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A shift of the baryon acoustic oscillation (BAO) scale to smaller values than predicted by linear
theory was observed in simulations. In this paper, we try to provide an intuitive physical under-
standing of why this shift occurs, explaining in more pedagogical detail earlier perturbation theory
calculations. We find that the shift is mainly due to the following physical effect. A measurement of
the BAO scale is more sensitive to regions with long wavelength overdensities than underdensities,
because (due to non-linear growth and bias) these overdense regions contain larger fluctuations and
more tracers and hence contribute more to the total correlation function. In overdense regions the
BAO scale shrinks because such regions locally behave as positively curved closed universes, and
hence a smaller scale than predicted by linear theory is measured in the total correlation function.
Other effects which also contribute to the shift are briefly discussed. We provide approximate ana-
lytic expressions for the non-linear shift including a brief discussion of biased tracers, and note that
the shifts are different in real and Fourier space due to a change of the shape of the BAO feature.
We explain why reconstruction should entirely reverse the shift. Our expressions and findings are
in agreement with simulation results, and confirm that non-linear shifts should not be problematic
for next-generation BAO measurements.

I. INTRODUCTION

The primordial photon-baryon plasma supports the
propagation of sound waves, sourced by the initial den-
sity fluctuations, until the photons and baryons decou-
ple. At decoupling, a characteristic correlation length
is hence imprinted into both the baryons and the pho-
tons: the sound horizon at recombination. This man-
ifests itself in the large scale structure of the universe
as an excess probability of finding pairs of galaxies (or
other tracers) at a separation equal to the sound horizon
scale, known in this context as the Baryon Acoustic Os-
cillation (BAO) scale. As the value of the sound horizon
is well known from microwave background observations,
the BAO scale (which is ∼ 150 comoving Mpc) can be
used as a “standard ruler” to infer the expansion history
of the universe. It has been detected (either as a peak in
the real space correlation function ξ(r) or as a series of
peaks in its Fourier transform, the power spectrum P (k))
by a number of large scale structure surveys [1–16], but
its potential as a cosmological probe is nowhere near ex-
hausted: due to its robustness to systematic errors, many
future large scale structure surveys propose to measure
the BAO scale to ∼ 0.1% in order to infer the expansion
history of the universe and the properties of dark energy
to high precision, e.g. [17]. This proposed future research
program relies on the BAO scale being a good standard
ruler to the sub-percent level.
However, the extent to which this is true needs to be

examined carefully, as the BAO scale is somewhat mod-
ified by non-linear gravitational effects. Simulations of
both dark matter and biased tracers [18, 24] show that

the BAO standard ruler shrinks by ∼ 0.3% [D(z)/D(0)]
2

at redshift z, where D(z) is the growth factor. Ap-
proaches using perturbation theory for both matter and
biased tracers [19–21] also find a shift of this order, which
is explained as being due to the generation of out-of-

phase oscillations due to non-linear mode coupling ef-
fects. In this paper, we try to develop a more intu-
itive physical picture for why the BAO scale shrinks due
to nonlinearities. We first examine the effect of a long
wavelength mode on the small scale correlation function
and heuristically derive an approximate expression for
the shift in the BAO scale. We then present a less ap-
proximate pedagogical calculation of the shift with per-
turbation theory. In the final sections, we discuss the
effect of biased tracers and reconstruction on the shift of
the BAO scale.

II. THE PHYSICAL ORIGIN OF THE BAO

SCALE SHIFT

In this section, we will describe heuristically how the
correlation function on small scales ξS(r) (which contains
a BAO-like feature) is affected by the presence of a mode
δL with a wavelength larger than the scales of interest
which are of order the BAO scale. We will obtain through
this simple argument an expression for the shift in the
BAO scale. In the following section, we will confirm and
refine this expression using perturbation theory.
As we are only interested in the correlation function on

scales of order the BAO scale rB (and not much larger),
we split the overdensity δ into long wavelength perturba-
tions δL and short wavelength perturbations δS so that
δ = δS + δL. The small scale correlation function can
hence be defined as

ξS(r) ≡ 〈δS(x+ r)δS(x)〉, (1)

We assume that the small scale correlation function
is determined with a fixed background overdensity δL
in a small volume (smaller than the wavelength of the
long mode, but larger than the BAO scale). As shown
in [22] and as can be deduced from Birkhoff’s theorem,
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physics in such a small volume is indistinguishable (to
first order in δL) from physics in a universe with the same
curvature as that induced locally by the overdensity δL
(and with the same early time limiting behavior as our
flat universe). Hence the behavior of small scale density
perturbations in the presence of δL is identical to their
behavior in an appropriately curved universe.
What are the effects of δL, and hence background cur-

vature, on the small scale correlation function ξS? When
δL is positive in a volume, the volume behaves locally
as slightly closed universe with positive curvature. The
first effect of this is that all the features in the corre-
lation function are contracted to smaller scales than in
a flat universe by a factor Γ ≡ acurved(δL)/a0, where
a is the scale factor. As the overall long wavelength
density in this region must be simply related to Γ by
1 + δL = ( 1Γ )

3, the linear theory correlation function

ξS0(r) becomes ξS0(r/Γ(δL)) ≈ ξS0((1+
δL
3 )r) due to this

non-linear contraction (to first order in δL, neglecting a
second order term).
The second effect of a long wavelength overdensity is

on the growth of small scale perturbations. Short modes
in regions where δL is positive experience more growth
than modes in regions where δL is negative. This can
again be explained as overdense regions locally behaving
like a closed universe, in which the growth of local per-
turbations (i.e. the growth of perturbations defined with
respect to the background density of the closed universe
ρl = ρ̄ + δρL) is enhanced by a factor 1 + 13/21δL (see
e.g. [22]) and hence the local correlation function is en-
hanced by (1+13/21δL)

2. To convert a local correlation
function defined with respect to ρl to one defined glob-
ally with respect to ρ̄, we must multiply it by (1 + δL)

2.
Hence the growth factor of the short wavelength corre-
lation function due to the presence of a long wavelength
overdensity is (1+ 13

21δL)
2(1+δL)

2 ≈ (1+ 68
21δL) (the local

curved universe growth factor multiplied by a local-global
conversion factor).
Combining these two effects – non-linear contraction

and growth – we can write down the correlation function
on small scales in the presence of a long wavelength mode
δL

ξS(r) ≈ (1 +
68

21
δL)ξS0((1 +

δL
3
)r)

≈ ξS0(r) + (
68

21
ξS0(r) +

1

3
rξ′S0(r))δL (2)

+

[
68δL
21

δL
3
rξ′S0(r)

]

+ . . .

where we denote linear quantities with subscript zeros
and we have neglected other second order terms as well
as other effects.
Does the presence of long wavelength modes shift the

BAO feature to a different average scale? To find the
shift predicted from our expression (2), we must compare
our expression with a shifted correlation function ξ(r) =

ξ0(αr). Expanding for small shift values α− 1 gives

ξS0(αr) ≈ ξS0 + (α− 1)rξ′S0(r) (3)

Though in measurements with real and simulated data
the shift α− 1 is typically obtained from a least-squares
fit of a shifted template correlation function to the data,
we can obtain an approximate estimate of the shift which
best fits our expression (2) by isolating the coefficient of
rξ′S0(r) after averaging over long wavelength modes. Iso-
lating this coefficient should give approximately similar
answers to fitting for the shift using a template which is
either linear or has only been changed in amplitude by
non-linear effects, as in [21]. The lowest order non-zero
contribution to this coefficient is of order δ2L:

α− 1 ∼
68

63
〈δ2L〉 (4)

We can see that in this simplified picture (of equation 2),
the BAO scale shift arises from the following effect: Be-
cause perturbations in regions with long-wavelength over-
densities grow larger, such regions contribute more to the

correlation function, and so we tend to predominantly ob-
serve overdense regions when measuring the BAO scale

from the correlation function. In overdense regions, the
BAO scale shrinks because such regions locally behave as

positively curved closed universes, so that we measure a
smaller scale than predicted by linear theory. If we mea-
sure the correlation function using biased tracers, the
effect should be larger, as we are even more sensitive to
overdense regions and hence should see an even larger
shift. We note that our explanation can also be phrased
in Newtonian terms instead of a “local-closed-universe”
picture: Perturbations in overdense regions contribute
more to the correlation function due to nonlinear growth,
and one hence observes a net compression of the correla-
tion function because such overdense regions experience
gravitational infall.
Our derivation assumes that the BAO shift is due to

the influence of long wavelength modes. Though this
makes sense physically (short wavelength modes fluctu-
ate rapidly over distances smaller than the BAO scale and
hence should not lead to coherent gravitational shifts of
it), we examine this assumption in the following section.
Furthermore, our simple model neglects the influence of
anisotropies (it assumes spherical symmetry) as well as
other small corrections and neglects other possible second
or higher order effects. A perturbation theory calculation
including all these effects, leading to a slightly modified
result, is shown in the following section. However, most
of the shift can be described by the simple physical pic-
ture just presented.
The simple arguments of the previous section not only

allow a derivation of the shift, but can also provide an
equation for the squeezed bispectrum. The squeezed bis-
pectrum is the limit of the three point correlation func-
tion in which one of the modes has a much longer wave-
length than the other two. Multiplying our heuristic ex-
pression (2) by δL and averaging over realizations of the
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long wavelength modes we obtain the following expres-
sion for the squeezed bispectrum:

〈δLξS(r)〉 ∼

[
68

21
ξS0(r) +

1

3
rξ′S0

]

〈δ2L〉 (5)

where δ2L is the variance of the long wavelength mode.

It should be noted that in simulations, the BAO peak is
not only found to be shifted but also to be broadened by
non-linear effects. Though one could gain insight into the
peak broadening with similar arguments to those used to
explain the shift in the previous section, such a discussion
is beyond the scope of this paper and we leave it to future
work.

III. PERTURBATION THEORY CALCULATION

OF THE BAO SCALE SHIFT

In this section we will use second order Eulerian per-
turbation theory to derive a more rigorous expression for
the shift and compare it with our heuristically derived
expression. Though other calculations using the machin-
ery of renormalized perturbation theory and Lagrangian
perturbation theory have been performed in [20, 21], a
simple Eulerian approach is more pedagogical and still
captures most of the physics (see also the similar discus-
sion of the largest of the shift terms in [20]).

In standard perturbation theory we expand the density
field in powers of the primordial perturbation δ0:

δ = δ(1) + δ(2) + δ(3) + · · · (6)

where δ(n) contains δ0 to the nth power.

We will be interested in the power spectrum on the
scale of the BAO feature (“small scales” for our purposes)
as well as the squeezed limit of the three point function.
The small scale power spectrum has two contributions,
〈δ(2)δ(2)〉 and 〈δ(1)δ(3)〉; however, the 1-3 term can eas-
ily be shown to be a simple rescaling of the linear power
spectrum and hence does not contribute to the shift. Fur-
thermore, as the three point function involves 〈δδ(1)δ(1)〉
to lowest order, we only need to know δ up to second
order to evaluate its leading order contribution. Hence
to determine both the shift in the small scale power spec-
trum and the squeezed Bispectrum we only need to study
the structure of δ(2).

In Fourier space δ(2) is given by (see e.g. [27])

δ(2)(k) =

∫
d3q

(2π)3
F2(k− q,q)δ0(k− q)δ0(q) (7)

where

F2(k,q) =
17

21
+

1

2

k · q

kq
(
k

q
+

q

k
) +

2

7
[(
k · q

kq
)2 −

1

3
]. (8)

We will initially work in real space for clarity, where
the equivalent expression is:

δ(x) = δ0(x)+d(x) · ∇δ0(x)
︸ ︷︷ ︸

shift

+
17

21
δ20(x)

︸ ︷︷ ︸

growth

+
2

7
Kij(x)Kij(x)

︸ ︷︷ ︸

anisotropy

+ · · · ,

(9)
where

d(x) = −

∫
d3q

(2π)3
iq

q2
δ0(q)e

iq·x

Kij(x) =

∫
d3q

(2π)3
(
qiqj
q2

−
1

3
)δ0(q)e

iq·x. (10)

where indices i, j describe projections along three or-
thonormal coordinate axes and we assume the usual Ein-
stein summation convention.
Here the shift term encodes the motion of the density

perturbations due to the gravitational potential sourced
by other perturbations, the growth term describes the
non-linear growth of perturbations, and the anisotropy
term describes the anisotropic distortion of the pertur-
bations.
Hence we obtain to fourth order in δ0

δ(x1)δ(x2) =
17

21
∇δ0(x1) · d(x1)δ

2
0(x2) + (1 ↔ 2)

+
2

7
∇δ0(x1) · d(x1)Kij(x2)Kij(x2) + (1 ↔ 2)

+ ∇δ0(x1) · d(x1)∇δ0(x2) · d(x2)

+
17

21

2

7
δ20(x1)Kij(x2)Kij(x2) + (1 ↔ 2)

+

(
2

7

)2

Kij(x2)Kij(x2)Kij(x1)Kij(x1)

+

(
17

21

)2

〈δ20(x1)δ
2
0(x2)〉

+ δ0(x1)δ(x2) + (1 ↔ 2) + · · ·

(11)

where we have neglected the 1-3 term which does not
contribute to the shift.
We now take the average of this quantity so that we

can derive the shift by identifying the coefficient of rξ′(r).
To begin, we consider the first term from the equation
above (the growth-shift term), at a radius of order the
BAO scale rB:

〈
17

21
∇δ0(x1) · d(x1)δ

2
0(x2) + (1 ↔ 2)〉 (12)

= −
68

21
∇rξ0(r) · ∇r

∫
d3q

(2π)3
P0(q)

q2
cos [q · (x1 − x2)]

We can see that for modes with wavenumber q >> r ≡
|x1 − x2| ∼ rB , the integrand above is highly oscillatory
and averages to zero. This makes physical sense, because
short wavelength modes cannot coherently shrink the cor-
relation function on scales ∼ rB much larger than their
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wavelength, as their gravitational effects average to zero
over the BAO scale. Hence one can cut off the integrand
for wavelengths above q > Λ, where Λ ∼ 1/rB, and ex-
pand for qr < 1, so that the integral simply becomes an
average over long wavelength modes (longer than rB):

〈
17

21
∇δ0(x1) · d(x1)δ

2
0(x2) + (1 ↔ 2)〉 (13)

≈
68

21
ξ′0(r)

∂

∂r

∫
d3q

(2π)3
P0(q)

q2
(q2r2µ2/2)

≈

[

68

63

∫ Λ

0

dq

(2π)3
4πq2P0(q)

]

rξ′S0(r) ≡

[
68

63
〈δ2L〉

]

rξ′S0(r)

where µ = q̂ · r̂. Though there is still a contribution to
the integral from scales somewhat smaller than the cutoff
Λ = 1/rB, this contribution does not scale as r and hence
the term associated with it does not have the form of a
shift of the correlation function ∼ rζ′(r). Partially due
to the approximate nature of the cutoff choice, it should
be noted that our expressions for the shift can only be
order of magnitude estimates.
All the other terms are similarly oscillatory (see Ap-

pendix IX, where they are all written in terms of Bessel
functions) so that they can be similarly cut off. We thus
obtain for each of the terms (ignoring a uniform shift
independent of position as well as the 1-3 term):

ξS(r) = 〈δS(x1)δS(x2)〉 =

[
68

63
rξ′S0(r)

]

〈δ2L〉

+

[
32

315
rξ′S0(r)

]

〈δ2L〉

+

[
rξ′S0(r)

15
+

r2ξ′′S0(r)

10
+

2ξS0(r)

3

]

〈δ2L〉

+ 0

+

(
2

7

)2 (
16

45

)

ξS0(r)〈δ
2
L〉

+

(
34

21

)2

ξS0(r)〈δ
2
L〉

+ ξS0(r) + · · · (14)

or succinctly

ξS(r) = ξS0(r)

+[
2438

735
ξS0(r) +

131

105
rξ′S0(r) +

1

10
r2ξ′′S0(r)]〈δ

2
L〉

+ · · · (15)

Note that this expression can be obtained more directly
by writing δ = δS+δL and keeping the long contributions
to d, δ and K but not to the derivative of δ to give the
expression

δS(x) = δS0(x+dL)+
34

21
δL0δS0(x)+

4

7
KS

ij(x)K
L
ij(x)+· · · ,

(16)

and calculating the short mode correlation function
ξS(r) = 〈δSδS〉.
As before, we identify the coefficient of rξ′S0(r) in equa-

tion (15) as the shift of the real space correlation function
α− 1:

α− 1 =
131

105
〈δ2L〉 (17)

The 131/105 coefficient in front of the shift term
is 131/105 = 68/63 + 32/315 + 1/15, where the first
term arises from the cross between the shift and growth
terms, the second term arises from the cross between the
anisotropic and shift terms and the third term comes
from the square of the shift term alone. The first term,
which is what we obtained from our simple physical ar-
gument, is the dominant term (the other two terms are
less than 10% of its magnitude).
In Fourier space our expression leads to:

PS(k) = PS0(k)

+

[
569

735
PS0(k)−

47

105
kP ′

S0(k) +
1

10
k2P ′′

S0(k)

]

〈δ2L〉

+ · · · (18)

where we have used

rξ′(r) → −
∂

∂ka
[kaP (k)] = −(kP ′(k) + 3P (k)). (19)

and

r2ξ′′(r) = r
d

dr

[

r
d

dr
ξ(r)

]

− rξ′(r),

→
∂

∂ka

[

ka
∂

∂kb
[kbP (k)]

]

+
∂

∂ka
[kaP (k)]

→ 12P (k) + 8kP ′(k) + k2P ′′(k). (20)

The direct calculation in Fourier space (expanding such
that one mode q has a much longer wavelength than the
other, k >> q) gives:

PS(k) ≈ PS0(k)

+

∫
d3q

(2π)3
4[F2(k − q,q)]2P0(|k − q|)P0(q) + · · ·

≈ PS0(k) +

[
569

735
PS0(k)−

47

105
kP ′

S0(k) +
1

10
k2P ′′

S0(k)

]

〈δ2L〉

+

∫
d3q

(2π)3
P0(q)

1

3

k2

q2
P0(k) + · · · (21)

which is the same as our previous expression except for
the k2/3q2P (k) term, which comes from the uniform
shift we ignored in the real space calculation. This shift
moves both points in the correlation function by the same
amount so it leads to no effect. In the standard pertur-
bation theory calculation this term cancels when P22 is
combined with P13 (see Appendix VIII).
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The Fourier space shift αk describes how much the
linear spectrum is rescaled as PS0(k/αk). Expanding in
αk − 1 as before, we find we can determine it by identi-
fying the coefficient of the shift term −kP ′

S0(k)

αk − 1 =
47

105
〈δ2L〉 (22)

Note that the shift as calculated in Fourier space is differ-
ent from the shift in the real space correlation function.
This is due to the the second derivative terms mixing
“shift” and “non-shift” terms upon Fourier transform-
ing; physically, there is a change of BAO peak shape
which looks like a shift in Fourier space for our simple
estimation procedure. In general, as the shift depends
somewhat on the estimator and is not an exact physical
quantity that is conserved under Fourier transformation,
one should not expect to get exactly the same result in
real and Fourier space if the shape of the correlation func-
tion is modified beyond a pure rescaling by non-linear
effects. Our estimation of the shifts is only approximate
as mentioned previously; the use of more sophisticated
shift fitting procedures (especially those which already
include a modified peak shape in the correlation function
template, as is done in practice) should substantially re-
duce any difference between shifts estimated in real and
Fourier space.
We can also again calculate the squeezed limit of the

three point function. We obtain

〈δLξS(r)〉 = [
68

21
ξS0(r) +

1

3
rξ′S0(r)]〈δ

2
L〉. (23)

in exact agreement with our intuitive arguments. To go
to Fourier space we transform rξ′S0(r) to give:

[
47

21
PS0(k)−

1

3
kP ′

S0(k)]〈δ
2
L〉. (24)

which agrees with a direct Fourier space calculation of
the squeezed Bispectrum.

IV. THE EFFECTS OF TRACER BIAS ON THE

MEASURED BAO SCALE

In order to compare our calculation with the semian-
alytical results of [21], we now include bias in the same
way using the simplified expression

δh = b1δ +
1

2
b2δ

2 + · · · (25)

The averaged two point function now gives

〈ξSh(r)〉 = b21ξS0(r)

+ 〈δ2L〉{b
2
1(
2438

735
ξS0(r) +

131

105
rξ′S0(r) +

1

10
r2ξ′′S0(r))

+b1b2(
68

21
ξS0(r) +

2

3
rξ′S0(r)) + b22ξS0(r)}. (26)

In Fourier space this gives:

PSh(k) = b21PS0(k)

+ 〈δ2L〉{b
2
1(
569

735
PS0(k)−

47

105
kP ′

S0(k) +
1

10
k2P ′′

S0(k))

+ b1b2(
26

21
PS0(k)−

2

3
kP ′

S0(k)) + b22PS0(k)}. (27)

We can hence identify the BAO scale shift in Fourier
space, including the effects of bias, by finding the coeffi-
cient of −b21kP

′(k):

αk − 1 =
47

105
(1 +

70

47

b2
b1
)〈δ2L〉, (28)

As 70/47 = 1.489, this expression agrees with the numer-
ical calculation in [21] which gave αk − 1 ∝ (1 + 1.5 b2

b1
).

Aside from the shift, the squeezed three point function
can also be calculated as before

〈δLξSh(r)〉 = (b21[
68

21
ξS0(r)+

1

3
rξ′S0(r)]+2b1b2ξS0(r))〈δ

2
L〉.

(29)

V. BAO SCALE SHIFT: COMPARISON WITH

SIMULATIONS

Evaluating
〈
δ2L

〉
as the variance at the BAO

scale ∼ σ2(140Mpc) [D(z)/D(0)]2 gives
〈
δ2L

〉
≈

0.0051 [D(z)/D(0)]
2
using WMAP cosmological parame-

ters [26], so that from equation (22)

αk − 1 ≈ 0.23% [D(z)/D(0)]
2

(30)

Considering that the numerical value depends on the
choice of cutoff scale and window function, and that we
have neglected ΩΛ, this agrees well with the value ob-
tained from simulations in [18] of

αk(z)− 1 = (0.30± 0.02)% [D(z)/D(0)]
2

(31)

VI. THE EFFECT OF RECONSTRUCTION

USING THE ZEL’DOVICH APPROXIMATION

Previous measurements of the BAO scale have em-
ployed reconstruction techniques to remove large scale ve-
locity fields which broaden the BAO peak. These meth-
ods [23] use the Zel’dovich approximation to attempt to
restore the linear density field and hence undo the broad-
ening and degrading of the BAO feature. In this section,
we will briefly review the reconstruction procedure and
examine to what extent reconstruction also reverses the
non-linear shift of the peak.
The Eulerian particle position x is related to the La-

grangian position r through the displacement vector q

x = q+ r (32)



6

As the small mass elements are related by ρ0d
3r = ρd3x,

we can relate the overdensity to the Jacobian and expand
to first order:

ρ

ρ0
= 1 + δ =

d3r

d3x
= J−1 ≈ 1−∇ · q (33)

So that

δ = −∇ · q (34)

For the linear growing mode, q is curl-free so that one
can define a potential q = −∇φZ . In order to only undo
large scale velocity flows, one smooths the density field
(typically with a Gaussian of width ∼ 20 Mpc) to obtain
a new field δG and then solves Poisson’s equation for φZ

to obtain:

φZ = −

∫
d3q

(2π)3
1

q2
δG(q)eiq·x (35)

Hence to undo the large scale velocity flows, one simply
displaces the measured density field δ by q = −∇φZ

where

q =

∫
d3q

(2π)3
iq

q2
δG(q)eiq·x (36)

Comparing this with the shift

dL = −

∫
d3q

(2π)3
iq

q2
δL0(q)e

iq·x (37)

in equation (17), which relates the linear and non-linear
fields as

δS(x) = δS0(x + dL) +
34

21
δL0δS0(x) +

4

7
KS

ij(x)K
L
ij(x),

(38)
we can see that q is (very nearly) identical to −dL and
hence reconstruction (i.e. displacing the field by q) will
undo the non-linear shift we found previously, as long
as it includes in δG all the long wavelength modes re-
sponsible for the shift. As the broadening is due to a
wider range of modes than the shift (including shorter
wavelengths), if a reconstruction procedure reverses the
peak broadening, it automatically also reverses the low-
est order shift. Our conclusion that the BAO shift should
be greatly reduced after reconstruction agrees with sim-
ulation results from [24], who found that the shifts were
consistent with zero after reconstruction was applied. It
also agrees with perturbation theory calculations in [25].

VII. CONCLUSIONS

We have investigated the non-linear shift in the BAO
scale found in simulations and have tried to develop an

understanding of why the scale becomes smaller due to
non-linearities. Using both intuitive arguments and per-
turbation theory, we found that the main reason for the
shift in the BAO scale is as follows: As perturbations
in regions with long-wavelength overdensities are larger
due to non-linear growth and bias, these regions con-
tribute more to the correlation function so that a mea-
surement of the BAO scale is more sensitive to overdense
regions; in overdense regions, the BAO scale shrinks be-
cause such regions locally behave as closed universes, so
that we measure a smaller scale than predicted by linear
theory.

We have expanded and verified these heuristic argu-
ments using perturbation theory, and derived order of
magnitude expressions for the real and Fourier space
shifts:

α− 1 =
131

105
〈δ2L〉; αk − 1 =

47

105
〈δ2L〉 (39)

where the average is taken over modes with wavelengths
longer than the BAO scale (and can be approximated

as 〈δ2L〉 ∼ σ2(140Mpc) [D(z)/D(0)]
2
). The difference

between the shifts in real and Fourier space we esti-
mated approximately should be much smaller for the
more sophisticated estimators used in practice. Using
a simple model for the shift of biased tracers, we ob-
tained an analytic expression in agreement with [21].
For dark matter our expression for the shift evaluates
to αk − 1 ∼ 0.23% [D(z)/D(0)]

2
, which is in agreement

with simulations. We explained in our physical picture
why reconstruction of the BAO peak should undo the
shifts, as also found in simulations. The sub-percent level
of the BAO scale shift and the ease with which it can be
undone using reconstruction confirm that it will not be
problematic for surveys in the foreseeable future.
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In Fourier space we will write δ(3) as:

δ(3)(k) =

∫
d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3

F3(q1,q2,q3)×

δ0(q1)δ0(q2)δ0(q2)(2π)
3δD(k− (q1 + q2 + q3)), (40)

where we have defined

F3(q1,q2,q3) = F̄3(q1,q2,q3) + F̄3(q2,q1,q3) + F̄3(q3,q2,q1)

F̄3(q1,q2,q3) =
1

54
{2β(q1,q2 + q3)G2(q2 + q3) + 7α(q1,q2 + q3)F2(q2 + q3)

+(2β(q2 + q3,q1) + 7α(,q2 + q3,q1))G2(q2 + q3))}

α(q,k) =
(q + k) · q

q2

β(q,k) =
|q+ k|2k · q

2k2q2
, (41)

with

F2(k,q) =
17

21
+

1

2

k · q

kq
(
k

q
+

q

k
) +

2

7
[(
k · q

kq
)2 −

1

3
]

G2(k,q) =
13

21
+

1

2

k · q

kq
(
k

q
+

q

k
) +

4

7
[(
k · q

kq
)2 −

1

3
]. (42)

These are the standard perturbation theory kernels (see for example [27], although we have rearranged some of the
terms and thus we have introduced F̄3. In our notation F2, G2 and F3 are the standard symmetrized kernels.
One can use these kernels to compute the 1− 3 contribution to the power spectrum in the limit q << k,

∫
d3q

(2π)3
6 F3(k,q,q)P0(k)P0(q) =

∫
d3q

(2π)3
1

21
[−

21k2µ2

q2
+ 10− 2µ2 − 8µ4]P0(k)P0(q)

=
116

315
PS0(k)〈δ

2
L〉 −

∫
d3q

(2π)3
P0(q)

1

3

k2

q2
P0(k) (43)

Note that as discussed before the piece proportional to 1/q2 cancels in the sum P22 + P13 to give:

P = P22 + P13 = {
2519

2205
PS0(k)−

47

105
kP ′

S0(k) +
1

10
k2P ′′

S0(k)}〈δ
2
L〉 (44)

We can also use the above expression for δ(3) to go directly to real space. We are interested in the effect of a long
mode on the short fluctuations and want to use δ(3) to obtain the piece that is linear in the short modes and quadratic
in the long. We obtain:

δ(3)(x) =
1

2
dLi d

L
j ∂i∂jδ

S(x) +Ai∂iδ
S(x) +BδS(x)

+ CijK
S
ij(x) +Dijk∂iK

S
jk(x) + Eij,klK

S
ij,kl(x). (45)

We have introduced Ai, B, Cij , Dijk and Eij,kl which are all quadratic in the long mode and are given by:

Ai =
25

14
δLdLi +

1

2
dLj K

L
ji +

1

2
d
(2)L
i

B =
682

657
(δL)2 +

208

189
dLi ∂iδ

L +
4

27
KL

ijK
L
ij +

7

18
δ(2)L +

25

54
θ(2)L

Cij = dLi ∂jδ
L +

194

189
δLKL

ij +
4

9
KL

ikK
L
kj +

2

9
K

(2)L
ij

Dijk =
4

7
dLi K

L
jk

Eij,kl = −
4

21
KL

ijK
L
kl. (46)
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For convenience we have introduced:

Kab,cd(x) =

∫
d3q

(2π)3
(
qaqb
q2

−
1

3
δab)(

qcqd
q2

−
1

3
δcd)δ0(q)e

iq·x. (47)

The second order fluctuations are given by:

δ(2)L(k) =

∫
d3q

(2π)3
F2(k− q,q)δL0 (k− q)δL0 (q)

θ(2)L(k) =

∫
d3q

(2π)3
G2(k− q,q)δL0 (k− q)δL0 (q)

d(2)La (q) = −
iqa
q2

θ(2)L(q)

K
(2)L
ab (q) = (

qaqb
q2

−
1

3
δab)δ

(2)L
0 (q). (48)

In real space:

δ(2)L(x) = dLk ∂kδ
L
0 +

17

21
(δL0 )

2 +
2

7
KL

ijK
L
ij

θ(2)L(x) = dLk ∂kδ
L
0 +

13

21
(δL0 )

2 +
4

7
KL

ijK
L
ij . (49)

If we are interested in using these expression to compute the monopole of the short scale correlation function,
then the terms proportional to KS

jk will not contribute so we can ignore the Cij and Dijk terms. The terms

1/2dLi d
L
j ∂i∂jδ

S(x) + Ai∂iδ
S(x) are responsible for a shift of the small scales that cancels in the correlation func-

tion. Thus only the the terms proportional to B and Eij,kl contribute. Note that KS
ij,kl cannot be neglected, and

when computing averages over angles should be replaced by:

KS
ij,kl → [−

2

45
δijδkl +

1

15
(δikδjl + δilδkj)]δ

S . (50)

Thus for the purpose of computing the angled averaged correlation function we can use

δ(3)(x) → [
682

567
(δL)2 +

208

189
dLi ∂iδ

L +
116

945
KL

ijK
L
ij +

7

18
δ(2)L +

25

27
θ(2)L]δS(x) (51)

When calculating the correlation function, the contribution 〈δ(3)δ+ δδ(3)〉 leeds to a term we can call ξS13 given by:

ξS13(r) = 2× 〈[
682

567
(δL)2 +

208

189
dLi ∂iδ

L +
116

945
KL

ijK
L
ij +

7

18
δ(2)L +

25

54
θ(2)L]〉ξ0(r)

= 2× [
682

567
−

208

189
+

116

945

2

3
]σ2

Lξ0(r) =
116

315
σ2
Lξ0(r) (52)

We can use equation (49) and (51) to obtain:

δ(3)(x) → [
58

315
(δL)2 +

1361

630
δ(2)L −

131

630
θ(2)L]δS(x) (53)

which when calculating the correlation function gives:

ξS13(r) = 2× 〈[
58

315
(δL)2 +

1361

630
δ(2)L −

131

630
θ(2)L]〉ξS0(r)

= 2×
58

315
σ2
LξS0(r) =

116

315
σ2
LξS0(r) (54)
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IX. APPENDIX: 2-2 CORRELATION FUNCTION IN REAL SPACE

The second order expression for the density field can be used to directly obtain the 2 − 2 piece of the correlation.
We obtain:

ζ(r)|2−2 =
578

441
ζ20,0

−
68

21
ζ1,1ζ−1,1

+
68

49
ζ20,2ζ−1,1 +

136

147
ζ0,2ζ0,0 +

68

441
ζ20,0

+
3

2
ζ2,2ζ−2,2 +

1

2
ζ2,2ζ−2,0 +

1

2
ζ2,0ζ−2,2 +

1

2
ζ2,0ζ−2,0 +

3

2
ζ20,2 + ζ2,0ζ0,0 +

1

2
ζ20,0

−
4

3
ζ1,1ζ−1,1 −

12

7
ζ1,3ζ−1,1 −

12

7
ζ−1,3ζ1,1 −

20

7
ζ1,3ζ−1,3

+
4

7
ζ20,2 +

60

49
ζ0,4ζ0,03 +

5

7
ζ20,4 +

20

147
ζ0,2ζ0,0 +

6

49
ζ0,4ζ0,0 +

11

441
ζ20,0. (55)

The different lines correspond to the different terms in the calculation, growth-growth, growth-shift, growth-anisotropy,
shift-shift, shift-anisotropy and anisotropy-anisotropy.
We have defined

ζm,n =

∫

d ln k∆2(k)km[
∂

∂kr
]nj0(kr). (56)

Using this notation

ζ0,0(r) = ζ(r)

ζ1,1(r) = ζ′(r)

ζ2,2(r) = ζ′′(r)

ζ2,0(r) = −∇2ζ(r) = −ζ′′(r) −
2

r
ζ′(r). (57)

We can now take the limit when one of the momenta is much smaller than 1/r which gives:

dζ(r)|2−2

dσ2
L

=
1156

441
ζS0

+
68

63
rζ′S0

+ 0

−
1

3

1

q2
∇2ζS0 +

1

10
r2ζ′′S0 +

1

15
rζ′S0 +

2

3
ζS0

+
32

315
rζ′S0

+
64

2205
ζS0, (58)

which adds to

〈δ2L〉[
2438

735
ζS0 +

131

105
rζ′S0 +

1

10
r2ζ′′S0 −

1

3

σ2
L

q2
∇2ζS0]. (59)
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