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Any theory invoked to explain cosmic acceleration predicts consistency relations between the
expansion history, structure growth, and all related observables. Currently there exist high-quality
measurements of the expansion history from Type Ia supernovae, the cosmic microwave background
temperature and polarization spectra, and baryon acoustic oscillations. We can use constraints
from these datasets to predict what future probes of structure growth should observe. We apply
this method to predict what range of cosmic shear power spectra would be expected if we lived in
a ΛCDM universe, with or without spatial curvature, and what results would be inconsistent and
therefore falsify the model. Though predictions are relaxed if one allows for an arbitrary quintessence
equation of state −1 ≤ w(z) ≤ 1, we find that any observation that rules out ΛCDM due to excess
lensing will also rule out all quintessence models, with or without early dark energy. We further
explore how uncertainties in the nonlinear matter power spectrum, e.g. from approximate fitting
formulas such as Halofit, warm dark matter, or baryons, impact these limits.

I. INTRODUCTION

Consistency relations between cosmological observ-
ables exist for any underlying physical model class [1, 2].
This means that the combination of observables pertain-
ing to the expansion history and those pertaining to
structure growth could potentially falsify a given dark
energy paradigm, such as the standard ΛCDM model
of cold dark matter and a cosmological constant with
Gaussian initial conditions, or smooth dark energy mod-
els with equation of state parameter −1 ≤ w(z) ≤ 1,
known as quintessence models. For instance, even a sin-
gle massive high-redshift cluster could falsify all ΛCDM
and quintessence models, if its mass falls significantly
outside of what we predict based on Type Ia supernovae
(SNe), the cosmic microwave background (CMB), baryon
acoustic oscillations (BAO), and the local measurement
of the Hubble constant (H0) [3].

Weak gravitational lensing, whereby distant galaxy im-
ages are distorted due to the gravitational effects of mat-
ter lying along the line of sight, is another key probe of
cosmic structure growth, with promising results in re-
cent years, e.g. [4–8]. See Refs. [9–11] for recent reviews.
However, current cosmological constraints are very lim-
ited; since we do not know the intrinsic shapes of galax-
ies, weak lensing is by its very nature a statistical mea-
sure and thus the power of a survey is directly related
to its sky coverage [12, 13]. Given future large-area sur-
veys on the horizon, for instance from the ground with
the Dark Energy Survey (DES) [14] and the Large Syn-
optic Survey Telescope (LSST) [15] or from space with
Euclid [16] and the Wide-Field Infrared Survey Telescope
(WFIRST) [17], it is particularly timely to determine our
expectations [18].

Using the wealth of data in hand from distance mea-
sures and the CMB, we expand upon Ref. [3] to pre-
dict these weak lensing observables within the ΛCDM

and quintessence paradigms. We focus on the shear
power spectrum and show how the predictions relax as
we generalize the model beyond flat ΛCDM and allow
for curvature, an arbitrary dark energy equation of state,
and early dark energy (EDE). Once the upcoming large-
area weak lensing surveys are completed, we can com-
pare their results to these predictions and possibly fal-
sify the ΛCDM model or perhaps the entire quintessence
paradigm. In this way weak lensing could provide a
smoking gun for new physics such as primordial non-
Gaussianity, phantom dark energy (w(z) < −1), sub-
horizon dark energy clustering, an interacting dark sec-
tor, or even a modification to general relativity.

This paper is organized as follows. In §II we describe
our methodology, including the datasets we use, the pa-
rameter spaces we explore, our Markov Chain Monte
Carlo (MCMC) likelihood analysis, and how we com-
pute the ingredients needed to predict the weak lensing
shear power spectrum and two point correlation functions
(2PCFs) for source redshift distributions typical of cur-
rent and future surveys. In §III we present our weak lens-
ing predictions and discuss how they depend on source
redshift and dark energy model class. In §IV we explore
uncertainties related to the matter power spectrum and
SN light-curve fitting. We discuss and conclude in §V.

II. METHODOLOGY

Our methodology is based on that of Refs. [1–3].
Briefly, we take current CMB constraints on the initial
power spectrum plus current data related to the overall
geometry and expansion history of the Universe, deter-
mine parameter constraints within a class of dark energy
models using an MCMC analysis, and then compute the
weak lensing predictions which can be used to falsify the
class. The observational data we use come from local dis-
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tance measures of H0, the Type Ia SNe distance-redshift
relation, BAO distance measures, and the CMB temper-
ature and polarization power spectra.

A. Data sets

The Type Ia SN sample we use is the compilation of
288 SNe from Ref. [19], consisting of data from the first
season of the Sloan Digital Sky Survey-II (SDSS-II) Su-
pernova Survey, the ESSENCE survey [20], the Super-
nova Legacy Survey [21], Hubble Space Telescope SN ob-
servations [22], and a collection of nearby SN data [23].
The light curves of these SNe have been uniformly ana-
lyzed by [19] using both the MLCS2k2 [23] and SALT2
[24] methods. We use the SALT2 method for our default
analysis but discuss the impact of switching to MLCS2k2
in §IV D.

For the CMB, we use the most recent, 7-year release
of data from the WMAP satellite (WMAP7) [25] em-
ploying a modified version of the likelihood code avail-
able at the LAMBDA web site [26] which is substantially
faster than the standard version while remaining suffi-
ciently accurate [27, 28]. We compute the CMB angular
power spectra using the code CAMB [29, 30] modified
with the parametrized post-Friedmann (PPF) dark en-
ergy module [31, 32] to include models with general dark
energy equation of state evolution where w(z) may cross
w = −1.

We use the BAO constraints from Ref. [33], which com-
bines data from SDSS and the 2-degree Field Galaxy
Redshift Survey that determine the ratio of the sound
horizon at last scattering to the quantity DV (z) ≡
[zD2(z)/H(z)]1/3 at redshifts z = 0.2 and z = 0.35.
Since these constraints actually come from galaxies
spread over a range of redshifts, and our most general
dark energy model classes allow the possibility of high
frequency variations in the expansion rate H(z) across
this range, we implement the constraints by taking the
volume average of DV over 0.1 < z < 0.26 (for z = 0.2)
and 0.2 < z < 0.45 (for z = 0.35), where these ranges
were chosen so that the volume average of DV over each
range is equal to the corresponding DV when evaluated
with the fiducial parameters from Ref. [33]; this require-
ment does not uniquely specify a minimum and maxi-
mum redshift, but the resulting constraints are not very
sensitive to this choice.

Finally, we include the recent Hubble constant mea-
surement from the SHOES team [34], based on SN dis-
tances at 0.023 < z < 0.1 that are linked to a maser-
determined absolute distance using Cepheids observed
in both the maser galaxy and nearby galaxies hosting
Type Ia SNe. The SHOES measurement determines the
absolute distance to a mean SN redshift of z = 0.04
which we implement as D(z = 0.04) = 0.04c/(74.2 ±
3.6 km s−1 Mpc−1).

B. Parameter constraints

For a given parameter set θ that defines the cosmolog-
ical model class, we use a modified version of the Cos-
moMC code [35, 36] to sample from the joint posterior
distribution,

P(θ|x) =
L(x|θ)P(θ)∫
dθL(x|θ)P(θ)

, (1)

where L(x|θ) is the likelihood of the dataset x given the
model parameters θ and P(θ) is the prior probability
density. We use the same priors as in [3], namely flat
priors that are wide enough to not limit the MCMC con-
straints from the aforementioned datasets. The most re-
strictive parameter class we will consider is that of a flat
ΛCDM model,

θ0 = {Ωbh
2,Ωch

2, τ, θA, ns, lnAs} , (2)

where Ωbh
2 and Ωch

2 are the present physical baryon and
cold dark matter densities relative to the critical density,
τ is the reionization optical depth, θA is the angular size
of the acoustic scale at last scattering, ns is the spec-
tral index of the power spectrum of initial fluctuations,
and As is the amplitude of the initial curvature power
spectrum at kp = 0.05 Mpc−1. All other parameters, in-
cluding the Hubble constant H0 = 100h km/s/Mpc, the
present total matter density Ωm and dark energy density
ΩDE, and the amplitude of the matter power spectrum
today σ8, can be derived from this basic set.

We generalize this basic model, and consequently ex-
pand the aforementioned parameter set, in several ways.
The first is to allow the spatial curvature ΩK = 1− Ωtot

to vary. We further allow for quintessence by decom-
posing the dark energy equation of state into principal
components (PCs) for z < 1.7,

w(z) + 1 =

Nmax∑
i=1

αiei(z) , (3)

where the equation of state at higher redshift is a con-
stant w(z > 1.7) = w∞, the αi are the PC amplitudes,
the ei(z) are the PC functions, and Nmax = 10 has been
found to provide a complete basis for our purposes here
[2]. The PCs we use here are the eigenfunctions of the
Fisher matrix for the combination of CMB constraints
from Planck and WFIRST-like SN data, as described in
Ref. [1]. We will fix w∞ = −1 for the model classes which
exclude EDE, as a constant equation of state dark energy
component quickly becomes negligible at early times, and
allow it to vary otherwise with a flat prior on ew∞ be-
tween e−1 and 1. A detailed discussion of this EDE ap-
proach and its relation to CMB constraints can be found
in Appendix B of Ref. [3].

Quintessence models describe dark energy as a scalar
field with kinetic and potential contributions to en-
ergy and pressure. Barring models where large kinetic



3

and (negative) potential contributions cancel (e.g. [37]),
quintessence equations of state are restricted to −1 ≤
w(z) ≤ 1. Following Ref. [1], this bound is conserva-
tively implemented with uncorrelated top-hat priors on
the PC amplitudes αi. Any combination of PC ampli-
tudes that is rejected by these priors must arise from an
equation of state w(z) that violates the bound on w(z),
but not all models that are allowed by the priors strictly
satisfy this bound.

In summary, the full set of parameters we will consider
here are

θ = {θ0,ΩK, α1, . . . , α10, e
w∞} , (4)

where we will look at models of increasing generality by
exploring increasingly larger subsets of this parameter
set.

C. Observables

Once we have sampled the joint posterior distribution
of the cosmological parameters, we can then compute the
posterior probabilities for any derived statistic, in partic-
ular cosmic shear observables. As an intermediate step,
it is useful to first consider the two basic ingredients that
the two-point shear observables are constructed from: the
comoving angular diameter distance D and the nonlin-
ear matter power spectrum ∆2

NL. The former is related
to the cosmological parameters through

D(χ) =
1√
|ΩK|H2

0

SK

[
χ
√
|ΩK|H2

0

]
, (5)

where SK(x) equals x in a flat universe (ΩK = 0), sinhx
in an open universe (ΩK > 0), and sinx in a closed uni-
verse (ΩK < 0). Here the comoving radial coordinate
is

χ(z) =

∫ z

0

dz′

H(z′)
, (6)

where the Hubble expansion rate is

H(z) = H0

[
Ωm(1 + z)3 + ΩDEf(z) + ΩK(1 + z)2

]1/2
(7)

with

f(z) = exp

[
3

∫ z

0

dz′
1 + w(z′)

1 + z′

]
, (8)

and the contribution from radiation is assumed to be
negligible.

The linear matter power spectrum depends on the ini-
tial matter power spectrum and the growth function of
linear density perturbations δ ∝ Ga, where a is the scale
factor. Given the smooth dark energy paradigm, the
growth function is given by

G′′+

(
4 +

H ′

H

)
G′+

[
3 +

H ′

H
− 3ΩmH

2
0 (1 + z)3

2H2(z)

]
G = 0 ,

(9)

where primes denote derivates with respect to ln a and
the function is normalized so that G = 1 in the mat-
ter dominated limit. We then compute the linear power
spectrum at redshift z by rescaling the z = 0 spectrum
∆2

L(k; 0) (computed using CAMB with the PPF dark en-
ergy module) by the growth function:

∆2
L(k; z) =

[
G(z)

(1 + z)G(0)

]2

∆2
L(k; 0) . (10)

We shall see that current CMB constraints on Ωmh
2

still allow substantial variation in the matter radiation
equality scale and hence the shape of the linear power
spectrum.

Cosmic shear observables however depend on the full
nonlinear power spectrum. We compute this quantity us-
ing the Halofit fitting function [38], which we will now de-
scribe. The halo model decomposes the nonlinear power
spectrum into the sum of two contributions,

∆2
NL(k) = ∆2

Q(k) + ∆2
H(k) , (11)

where ∆2
Q(k) is the “two-halo” term, which encapsulates

quasi-linear power from large-scale halo placement, and
∆2

H(k) is the “one-halo” term, which arises due to corre-
lations within the haloes themselves. The Halofit fitting
functions depend on parameters based on Gaussian fil-
tering of the linear power spectrum with variance

σ2(R) ≡
∫

∆2
L(k) exp

(
−k2R2

)
d ln k : (12)

the nonlinear scale kNL defined such that σ
(
k−1

NL

)
≡ 1,

the effective spectral index,

n ≡ −3− d lnσ2(R)

d lnR

∣∣∣∣
σ=1

, (13)

and the spectral curvature,

C ≡ − d2 lnσ2(R)

d lnR2

∣∣∣∣
σ=1

. (14)

Then the nonlinear power spectrum is parameterized by a
set of coefficients (an, bn, cn, γn, αn, βn, µn, νn) which are
allowed to vary as a function of the aforementioned spec-
tral index and curvature so as to fit N-body simulation
data. In terms of these coefficients,

∆2
Q(k) = ∆2

L(k)

{[
1 + ∆2

L(k)
]βn

1 + αn∆2
L(k)

}
exp [−f(y)] , (15)

where y ≡ k/kNL and f(y) = y/4 + y2/8 is a function
introduced to truncate at high k, and

∆2
H(k) =

∆2 ′
H (k)

1 + µny−1 + νny−2
, (16)

with

∆2 ′
H (k) =

any
3f1(Ωm)

1 + bnyf2(Ωm) + [cnf3(Ωm)y]
3−γn . (17)
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The coefficients are

log10 an = 1.4861 + 1.8369n+ 1.6762n2 + 0.7940n3

+0.1670n4 − 0.6206C ,

log10 bn = 0.9463 + 0.9466n+ 0.3084n2 − 0.9400C ,

log10 cn = −0.2807 + 0.6669n+ 0.3214n2 − 0.0793C ,

γn = 0.8649 + 0.2989n+ 0.1631C ,

αn = 1.3884 + 0.3700n− 0.1452n2 ,

βn = 0.8291 + 0.9854n+ 0.3401n2 ,

log10 µn = −3.5442 + 0.1908n ,

log10 νn = 0.9589 + 1.2857n . (18)

The functions (f1, f2, f3) are power laws, with the ex-
ponents fit to N-body data for either matter-only open
models

f1(Ωm) = Ω −0.0732
m

f2(Ωm) = Ω −0.1423
m

f3(Ωm) = Ω 0.0725
m

 Ωm ≤ 1 (19)

or flat ΛCDM models

f1(Ωm) = Ω −0.0307
m

f2(Ωm) = Ω −0.0585
m

f3(Ωm) = Ω 0.0743
m

 Ωm + ΩDE = 1 . (20)

Note that we will use these fitting functions for all of our
model classes, despite that fact that they were calibrated
on simulations where the dark energy equation of state
never deviated from w = −1. We comment on this sim-
plification in §IV B. For our main result that ΛCDM sets
an upper bound on shear statistics, we expect that this
approximation suffices.

As suggested in Appendix C of Ref. [38], we use linear
interpolation for models in which ΩDE is neither zero nor
1− Ωm. We further use the high-k correction [39]

∆2
NL(k)−∆2

L(k)→
[
∆2

NL(k)−∆2
L(k)

](1 + 2x2

1 + x2

)
,

(21)
where x ≡ k/(10h Mpc−1). These fitting functions have
been found to be inaccurate (even for flat ΛCDM) at
up to the 5–10% level, for instance with the Coyote uni-
verse project [40–42]. In §IV we will explore how our
predictions depend on the accuracy of the one-halo term
amplitude an. We will also show (and exploit) how one
can use cn to parameterize uncertainties due to warm
dark matter and baryonic processes.

From the distance-redshift relation and the nonlinear
matter power spectrum, we can then compute the shear
power spectrum, equal to the convergence power spec-
trum

l2Pκ
2π

=
9π

4c4l
Ω2

mH
4
0

∫ ∞
0

dz
D3

H

g2(z)

a2
∆2

NL

(
l

D(χ)
, z

)
,

(22)
where k ≈ l/D in units of Mpc−1 in the Limber ap-
proximation and we have defined the geometric lensing

efficiency factor

g(z) ≡
∫ ∞
z

dz′n(z′)
D(χ′ − χ)

D(χ′)
. (23)

The efficiency factor is weighted according to the source
distribution in a given survey, n(z), normalized such that∫∞

0
n(z)dz = 1. For this paper we will use the simple

model

n(z) ∝
(
z

z0

)α
exp

[
−
(
z

z0

)β]
, (24)

with parameters z0, α, and β. This parameter-
ization is similar to what has been used in both
the COSMOS [6] and CFHTLS [43] analyses, with
(z0, α, β) = (0.894, 2.0, 1.5) for COSMOS and (z0, α, β) =
(0.555, 1.197, 1.193) for CFHTLS. This leads to approx-
imate median redshifts of 1.3 and 0.8, respectively, for
our simplified COSMOS and CFHTLS surveys. Note
that these distributions closely approximate the ones ex-
pected for WFIRST [44, 45] and DES. In the work that
follows we will plot results for both of these simple source
distributions, but will specialize to CFHTLS (as in [46])
when results for the two are similar.

Finally, we also compute the 2PCFs

ξ+/−(θ) =
1

2π

∫ ∞
0

dl l J0/4(lθ)Pκ(l) (25)

of the shear components from the power spectrum. Be-
ing the real-space correlation and the easier quantity to
measure on small scales, the 2PCFs are better suited to
compare against current measurements than Pκ itself.

III. WEAK LENSING PREDICTIONS

Current distance constraints are highly predictive for
growth of structure statistics such as the weak lens-
ing power spectrum in the flat ΛCDM context. Since
this is the standard model of cosmology and our base-
line case, we shall use it to illustrate the steps in our
chain of inference in §III A. We then discuss observations
that would falsify ΛCDM in favor of quintessence and
those that would falsify the whole quintessence class of
−1 ≤ w(z) ≤ 1 smooth dark energy models in §III B.

A. ΛCDM

In Fig. 1, we start with the growth function predic-
tion. Unless stated otherwise, henceforth shaded regions
will correspond to 68% confidence level (CL) regions and
curves will bound 95% CL regions defined to have equal
posterior probabilities in the two tails. We will often
plot results as fractional differences from the prediction
for the maximum likelihood (ML) model. The growth
predictions are most precise at high redshifts, but even
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FIG. 1. Flat ΛCDM prediction for the growth factor (upper
panel) and its deviation from the ML flat ΛCDM model (lower
panel). The shaded regions correspond to 68% CL and the
curves bound the 95% CL regions.

at z = 0 the allowed range in the growth function is only
1–2% [2].

As described in the previous section, we can com-
bine the growth function with the initial power spec-
trum and transfer function to predict the linear matter
power spectrum at z = 0; see the upper and lower pan-
els of Fig. 2. For plotting purposes we follow the usual
convention of taking P (k) = (2π2/k3)∆2(k) with k de-
fined in h Mpc−1 for both linear and nonlinear power
spectra. Here the predictions carry ∼ 10% errors in
spite of the precise growth results. The dominant source
of uncertainty is from the measurements of the matter
density and shape of the initial power spectrum from
WMAP7. In particular, uncertainties in Ωmh

2 corre-
spond to shifts in matter-radiation equality which cause
left-right shifts in the power spectrum. There are also
contributions from tilt (ns) uncertainties that pivot the
spectrum around the best constrained WMAP scale of
k ∼ 0.02 Mpc−1 ≈ 0.03h Mpc−1. Both of these types
of uncertainties should be reduced by a factor of a few
with Planck CMB data and allow the full precision of the
growth predictions to be utilized (see §IV A and Fig. 7).

Also shown in Fig. 2 is the full nonlinear matter power
spectrum as computed with Halofit (grey hatched curve
in the upper panel), along with its deviation from the ML
prediction in the middle panel. For the nonlinear power
spectrum, the uncertainties are the same as the linear
one for k < kNL ∼ 0.3 h Mpc−1. For smaller scales, the
nonlinear power spectrum uncertainties no longer reflect
the linear uncertainties. Whereas the tilt ns makes the
linear uncertainties continue to grow larger, the nonlinear
ones become saturated reflecting the fixed nature of the

FIG. 2. Flat ΛCDM prediction for the z = 0 matter power
spectrum, showing the 68% and 95% CL regions as in Fig. 1.
Upper panel: Linear (blue solid) and nonlinear (grey hatched)
matter power spectra. Middle panel: Fractional confidence
range in the nonlinear spectrum around the ML flat ΛCDM
model. Lower panel: The same for the linear power spectrum.
Note k is in units of h Mpc−1.

one-halo piece of the Halofit prescription. We shall see
that uncertainties here are dominated by the accuracy of
Halofit and the ability of adjustments in its parameters
to model baryonic physics (see §IV B).

Uncertainties in PNL(k, z) propagate into the shear
statistics. We show the shear power spectrum as com-
puted from Eq. (22) in Fig. 3 for both the COSMOS and
CFHTLS source distributions. The confidence intervals
mainly reflect those of the nonlinear matter power spec-
trum. The interval is actually slightly narrower at low l
than at low k in Fig. 2. Significant contributions to Pκ
come from z > 0.5, where both linear growth function
uncertainties diminish and the linear power spectrum of
the gravitational potential is better fixed by the CMB
(in the relevant units of Mpc−1 rather than in h Mpc−1).
Likewise, at a fixed angular scale CFHTLS predictions
tend to be slightly weaker than those from COSMOS
due to the lower source redshifts typical of ground-based
surveys.

We can make this redshift dependence explicit by re-
placing the realistic redshift distributions with idealized
single source planes. Figure 4 shows the 95% CL re-
gion widths for sources at z = 0.5, 2, and 3.5. Note that
the well-constrained pivot in the power spectrum projects
to higher multipole at higher redshift leading to tighter
predictions at a fixed multipole. Given the tighter pre-
dictions, high redshift cosmic shear measurements pro-
vide an interesting opportunity to falsify the flat ΛCDM
model.
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FIG. 3. Upper panel: Flat ΛCDM predictions for the shear
power spectrum, showing the 68% and 95% CL regions as
in Fig. 1 for COSMOS (upper, grey hatched) and CFHTLS
(lower, blue solid). Lower panel: CFHTLS shear power spec-
trum prediction plotted with respect to the ML flat ΛCDM
model.

In Fig. 5 we show the 2PCF ξ+ which is more use-
ful for comparison with the relevant observations from
COSMOS [8] and CFHTLS [43]. The displayed 1σ er-
ror bars are computed from the full covariance matrices
estimated for each survey, as described in Refs. [8, 43].
The predicted range of flat ΛCDM models appears to
be consistent with the observations. However, the error
bars at different angular scales are heavily correlated, and
therefore do not represent the actual uncertainty at any
individual scale. Further note that these small-volume
surveys are not well-suited for making statements for or
against ruling out the ΛCDM model; COSMOS results
use a 1.64 deg2 field containing 76 galaxies per arcmin2,
and CFHTLS results use 22 deg2 containing 12 galaxies
per arcmin2.

If future observations falsify these predictions, then one
would need to generalize the cosmological model class.
The next simplest class of models retains Λ as the dark
energy but allows for non-vanishing spatial curvature ΩK

in the ΛCDM context. We find a minimal error increase
in this class, as shown in the upper panel of Fig. 6. This
is because spatial curvature is well constrained in the
ΛCDM paradigm. Thus a measurement that falsifies the
flat ΛCDM model would also falsify the ΛCDM assump-
tion itself, indicating that the dark sector is more com-
plicated.

FIG. 4. Single source plane, 95% CL full-width extent for the
shear power spectrum ∆Pκ/Pκ (as plotted in the lower panel
of Fig. 3) as a function of l, for sources at z = 0.5 (top, blue
solid curve), 2 (middle, green dotted curve), and 3.5 (bottom,
purple dashed curve).

B. Quintessence

Measurements of shear observables outside the bounds
shown in the previous subsection would be in statistical
conflict with ΛCDM. Barring systematic errors and un-
known astrophysical effects, some of which we address in
§IV, such a measurement would indicate that the true
cosmology belongs to a wider class of models.

If we relax the equation of state to allow all 10 PC
amplitudes to vary but revert to the flatness assump-
tion, we find that the contours shift toward lower power
as shown in the middle panel of Fig. 6. Nevertheless,
the ML quintessence model is quite similar to the flat
ΛCDM ML model and is near the 68% CL upper limit of
the quintessence model class. This is an artifact of the
parameter priors: given the freedom in w(z) there are
many ways to reduce the growth in ways unconstrained
by distance measures (see Fig. 3 of [2]). The converse
is not true as there are no models with good likelihood
values in the quintessence class with more power than al-
ready allowed in flat ΛCDM, an effect also seen in Ref. [3].
The effective data-driven upper bound on shear statistics
for this quintessence class remains that of flat ΛCDM in
spite of the downward shift in posterior contours.

The lower panel of Fig. 6 overlays the results for flat
quintessence with w∞ = −1, and quintessence with both
curvature and w∞ allowed to vary (the latter generaliza-
tion potentially allowing for EDE). This additional free-
dom further reduces growth, in accordance with the re-
sults of Ref. [3]. This is one of our main results, namely
that generalizing from ΛCDM to quintessence models
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FIG. 5. Flat ΛCDM predictions for ξ+, showing the 68% and
95% CL regions as in Fig. 3 for both the COSMOS (grey
hatched) and CFHTLS (blue solid) source redshift distribu-
tions. Also shown are the data points from Refs. [8] (black
points) and [43] (magenta points) with 1σ error bars. Note
that the error bars at different angular separations are corre-
lated.

only serves to reduce cosmic shear. We will show be-
low in § IV B that warm dark matter could also only ex-
plain a power deficit; likewise, massive neutrinos would
only decrease power.1 It is possible for baryonic effects
to increase power in either ΛCDM or quintessence, but
only at high multipoles. In general, observations which
rule out the ΛCDM model by finding a shear excess that
cannot be explained by astrophysical uncertainties also
falsify the entire quintessence paradigm.

IV. SYSTEMATIC AND OTHER
UNCERTAINTIES

We now turn to exploring various factors that can im-
pact the statistical predictions shown in the previous sec-
tion. These uncertainties largely stem from uncertain-
ties in the matter power spectrum [47] and systematic
uncertainties in the SNe data. In this section we will
discuss the impact of an improved initial linear matter
power spectrum from Planck (§IV A), uncertainties in
the nonlinear matter power spectrum from small-scale
physics and the Halofit fitting function (§IV B), tomog-
raphy (§IV C), and supernova light-curve fitting (§IV D).

1 Massive neutrinos would also shift parameter values due to their
effect on the CMB, so accurately quantifying the suppression of
the predicted shear power requires including neutrino mass as
a parameter in the initial MCMC analysis, which we leave for
future work.

FIG. 6. Generalizing the model class for shear power spec-
trum predictions for the CFHTLS source redshift distribution.
In all cases, the range is shown relative to the ML flat ΛCDM
model with blue regions indicating the wider model class and
gray hatched regions the narrower: (upper) ΛCDM flat vs
non-flat predictions; (middle) flat ΛCDM vs flat quintessence
without EDE; (lower) flat quintessence without EDE vs non-
flat quintessence with EDE (blue solid). Red lines correspond
to the maximum likelihood model of the more general of the
two classes compared.

A. Linear Matter Power Spectrum

Much of the residual statistical uncertainty in the flat
ΛCDM predictions comes from uncertainties in the lin-
ear matter power spectrum from WMAP7. The main
sources are the matter density Ωmh

2, tilt ns and nor-
malization lnAs. These uncertainties should soon be im-
proved by Planck. We show how the predictions change
from importance sampling to Planck-like priors on the
parameters Ωbh

2, Ωmh
2, ns, and lnAs, using the DETF

projected covariance matrix [48] and assuming the mean
corresponds to the ML flat ΛCDM model.

In Fig. 7 we show the improvement in the fractional
constraints (grey hatched curves) on the linear power
spectrum (upper panel) and on the shear power spec-
trum of the CFHTLS source redshift distribution (lower
panel). One typically should expect Planck to improve
the precision of predictions by more than a factor of 2
to the level of ±3–5%, which will greatly enhance the
prospects for falsifying the standard ΛCDM paradigm.
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FIG. 7. Expected improvements from Planck (grey hatched)
over WMAP7 (blue solid) for flat ΛCDM predictions. Up-
per panel shows the linear matter power spectrum and the
lower panel shows the shear power spectrum for the CFHTLS
source redshift distribution, with the 68% and 95% CL regions
relative to the ML flat ΛCDM model.

B. Nonlinear Matter Power Spectrum

We now explore the impact of a few sources of uncer-
tainty in the nonlinear matter power spectrum on our
predictions for the shear power spectrum — the Halofit
fitting function [38], warm dark matter [49], and bary-
onic physics [50, 51]. We will find it most convenient to
parameterize the latter two (physics-based) uncertainties
in terms of the former. For these studies we employ our
CFHTLS source redshift distribution and the flat ΛCDM
model class.

Halofit itself has been found to be only accurate at
up to the 5–10% level in the nonlinear regime for the
ΛCDM cosmological models for which it was designed
[40–42], even with the correction factor Eq. (21). While
these inaccuracies are smaller than our current statistical
errors in the same regime, they are comparable to the
expected Planck errors.

Furthermore, we have employed the ΛCDM-calibrated
Halofit parameters in our predictions for the more general
quintessence class. While we expect that the increased
statistical uncertainties in those classes are again cur-
rently larger than Halofit errors, this expectation remains
largely untested by simulations. Two of the Halofit pa-
rameters in particular describe the characteristic changes
in the the nonlinear power spectrum: an controls the am-
plitude of the one-halo term and cn describes its shape.
We explore how variations in these two parameters af-
fect our predictions as a means of quantifying how well
Halofit parameters must be calibrated in the ΛCDM and

FIG. 8. Upper panel: Flat ΛCDM prediction for the CFHTLS
shear power spectrum in blue, shown with the prediction for
when the parameter cn is amplified by 10% (green curves).
The altered 68% CL regions are bounded by solid lines and
the corresponding altered 95% CL regions are bounded by
dashed lines. Lower panel: Same as above, but now instead
the one-halo term amplitude an is amplified by 10% (magenta
curves).

quintessence w(z) classes.
In Fig. 8, we show once again our flat ΛCDM predic-

tions for the CFHTLS shear power spectrum where in the
upper panel we show what happens when cn is amplified
and in the lower panel we show what happens when an is
amplified. In each case we are only altering the nonlinear
matter power spectrum, and thus only the high multipole
regime of the shear power spectrum. In the case of am-
plifying an, we are simply enhancing the one-halo term.
By requiring that the systematic errors be smaller than
the statistical errors, we conclude that an and cn must
be calibrated in ΛCDM to the ∼ 10% level to make use
of current statistical predictions for ` < 1000 whereas
in quintessence models with EDE and curvature creating
large power deficits the tolerances can be up to double
that.

While Halofit was constructed to fit N-body simula-
tions with cold dark matter and no baryonic effects, we
find that in particular cn is a useful parameter for de-
scribing typical deviations from these assumptions.

Warm dark matter (WDM) reduces the small-scale
matter power spectrum in a way that increases with de-
creasing WDM particle mass. By using high-resolution
N-body/hydrodynamic simulations, Ref. [49] constructs
a fitting function to describe the modified matter power
spectrum PΛWDM(k) in terms of that of the correspond-
ing ΛCDM model PΛCDM(k),

PΛWDM(k) =
[
1 + (αk)1.8

]−2/15
PΛCDM(k) , (26)
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where

α(mWDM, z) = 0.0476

(
1 keV

mWDM

)1.85(
1 + z

2

)1.3

(27)

in units of h−1 Mpc and mWDM is the mass of the warm
dark matter particle. This fitting function is accurate at
the ∼ 2% level below z = 3 and for masses mWDM > 0.5
keV. On the other hand, this form assumes a fixed set of
ΛCDM parameters associated with the simulations and
thus effects should be taken as illustrative of the magni-
tude of the effect. We find that the WDM effects corre-
sponding to 0.5 keV dark matter can be mimicked by the
Halofit parameter cn with cn → 1.01cn (Figure 9, upper
panel). We thus see that, even for this fairly extreme
particle mass, warm dark matter contributes negligibly
to the error budget for this particular statistic, in agree-
ment with Ref. [49].

Baryonic effects, such as radiative heating and cooling,
star formation, and supernova and AGN feedback, affect
our predictions through their impact on the small-scale
matter power spectrum. Given the inherent difficulties in
adding baryons to large-scale structure simulations, the
degree to which these various processes impact structure
growth remains highly uncertain. However we can make
a conservative assessment by using the most extreme ex-
ample, namely the results of Ref. [51] which found a sig-
nificant decrease in power ranging from (at z = 0) 1%
at k ≈ 0.3 h Mpc−1 to 10% at k ≈ 1 h Mpc−1 and 30%
at k ≈ 10 h Mpc−1. To find the rough impact on the
nonlinear matter power spectrum, we interpolate Fig. 8
of Ref. [51]. Again we find that the Halofit cn accu-
rately mimics this effect with cn → 1.15cn corresponding
to the simulations of Ref. [51] which include AGN feed-
back (Figure 9, lower panel). A more detailed study of
the effect on weak lensing observations is presented in
Ref. [52].

Thus current uncertainties in baryonic physics at their
most extreme are as large as current statistical ranges
in the predictions. Hence the modeling of baryonic ef-
fects on structure formation must improve if we are to
make use of future constraints above l = 103, as found
in Refs. [50, 51]. Note also that, although the partic-
ular model we have shown here suppresses small-scale
power, baryons can have the opposite effect of potentially
the same magnitude, by increasing small-scale power via
cooling [50]. In the future, one approach to accounting
for these systematic errors is to marginalize an and cn as
model parameters given a prior range appropriate to the
state-of-the-art simulations including baryonic and other
effects.

C. Tomography and Ratio Tests

One means of reducing both the statistical and system-
atic uncertainty is to employ tomographic probes that
compare the shear at different source redshifts [53]. Un-
certainties remaining from the primordial power spec-

FIG. 9. Demonstration of our parameterization of WDM (up-
per panel) and baryonic effects (lower panel) with the Halofit
parameter cn, using the CFHTLS source distribution. Upper
panel: Flat ΛCDM prediction for the shear power spectrum in
blue, shown with predictions for 0.5 keV WDM as in Ref. [49]
with grey dashed lines and predictions for cn → 1.01cn with
red solid lines. Lower panel: Flat ΛCDM prediction for the
shear power spectrum in blue, shown with predictions for
baryons (including AGN feedback) as in Ref. [51] with grey
dashed lines and predictions for cn → 1.15cn with red solid
lines.

trum discussed in §IV A largely drop out and some of
the effects of baryonic physics may be “self-calibrated”
through jointly determining the concentration-mass rela-
tion [50, 54].

As a simple demonstration and a proxy for tomog-
raphy, we can define the statistic f(l) (not to be con-
fused with f(z) from Eq. 8) for a given model class
as the ratio of the shear power spectrum Pκ(l) pre-
dicted for COSMOS (median redshift of 1.3) to that pre-
dicted for CFHTLS (median redshift of 0.8). The result-
ing prediction is shown in Fig. 10 for our most restric-
tive (flat ΛCDM, upper panel) and most general (non-
flat quintessence with EDE, lower panel) model classes,
where now the ∼ 1σ uncertainties are reduced to the 1%
level for the flat ΛCDM model. This sharp prediction
offers another opportunity to falsify flat ΛCDM if sys-
tematics in the measurement and ratio prediction can be
made comparably precise. In the lower panel of Fig. 10,
the features at small scales are related to the asymme-
try of the quintessence growth predictions and the differ-
ence in the nonlinear scales for the source distributions
of COSMOS (l & 200) and CFHTLS (l & 500).

However, present uncertainties in the nonlinear power
spectrum arising from Halofit render predictions in the
nonlinear regime unreliable. In the upper panel of Fig. 10
we show how the uncertainties in cn (green, upper curves)
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FIG. 10. The ratio f(l) of the COSMOS and CFHTLS cos-
mic shear power spectrum predictions for the flat ΛCDM (up-
per panel) and nonflat quintessence with EDE (lower panel)
model classes, plotted with respect to the ratio of the ML
COSMOS and CFHTLS power spectra. Once again shaded
regions correspond to 68% CL and the curves bound the 95%
CL regions. The upper panel also shows how the flat ΛCDM
ratio changes when either cn (upper green contours) or an
(lower magenta contours) are amplified by 10%, where the
altered 68% CL regions are bounded by solid lines and the
corresponding altered 95% CL regions are bounded by dashed
lines.

and an (magenta, lower curves), respectively, affect the
flat ΛCDM predictions for f(l). These uncertainties af-
fect the quintessence predictions similarly. We see that
∼ 10% level calibration of these Halofit parameters is not
sufficient to exploit the sub-percent level ΛCDM predic-
tions in the nonlinear regime. On the other hand, ob-
served deviations in f(l) of & 3% would falsify ΛCDM
and & 10% our most general quintessence class even con-
sidering these uncertainties.

D. Supernova Light-Curve Fitting

The analyses of the datasets outlined in §II A con-
tribute further systematic uncertainties in our predic-
tions, the largest of which arise from the fitting of SN
light-curves. The two most widely used light-curve fit-
ters are SALT2 and MLCS2k2. Assuming a flat cos-
mological model with a constant dark energy equation
of state w, the SALT2 and MLCS2k2 methods yield
(Ωm, w) = (0.26 ± 0.03,−0.96 ± 0.13) and (Ωm, w) =
(0.31± 0.03,−0.76± 0.13), respectively [19]. Thus these
two methods lead to a discrepancy in the dark energy
equation of state of ∆w ∼ 0.2. This might be due to
a possible mismatch in the UV spectra between low-

FIG. 11. Shear power spectrum predictions for the CFHTLS
source redshift distribution, where we show the bias result-
ing from the choice of SN light curve fitter. Upper panel:
Flat ΛCDM predictions for SALT2 (blue solid) and MLCS2k2
(grey hatched), plotted relative to the ML SALT2 flat ΛCDM
result. Once again the shaded regions correspond to 68% CL
and the curves bound the 95% CL regions. Lower panel: Flat
quintessence predictions for SALT2 (blue solid) and MLCS2k2
(grey hatched), also plotted relative to the ML SALT2 flat
ΛCDM result.

redshift and intermediate-redshift SNe [55] and efforts are
underway to reduce the resulting error. We have chosen
here to use SN data analyzed using the SALT2 technique,
but we now briefly discuss what happens when we instead
use the MLCS2k2 data.2

Even for the flat ΛCDM model class, the differences be-
tween SALT2 and MLCS2k2 estimates of Ωm and w sig-
nificantly alter our predictions for the shear power spec-
trum, as can be seen in the upper panel of Fig. 11. In the
lower panel we show the comparison for flat quintessence;
in both cases, the CL regions shift by ∼ 0.5–1σ. This
shift to higher shear with MLCS2k2 is driven mainly by
the preference for higher Ωm when using this method; this
higher Ωm also increases the present day matter power
spectrum normalization for a fixed amplitude of initial
curvature fluctuations As. The corresponding effect for
cluster abundance was found in Ref. [3]. With improve-
ments in the calibration of SN data and modeling of the
effects of dust extinction, it is likely that these system-
atics can be reduced so that they will not be a limiting
uncertainty for future predictions of shear statistics.

2 Note that Ref. [3] made the opposite choice, using the MLCS2k2
SN constraints for their main results.
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V. DISCUSSION

In this paper we have provided robust statistical pre-
dictions for weak lensing observables in a variety of cos-
mological contexts. Given existing local distance mea-
sures of H0, the Type Ia SNe distance-redshift rela-
tion, BAO distance measures, and the CMB tempera-
ture and polarization power spectra, we have constrained
the expected cosmic shear power spectrum in the ΛCDM
model. We then generalized this model class to show how
the predictions widen when curvature, EDE, and a gener-
alized dark energy equation of state w(z) are allowed. We
further showed how these predictions are affected by un-
certainties in the nonlinear matter power spectrum from
warm dark matter and baryons, to find that the former
is negligible whereas the latter is a comparable source of
uncertainty to current statistical errors beyond l ∼ 103.
In the near future baryonic effects will likely become the
dominant source of error unless modeling improves.

In a similar fashion as in the clusters study of Ref. [3],
we find that any observation that claims to rule out the
ΛCDM model via a shear excess generically also rules
out the entire quintessence paradigm, as the extra free-
dom allowed by the free function w(z) ≥ −1 can only
serve to reduce the relative growth if we normalize to the
CMB and constrain the distance-redshift relation to the
CMB and SNe at opposite ends of the expansion history.
Adding EDE, warm dark matter, massive neutrinos, or
baryonic AGN feedback tends to exacerbate the reduc-
tion, as they too only reduce growth and therefore sup-
press the cosmic shear power spectrum. Therefore a mea-
sured shear excess would require updating our models
to include significant baryonic cooling, primordial non-
Gaussianity, non-smooth dark energy, phantom dark en-
ergy, an interacting dark sector, or even a modification
to the gravitational force law.

In our analysis we have focused only on those uncer-
tainties pertaining to the predictions for the shear statis-
tics presented here, as opposed to uncertainties in the
measurement of the shear itself. The latter becomes im-

portant when comparing the data to these predictions.
For example in comparing our predictions to current data
in Fig. 5, we have employed the statistical and systematic
error estimates in the literature. Uncertainties relating to
shape measurement, photometric redshifts, and intrinsic
alignments feed into the data error covariance. Account-
ing for these effects, the flat ΛCDM model is consistent
with the current data.

Future imaging surveys, both from the ground
(e.g. DES and LSST) and from space (Euclid and/or
WFIRST) will provide the necessary number of galaxy
shape measurements to enable precise tests of dark en-
ergy model classes, as long as the various shear system-
atics can be either eliminated or understood sufficiently
well. Moreover, improved CMB constraints from Planck
will soon reduce the uncertainties in the cosmic shear pre-
dictions by a factor of a few, further enhancing the ability
of weak lensing observations to detect deviations from
the concordance cosmological model but also requiring
more stringent control on astrophysical systematic errors
in both the predictions and the measurements.
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