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Abstract

Supersymmetry plays a fundamental role in the radiative stability of many inflationary models.

Spontaneous breaking of the symmetry inevitably leads to fields with masses of order the Hubble

scale during inflation. When these fields couple to the inflaton they produce a unique signature

in the squeezed limit of the three-point function of primordial curvature perturbations. In this

paper, we make this connection between naturalness, supersymmetry, Hubble-mass degrees of

freedom and the squeezed limit precise. To study the physics in a model-insensitive way, we

develop a supersymmetric effective theory of inflation. We use the effective theory to classify all

possible interactions between the inflaton and the additional fields, and determine which ones

naturally allow large non-Gaussianities when protected by supersymmetry. Finally, we discuss

the tantalizing prospect of using cosmological observations as a probe of supersymmetry.



1 Introduction

Supersymmetry (SUSY) [1] is a powerful way to protect scalar fields from quantum corrections. If

the symmetry is unbroken, it controls dangerous radiative effects by enforcing exact cancellations

between boson and fermion loops. Even if the supersymmetry is broken at low energies—as it

has to be if it is to describe the real world—the appearance of supersymmetry at high energies

can still help to regulate loop effects. In inflation [2], SUSY is often required to achieve techni-

cal naturalness [3] of the quantum-corrected inflaton action [4, 5]. Hence, even if SUSY is not

discovered at the weak scale, naturalness motivates SUSY in inflation. Can we use cosmologi-

cal experiments to probe supersymmetry even if it is out of reach of particle colliders? What

are generic signatures of supersymmetry during inflation? In this paper we will address these

questions.

An inevitable consequence of SUSY during inflation is the presence of additional scalar fields,

with masses of order the Hubble scale H. The appearance of the Hubble scale as a preferred

mass scale is robust and simply related to fact that the size of spontaneous SUSY breaking during

inflation is determined by the vacuum energy, 〈FX〉2 = 3M2
plH

2. Gravity mediates this breaking

to the scalar sector, leading to the relation

m ∼ 〈FX〉
Mpl

∼ H . (1.1)

This effect is familiar from the supergravity (SUGRA) eta problem [6], where the induced mass

for the inflaton field, m2
φ ∼ H2, threatens to end inflation prematurely. Inflation will only last

for at least 60 e-folds if the inflaton mass is tuned to be smaller than H, or if a smaller mass is

protected by an additional global symmetry. This makes it clear that additional fields without

protective global symmetries will inherit Hubble scale masses from SUSY breaking. It is less

clear that these fields can have observational consequences.

We are looking for an observable that is sensitive to the number of light degrees of freedom

during inflation, and that, ideally, would probe the masses of the additional fields. A promising

candidate is the squeezed limit of the three-point function of primordial curvature perturbations ζ :

kS

kS

kL → 0

This describes the correlation between a long-wavelength fluctuation ζL = ζ(kL) and two short-

wavelength fluctuations ζS = ζ(kS), i.e. ζL modifies the short-scale power spectrum 〈ζ2
S〉. How-

ever, in single-field inflation, constant ζL is a pure gauge mode and hence isn’t locally observable.

The long-wavelength mode therefore has no effect on the short-wavelength power in the zero

momentum limit kL → 0. Any physical effects are proportional to
{
ζ̇L,∇2ζL

}
∝ k2

LζL and hence

suppressed by (kL/kS)2 [7–9]. On the other hand, if the fluctuations we observe were produced

by a second light field, the superhorizon fluctuations of the second field are locally observable

at the time when they are converted to curvature fluctuations. Large non-Gaussianity is then

possible in the squeezed limit. These facts are summarized by the momentum dependence of the
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three-point function in the squeezed limit

lim
kL→0

〈ζkLζkS1
ζkS2
〉 ∝ 1

kαL
. (1.2)

Here, single-field inflation corresponds to α = 1 [9], while multiple light fields with m � H can

lead to non-Gaussianity with α = 3 [10].1 Until recently, no example was known with α different

from 1 or 3. We see that measurements of the squeezed limit have the potential to determine

whether one or more fundamental fields were relevant for producing the primordial fluctuations.

How does the presence of Hubble-mass degrees of freedom during inflation affect the squeezed

limit? For the massive ‘isocurvaton’ fields σ to have an impact on observables, their fluctuations

have to be converted into curvature fluctuations ζ—either during inflation or afterwards. Re-

cently, Chen and Wang [11] observed that direct couplings between the inflaton φ and a massive

isocurvaton σ lead to a squeezed limit with the following momentum dependence:

α =
3

2
+

√
9

4
− m2

σ

H2
. (1.3)

These models of quasi-single-field inflation (QSFI) therefore allow for a scaling in the squeezed

limit that is intermediate2 between the scaling of single-field and multi-field inflation: 3
2 < α < 3.

The appearance of the mass mσ in eq. (1.3) has an intuitive explanation: massive fields decay

when their wavelengths becomes larger than the Hubble radius. At the time when the short

modes cross the horizon, the amplitude of the long mode is therefore suppressed relative to the

amplitude when it crossed the horizon. This affects the momentum dependence of the squeezed

limit by an amount that depends on mσ (see §4.1 for a derivation).

The squeezed limit is both theoretical clean and observationally relevant. Future cosmic mi-

crowave background (CMB) data [15] will span a large range of scales and therefore provide access

to the squeezed limit of the primordial perturbations. These measurements will be complemented

by large-scale structure (LSS) observations [16]. In particular, in recent years, scale-dependent

halo bias3 [17, 18] has emerged as a sensitive probe of primordial non-Gaussianity [19, 20]. In

this case, the signal is dominated by the squeezed limit of the three-point function [21]:

∆b(k) ∝ fNL

kα−1
. (1.4)

The combination of CMB and LSS data therefore suggests the exciting possibility of using obser-

vations to probe Hubble-mass degrees of freedom during inflation. As we explained, these fields

have their natural home in supersymmetry. In this paper, we will make this relation concrete.

Our results will solidify the connection between naturalness, supersymmetry and the squeezed

1Here, and in the rest of the paper, we are assuming perfectly scale-invariant fluctuations, k3〈ζ2
k〉 ∝ k0. It is

straightforward to restore (percent-level) deviations from scale-invariance, k3〈ζ2
k〉 ∝ kns−1, in all of our results.

2Such intermediate scalings may also be engineered in some curvaton scenarios [12, 13], as well as in theories

with non-Bunch-Davies initial states [14].
3Galaxies reside in dark matter halos. Halos are biased tracers of the underlying dark matter density field:

δh = bδm. The halo bias b(k) = 〈δmδh〉/〈δmδm〉 develops a characteristic scale-dependence in the presence of non-

Gaussianity with a non-trivial squeezed limit of the primordial three-point function. We can hope to detect this

effect by measuring the scale-dependence of the galaxy two-point correlation function on large scales.
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limit of non-Gaussianities. To use cosmological observations to find evidence for a new spacetime

symmetry of Nature is, of course, a very tantalizing prospect.

We have two primary goals in this work:

1) We wish to develop a broadly applicable framework for incorporating supersymmetry in

effective theories of inflation. The starting point for this investigation will be the effective

theory of inflationary fluctuations of Cheung et al. [22]—a theory of Goldstone bosons

of spontaneously broken time translations. We will show how the Goldstone fields are

embedded in a supersymmetric theory (see also [23, 24]). Along the way we will have to

understand how to couple higher-derivative theories to supergravity [25], how to cancel

tadpoles, and how to characterize the couplings of matter fields to auxiliary supergravity

fields. The end product will be the supersymmetric effective theory of inflation. This is an

effective theory of the inflationary fluctuations and therefore complementary to the large

body of work on SUSY theories for inflationary backgrounds (see e.g. [5, 26]).

2) We then use this theory for a model-independent description of the interactions between

the inflaton and additional Hubble-mass fields. The supersymmetric framework allows us

to analyze naturalness in a UV-insensitive way. One of our main goals will be to classify

all technically natural SUSY implementations of quasi-single-field inflation.

The outline of the paper is as follows: In Section 2, we construct a supersymmetric general-

ization of the effective theory of inflation of Cheung et al. [22]. We will illustrate the formalism

with two important examples: in Section 3, we derive supersymmetric models of inflation with

small sound speed, while in Section 4, we present the first explicit models of QSFI in SUSY.

We classify all possible variations of QSFI and determine which scenarios can lead to naturally

large non-Gaussianity when protected by SUSY. We discuss the observational signatures of these

theories. Sections 3 and 4 are self-contained and can therefore be read separately and in any

order. We conclude with Section 5.

Two appendices supplement the computations of the main text: In Appendix A, we show

how to couple higher-derivative theories consistently to supergravity. This is a largely non-

technical summary of the results of a companion paper [25]. We use results from this appendix

in Section 3. In Appendix B, we develop simple estimation techniques to derive the amplitude

and the squeezed limit of the bispectrum for models of quasi-single-field inflation. These results

are required to reproduce the results of Section 4.
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2 The Supersymmetric Effective Theory of Inflation

2.1 Adiabatic Fluctuations as Goldstone Bosons

We begin with a quick review of the effective theory of inflation of Cheung et al. [22] (see also [27]).

Readers familiar with this work may skip directly to the next subsection where we generalize the

theory to include supersymmetry.

The first step in constructing effective field theories (EFT) is identifying the relevant degrees

of freedom for the measurements of interest. Here, we are interested in an EFT that describes

CMB observables. We assume that the origin of the CMB temperatures fluctuations can be

traced back to quantum fluctuations during inflation that froze and became classical when their

frequencies ω matched the Hubble expansion rate H. The goal is therefore an EFT for the

inflationary fluctuations valid at energies ω ∼ H.

To construct this EFT, we start from the crucial

insight that time-dependent FRW backgrounds, such

as the inflationary quasi-de Sitter spacetimes, sponta-

neously break time-translation invariance. The relevant

degree of freedom of the EFT is then the Goldstone

boson associated with the symmetry breaking. We in-

troduce the Goldstone mode as a spacetime-dependent

transformation along the direction of the broken sym-

metry, i.e. we perform a spacetime-dependent time shift

ϕ ≡ t+ π(x) , (2.1)

where t → t + ξ0(x) and π → π − ξ0(x). We note that the field π parameterizes adiabatic

perturbations, i.e. perturbations corresponding to a common, local shift in time for a set of

matter fields φa, a = 1, · · · , N ,

δφa(x) ≡ φa(t+ π(x))− φ̄a(t) . (2.2)

Moreover, the field π is related to the comoving curvature perturbation ζ by a gauge transfor-

mation,

ζ = −Hπ . (2.3)

The low-energy expansion of the field ϕ(x) = t+ π(x) is the effective theory of inflation [22]

Leff = f(ϕ, (∂µϕ)2,�ϕ, · · · ) . (2.4)

Slow-roll inflation. At lowest order in derivatives, we have a (time-dependent) potential

and a kinetic term for ϕ,

Leff = −Λ(ϕ) + c(ϕ)(∂µϕ)2 + · · · (2.5)

To cancel tadpoles (i.e. terms linear in the fluctuations π), the coefficients in eq. (2.5) are fixed

in terms of the Hubble parameter: Λ(ϕ) ≡ M2
pl(3H

2(ϕ) + Ḣ) and c(ϕ) ≡ M2
plḢ. This ensures
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that we are expanding around the correct inflationary background H(t). Eq. (2.5) is, of course,

nothing but slow-roll inflation in disguise

Ls.r. = M2
plḢ(∂µϕ)2 −M2

pl(3H
2(ϕ) + Ḣ) ← −1

2(∂µφ)2 − V (φ) . (2.6)

A drastic simplification occurs in the effective action when we take the so-called decoupling limit.

In this limit we ignore the mixing between the matter fluctuations π and the metric perturbations

δgµν—i.e. we evaluate the Goldstone action in the homogeneous background spacetime: gµν →
ḡµν . This approximation only leads to slow-roll suppressed errors in the correlation functions

evaluated at horizon-crossing ω ∼ H. Since the effective theory of inflation is most powerful

when it describes large non-Gaussianities arising from matter self-interactions, we are justified

to work in the decoupling limit—e.g.

(∂µϕ)2 ≡ gµν∂µϕ∂νϕ → −1− 2π̇ + (∂µπ)2 . (2.7)

The action (2.6) then becomes

Ls.r. = M2
plḢ(∂µπ)2 . (2.8)

We find that π is massless and purely Gaussian for slow-roll inflation in the decoupling limit.

Theories with small sound speed. To go beyond the simple free-field theory, we add higher-

derivative terms. For single derivatives acting on ϕ = t + π, the leading deformation of the

slow-roll action is

Lcs = Ls.r. + 1
2M

4
2 (ϕ)

[
(∂µϕ)2 + 1

]2
. (2.9)

Notice that we added ‘+1’ to the operator in eq. (2.7) before squaring. This was necessary in

order to avoid reintroducing a tadpole for π. In other words, without loss of generality, we chose

the cancel the tadpole once and for all at lowest order and only add new operators without

tadpoles. Written in terms of the Goldstone π, we see that the operator in eq. (2.9) modifies the

kinetic term, but not the gradient term

Lcs = −(M2
plḢ − 2M4

2 )π̇2 +M2
plḢ(∂iπ)2 + · · · (2.10)

This induces a sound speed for the propagation of π,

1

c2
s

≡ 1− 2M4
2

M2
plḢ

, (2.11)

with a large value for the parameter M2 corresponding to a small sound speed cs � 1. Substitut-

ing (2.7) into (2.9), we see immediately that a small sound speed relates to large interactions [22]

Lcs = · · ·+ 2M4
2

(
π̇2 − 1

2 π̇(∂µπ)2 + · · ·
)
. (2.12)

This non-linearly realized symmetry is particularly clear in the EFT approach.

P (X) theories. The generalization of the single-derivative Goldstone action to so-called

P (X) theories [28–30] is straightforward:

LP (X) =

∞∑
n=0

1
n!M

4
n(ϕ)

[
(∂µϕ)2 + 1

]n
. (2.13)

5



Here, the operators proportional to Mn start at order n in π and end at order 2n. Only two in-

dependent operators—proportional to M2 and M3—therefore contribute to the cubic Lagrangian

for π.

Higher-derivative theories, ghosts and galileons. The number of operators increases rapidly

if we allow for the possibility of more than one derivative acting on ϕ. Higher derivatives lead to

interesting theories such as ghost inflation [31] and galileon inflation [32]. We won’t treat them

in this paper, although our formalism of course applies to all of these cases.

Multi-field generalizations. Finally, we could consider coupling the adiabatic mode ϕ to ad-

ditional (isocurvature) fields σ. To keep these extra fields naturally light either requires additional

global symmetries or supersymmetry (with a modest amount of fine-tuning) [23].

Supersymmetry. In the rest of this section we will extend the effective theory of inflation

to include supersymmetry. In §2.2, we introduce the basic ingredients of the theory and explain

our assumptions. In §2.3, we present a systematic treatment of effective actions with global

supersymmetry. We discuss supergravity couplings in §2.4. Finally, in §2.5, we comment on

models with additional matter fields.

2.2 Supersymmetry Breaking during Inflation

It will be crucial for the construction of the SUSY EFT to understand how SUSY is broken

during inflation.

Vacuum energy. The primary source of spontaneous SUSY breaking during inflation is,

of course, the positive vacuum energy associated with the de Sitter background. Although the

vacuum energy is present in any model of inflation, it is only by introducing supersymmetry that

it breaks a symmetry. We characterize this effect through a SUSY breaking spurion

X = x+
√

2θψx + θ2FX , (2.14)

with nearly constant F-term4, |FX |2 ∼ 3M2
plH

2. The action for X in the rigid limit is

LX =

∫
d4θ X†X −

(∫
d2θ
√

3MplHX + h.c.

)
. (2.15)

As written, this action does not generate a mass for x. One could add higher-order terms in

the Kähler potential—e.g. δK = Λ−2(X†X)2—to stabilize the vev at x = 0. In any model

with mx � H, one can arrive at the same results without changing the action by imposing the

constraint X2 = 0 [35]. In the following, we will assume that the classical vev of x vanishes.

For a given inflationary model, the inflaton may or may not be part of the multiplet X.

However, supersymmetry is most useful when it protects the mass of the inflaton to the lowest

possible scale, namely the Hubble scale H. The F-term for X breaks SUSY at a much higher

scale, making it more difficult to protect the inflaton mass when the inflaton is in the same

4We do not consider D-term breaking. In fact, mostly D-term breaking has been shown to be incompatible with

well-defined current multiplets [33, 34]. By restricting to F -term breaking, we are therefore only ignoring models

with comparable D-term and F-term contributions.
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multiplet (see [36, 37] for future discussion and examples). We will therefore make the further

assumption that the inflaton φ is in a separate multiplet,

Φ = φ+
√

2θψφ + θ2F , (2.16)

where

φ ≡ 1√
2
(σ + iϕc) , with ϕ2

c ≡ 2M2
pl|Ḣ|(t+ π)2 . (2.17)

We note that supersymmetry inevitably adds a new real scalar degree of freedom σ. The inter-

actions between σ and π will be of considerable interest for the phenomenology of inflationary

fluctuations.

Time-dependent backgrounds. The feature that distinguishes inflation from pure de Sitter is

that time translations are spontaneously broken by the inflationary background. This necessarily

leads to a second source of SUSY breaking. We can see this directly from the SUSY algebra

{Qα, Q̄α̇} = 2σµαα̇Pµ. The breaking of time translations means that the generator P0 is broken.

To be consistent, supersymmetry must also be broken. This can also be understood from the usual

argument that a supersymmetric state must have zero energy. A rolling scalar field generates

positive kinetic energy and breaks SUSY even in the absence of potential energy. Finally, we note

that this type of SUSY breaking is reflected in the supersymmetry transformation of the spinor

field

δψφ = i
√

2σµξ̄∂µφ+
√

2ξF . (2.18)

The fermion transforms inhomogeneously and, hence, supersymmetry is spontaneously broken

by the time-dependent inflaton vev, 〈φ̇〉 6= 0. In superspace, the breaking manifests itself as

a non-zero θθ̄ component of Φ, i.e. 〈Φ〉|θθ̄ = iσµ〈∂µφ〉 = −σ0(M2
pl|Ḣ|)1/2. This type of SUSY

breaking is not usually considered in particle physics since it breaks Lorentz invariance. We will

refer to this type of SUSY breaking as ‘Lorentz breaking’.

2.3 Supersymmetric Actions

In a rigid theory in flat space, we can always decouple the actions for X and Φ,5

L = LX + LΦ . (2.19)

What are the constraints on the form of the Lagrangian LΦ? Having organized the multiplet

in terms of ϕ = t + π, we have ensured that Φ is invariant under local time translations. As a

result, any supersymmetric action written as a function of Φ and Φ† is time translation invariant,

including terms with any number of derivatives. However, as we saw in §2.1, tadpole cancellation

imposes additional constraints on the form of the action. This is where the EFT of inflation differs

from the effective action for Goldstone bosons of global symmetries, where the only constraint

on the action is that it is invariant under the symmetry. Finally, we will impose an additional

5Of course, one cannot decouple X and t completely, otherwise inflation would never end. However, this

coupling may arise indirectly through couplings to fields that are sufficiently massive during inflation that they

can be integrated out, leaving the decoupled action to good approximation. These fields may become light or

tachyonic in order to end of inflation without affecting the fluctuations during the e-folds that are probed by the

CMB and LSS.
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shift symmetry, π → π + const., on the action to ensure at least 60 e-folds of scale-invariant

fluctuations for ζ = −Hπ. The most general6 Lagrangian of Φ with this symmetry is7

LΦ =

∫
d4θK(Φ + Φ†, ∂µΦ, ∂µΦ†, · · · ) . (2.20)

For example, in slow-roll inflation in the decoupling limit, the unique action is

Ls.r. =

∫
d4θ 1

2(Φ + Φ†)2 + LX . (2.21)

More general theories are characterized by higher-derivative corrections to (2.21). For instance,

in §3, we will study the following example

Lcs =

∫
d4θ 1

2(Φ + Φ†)2
[
c1 +

c2

M2
pl|Ḣ|

∂µΦ∂µΦ†
]

+ LX , (2.22)

corresponding to a supersymmetric theory with non-trivial sound speed.

2.4 Coupling to Supergravity

To describe the dynamics of inflation, we must couple the theory to gravity. For a supersymmetric

theory, this means coupling to supergravity. The decoupling between Φ and X that was possible

for the rigid theory in flat space is no longer possible.8

Tadpole cancellation. The decoupling between Φ and X is broken by the time evolution

of the vacuum energy, Ḣ 6= 0. In order to reproduce the correct time-dependent vacuum energy,

Λ(ϕ) = M2
pl(3H

2(ϕ) + Ḣ), we include a small superpotential coupling between Φ and X,

LX →
∫
d4θX†X −

(∫
d2θ v(−iΦ)X + h.c.

)
, (2.23)

where |v(ϕ)|2 = M2
pl(3H

2(ϕ) + Ḣ). This is equivalent to including couplings that cancel the

tadpoles for π at all values of t. Additional couplings may be required to cancel tadpoles that

may arise for the inflaton partner σ.

Curvature couplings. Further couplings between Φ and X generically arise in supergravity

LXΦ ⊃ αRσ2 + · · ·+ β

∫
d4θ

1

M2
pl

(Φ + Φ†)2X†X + · · · , (2.24)

6We have actually imposed a slightly stronger condition, namely that this is a symmetry of the Kähler potential

itself. Here, we are anticipating that supergravity effects can break symmetries of the action that are not symmetries

of the Kähler potential.
7In flat space, there is no need for additional terms to cancel tadpoles for π. Because of the shift symmetry,

any terms linear in π are total derivatives in flat space. However, we will be most interested in FRW backgrounds,

where tadpole cancelation requires that we consistently couple to gravity.
8It is amusing to note the similarity between the SUSY EFT of inflation and Goldstini [38], as both describe

two independent SUSY breaking sectors that are coupled only through gravity. These theories are different in two

respects: First of all, in inflation, the massive scalar σ will not, in general, be sufficiently massive that it can be

integrated out and will play a critical role in the phenomenology of the EFT. Second of all, one of the sources of

breaking is ‘Lorentz breaking’ rather than F-term breaking. Even in models in which σ is sufficient heavy that it

can be integrated out, the Goldstino multiplet takes the form ΦNL = ψσ0ψ̄/Λ2
b +ϕ+ . . . , where ψ is the Goldstino

of the Lorentz breaking sector and Λb is the scale where the symmetry is broken. Unfortunately, since fermions

don’t freeze out, the Goldstini are unobservable.
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where α and β are dimensionless coupling constants of order unity. Notice that only the non-

shift-symmetric part of Φ, i.e. σ ∝ Φ + Φ†, receives corrections, while the potential for the

shift-symmetric part, i.e. ϕ ∝ Φ−Φ†, remains protected. Although curvature couplings, such as

the first term in (2.24), do not couple the fields directly, Einstein’s equations relate the spacetime

curvature R to the vacuum energy generated by X. This indirectly couples X and Φ + Φ†. The

second term in (2.24) represents Planck-suppressed couplings between the two sectors. Using

FX ∼
√

3MplH and R = −12H2 (here we are using the sign conventions of [39]), we see that

both terms in (2.24) contribute a mass to σ of order H.9

Auxiliary fields in supergravity. Minimal supergravity has two auxiliary fields, a complex

scalar M and a real vector bµ [39] (see Appendix A). These fields can also couple to the inflaton.

When M and bµ acquire vevs, they can, in principle, affect the inflationary dynamics. For models

of particle physics (e.g. gravity or anomaly mediation), the contribution to the soft masses from

M is extremely important: in this case, a vev of the superpotential W leads to a universal

contribution of the form 〈M〉 ∼ 〈W 〉/M2
pl. Such a vev, in fact, has to be turned on in order

to achieve a small value for the present day cosmological constant, i.e. W0 ∼ FXMpl and hence

〈M〉 ∼ FX/Mpl. Therefore, SUSY breaking effects communicated by M are comparable to those

from Planck-suppressed mixing between sectors. In inflation, the situation is very different: The

vacuum energy plays a crucial role and should not be cancelled by the vev of the superpotential.

As a result, one requires that 〈W 〉 � FXMpl and therefore 〈M〉 � FX/Mpl ∼ H. This makes the

contributions from M subdominant relative to the generic curvature couplings from supergravity.

In fact, under the assumptions stated in §2.2, we find that the vevs of the auxiliary fields M

and F are strictly zero. The basic reason for this is as follows: The action for the SUSY effective

theory of inflation has an R-symmetry. Under this symmetry, X has R-charge 2 and Φ has R-

charge 0. As a result, both ϕ and FX have charge zero and neither vev breaks the R-symmetry.

However, both M and F are charged and a vev for either would break the symmetry. Since M

and F are auxiliary fields, any vev should be proportional to an R-symmetry breaking parameter.

The only available quantity is the vev of x. However, if 〈x〉 = 0, as we assume throughout, then

〈M〉 = 〈F 〉 = 0.

In contrast, there is no general principle that requires 〈bµ〉 = 0. However, in all of the models

that we will discuss in this paper, we will actually find this to be the case. More generally, a

vev for bµ breaks diffeomorphism invariance. Because time diffeomorphisms are broken, b0 can

acquire a vev. A vev for b0 also breaks SUSY and must be related to the “Lorentz -breaking”

of supersymmetry. Because this is a subdominant contribution to the vacuum energy, 〈b0〉 � H

during inflation.

Supergravity for effective theories. In this section we have merely outlined the contributions

to the action that may arise from supergravity. Determining the precise form of these corrections

requires a complete treatment of supergravity, including a careful treatment of higher-derivative

9In the limit, Mpl → ∞, the second class of corrections naively seem to vanish, while the first class remains.

However, for the background to solve Einstein’s equations for any finite value of Mpl, we must take FX → ∞ in

the same limit. For this reason, both types of terms survive the decoupling limit and contribute terms of order

H2. This non-decoupling of SUSY breaking is necessary. In de Sitter space, the transformation of the gravitino is

required for any action to be supersymmetric and therefore de Sitter space must break supersymmetry explicitly

in the decoupling limit.
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contributions to the Kähler potential. We summarize the basic results of such an analysis in

Appendix A. Full details can be found in a companion paper [25].

2.5 Additional Superfields

So far, we have introduced supersymmetry with a minimal field content of two chiral fields, X

and Φ. Of course, there is nothing that forbids additional chiral fields, Σi, from appearing in the

action. Any sector that is decoupled from X will be protected from quadratic divergences just like

the inflaton. It is a special feature of SUSY that we do not need to enlarge the symmetry group to

protect additional scalar fields. We wish to treat these additional fields, Σi = σ̃i +
√

2θψ̃i + θ2F̃i,

as part of the inflationary sector. Therefore, in the rigid limit, we may write the action as10

L = LX + LΦ + LΣ + LΦΣ . (2.25)

Here, we assumed a decoupled action between X and Σi, just as we did for Φ. We will demand

that 〈σ̃i〉 = 0 and 〈F̃i〉 = 0 during inflation. Just as in the case of Φ, coupling to supergravity will

induce masses of order H2 for σ̃i (unless we impose an extra global symmetry for σ̃i). Making

no further assumptions, we write the action as

LΦ + LΣ + LΦΣ =

∫
d4θK(Σ,Σ†,Φ + Φ†; ∂µΦ, ∂µΣ, · · · ) +

(∫
d2θW (Σ) + h.c.

)
. (2.26)

We have dropped the flavor index i, since there is no qualitative differences between one and

many Σ’s. The imaginary part of Φ is shift-symmetric, as before.

Let us highlight some features that distinguish the action for σ̃—eq. (2.26)—from the action

for σ—eq. (2.20):

1) First, we note that we can have a superpotential for Σ, while the shift symmetry forbids

a superpotential for Φ. This implies we can write SUSY-preserving, non-derivative in-

teractions for σ̃. For example, the interaction λ|σ̃|4 is obtained from the superpotential

W = λΣ3. However, the same interaction for σ is only obtained from
∫
d4θ (Φ + Φ†)6

or
∫
d4θ (Φ + Φ†)4X†X. In this case, one generates λσ4 with λ ∝

∫
d4θO 6= 0, where

O = {X†X, (Φ + Φ†)2, · · · } is an operator whose D-term breaks SUSY.

2) Finally, there are differences in the form of derivative couplings. For example, the coupling

∂µϕ∂
µσ can only be written by using a SUSY breaking D-term, since σ and ϕ appear in the

same multiplet. However, with σ̃ in a different chiral multiplet, the coupling ∂µϕ∂
µ(σ̃+ σ̃∗)

is easily achieved using
∫
d4θ i(Φ+Φ†)(Σ−Σ†). This observation will be of some significance

in our constructions of supersymmetric quasi-single-field inflation in §4.4.

In this section, we have developed a general framework for supersymmetrizing the effective

theory of inflation. In the next two sections, we will apply this formalism to concrete examples: in

10A subset of these models with LΦΣ = 0 was studied in [23]. For such models to leave an imprint on inflation,

the mass of σ̃i was required to be m2
σ̃i
. 10−2H2 and the fluctuations in σ̃i were converted to curvature fluctuations

ζ after inflation. For a comprehensive discussion of the construction and signatures of these models we refer the

reader to [23].
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Section 3, we study naturalness in SUSY theories with small cs, while in Section 4, we construct

explicit realizations of SUSY QSFI. Both sections are self-contained, so they may be read in any

order. In particular, readers whose main interests lie in the observational signatures of SUSY are

advised not to let themselves be distracted by the technical details of Section 3 and instead skip

straight to Section 4.

3 Naturalness and Small Sound Speed

We now turn to our first application of the SUSY EFT of inflation: supersymmetric theories

with small sound speed and large derivative interactions. As we saw in §2.1, at cubic order in

fluctuations, there are only two single-derivative operators deforming the slow-roll action

L = M2
plḢ(∂µϕ)2 + 1

2M
4
2

[
(∂µϕ)2 + 1

]2
+ 1

3!M
4
3

[
(∂µϕ)2 + 1

]3
+ · · · , (3.1)

where
1

c2
s

= 1− 2M4
2

M2
plḢ

. (3.2)

In this section, we will realize these theories (and their generalizations to P (X) theories) in

supersymmetry (see also [24]). In §3.1, we derive the component Lagrangians for those theories

and show that higher-derivative couplings lead to a parametrically enhanced mass for the SUSY

partner of the inflaton,

m2
σ ∼

H2

c2
s

� H2 . (3.3)

We then use the SUSY EFT to revisit constraints on the natural sizes of the parameters M2 and

M3. Specifically, in §3.2, we ask whether the hierarchy M4
2 � M2

pl|Ḣ| (and hence cs � 1) is

techincally natural. To answer the question, we construct a weakly-coupled UV-completion of

theories with non-trivial sound speed. We then proceed to show that small cs is unnatural in

the non-supersymmetric theory, but becomes natural when the theory is made supersymmetric.

Finally, in §3.3, we discuss the natural size of the parameter M3 relative to the size of M2. We will

comment on the implications of our results for the naturalness of orthogonal type non-Gaussianity,

which relies on a cancellation between the two operators in (3.1).

3.1 Supersymmetric P (X) Theories

Supersymmetric sound speed. We begin with the Lagrangian for a theory with small cs,

Lcs = −M2
pl(3H

2 + Ḣ) +M2
plḢ(∂µϕ)2 + 1

2M
4
2

[
(∂µϕ)2 + 1

]2
. (3.4)

In order to supersymmetrize the theory it proves useful to slightly reorganize the terms

Lcs =
(
−M2

pl(3H
2 + Ḣ) + 1

2M
4
2︸ ︷︷ ︸

m4
0

)
+
(
M2

plḢ + 1
2M

4
2︸ ︷︷ ︸

m4
1

)
(∂µϕ)2+ 1

2 M
4
2︸︷︷︸

m4
2

(∂µϕ)2
[
(∂µϕ)2 + 1

]
. (3.5)

The reason for writing the Lagrangian in this way is that (∂µϕ)2 and (∂µϕ)2
[
(∂µϕ)2 + 1

]
each

correspond to individual operators in SUSY, while
[
(∂µϕ)2 + 1

]2
does not. The Lagrangian (3.5)

11



arises from the following higher-derivative Kähler potential11

Kcs = 1
2(Φ + Φ†)2

[
c1 +

c2

M2
pl|Ḣ|

∂µΦ∂µΦ†
]
, (3.6)

where

c1 ≡ − m4
1

M2
pl|Ḣ|

= 1 + 1
2

(
1− 1

c2s

)
and c2 ≡ − m4

2

M2
pl|Ḣ|

= 1
4

(
1− 1

c2s

)
. (3.7)

The superpotential is the same as in slow-roll inflation,

Wcs = −v(iΦ̂)X , (3.8)

but now |v(ϕ)|2 ≡ −m4
0.

Curvature couplings. In our companion paper [25], we derive the complete supergravity

action for eq. (3.6), including all couplings to the auxiliary field F , M , and bµ. However, in §2.4,

we argued that the vevs for the auxiliary fields are either suppressed or strictly zero. We therefore

only show the result for the dominant curvature couplings [25]:

Lcs = −|v|2 + c1L1 +
c2

M2
pl|Ḣ|

L2 , (3.9)

where

L1 = −|∂µφ|2 +
(

1
6R− 1

3M2
pl
|FX |2

)
σ2 , (3.10)

L2 = −
(
|∂µφ|2

)2 − 2∂µσ∂νσ∂
µφ∂ν φ̄

+ σ2
{(

1
6R− 1

3M2
pl
|FX |2

)[
(∂µϕc)

2 + (∂µσ)2
]
− 1

2Rµν
[
∂µϕc∂

νϕc + ∂µσ∂νσ
]

+ 1
2∇µ∇ν

[
∂µϕc∂

νϕc + ∂µσ∂νσ
]

+ ∂µφ∂µ�φ̄+ 1
2�|∂µφ|2

}
. (3.11)

Using ϕ̄c = (2M2
pl|Ḣ|)1/2t and Rµν = −3H2gµν (de Sitter), we find that only four terms in (A.6)

and (A.7)—see underlined—contribute a mass to the field σ,

Lcs = · · ·+
[
c1

(
1
6R−H2

)
+ c2

(
1
12R− 2H2

)
(∂µt)

2 + c2∇µ∇ν(∂µt∂νt)
]
σ2 + · · · . (3.12)

With R = −12H2 and ∇µ∇ν(∂µt∂νt) = 9H2, we find

m2
σ = 6H2c1 − 12H2c2 ' 0× H2

c2
s

+ 6H2 . (3.13)

11Of course, there is no unique supersymmetric generalization of these theories. There are various actions that

differ in the couplings of fermions and additional scalars, but that reduce to the same theories when those extra

fields have vanishing vevs. The different ways of embedding small cs-theories in supersymmetric actions were

explored in [24]. In particular, they studied an interesting alternative operator that also generates a small sound

speed,

Kcs = 1
2
ĉ1(Φ + Φ†)2 + 1

16
ĉ2 D

αΦDαΦD̄α̇Φ†D̄α̇Φ† .

As usual, the first term is only shift symmetric for the imaginary part of Φ. However, the second term in invariant

under shifts of both the real and imaginary parts. To see this note that Dα(Φ ± Φ†) = DαΦ, using the fact that

Φ is chiral.
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The cancellation of the leading H2c−2
s terms that we find here is completely accidental and not

protected by any symmetry. In particular, as we explain in Appendix A, in principle, there

are a host of additional Planck-suppressed couplings between Φ and X in the Kähler potential,

cf. eq. (2.24). These terms are model-dependent, but typically they lead to large contributions

to the mass,

m2
σ ∼

H2

c2
s

. (3.14)

We therefore conclude that generically the mass of the partner of the inflaton is enhanced in the

limit of small cs. This is important since it implies that σ won’t receive quantum mechanical

fluctuations during inflation.

SUSY P (X). The above is easily generalized to P (X) theories. Again, it is useful to first re-write the

non-SUSY effective action

LP (X) = m4
0(ϕ) +m4

1(∂µϕ)2 +

∞∑
n=2

1
n!m

4
n(∂µϕ)2

[
(∂µϕ)2 + 1

]n−1
. (3.15)

This is nothing deep, but just a simple reshuffling of the operators we are familiar with from §2.1:

LP (X) =
(
m4

0 − 1
2m

4
2

)︸ ︷︷ ︸
−M2

pl(3H
2+Ḣ)

+
(
m4

1 − 1
2m

4
2

)︸ ︷︷ ︸
M2

plḢ

(∂µϕ)2 +

∞∑
n=2

1
n!

(
m4
n −

m4
n+1

n+1

)
︸ ︷︷ ︸

M4
n

[(∂µϕ)2 + 1]n . (3.16)

Writing the effective theory in the form of eq. (3.15) has the advantage that it is easy to supersymmetrize.

A possible form for the Kähler potential is

KP (X) = − 1
2 (Φ̂ + Φ̂†)2

[
m4

1 +

∞∑
n=2

1
n!m

4
n

[
∂µΦ̂∂µΦ̂† + 1

]n−1]
, (3.17)

where Φ̂ ≡ (M2
pl|Ḣ|)−1/2Φ. The superpotential is the same as in eq. (3.8).

3.2 Naturalness of Small Sound Speed

Is the hierarchy M4
2 � M2

pl|Ḣ|—and hence cs � 1—natural? Before we address this question,

we digress briefly to review our prior work on the subject [40].

Strong coupling and new physics. It is well-known [22, 40, 41] that theories with small

sound speed become strongly coupled at energies not too far above the Hubble scale. Of course,

CMB observations probe modes at the Hubble scale, so, in principle, there is no problem with the

theory becoming strongly coupled at higher energies. Nevertheless, it is interesting to take strong

coupling as an indication for ‘new physics’ entering before the would-be strong coupling scale.12

The new physics could manifest itself as the appearance of new massive degrees of freedom or

as a change in the physical description of the existing degrees of freedom. In [40] we applied

this logic to inflationary models with small sound speed. We showed that the theory can stay

12The same philosophy can be applied to the Higgless Standard Model. A theory of massive W and Z bosons

becomes strongly coupled around 1 TeV, unless some new physics enters before. In that case, we know that a light

Higgs keeps the theory weakly coupled and restores perturbative unitarity.
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weakly coupled if the dispersion relation of the inflaton field changes before the would-be strong

coupling scale Λ?. We presented a specific two-field theory (see also [42–44]) that allows for large

non-Gaussianities at Hubble without strong coupling above Hubble. However, weak coupling

came at a price: the theory only leads to a small sound speed for unnatural mass parameters and

couplings.13 In this section we show that the theory, in fact, becomes natural in the presence of

SUSY.

A weakly-coupled UV-completion. Here, we present the basic equations of our weakly-

coupled UV-completions of theories with small cs. For further details we refer the reader to our

previous publication [40].

Consider adding a second massive field σ to the slow-roll Lagrangian

L0 = −1
2(∂µπc)

2 − 1
2(∂µσ)2 − 1

2m
2
σσ

2 , (3.18)

where π2
c ≡ 2M2

pl|Ḣ|π2. In order for σ to affect the dynamics of πc, we couple the two fields

through the following interaction

Lmix = −m3
[
(∂µϕ)2 + 1

]
σ → ρ

(
π̇c −

1

2

(∂µπc)
2

(2M2
pl|Ḣ|)1/2

)
σ . (3.19)

At high energies, ω > ρ, this describes two decoupled fields πc and σ, with a small perturbative

mixing ρπ̇cσ :

π σ (3.20)

At lower energies, ω < ρ, the mixing term dominates the dynamics. The

theory becomes a non-relativistic single-field theory (if this is counterintu-

itive please see [40] for a detailed discussion of this feature of the theory).

In this regime, the disperision relation for π is non-linear, ω = k2/ρ. For

ρ4 < M2
pl|Ḣ|, the theory is weakly coupled at all energies up to the sym-

metry breaking scale M2
pl|Ḣ|. At even lower energies, ω < m2

σ/ρ, the mass

term of σ becomes relevant and the theory develops a linear dispersion,

ω = csk, with sound speed given by

cs '
mσ

ρ
. (3.21)

We see that a small sound speed requires mσ � ρ. Is this hierarchy

technically natural?

Without SUSY. The symmetries of the EFT relate the mixing term ρπ̇σ to a cubic interac-

tion (∂µπc)
2σ, cf. eq. (3.19). This interaction induces radiative corrections to the mass parameter

mσ and the kinetic mixing parameter ρ. At one loop, we find:

13Again, this has a parallel in the Standard Model: a light Higgs is unnatural unless something—such as SUSY—

controls quantum corrections to the Higgs mass.
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δm2
σ = σ

∂π

σ ∼ ρ2

M2
pl|Ḣ|

Λ4
uv ∼ ρ2 , (3.22)

δρ = π̇ σ ∼ ρ3

M2
pl|Ḣ|

Λ2
uv ∼

ρ2

(M2
pl|Ḣ|)1/2

ρ . (3.23)

To estimate the size of the loops we have set the UV-cutoff equal to the symmetry breaking

scale, Λ4
uv ∼ M2

pl|Ḣ|. We see that the weak coupling requirement, ρ4 < M2
pl|Ḣ|, is natural since

the loop correction in (3.23) is suppressed by the ratio ρ2

(M2
pl|Ḣ|)1/2 < 1. However, the hierarchy

mσ < ρ and hence cs < 1 is not natural. Instead, the loop correction to the mass in eq. (3.22)

implies that the natural value of the sound speed is unity,

δc2
s '

δm2
σ

ρ2
∼ 1 . (3.24)

With SUSY. A supersymmetric version of the theory described by eqs. (3.18) and (3.19) is

L =

∫
d4θ

[
1
2(Φ + Φ†)2 +

1

Λ
(Φ + Φ†)3

]
. (3.25)

The second term in (3.25) generates a quadratic kinetic mixing term with ρ =
(M2

pl|Ḣ|)
1/2

Λ . Impor-

tantly, this breaks supersymmetry at the scale ρ. Notice that this SUSY breaking is associated

with the time dependence of the background ϕ̄ = t and not with the constant vacuum energy.

Nevertheless, for ρ4 < M2
pl|Ḣ|, SUSY still helps to regularize the loop correction to the mass. We

can see this in two different ways:

1) Only loops that include the SUSY breaking will contribute to the mass of σ. The loop that

led to eq. (3.22) does not include SUSY breaking since the operator (∂µπc)
2σ in (3.19) is

supersymmetric (it isn’t proportional to the time-dependent background vev). SUSY will

therefore enforce that a fermion loop cancels the boson loop leading to (3.22). Hence, we

only get a contribution to the mass term if the SUSY breaking operator π̇cσ = (∂0t)π̇cσ is

included in the loop. Such a loop then leads to

δm2
σ = σ

∂π

σ

σ ∼ ρ4

M2
pl|Ḣ|

Λ2
uv ∼

ρ2

(M2
pl|Ḣ|)1/2

ρ2 . (3.26)

We see that in the supersymmetric theory the mass of σ only has a quadratic divergence,

while the non-supersymmetric theory had a quartic divergence. This results in the maximal

radiative correction to the mass of σ now being suppressed by the small ratio ρ2

(M2
pl|Ḣ|)1/2 < 1.
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The hierarchy mσ < ρ is therefore natural and protected by SUSY.14 This implies that a

small sound speed is technically natural

δc2
s '

ρ2

(M2
pl|Ḣ|)1/2

� 1 . (3.27)

2) We may arrive at the same result working directly in superspace by treating 1
Λ

∫
d4θ (Φ +

Φ†)3 as a perturbation. Loops are then computed by using the superspace propagator to

contract vertices. This leads to the following one-loop correction to eq. (3.25),

δLloop =

∫
d4θ

[
Λ2

uv

Λn
(Φ + Φ†)n +

1

Λn
(Φ + Φ†)n−2D2D̄2(Φ + Φ†)2

]
+ · · · , (3.28)

where the dots indicate terms that are UV-finite. The appearance of D2D̄2 is the result

of acting with the second
∫
d4θ on the external lines, rather than on the propagators.

Eq. (3.28) implies the following contribution to the mass of σ,

δm2
σ ∼

Λ2
uv

Λ4
M2

pl|Ḣ| ∼
ρ2

(M2
pl|Ḣ|)1/2

ρ2 . (3.29)

We again conclude that the hierarchy mσ < ρ is natural and protected by SUSY.

Conclusion. We have shown that the weakly-coupled UV-completion of cs � 1 [40] is

unnatural without SUSY, but becomes natural with SUSY.

3.3 Naturalness of Orthogonal Non-Gaussianity

What is the natural size of M3?

We have seen that the cubic Lagrangian for P (X) theories is characterized by two indepen-

dent operators

L = M2
plḢ(∂µϕ)2 + 1

2M
4
2

[
(∂µϕ)2 + 1

]2
+ 1

3!M
4
3

[
(∂µϕ)2 + 1

]3
. (3.30)

In the previous section, we discussed the natural value of M2. We now turn our sights on M3.

In [45], it was argued in the context of the strongly-coupled UV-completions, that the natural

value of the parameter is

M4
3 ∼

M4
2

c2
s

∼
M2

pl|Ḣ|
c4
s

. (3.31)

This conclusion is of observational relevance. It implies that the interactions M4
2 π̇(∂iπ)2 and

M4
3 π̇

3 are naturally of similar size and can therefore be cancelled against each other to produce

14To complete the proof, we should still show that there is no large contribution from modes with energies below

the SUSY breaking scale ρ. In this regime, eq. (3.22) still applies, but the UV-cutoff is now Λuv ∼ ρ. From modes

below the SUSY breaking scale ρ, we therefore get the following loop contribution to the mass of σ,

δm2
σ ∼

ρ4

M2
pl|Ḣ|

ρ2 .

This is smaller than the contribution in (3.26) and can therefore be ignored.
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a new bispectrum shape that is orthogonal to the equilateral shape for an order one fraction of

the natural parameter space. In the previous section, we found a natural, weakly-coupled UV-

completion of small cs in the context of supersymmetry. We will now use this theory to determine

the natural values of M3. In order to make contact with [45], we will determine M4
3 for fixed cs

and M2
plḢ, i.e. we will vary the parameter ρ, while simultaneously adjusting mσ = csρ, such that

cs remains fixed. As we discussed above, for ω < csmσ, the theory describes a single degree of

freedom, with σ playing the role of the conjugate momentum of π,

σ ' (M2
pl|Ḣ|)1/2 ρ

m2
σ

π̇ . (3.32)

The low-energy contribution to the operator M4
3 π̇

3 therefore arises predominantly from the cou-

pling µσ3—i.e.

M4
3 '

(M2
pl|Ḣ|)3/2

c6
s

µ

ρ3
. (3.33)

Here, M2
pl|Ḣ| and cs are fixed, so the natural values of M3 are determined by the natural ranges

of µ and ρ :

• A lower bound on ρ arises from the requirement that we have a linear dispersion, ω = csk,

at horizon crossing. This means that csmσ = c2
sρ > H. An upper bound on ρ arises from

the lower bound on mσ, associated with the minimal loop contribution in eq. (3.26): namely

m2
σ & δm

2
σ ∼ ρ2(M2

pl|Ḣ|)−1/2 ρ2 leads to ρ . cs(M2
pl|Ḣ|)1/4. Therefore, we find

c−2
s H . ρ . cs(M

2
pl|Ḣ|)1/4 . (3.34)

• The natural range of µ can be determined by simple loop estimates, as before. The

lower bound is determined from the loop contribution to µ arising from the interaction

ρ(M2
pl|Ḣ|)−1/2(∂µπc)

2σ. As before, the coupling only gets renormalized if we insert the

SUSY breaking operator ρπ̇cσ inside the loop

δµ = ∼ ρ5

M2
pl|Ḣ|

. (3.35)

Naturalness of the coupling then requires µ & δµ ∼ ρ5(M2
pl|Ḣ|)−1. An upper bound on µ

follows from the renormalization of the mass of σ, i.e. δm2
σ ∼ µ2. Because we have fixed

mσ in terms of cs and ρ, we must have µ ≤ mσ. Therefore, we find,

ρ5

M2
pl|Ḣ|

. µ . mσ . (3.36)

Combining the ranges of µ and ρ with (3.33), we find that the natural range of M4
3 is

M2
pl|Ḣ|
c4
s

. M4
3 .

c
1/2
s

∆ζ

M2
pl|Ḣ|
c4
s

, (3.37)
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where ∆ζ ≡ H2/(4Mpl|Ḣ|)1/2 ∼ 10−5. We see that we can naturally make the value of M3 larger

than the natural value in the strongly-coupled theory [45], but not smaller.

Conclusion. We have shown that the natural range of M3 is larger in a weakly-coupled

SUSY completion than in strongly-coupled models. Interestingly, the lower bound on M3 is

identical in both cases, M4
3 ∼ M2

pl|Ḣ|c−4
s , but the upper bound is now higher. The orthogonal

shape was shown in [45] to arise for an order one range of parameters in the strongly-coupled

theory. The fraction of the natural parameter space that gives orthogonal shape is likely to

decrease in the weakly-coupled SUSY model.

4 Supersymmetric Quasi-Single-Field Inflation

One of the most exciting applications of the supersymmetric effective theory of inflation is to the

quasi-single-field inflation (QSFI) models of Chen and Wang [11]. These models involve extra

fields besides the inflaton field, with masses close to the Hubble scale. This feature makes su-

persymmetry a natural arena for QSFI. In this section, we present a supersymmetric completion

of the model of [11]. Moreover, we use the effective theory approach to propose some obvious

generalizations of the original model. We then determine which of these new possibilities can nat-

urally arise in SUSY. As advertised in the Introduction, QSFI allows for large non-Gaussianities

with a unique signature in the squeezed limit. We will show that this signature is robust and not

sensitive to details.

4.1 Quasi-Single-Field Inflation

The basic idea behind QSFI is very intuitive. In this section, we will explain the mechanism and

its key predictions in simple physical terms. We then provide a systematic classification of all

possible variations of QSFI and show which of them are naturally realized in SUSY.

Basic Mechanism and Perturbative Predictions

Setup. QSFI couples a massless Goldstone mode, Lπ = −1
2(∂µπc)

2, to a

massive isocurvaton mode, Lσ = −1
2(∂µσ)2 − 1

2m
2
σσ

2, through a quadratic

mixing term Lmix, which [11] chose as Lmix = ρπ̇cσ. Incidentally, this is the

same mixing term that featured prominently in our weakly-coupled UV-

completion of theories with small sound speed, cf. §3.2. This coupling arises

if the background fields follow a curved trajectory with constant radius of

curvature and constant angular velocity. The mixing converts fluctuations in σ into fluctuations

in πc and hence ζ. If the mass of the second field is at or below the Hubble scale, mσ . 3
2H,

then quantum fluctuations in σ can contribute significantly to the final curvature perturbation.

Moreover, interactions in the σ-sector are much less constrained than interactions in the inflaton

direction. A large interaction term Lint in the σ-Lagrangian can then be an important source of

non-Gaussianity. The specific example Lint = −µσ3 − λσ4 was explored in [11].

Power spectrum. For ρ < H, we can treat the mixing term as a perturbative correction,

while the leading order dynamics is determined by

L0 = −1
2(∂µπc)

2 − 1
2(∂µσ)2 − 1

2m
2
σσ

2 . (4.1)
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The quadratic mixing is then captured by the following transfer vertex

Lmix = ρπ̇cσ ⇔ π σ . (4.2)

The leading perturbative correction to the power spectrum of ζ is

⇔ ∆2
ζ =

1

4

H4

M2
pl|Ḣ|

[
1 + c(ν)

( ρ
H

)2
]
, (4.3)

where the precise form of the function c(ν) can be found in [11]. Since the correction is scale

invariant, it only leads to an unobservable shift in the overall normalization of the power spectrum.

Scale invariance. It is worth digressing briefly to explain why QSFI does not introduce large

violations of scale invariance. Since the mixing term couples the Goldstone boson π to a massive field σ,

one might suspect that the Goldstone boson effectively becomes massive, leading to a violation of scale

invariance in the power spectrum of order ρ2/H2. Moreover, one may worry that the violation of scale

invariance in the σ-sector, of order m2
σ/H

2, gets communicated to the π-sector. However, the result of the

explicit calculation in (4.3) shows no violation of scale invariance. What happened?

Exact scale invariance of the power spectrum is the result of an exact global symmetry under which

t → t + c and k → keHc (in de Sitter space). The transformation on t can be undone by a time

diffeomorphism, after which one is left with an equivalent global symmetry π → π+ c. If this symmetry is

unbroken, then every mode experiences the same history and the power spectrum of π is scale invariant.15

In QSFI, the action for π and σ posses such a symmetry and hence there is no reason to expect any

violation of scale invariance.

This explanation, while true, does not fully address the concern regarding massive fields. If the

isocurvaton fluctuations, σ, were converted into curvature perturbations, ζ = −Hπ, after inflation ends,

then we would indeed find violations of scale invariance. This is because the symmetry t → t + c is

also broken in order to end inflation. The evolution of a mode that is frozen outside the horizon is

insensitive to the end of inflation and no violation of scale invariance appears. However, for modes that

do not freeze out (i.e. massive modes), the conversion to curvature perturbations at the end of inflation

picks out a scale, since the amplitudes of the different modes are measured at a specific time. For QSFI,

the end of inflation does not induce a significant violation of scale invariance, because the isocurvature

perturbations are converted to curvature perturbations before inflation ends. The curvature perturbations

ζ are constant outside the horizon. By converting σ into ζ during inflation, the observable ζ modes are

therefore insensitive to the end of inflation.

Bispectrum. The most intriguing aspect of the phenomenology of QSFI is the fact that

it leads to large non-Gaussianities with a unique scaling behavior in the squeezed limit. As we

alluded to in the Introduction, this provides the opportunities to use CMB and LSS measurements

to probe Hubble-mass degrees of freedom during inflation.

Chen and Wang [11] explicitly computed the three-point correlation function induced by

the interaction Lint = −µσ3. In Appendix B, we show how to reproduce the most important

features of their answer from simple physical reasonings and back-of-the-envelope estimates. For

15In most models this global time translation symmetry is only approximate, being weakly broken by the time

evolution of the Hubble scale, Ḣ 6= 0.

19



the amplitude of the bispectrum we find

Lint = −µσ3 ⇔ ⇔ fNL ∼ ∆−1
ζ

( ρ
H

)3 µ

H
. (4.4)

Notice the enhancement of fNL by the inverse of the amplitude of the primordial fluctuations,

∆−1
ζ ∼ 105. This allows for a large non-Gaussianity even in the perturbative regime with ρ < H

and µ < H. In Appendix B, we also state simple “Feynman rules” that allow us to estimate the

size of more general diagrams. Essentially, each mixing insertion contributes a factor of ρ/H and

each interaction vertex gives a factor of µ/H. The powers of ∆−1
ζ are determined by the number

of σ’s in the interaction vertex, with interactions containing fewer σ’s being suppressed.

The σ field is massive and decays outside of the horizon as (−τ)3/2−ν , where ν ≡
√

9
4 −

m2
σ

H2

and τ is conformal time. This leads to a non-trivial squeezed limit for the bispectrum

lim
k1→0
〈ζk1ζk2ζk3〉 ∝

1

k
3/2+ν
1

. (4.5)

This scaling behavior is intermediate between that of the local shape (k−3
1 ) and that of the

equilateral shape (k−1
1 ). By measuring the squeezed limit we determine the index ν and hence

the mass of the isocurvaton σ.

The result (4.5) has a simple physical interpretation (see Appendix B): First, we recall that

the squeezed limit corresponds to the correlation between a long-wavelength mode k1 and two

short-wavelength modes k2 ≈ k3. The long mode crosses the horizon at |k1τ1| ∼ 1, some time

before the horizon crossing of the short modes at |k2τ2| ∼ 1. The superhorizon evolution of the

long mode between τ1 and τ2 leads to a suppression of its amplitude

σk1(τ2) ∼ σk1(τ1)

(
τ2

τ1

)3/2−ν
∼ σk1(τ1)

(
k1

k2

)3/2−ν
. (4.6)

We can write eq. (4.5) in the following suggestive way,

lim
k1→0
〈ζk1ζk2ζk3〉 ∝

1

k3
1k

3
2︸ ︷︷ ︸

local

(
k1

k2

)3/2−ν
. (4.7)

We recognize this as the product of the local shape and a modulation that precisely matches

the suppression of the long mode in eq. (4.6). This makes a lot of sense: if the isocurvaton is

massless it freezes after horizon crossing and we expect local type non-Gaussianity from the non-

derivative interaction σ3. The squeezed limit of QSFI can therefore be interpreted as a modulated

local shape with the modulation determined by the superhorizon evolution and hence the mass

of the isocurvaton mode.

Future data [15, 16] will have much to say about the primordial bispectrum in the squeezed

limit. Here, we want to highlight the role of LSS observations. In recent years, the scale-dependent
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bias has emerged as a sensitive probe of primordial non-Gaussianity [17]. Receiving most of its

signal from the squeezed limit of the bispectrum, the scale-dependent bias is an ideal probe of

QSFI. Eq. (4.5) implies the following scaling for the non-Gaussian bias

∆b(k) ∝ fNL

k1/2+ν
. (4.8)

This prediction motivates generalizing the LSS data analysis to include ν as a free parameter;

whereas, to date, the analysis has mostly been restricted to the case ∆b ∝ k−2 [19] (but see [13,

20]).

Trispectrum. QSFI makes further interesting predictions for the four-point function: First,

we see that, correlated with the three-point function from the σ3 interaction there is a four-point

function from a scalar exchange diagram

Lint = −µσ3 ⇔ ⇔ τNL ∼ ∆−2
ζ

( ρ
H

)4 ( µ
H

)2
� f2

NL . (4.9)

We note that QSFI gives a natural mechanism to boost the amplitude τNL relative to (6
5fNL)2.

(Recall that if a single source is responsible both for the power spectrum and the non-Gaussianity

of ζ then τNL = (6
5fNL)2.) We expect this feature to lead to a stochastic halo bias (i.e. bias

inferred from 〈δhδh〉 6= bias inferred from 〈δhδm〉) [46, 47]. These signatures of QSFI deserve

further investigation [48].

For models with additional quartic couplings such as σ4, we get a four-point function asso-

ciated with a contact interaction

Lint = −λσ4 ⇔ ⇔ gNL ∼ ∆−2
ζ

( ρ
H

)4
λ . (4.10)

The shapes of the four-point functions in (4.9) and (4.10) are distinct. The scalar exchange non-

Gaussianity peaks in the collapsed configuration where all momenta have equal amplitude, while

the contact interaction peaks in the squeezed configuration where one of the momenta vanishes.

We will return to the phenomenological predictions of QSFI in future work [48]. In this

paper, we will instead explore the theoretical foundations of QSFI and its relation to supersym-

metry.

Variants of Quasi-Single-Field Inflation

The most general form of quasi-single-field inflation can be written as a deformation of slow-roll

inflation: LQSFI = Ls.r. + ∆L, where

∆L = −1
2(∂µσ)2 − 1

2m
2
σσ

2 + Lmix + Lint . (4.11)
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It is straightforward to extend the ideas of [11] to different mixing terms Lmix and/or different

interactions Lint. In this section, we will be systematic about this and discuss the range of

possibilities in the effective theory approach. We begin with a non-SUSY treatment and then

discuss its SUSY implementation.

Mixing terms. Instead of L(1)
mix = m3[(∂µϕ)2 + 1]σ → ρπ̇cσ we could consider the following

mixing terms

L(2)
mix = m̂2

α[(∂µϕ)2 + 1]∂µϕ∂
µσ → απ̇cσ̇ , (4.12)

L(3)
mix = m̂2

β[∂µϕ∂
µσ − 3Hσ] → β∂µπc∂

µσ , (4.13)

where {α, β} ≡ m̂2
α,β/(M

2
pl|Ḣ|)1/2. However, it is easy to see that L(3)

mix does not lead to observable

signatures. Integrating by parts, we find L(3)
mix → m̂2

β[−(∇2π)σ + ∇µ(∇µπσ) − 3Hσ]. In the

decoupling limit, Ḣ → 0, we have ∇2π = 0 and therefore, the mixing term will not contribute.

Equivalently, we may remove the mixing term by a field redefinition πc → πc − β
2σ. Because

σ → 0 as τ → 0, such a field redefinition does not change the late-time correlation functions. For

these reasons, we may set β = 0 without loss of generality.16

Introducing L(2)
mix will modify the dispersion relations of physical modes. We will require

that no group velocity exceeds the speed of light. Consider the Lagrangian

Lkin = 1
2(π̇c σ̇)

(
1 + επ α

α 1 + εσ

)(
π̇c
σ̇

)
− 1

2(∂iπc ∂iσ)

(
1 0

0 1

)(
∂iπc
∂iσ

)
, (4.14)

where we have allowed for sound speeds for both π and σ: i.e. c−2
s,π ≡ 1 + επ and c−2

s,σ ≡ 1 + εσ.

Solving the equations of motion, we find two positive frequency solutions with velocities given by

v± =
1

(1 + εσ)(1 + επ)− α2

[
1 + 1

2(εσ + επ)±
√

1
4(εσ − επ)2 + α2

]
. (4.15)

The constraint v+ ≤ 1 requires that εσεπ ≥ α2. If we take εσ = επ = ε, the velocities simplify to

v± = (1 + ε± α)−1, which makes ε ≥ α transparent. In the perturbative regime, α < 1, we only

require a small deviation from the speed of light, c ≡ 1. The fact that we have to introduce non-

trivial sound speeds for both π and σ to avoid superluminal propagation is completely consistent

with expectations from quantum field theory in flat space. Note that sound speeds for π and σ

arise from operators which include terms of the form (∂µπ∂
µπ)2, (∂µσ∂

µπ)2, etc. It was shown

in [49], that these types of four-derivative operators have coefficients that are constrained by

unitarity to have non-zero values. Although in the effective theory, it appears that we have to

adjust these coefficients by hand, any manifestly Lorentz-invariant UV-completion of the effective

theory will necessarily yield the coefficients consistent with the constraints.

In summary, we will consider two mixing terms L(1)
mix = ρπ̇cσ and L(2)

mix = απ̇cσ̇. For the

mixing to be a perturbative effect, we require { ρH , α} < 1. Note that this is not a model-building

requirement, and, in principle, we can allow the mixing parameters to be order one or larger [48].

16We thank Kendrick Smith for helpful discussions on these issues.
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Interactions. These two quadratic mixing terms may be combined with any of the following

cubic interactions17

L̂1a = m3
a[(∂µϕ)2 + 1]σ ⊂ L1a = m3

a(∂µπ)2σ (4.16)

L̂1b = m3
b(∂µϕ)2[(∂µϕ)2 + 1]σ ⊂ L1b = m3

b

(
π̇2σ − (∂µπ)2σ

)
(4.17)

L̂2 = m̂2[(∂µϕ)2 + 1] ∂µϕ∂
µσ ⊂ L2 = m̂2

(
(∂µπ)2σ̇ + π̇∂µπ∂

µσ
)

(4.18)

L̂3 = m̃2(∂µϕ)2σ2 ⊂ L3 = m̃2π̇σ2 (4.19)

L̂4a = m̄a(∂µϕ∂
µσ)σ ⊂ L4a = m̄a∂µπ∂

µσσ (4.20)

L̂4b = m̄b(∂µϕ)2(∂µϕ∂
µσ)σ ⊂ L4b = m̄b (∂µπ∂

µσσ + 2π̇σ̇σ) (4.21)

L̂5a = λa(∂µϕ)2(∂µσ)2 ⊂ L5a = λaπ̇(∂µσ)2 (4.22)

L̂5b = λb(∂µϕ∂
µσ)2 ⊂ L5b = λb∂µπ∂

µσσ̇ (4.23)

L̂5c = λc(∂µϕ)2(∂µϕ∂
µσ)2 ⊂ L5c = λc

(
π̇σ̇2 − ∂µπ∂µσσ̇

)
(4.24)

L̂6 = µσ3 ⊂ L6 = µσ3 (4.25)

L̂7 = λ(∂µϕ∂
µσ)σ2 ⊂ L7 = λσ̇σ2 (4.26)

L̂8a = Λ−1
1 σ(∂µσ)2 ⊂ L8a = Λ−1

1 σ(∂µσ)2 (4.27)

L̂8b = Λ−1
2 σ(∂µϕ∂

µσ)2 ⊂ L8b = Λ−1
2 σσ̇2 (4.28)

L̂9a = Λ−2
3 (∂µϕ∂

µσ)(∂µσ)2 ⊂ L9a = Λ−2
3 σ̇(∂µσ)2 (4.29)

L̂9b = Λ−2
4 (∂µϕ∂

µσ)3 ⊂ L9b = Λ−2
4 σ̇3 (4.30)

This list captures all possible combinations of the fields ϕ and σ. We have restricted to operators

with at most one derivative acting on each field, but one may easily include additional derivatives.

In Appendix B, we show how to estimate the size of non-Gaussianities for these interactions. The

results are summarized in Table 1. In the table we also indicate which interactions, in principle,

allow for large non-Gaussianities (large NG), which peak in the squeezed limit (S.L.), which

preserve supersymmetry (SUSY), and which ultimately lead to natural models (Natural).

In the remainder of this section we will explore which of these new models of QSFI have

a natural microphysical implementation. We will distinguish cases that are strictly unnatural

because they involve fine-tuning at tree level (§4.2); cases whose naturalness remains to be estab-

lished because they are likely to involve fine-tuning at loop level (§4.3); and finally cases that are

completely natural because supersymmetry regulates the radiative corrections (§4.4).

4.2 Problems at Tree Level

When organizing the effective theory of inflation in §2.1, we found it convenient to expand the

action in terms of operators like [(∂µϕ)2 + 1]. However, when discussing the natural values of

parameters, one should think of (∂µϕ)2 and 1 as independent operators. In general, writing

terms like [(∂µϕ)2 + 1]O(ϕ), without independently adding the operator O(ϕ) should be viewed

17As usual in the EFT of inflationary fluctuations, individual interactions may appear to be unstable. In the

regime of validity of the EFT, all fluctuations are smaller than the cutoff and the interactions are treated as small

perturbations. When the fluctuations become large, higher-order interactions have to be included and the stability

should be analyzed in the UV-completion. See [22, 23] for further discussion.
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Table 1: Non-Gaussianity in Quasi-Single Field Inflation.

Interaction f
(1)
NL f

(2)
NL Large NG S.L. SUSY Natural

L1a = m3
a(∂µπ)2σ

( ρ
H

)2
α ρ
H X X

L1b = m3
b(π̇)2σ

( ρ
H

)2
α ρ
H X X

L2 = m̂2(∂µπ)2σ̇ ρ
H α α2

L3 = m̃2π̇σ2
( ρ
H

)2 ( m̃
H

)2
α2
(
m̃
H

)2
X

L4a = m̄a∂µπ∂
µσσ

( ρ
H

)2 m̄a
H α2 m̄a

H X X

L4b = m̄bπ̇σ̇σ
( ρ
H

)2 m̄b
H α2 m̄b

H X

L5a = λaπ̇(∂µσ)2
( ρ
H

)2
λa α2 λa

L5b = λb∂µπ∂
µσσ̇

( ρ
H

)2
λb α2 λb

L5c = λcπ̇σ̇
2

( ρ
H

)2
λc α2 λc

L6 = µσ3
( ρ
H

)3 µ
H ∆−1

ζ α3 µ
H ∆−1

ζ X X X X

L7 = λσ̇σ2
( ρ
H

)3
λ∆−1

ζ α3 λ∆−1
ζ X X (?)

L8a = Λ−1
1 (∂µσ)2σ

( ρ
H

)3 H
Λ1

∆−1
ζ α3 H

Λ1
∆−1
ζ X X X X

L8b = Λ−1
2 σ̇2σ

( ρ
H

)3 H
Λ2

∆−1
ζ α3 H

Λ2
∆−1
ζ X X (?)

L9a = Λ−2
3 σ̇(∂µσ)2

( ρ
H

)3 ( H
Λ3

)2
∆−1
ζ α3

(
H
Λ3

)2
∆−1
ζ X X

L9b = Λ−2
4 σ̇3

( ρ
H

)3 ( H
Λ4

)2
∆−1
ζ α3

(
H
Λ4

)2
∆−1
ζ X X

as a tree-level fine-tuning.18 This is most apparent in the context of supersymmetry, where the

operators proportional to 1 and (∂µϕ)2 typically arise from fundamentally different terms in the

Kähler or superpotential, cf. §3.1. Cancelling the constant contribution from (∂µϕ)2 only occurs

when the coefficients of a priori independent operators are carefully chosen to cancel. With this

in mind we wrote the operators in eqs. (4.16)–(4.30) without the combination [(∂µϕ)2 +1], unless

it was related to tadpole cancellation in either π or σ.

It then follows immediately that the interactions L1 – L5 can’t lead to large non-Gaussianities,

unless the tree-level action is fine-tuned. Let us demonstrate this case-by-case:

• The interactions L1a,b come from the same operator L̂1 that leads to the mixing term

18The fine-tuning of terms necessary to cancel tadpoles is an exception to this rule about naturalness. In

writing the EFT of inflation, we demanded that our background solution takes a specific form and then fix certain

coefficients to cancel tadpoles. Tadpole cancelation is not a tuning of the action, but simply represents the

freedom to choose initial conditions. However, beyond the cancelation of tadpoles, the cancelation of the constant

in (∂µϕ)2 = −1 + · · · will typically require tree-level fine-tuning. In some exceptional cases, there may be a

dynamical explanation for the cancelations. However, in general, we should be suspicious of exact cancelations

between operators.
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ρπ̇cσ, where ρ ≡ m3
a,b/(M

2
pl|Ḣ|)1/2. We therefore can’t make the interaction large without

inducing a large mixing term. This constrains the non-Gaussianity to be small, fNL < 1.

For L1b, one may decouple the interaction and mixing terms, but this requires fine tuning.

• Similarly, the interaction L2 comes from the same operator that leads to the mixing term

α π̇cσ̇. Again, this constrains the non-Gaussianity to be small, fNL < 1.

• The interaction L3 could give large non-Gaussianity for m̃ � H. However, the operator

L̂3 = m̃2(∂µϕ)2σ2 ⊂ m̃2σ2 also contains a tree-level mass term for σ. Without fine-tuning,

we require m̃2 . H2 and hence fNL < 1.

• Similarly, the interactions L4a,b are necessarily related to the operator m̄a,bσ̇σ → Hm̄a,bσ
2.

Keeping the mass naturally small requires ma,b < H and forces the non-Gaussianity to be

small, fNL < 1.

• The interactions L5a,b,c only lead to large non-Gaussianities if λa,b,c � 1. Again, it is

straightforward to see that this requires fine-tuning. The interactions L5a,b,c come from

operators that also contain a contribution to the kinetic term of the form λa,b,cσ̇
2. Without

fine tuning, if λa,b,c � 1 the true canonical field is σc ∼ σ/λ1/2 and fNL � 1.

On these grounds we reject the interactions L1 – L5 as candidates for natural models of QSFI.

For the remaining interactions naturalness is a bit less trivial to check.

4.3 Challenges at Loop Level

Naturalness criteria. Given an EFT with a set of couplings, one should ask if these parameters

are stable under radiative corrections. Loop contributions to various parameters can be estimated

as a function of the UV-cutoff of the theory. If a parameter receives large corrections, we call the

parameter fine tuned. In many scenarios, the UV-cutoff of the EFT is unknown and, in principle,

may be taken to much higher energies than are probed directly in experiments. Parameters may

become unnatural if the UV-cutoff (and hence the range of validity of the EFT) is taken to be too

large. One may also reverse the logic to predict the breakdown of the EFT based on naturalness.

Before discussing supersymmetry, it will be useful to first understand the naturalness of

QSFI with minimal field content and interactions. Models based on the interactions L6 and

L7 are effectively described by a slow-roll background with weakly-coupled interactions, so, in

principle, no new physics is required up to the symmetry breaking scale Λb ' (M2
pl|Ḣ|)1/4 [40].

In that case, the UV-cutoff of the effective theory can be as large as Λuv ∼ Λb. On the other

hand, models based on L8 and L9 may become strongly coupled at energies below the symmetry

breaking scale. As we discussed in §3.2, this can be viewed as an indication that new physics

should appear at or below that strong coupling scale, Λ? = Λi. Hence, for models based on L8

and L9 we impose Λuv = min{Λb,Λi}.
The absence of any additional new physics up to Λb or Λ? leads to a relatively strong

condition for naturalness: namely, the theory ought to be natural for Λuv ∼ min{Λb,Λ?} � H.

However, of course, we can’t exclude the possibility that new physics may appear below the scale

min{Λb,Λ?} and that this would improve the radiative stability of the models. Ultimately, SUSY

will play this role for some of the interactions.
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Loop corrections. A principle worry is that the large interactions required for observable

non-Gaussianities induce large loop corrections to the mass of the isocurvaton:

δm2
σ = . (4.31)

For the QSFI mechanism to be operative, we require m2
σ ≤ 9

4H
2. A necessary condition for

naturalness is therefore δm2
σ .

9
4H

2. Let us study the interactions L6 – L9 one-by-one:

• The interaction L6, is somewhat special, in the sense that loop contributions to the mass

are finite

δm2
σ{6} ∼ µ2 . (4.32)

This is smaller than the supergravity-induced mass m2
σ ∼ H2, if µ . H. Hence, L6 is a

promising candidate for supersymmetric QSFI. Indeed, in §4.4, we will present a natural

model based on L6.

• Without SUSY, the interactions L7 – L9 all give UV-divergent loop corrections:

- The interaction L7 induces the following one-loop mass renormalization

δm2
σ{7} ∼ λ2Λ2

uv . (4.33)

In the absence of additional new physics below the symmetry breaking scale, we cut off

the loop at Λuv ∼ Λb ∼ (M2
pl|Ḣ|)1/4. Requiring the loop contribution to be subdominant

relative to the tree-level contribution, mσ ∼ H, puts a bound on the size of the non-

Gaussianity

fNL{7} < α3∆
−1/2
ζ . (4.34)

This allows marginally observable non-Gaussianity, but only under the optimistic assump-

tion α ∼ 1.

- The interactions L8 leads to the following radiative contribution to the mass

δm2
σ{8} ∼

Λ4
uv

Λ2
1,2

, (4.35)

where Λ1,2 > H in order for the theory to be weakly coupled at horizon exit. The naturalness

condition δmσ{8} < H, therefore requires Λuv < Λ1,2. This cutoff is only consistent with

Λuv = min{Λb,Λ1,2} for Λ1,2 > Λb and Λuv ∼ Λb. Naturalness then strongly constrains the

non-Gaussianity associated with L8,

fNL{8} < α3 . (4.36)

Hence, without a way to regularize the loops below the symmetry breaking scale, the

interactions L8a,b don’t naturally lead to observable non-Gaussianities. Alternatively, we

can keep a more open mind about the possibility of new physics appearing at relatively low
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energies. To achieve a given fNL with natural parameters, one then finds a bound on the

UV-cutoff

Λuv{8} <
α3/2

f
1/2
NL

· (M2
pl|Ḣ|)1/4 . (4.37)

- The interactions L9 leads to wavefunction renormalization

δZσ{9} ∼
Λ4

uv

Λ4
3,4

. (4.38)

For Λuv ∼ min{Λb,Λ3,4}, this is always smaller than the tree-level value Zσ = 1. The

interactions L9 can therefore lead to natural models with large fNL. However, being pure

derivative interactions, the non-Gaussianity is suppressed in the squeezed limit, making

these models less interesting for our present purposes.

4.4 Supersymmetry and Naturalness

Supersymmetry plays two important roles in the microphysical implementations of quasi-single-

field inflation:

1. SUSY naturally and inevitably introduces at least one additional scalar field with mass of

order the Hubble scale H.

2. SUSY can help to regulate dangerous loop corrections that would otherwise become impor-

tant in the limit of large interactions and threaten the naturalness of the model.

Can SUSY help to regulate the UV-divergences that we found in the previous section? Only

for L8a. It is easy to understand why: as we discussed in §2.2, spontaneous breaking of Lorentz

invariance necessarily breaks supersymmetry. Therefore, any interaction that is not manifestly

Lorentz invariant must be proportional to SUSY breaking. This is the case for the cubic interac-

tions L7, L8b and L9a,b. Therefore, when we embed these interactions in a supersymmetric theory,

there will be no extra cancelations below the SUSY breaking scale, namely ω < Λb = (M2
pl|Ḣ|)1/4.

What distinguishes L8a is that this interaction does not know about SUSY breaking directly. The

same interaction can occur in theories with unbroken SUSY. Because the mass for σ arises from

SUSY breaking, it will be further suppressed relative to the estimate in (4.35). Although the

interaction L8a preserves SUSY, the mixing terms ρπ̇cσ and απ̇cσ̇ don’t. A contribution to the

mass of σ is therefore generated by inserting the mixing terms inside the loop.19 The associated

loops are still divergent, but suppressed relative to (4.35). For the mixing απ̇cσ̇, the suppression

is rather mild, since the order of the divergence stays the same,

δm2
σ{8a,α} = σ σ ∼ α2

Λ2
1

Λ4
uv . (4.39)

19This is the same effect that we discussed in §3.2; see eq. (3.26).
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In the regime of interest, Λ1 < Λb and hence Λuv ∼ Λ1. Naturalness, δmσ{8a,α} ∼ αΛ1 < H, then

puts a bound on the size of non-Gaussianity

fNL{8a,α} <

(
H

Λ1

)4

∆−1
ζ . (4.40)

This could marginally be observable, but only in the questionable limit that Λ1 get dangerously

close to H.

It is more promising to work with the mixing term ρπ̇cσ. In this case, the order of the

divergence is reduced,

δm2
σ{8a,ρ} = σ σ ∼ ρ2

Λ2
1

Λ2
uv . (4.41)

This suppression is sufficient to make the model natural. In particular, for Λuv ∼ min{Λb,Λ1},
we find δmσ{8a} . ρ < H. Naturalness therefore doesn’t put an additional constraint on the size

of non-Gaussianity. In particular we can get large non-Gaussianity even for Λ1 safely above H,

fNL{8a,ρ} <
H

Λ1
∆−1
ζ . (4.42)

Even for Λ1 → Λb, the non-Gaussianity can be observably large, fNL{8a,ρ} < ∆
−1/2
ζ . The interac-

tion L8a is therefore a promising candidate for a natural SUSY model of QSFI.

Although SUSY does not regulate the divergences associated with L7 and L8b, there is

no direct constraint on fNL if the cutoff is lowered. We may have still have natural models

for these interactions, but it would require new physics to enter at low energies. We distinguish

these situations from ‘natural SUSY implementations of QSFI’, as they require something beyond

SUSY (or in place of SUSY) to be natural.

We have identified two interactions Lint = {L6,L8a} with the potential to lead to natural

models under minimal assumptions. Next, we will discuss whether these models can indeed be

consistently embedded in a supersymmetric framework.

Model I

We first present a SUSY implementation of QSFI using the interaction L6. In the interest of

economy, we would like to find a model where the massive field, σ, is part of the same chiral

multiplet as ϕ. This choice restricts the form that the model can take. We can’t obtain L6 from

a superpotential, since that would break the shift symmetry ϕ→ ϕ+ const. Derivative mixings,

such as ∂µπc∂
µσ, are also difficult to generate, making it most natural to consider the mixing

term ρπ̇cσ.

Making these choices, the SUSY implementation of the model with Lmix = ρπ̇cσ and Lint =

L6 = −µσ3 is

L{I}QSFI =

∫
d4θ

[
1
2(Φ + Φ†)2 +

1

Λ1
(Φ + Φ†)3︸ ︷︷ ︸
Kmix

+
1

(Λ2)3
(Φ + Φ†)5︸ ︷︷ ︸
Kint

]
+ LX , (4.43)
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with

ρ ≡
(M2

pl|Ḣ|)1/2

Λ1
and µ ≡

M2
pl|Ḣ|

(Λ2)3
. (4.44)

The constraints ρ . H and µ . H, require Λ1 &
√
εMpl and Λ2 & ε1/3( H

Mpl
)1/3Mpl ∼

(∆ζ)
1/3√εMpl. We see that Planck-suppressed corrections are sufficient to generate the re-

quired couplings. An alternative way to generate the cubic coupling is the operator Kint =
1

(Λ2)3 (Φ + Φ†)3X†X. In this case µ ∼ M2
plH

2/(Λ2)3, which implies µ . H if Λ2 & (ε∆2
ζ)

1/6Mpl.

We have not written an explicit mass term for σ since it will be generated by supergravity cor-

rections: mσ ∼ H. Supergravity will also generate a cubic term, but with a coefficient that is

suppressed by Λ1, namely µ ∼ 3H2/Λ1 � H.

As we noted above, even in the absence of SUSY the mass of σ is does not receive dangerously

large corrections, if ρ < H and µ < H. Embedding the model in supersymmetry does not change

this situation. Explicit loop calculations in the supersymmetric model simply reproduce the

results of the previous section. The role of SUSY in this model is to provide an explanation for

the extra Hubble-mass scalar σ.

Model II

Next, we discuss a natural SUSY implementation of our second candidate model, L8a. As in the

previous model, it would be ideal to embed σ in a single chiral multiplet with ϕ. We will start

with this assumption, only to find it cannot lead to large fNL. However, we will show that adding

a second chiral field, Σ, leads to natural models with large non-Gaussianity.

In order to generate fNL > 1 from the interaction L8a, we require

Λ1 � H∆−1
ζ ∼ ∆

−1/2
ζ (M2

pl|Ḣ|)1/4 . (4.45)

In this case, SUSY is required to regulate the loop correction to the mass of σ. Indeed, we can

write the operator L8a supersymmetrically∫
d4θ

1

Λ1
(Φ + Φ†)3 ⊂ 1

Λ1
σ(∂µσ)2 . (4.46)

Since SUSY is unbroken by the interaction, the previously dangerous loop can now be controlled.

However, eq. (4.46) necessarily includes the mixing term

Lmix =
M2

plḢ

Λ1
π̇σ . (4.47)

With the constraint (4.45), this leads to ρπ̇cσ, with ρ � H. This spoils the QSFI mechanism,

since large ρ implies a large effective mass for σ. We therefore find that QSFI with interaction

L8a can’t be realized in a minimal setup with only a single chiral superfield Φ.

It is clear that this obstruction to naturalness is specific to the case of a single chiral field.

Next, we explore the possibility of realizing the model with additional chiral fields. It is now

straightforward to separate the mixing term ρπ̇cσ̃ from the interaction L8a. It is easy to see that

the following Lagrangian leads to the desired couplings,

L{II}QSFI =

∫
d4θ

[
1
2(Φ + Φ†)2 + ΣΣ† +

1

Λ̃
(Φ + Φ†)2(Σ + Σ†)︸ ︷︷ ︸

Kmix

+
1

Λ1
(Σ + Σ†)ΣΣ†︸ ︷︷ ︸

Kint

]
+ LX . (4.48)
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This action contains a tadpole for σ̃ that we are implicitly canceling through an additional small

coupling to X. The spectator field Σ does not break SUSY by itself, but only indirectly through

its coupling to the inflaton Φ. In the limit Λ̃ → ∞, the action for Σ decouples and describes

a supersymmetric subsector (prior to coupling to supergravity, as usual). By the usual SUSY

non-renormalization theorems, we will not generate a mass for σ through any loop diagram. For

example, if we were to insert (Kint)
2 and compute the loop, we would indeed find a divergence.

However, the divergence is only logarithmic and contributes to the wavefunction renormalization

Z
∫
d4θΣΣ† rather than to the mass term. By inserting (Kmix)2, we can introduce a mass for σ̃,

but this mass is smaller than Hubble when we cut off the loop at Λuv ∼ min{Λb,Λ1}. The theory

described by eq. (4.48) is therefore technically natural.

4.5 Summary

We summarize our conclusions regarding the naturalness of quasi-single-field inflation in the

presence of supersymmetry:

• L1 – L5 are unnatural and require fine-tuning at tree-level.

• L7 and L8b require additional physics beyond SUSY for naturalness.

• L9a,b are natural, but the signal is suppressed in the squeezed limit.

• L6 is natural. Loops are finite even in the absence of SUSY, but SUSY explains the origin

of the massive isocurvaton. The model requires only a single chiral multiplet that contains

both the inflaton and the isocurvaton.

• L8a is natural, but only if the inflaton and the isocurvaton live in separate multiplets. SUSY

is required to explain radiative stability.

5 Conclusions

All of the current CMB and LSS data is completely consistent with the simplest effective field

theory of inflation—a theory of Goldstone bosons of spontaneously broken time translations [22].

However, despite this phenomenological success, the fundamental origin of the inflationary ex-

pansion remains a mystery. The basic challenge is easy to understand: it is hard to protect

fundamental scalar fields from radiative corrections. The simplest field theory models of inflation

are therefore unnatural in the technical sense [3]. Taking this naturalness problem seriously, one

is led to consider symmetries as a way of protecting the inflationary background from destructive

quantum corrections. This means either internal global symmetries or supersymmetry. The role

of global symmetries in inflationary models is well-understood, although generic Planck-scale

breaking effects are rarely included [36, 37]. Unfortunately, it seems that models with global

symmetries are observationally indistinguishable from models that are simply fine-tuned (but

see [23, 50]). In the case of supersymmetry, on the other hand, the observational prospects are

considerably more optimistic. Supersymmetry requires that the (real) inflaton field has a scalar

partner in order to match the two degrees of freedom of the fermionic superpartner. When SUSY

is spontaneously broken by the spacetime curvature of the de Sitter background, this second
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scalar receives a mass of order H (while the inflaton stays light either due to an additional global

symmetry or due to some moderate fine-tuning). This feature is special to SUSY, as internal sym-

metries cannot be spontaneously broken by curvature without violating the Coleman-Mandula

theorem [51]. We have proposed to use this massive scalar as a window into the supersymmetric

origin of inflation. Fortunately, the presence of a Hubble-mass scalar during inflation has a clean

observational signature in the squeezed limit of the primordial bispectrum [11]. Notice that the

path from naturalness via SUSY to Hubble-mass fields and the squeezed bispectrum requires

little more than simply following your nose.

An important by-product of this paper was the development of a general framework for

systematically incorporating supersymmetry into the effective theory of inflationary fluctuations.

This supersymmetric effective theory of inflation has a wide range of applicability. We presented

two examples in detail: models with small sound speed and slow-roll quasi-single-field inflation.

We showed how supersymmetry helps to address naturalness issues in a faithful way. It would be

interesting to study the broader phenomenology of the SUSY EFT of inflation: models with higher

derivatives, quasi-single-field inflation with small sound speed, etc. Moreover, our treatment

made some simplifying assumptions concerning the effects of SUSY breaking on the inflationary

dynamics (see §2.2; in particular, we chose separate multiplets for the SUSY breaking spurion X

and the inflaton Φ.). We also restricted the size of superpotential terms and hence the couplings

to the auxiliary supergravity fields. Finally, we didn’t study scenarios in which the fluctuations

in additional isocurvature fields are converted to curvature perturbations after inflation (see

e.g. [23]). Relaxing those assumptions will allow a broader class of models. This may lead to

additional observational signatures that haven’t been anticipated yet. In the meantime, we should

also determine how present data constrains the models presented in this paper. Efforts are under

way to see what CMB and LSS data has to say about SUSY in the sky [48].
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A Supergravity for Effective Theories

In a companion paper [25], we study how general effective theories with global supersymmetry

are coupled to minimal supergravity. In this appendix, we give a brief, and mostly qualitative,

overview of that work.

The basic challenge in constructing a theory of supergravity arises from the fact that rigid

SUSY is a spacetime symmetry. Specifically, the SUSY algebra {Qα, Q̄α̇} = 2σµαα̇Pµ relates

SUSY transformations to spacetime translations. In order to describe a supersymmetric theory

on a curved background, one needs to promote both vector and spinor derivatives (∂µ, Dα, and

D̄α̇,) to covariant derivatives (∇µ, Dα and D̄α̇). To do so, one promotes the metric and the spin

connection to superfields, and imposes constraints and gauge-fixing conditions that reduce the

number of new, off-shell, degrees of freedom to a manageable number. Minimal supergravity

represents one set of self-consistent constraints that allow us to define a covariant theory [39].

The off-shell description contains two dynamical fields, the vierbein eaµ and the gravitino ψαµ , and

two auxiliary fields, a complex scalar M and a real vector bµ. All geometric objects may be

defined in terms of these fields. Superspace is then defined with new fermionic coordinates Θ.

With some work, the action in superspace may be written as

S =
1

κ2

∫
d4x

∫
d2ΘE

[
3
8(D̄2 − 8R) e−

κ2

3 K(X,X†,Φ,Φ†,∂µΦ,∂µΦ†,··· ) + κ2W (X,Φ)

]
+ h.c. , (A.1)

where κ ≡ 1/Mpl. There are two crucial elements that make this action manifestly supersymmet-

ric: First, the operator (D̄2 − 8R), with curvature superfield R ⊃ −1
6M + 1

12RΘ2, projects any

scalar operator O onto a chiral operator C = (D̄2 − 8R)O (i.e an operator satisfying D̄α̇C = 0).

Second, the chiral density, E ⊃ det e (1−Θ2M̄), is defined such that
∫
d2ΘE C is supersymmetric

for any chiral operator C.
In inflation, the most important supergravity contributions are those that arise from cur-

vature couplings. In minimal supergravity, the coefficients of the curvature couplings cannot be

changed arbitrarily and they will induce masses and couplings that are controlled by the Hubble

scale H. For example, for slow-roll inflation, with Ks.r. = 1
2(Φ + Φ†)2 +XX†, eq. (A.1) leads to

curvature couplings of the form

Lsugra ⊃ −1
2R exp

[
−κ2

3 (σ2 + |x|2)
]
, (A.2)

where R = −12H2 is the curvature of the de Sitter background. When K(Φ,Φ†, X,X†, . . .) =

K(Φ,Φ†, X,X†) ≡ K(Φi,Φ
†
i ) (i.e. when there are no higher-derivative terms or additional curva-

ture couplings), the curvature coupling arises from a universal coupling to the chiral curvature

superfield R. In this case, one normally Weyl rescales the metric to go to Einstein frame and

these curvature terms then appear as part of the supergravity scalar potential

V (φi)sugra = eκ
2K(φi,φ̄i)

(
gīDiWDjW − 3κ2|W |2

)
, (A.3)

where DiW ≡ ∂φiW+κ2(∂φiK)W and gī is the inverse of the Kähler metric. This scalar potential

holds for any two-derivative action. When 〈φi〉 = 0 for all i, the Weyl rescaling is unnecessary

and we can determine the contributions to the scalar masses directly from the curvature coupling.
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Let us illustrate this for the case of slow-roll inflation: we may compute the mass of σ directly

from the F-term potential (A.3) to find m2
σ = 2κ2|FX |2 = 6H2. Alternatively, we can expand

(A.2) using R = −12H2 to find one contribution to the mass of size m2
σ(1) = 4H2. By expanding

the exponential (A.1) to order (Φ + Φ†)2X†X, we find an additional contribution, m2
σ(2) = 2H2.

Combining both terms, we find m2
σ = m2

σ(1) +m2
σ(2) = 6H2, as before.

Let us make a few comments on the role of the auxiliary fields M and bµ: in general, they can

be integrated out to produce Planck-suppressed couplings between X and Φ. For two-derivative

actions, these effects have been included in writing the potential in eq. (A.3). The contributions

of these fields are only relevant when M or bµ acquire vevs. However, as we explain in §2.4, these

vevs are small (or even strictly zero) during inflation and give at most subleading corrections to

the masses of fields.

For two-derivative actions, the combined effects of curvature couplings, the auxiliary fields,

and Planck-suppressed interactions, are all encoded in (A.3). However, for higher-derivative

theories, there is no compact formula that includes all these terms [25]. In the context of inflation,

determining the scalar potential remains relatively simple, as the auxiliary fields are negligible.

As a simple example, we studied theories with small sound speed, such as

Kcs = 1
2(Φ + Φ†)2

[
c1 +

c2

M2
pl|Ḣ|

∂µΦ∂µΦ†
]
, (A.4)

where c1 ≡ 1 + 1
2

(
1 − 1

c2s

)
and c2 ≡ 1

4

(
1 − 1

c2s

)
. In [25] we derive the component Lagrangian for

this theory

Lcs = c1L1 +
c2

M2
pl|Ḣ|

L2 + · · · , (A.5)

where

L1 = −|∂µφ|2 +
(

1
6R− κ2

3 |FX |2
)
σ2 , (A.6)

L2 = −
(
|∂µφ|2

)2 − 2∂µσ∂νσ∂
µφ∂ν φ̄

+ σ2
{(

1
6R− κ2

3 |FX |2
)[

(∂µϕc)
2 + (∂µσ)2

]
− 1

2Rµν
[
∂µϕc∂

νϕc + ∂µσ∂νσ
]

+ 1
2∇µ∇ν

[
∂µϕc∂

νϕc + ∂µσ∂νσ
]

+ ∂µφ∂µ�φ̄+ 1
2�|∂µφ|2

}
. (A.7)

Using ϕ̄c = (2M2
pl|Ḣ|)1/2t and Rµν = −3H2gµν (de Sitter), we determine the mass of the partner

of the inflaton,

Lcs = · · ·+
[
c1

(
1
6R−H2

)
+ c2

(
1
12R− 2H2

)
(∂µt)

2 + c2∇µ∇ν(∂µt∂νt)
]
σ2 + · · · . (A.8)

With ∇µ∇ν(∂µt∂νt) = 9H2, we find

m2
σ = 6H2c1 − 12H2c2 ' 0× H2

c2
s

+ 6H2 . (A.9)

The cancellation of the leading term in (A.9) is completely accidental and not protected by any

symmetry. The mass received contributions both from curvature and from the exponentiation of

the rigid action. Neither the curvature couplings nor the form of the Kähler potential are fixed
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in minimal supergravity. We could change either coefficient to eliminate the cancelation without

breaking any symmetry of the action. For example, there are contributions to the mass from

modifications to the Kähler potential via Planck-suppressed couplings of the form∫
d2ΘE(D̄2 − 8R)

β

M2
pl

X†XKcs ⊃ 3β H2σ2

[
c1 +

c2

M2
pl|Ḣ|

|∂µφ|2
]
. (A.10)

These contributions are model-dependent, but generically present. This contributes terms at the

same order and change the numerical coefficient in eq. (A.9)

m2
σ ∼

H2

c2
s

� H2 . (A.11)

Hence, generically small sound speed will lead to a parametrically enhanced mass for σ.

We refer the reader to our companion paper [25] for a more complete treatment of super-

gravity of more general effective theories.
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B Estimates for Quasi-Single-Field Inflation

In this appendix, we will explain how to estimate both the amplitude of the bispectrum and

the scaling of the squeezed limit for models of quasi-single-field inflation. In both cases, we will

provide two different methods for estimating the results:

i) We will use dimensional analysis to estimate the answer from the full bispectrum calculation.

The advantage of this approach is that it essentially sets up the complete calculation and

therefore there is little room for error in the estimate.

ii) We will estimate the answer directly based on physical reasoning. The advantage of this

approach is that it dramatically simplifies the process of estimating the results and provides

a physical understanding of the origin of the effect.

Of course, both approaches will yield the same results.

B.1 Amplitude of the Bispectrum

We use the “in-in formalism” (see e.g. [52, 53]) to compute the bispectrum

〈ζ3(0)〉 = 〈Ω|
[
T̄ exp

(
i

∫ 0

−∞
HI(τ)dτ

)]
ζ3
I (0)

[
T exp

(
− i
∫ 0

−∞
HI(τ)dτ

)]
|Ω〉 , (B.1)

where the subscript I indicates interaction picture fields and T denotes time ordering. We can

calculate the bispectrum of any operator in perturbation theory by expanding the time-ordered

exponentials to the appropriate order in the interaction Hamiltonian HI .

Direct estimation. As a concrete example, let us consider the original model of QSFI [11],

with interaction
∫

d4x
√−g µσ3 and mixing term

∫
d4x
√−gm3π̇σ. The bispectrum generated by

these interactions is schematically of the form

⇔ 〈ζ3
k〉 = ζk(0)3

3∏
i=1

∫
dτi a

3m3π′σ(τi) ·
∫

dτ a4µσ3(τ) , (B.2)

where ′ denotes a derivative with respect to conformal time τ . Here, we have ignored the details

of the time ordering and the commutator structure that follows from eq. (B.1). We will be

estimating the results by dimensional analysis of the integrals which will be insensitive to these

subtleties—although these subtleties can be important to prove convergence of the integrals [11].

To estimate the integrals, we will need the mode functions for π and σ. Since the Goldstone

boson is massless in the decoupling limit, its mode function in de Sitter space is

πk(τ) =
1√
2k2

H

(M2
pl|Ḣ|)1/2

(1 + ikτ)e−ikτ . (B.3)

The mode functions for the massive field σ are Hankel functions. When |kτ | � 1, these simplify

to

lim
kτ→0

σk = H
(−τ)3/2−ν

kν
, where ν ≡

√
9

4
− m2

σ

H2
. (B.4)
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This long-wavelength behavior will be sufficient for estimating the integrals, since the modes

oscillate rapidly and suppress the integrals when |kτ | � 1.

The first integral that we wish to estimate is the mixing term
∫

dτ a3m3π′σ. Using eqs. (B.3)

and (B.4), we can write this as∫ τ?

dτ a3m3π′σ ∼ ρ
∫ τ?

dτ
H2

(−Hτ)3

k2τ√
2k3

e−ikτ
(−τ)3/2−ν

kν
∼ ρ

H

∫ τ?

dτ k1/2−ντ−ν−1/2e−ikτ .

(B.5)

As we stated above, when |kτ | � 1, the integral is exponentially suppressed by the rapid os-

cillations of the mode functions. Since the only scale in the problem is k, the integral will be

dominated by τ ∼ k−1. For large values of ν one might worry that the integral is actually diver-

gent as the upper limit of integration τ? → 0, but a more careful analysis shows that all power

law divergences cancel [11]. In the following, we will take it as a given that there aren’t any

power law divergences. This ensures that the integral receives its dominant contribution from

τ ∼ k−1. Moreover, this observation also shows that these integrals are only weakly dependent

on the upper limit of integration. The integral in (B.5) may then be estimated as∫
dτ a3m3π′σ ∼ ρ

H
k0 . (B.6)

This leads to the “Feynman rule” that each insertion of the mixing contributes a momentum-

independent factor of ρ/H to the bispectrum amplitude, fNL.

The interaction term,
∫

dτ a4µσ3, can be estimated in a similar way,∫
dτ a4µσ3 ∼ µ

∫
dτ

H3

(−Hτ)4

(−τ)9/2−3ν

k3ν
∼ µ

H

∫
dτ

τ1/2−3ν

k3ν
∼ µ

H
k−3/2 . (B.7)

We have again assumed that any power law divergences cancel and that the integral is dominated

by τ ∼ k−1. We see that each interaction vertex leads to a factor of µ/H.

Putting these estimates together, we find

〈ζ3
k〉 ∼

∆4
ζ

k6

(
ρ3

H3

µ

H
∆−1
ζ

)
⇒ fNL ∼

ρ3

H3

µ

H
∆−1
ζ , (B.8)

where ∆2
ζ ≡ H4/(4M2

pl|Ḣ|). This result is consistent with the complete calculation in [11].

Quick estimate. While the estimate that we just performed is robust, it relies on actually

setting up the full calculation. We would like to have a faster and possibly more intuitive

explanation for the result. In single-field models, we can often estimate the size of non-Gaussianity

as

fNL ∼
1

ζ

L3

L2
, (B.9)

where the r.h.s is evaluated at horizon crossing. At first glance, it may not be clear how such an

estimate would work for quasi-single-field inflation. First of all, the interaction L3 involves only

σ, while the power spectrum involves just π. This problem is easily resolved by using the fact

that the mixing term is independent of k. Specifically, the mixing term allows us to contract π

with σ at the cost of a numerical suppression, ρ/H. In principle, the mixing term therefore allows
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us to compute the ratio in (B.9). The second issue we face is that the σ modes evolve outside

the horizon. To make an estimate, we therefore need to specify the time at which the amplitude

of σ is measured. However, our previous estimates have shown that the dominant contributions

to the integrals comes from the time of horizon crossing τ ∼ k−1. Since fNL is defined as the

amplitude of the bispectrum in the equilateral configuration (k1 = k2 = k3), we may evaluated

each σ at horizon crossing. This allow us to rewrite σ in term of π,

σk∼1/τ →
ρ

H
(M2

pl|Ḣ|)1/2 πk∼1/τ =
ρ

H

H2

∆ζ
πk∼1/τ . (B.10)

We can then estimate fNL from eq. (B.9),

fNL ∼
1

ζ

µσ3

M2
plḢ(∂µπ)2

∼ ρ3

H3

µ

H
∆−1
ζ . (B.11)

We see that this estimate matches the more careful estimate in eq. (B.8).

Generalizations. Above we reproduced the result for the specific QSFI example of [11]. In

Section 4, we explored variations of QSFI, allowing for all possible interactions between π and

σ consistent with the symmetries of the effective theory of inflation. We now have the tools to

understand the non-Gaussianity in all these examples and to recover the results of Table 1:

First, we consider the alternative mixing term of the form

α(M2
pl|Ḣ|)1/2π̇σ̇ . (B.12)

By repeating the above analysis, we find that the integral associated with these mixing terms

scales as αk0. The coupling α therefore now plays the role of ρ/H. The rest is unchanged. Hence,

replacing ρ/H by α gives the result for the new mixing terms.

Next, we consider models with different interactions, i.e. different couplings between π and

σ and different derivative structures. Applying the methods of this appendix, we can determine

Table 1. We find an enhancement in fNL by factors of ∆−1
ζ for certain cubic interactions. This

can be explained by the larger amplitude of σ fluctuations at horizon crossing relative to the

fluctuations of π. From eq. (B.10) we see that we gain by powers of ∆−1
ζ for every factor of σ

that appears in L3. For example, estimating fNL for the interaction m̄a∂µπ∂
µσσ, we find

fNL ∼
1

ζ

L3

L2
=

1

ζ

m̄a∂µπ∂
µσσ

M2
plḢ(∂µπ)2

∼ m̄aπ

ζ

ρ2

H2
=
m̄a

H

ρ2

H2
. (B.13)

As expected, fNL for this interaction is suppressed relative to (B.11) by one power of ∆ζ .

B.2 Squeezed Limit of the Bispectrum

In the previous section, we showed how to estimate the amplitude of the bispectrum. We will

now use a similar analysis to determine its scaling behavior in the squeezed limit.

Direct estimation. The most reliable way to estimate the squeezed limit is by dimensional

analysis. We again start with the schematic form of the bispectrum

〈ζk1ζk2ζk3〉(0) = δ(k1 + k2 + k3)

[
ζk1ζk2ζk3(0) ·

3∏
i=1

∫
dτi a

3m3π′kiσki ·
∫

dτ a4µσk1σk2σk3

]
,

(B.14)
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where the delta function enforces k2 = k3 in the squeezed limit, k1 → 0. As before, we will

estimate the behavior of each piece separately:

The easiest piece to understand is the contribution from the overall factor ζk1ζk2ζk3(0),

which scales as

ζk1ζk2ζk3(0) =
∆3
ζ

k
3/2
1 k3

2

. (B.15)

Next, we consider the mixing terms. As we saw in the previous section, they scale as k0.

In principle, they could therefore contribute to the squeezed limit through ratios like (k1/k2)n.

However, this does not occur, since each mixing term is only a function of a single momentum.

Specifically, the integral over the long-wavelength modes with momentum k1 takes the form∫ τ?

dτ a3m3π′k1
σk1 ∼

ρ

H

∫ τ?

dτ k
1/2−ν
1 τ−ν−1/2e−ik1τ ∼ ρ

H
. (B.16)

As before, we estimated the integral by taking the dominant contribution to the integral to come

from τ ∼ k−1
1 . The only way the scale k2 could have entered the estimate, is through an implicit

k2-dependence in the integration limit τ?. However, as we explained above, the cancelation of

divergences as τ? → 0, also implies that the integral is only weakly dependent on the limits of

integration. As a result, any k2-dependence from the limit of integration is a subleading effect.

The skeptical reader is encouraged to consult the full in-in calculation [11] to confirm this.

The final contribution is from the interaction term. In the previous section, we found that

this integral scales as k−3/2, as required for scale invariance of the bispectrum. Repeating this

estimate, but now being careful to distinguish the long mode, k1, from the short modes, k2, we

find

lim
k1→0

∫
dτ µσk1σk2σk3 ∼

µ

H

∫
dτ

τ1/2−3ν

kν1k
2ν
2

. (B.17)

The integral contains two scales, k1 and k2, so it may not be obvious which scale dominates.

When |τ | ∼ k−1
1 � k−1

2 , the short modes are still well inside the horizon and oscillate rapidly.

Therefore, the integral is exponentially suppressed (this isn’t obvious in eq. (B.17) because we

have taken the mode functions in the limit where the modes are outside the horizon). It isn’t

until the short modes freeze out, |τ | ∼ k−1
2 , that we get a significant contribution to the integral.

Therefore, we can estimate the integral as if there were only one scale, k2, to get

lim
k1→0

∫
dτ µσk1σk2σk3 ∼

µ

H

1

kν1k
3/2−ν
2

. (B.18)

Putting all these estimates together, we find

lim
k1→0
〈ζk1ζk2ζk2〉 ∝

1

k
3/2+ν
1 k

9/2−ν
2

. (B.19)

This agrees with the result of [11].

Intuitive explanation. To gain some intuitive understanding for the scaling of the bispec-

trum in the squeezed limit, it is useful to rewrite the result as

lim
k1→0
〈ζk1ζk2ζk3〉 ∝

1

k3
1k

3
2︸ ︷︷ ︸

local

(
k1

k2

)3/2−ν
. (B.20)
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The first term has the same squeezed limit as the local shape, k−3
1 . The second term modifies this

scaling by the ratio (k1/k2)3/2−ν . For ν < 3/2 (or mσ > 0), this leads to a suppression in the

squeezed limit, while for ν = 3/2 (or mσ = 0) we recover the local shape. This suggests that the

physics of the squeezed limit of QSFI is the same as the local shape, with a modification induced

by the superhorizon behavior of the mode function for the massive field σ.

Let us try to understand this in a bit more detail. The squeezed limit of the local shape

can be understood as a local modulation of the short-scale power due to the presence of the

long-wavelength mode. For m2
σ = 0 in QSFI, we recover the same result. On the other hand,

when m2
σ > 0, the isocurvaton decays outside the horizon. Although the modulation of the

power spectrum is still local in space, the amplitude of the long mode now depends on the time

of horizon crossing. Specifically, the interaction plays an important role at horizon crossing of

the short modes, k2. When the short modes cross the horizon, |k2τ2| ∼ 1, the amplitude of the

long mode, k1, is suppressed relative to its amplitude at its own horizon crossing, |k1τ1| ∼ 1,

σk1(τ2) = σk1(τ1)

(
k1

k2

)3/2−ν
. (B.21)

We hence understand that the deviation from the local shape in (B.20) is the result of the decay

of the long-wavelength mode between the time it crosses the horizon and the time the short

modes cross the horizon. The mixing term also plays an important role in this interpretation.

It allows the conversion of the massive mode σ into the massless mode ζ = −Hπ shortly after

horizon crossing. If one simply computed the bispectrum for σ using the cubic interaction, one

wouldn’t find the same squeezed limit. Unless the σ fluctuations are converted into a massless

mode at horizon crossing, they will continue to decay outside the horizon. This would lead to

additional factors of k1 and k2 related to the decay of the amplitude from horizon crossing until

the end of inflation.

Generalizations. The behavior in the squeezed limit is robust to changes of the model:

The specific form of the mixing term is unimportant, as its only role in life is to convert

a massive mode into a massless mode. As we discussed in the previous section, even when we

include more derivatives in the mixing term (e.g. π̇σ̇), the integral still scales like k0. As a result,

the estimate of the mixing integral is the same in all cases and does affect the squeezed limit.

Changes to the interaction also do not alter the squeezed limit, as long as there is at least one

field with no derivatives acting on it. The behavior in the squeezed limit, is the result of a “local”

correlation of the long and short modes. When there are no derivatives acting on the field, the

short modes are sensitive only to the amplitude of the long mode, at the time of horizon crossing.

In the case, where all fields are acted on by derivatives, the short modes are only sensitive to

gradients of the long mode, and therefore the squeezed limit is further suppressed by a factor

of k2
1.
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