
reporting for the color superconducting medium, we found that there is still one similarity regarding the covariant
tensorial structure of the polarization operator in both cases. In the QED case [23], the polarization operator in the
strong-field limit exhibits only one transverse structure in the subspace of the longitudinal momenta. In the MCFL
phase of CS, although for a magnetized dense medium there exist in general nine possible independent covariant
structures [26], in the strong-field limit they reduce to only one in (1+ 1)-D, which is similar to that of QED (see Eq.
(65)). The fact that we can find a covariant transverse representation for the in-medium photon polarization operator
is another manifestation of the gauge invariance of the results we are reporting.
We found that there are no Debye and Meissner screenings in the strongly magnetized color superconducting

medium. The reason for the lack of Debye screening is simply because all the particles in the medium are condensed
in Cooper pairs that are neutral with respect to the rotated charge, and thus, cannot screen a static rotated charge
in the medium. On the other hand, since the rotated Ũ(1) gauge symmetry remains unbroken, we should not expect
a different from zero Meissner mass. Nevertheless, the medium has a large electric susceptibility, which indicates
that the medium is highly polarizable. A similar conclusion was found for the gluodynamics of the remnant SU(2)
symmetry in the 2SC phase of CS at zero magnetic field in Ref. [27], and for the rotated electric polarization in
the CFL phase at zero magnetic field [19]. Nevertheless, the electric susceptibility we found in the MCFL phase is
different from those phases in two aspects. On one hand, it can change with the applied magnetic field, and on the
other hand, it is anisotropic. The electric susceptibility in the strongly magnetized MCFL is quantitatively smaller
than that of the CFL phase [19] for the same value of the baryonic chemical potential. It is due to the fact that the
electric susceptibility is proportional to |eB|ξ2, and the coherent length, ξ, decreases as 1/∆0, and ∆0 increases with

the field at a quicker rate than
√
eB. Hence, as the coherent length of the Cooper pair plays the role of the electric

dipole moment length, when the magnetic field increases in the strong field region, the susceptibility becomes smaller.
The fact that the electric susceptibility depends on the magnetic field is an effect analogous to the magnetoelectric
effect known in condensed matter physics. In [13] we discussed in details the realization of this magnetoelectric effect
in CS, as well as its possible implications for astrophysics.

Comparing our result for the electric susceptibility (62) with that obtained in strongly magnetized QED, χ
‖
QED =

(α/3π)(|eB|/m2) [23], we find that the two results are quite similar after the following replacement of the dipole

length 1/∆0 → 1/m. Also, there is an extra factor 2 in χ
‖
MCFL, which comes from the contribution of two electric

dipoles associated to the Cooper pairs formed by the charged quarks present in the MCFL phase: 〈sr, ub〉 and 〈dr , ug〉.
Nevertheless, there is a substantial difference between the QED electric susceptibility and that of the MCFL phase
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of CS regarding their dependence on a magnetic field. While in the QED case, χ
‖
QED increases with B, since the

coherence lenth, ξQED ∼ 1/m, does not change with B, in the MCFL phase, χ
‖
MCFL decreases with B, as it was

discussed before. It is also interesting to see that the chromo-electric susceptibility in strongly magnetized QCD,

χ
‖
QCD = (αs/6π)

∑Nf

q=1(|eB|/m2
q) [28], also has the same qualitative behavior as χ

‖
QED, with a coefficient 6 instead of

the 3 found in QED, which is related with the trace in color associated to the gluon vortices.
The anisotropic nature of the electric susceptibility in the strongly magnetized MCFL phase, together with the

lack of Debye screening, implies that electric fields transverse to the applied magnetic field are not modified at all
in the color superconducting medium. Possible effects of this anisotropic susceptibility for compact astrophysical
objects were discussed in Ref. [13]. Also, the interplay between the electric properties of dense media and strong
magnetic fields could be of interest for future low-temperature/high-density heavy-ion collision experiments where
high magnetic and electric fields can be generated [3] and presumably CS can be realized [12, 29].
It is important to point out that possibly the situation will be slightly different in the 2SC superconductor in a

magnetic field. Even though we expect a similar anisotropy to be present in the 2SC case too, the charged blue
quarks can in principle Debye screens there an external electric field in all directions. It will be worth investigating
this case in more detail since 2SC superconductivity can be the more reliable phase at moderate densities and low
temperatures [30].
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Appendix A: Transversality of the rotated photon polarization tensor in the strong-field approximation

The rotated electrodynamics in a color superconducting medium is a Ũ(1) gauge theory. As a consequence, the
in-medium photon self-energy operator should be transverse with respect to photon four-momentum. In the strong-
field approximation, when all the quarks are confined to the LLL, the photon self-energy tensor is reduced to the
(0,1) plane of the longitudinal-momentum (1+1)-D space, as has been shown earlier. Although from the covariant
structure of Πµν (65), the transversality of the in-medium photon self energy is already guaranteed, we want to show
in this Appendix that the transversality is intimately associated in this case to the structure of the quark propagator
in the LLL. Also, we want to highlight the relevance of the Pauli-Villars regularization in securing the transversality.
In the strong-field approximation,where the quarks are confined to the LLL, the inverse quark propagator is given

by

[S̃l=0
(+) ]

−1(k‖) = S−1(k‖) = /k
‖
+ µγ0σ3 + iγ5∆0∆(+)σ2, (A1)

where the Pauli matrices, σi, act on the Nambu-Gorkov space. With the same compact notation, the vertex (4) for
the positively charged particles is given by the diagonal matrix in Nambu-Gorkov space

Γµ
AB = ẽγµδAB. (A2)

Where A,B are Nambu-Gorkov indices. From (A1) we have

/q
‖ = S−1(k‖ + q‖)− S−1(k‖), (A3)

Sandwiching (A3) between S(k‖ + q‖) and S(k‖), we find that

S(k‖ + q‖)/q
‖S(k‖) = S(k‖)− S(k‖ + q‖). (A4)

The transversality of the rotated photon self-energy tensor requires (qµ)‖Π
‖
µν , which from (37) is equivalent to

T
∑

q0

∫
dq3
(2π)2

Tr
[
S(k‖ + q‖)∆(+)ẽ/q

‖S(k‖)∆(+)ẽγ‖ν

]
= 0, (A5)
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From the fact that [∆(+),S(k‖)] = 0, it follows from (A4) and (A5) that

T
∑

q0

∫
dq3
(2π)2

{
Tr
[
∆(+)S(k‖)ẽγ‖ν

]
− Tr

[
∆(+)S(k‖ + q‖)ẽγ‖ν

]}
= 0. (A6)

Naively, this requirement is satisfied by simply shifting the momentum. However, the shift of the integration variable
is no longer legitimate if there is a linear or higher divergence. We thus introduce the Pauli-Villars regularization and
the regularized version of the LHS of (A5) reads

T
∑

q0

∫
dq3
(2π)2

{
Tr
[
S(k‖ + q‖)∆(+)ẽ/q

‖S(k‖)∆(+)ẽγ‖ν

]
− Tr

[
SΛ(k

‖ + q‖)∆(+)ẽ/q
‖SΛ(k

‖)∆(+)ẽγ‖ν

]}
. (A7)

where SΛ(k) is the Pauli-Villars propagator with zero gap, zero chemical potential and mass Λ. We observe that
SΛ(k) satisfies the same relation (A4). Therefore

(qµ)‖Π‖
µνR

=
ẽ2

2
(ẽB̃)T

∑

q0

∫
dq3
(2π)2

[
Fν(k

‖)− Fν(k
‖ + q‖)

]
, (A8)

where

Fν(k) = Tr
[
∆(+)S(k‖)ẽγ‖ν

]
− Tr

[
∆(+)SΛ(k

‖)ẽγ‖ν

]
. (A9)

It can be shown explicitly that for a fixed cutoff Λ, neither of the integrals in (A8) is more divergent than logarith-
mically. Then, the shift of the integration variable is legitimate and we thus obtain

(qµ)‖Π‖
µνR

= 0. (A10)

as required by gauge invariance.
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