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In this paper, we show that Minkowski Functionals (MFs) of weak gravitational lensing (WL)
convergence maps contain significant non-Gaussian, cosmology-dependent information. To do this,
we run a large suite of cosmological ray-tracing N-body simulations to create mock weak WL con-
vergence maps, and study the cosmological information content of MFs derived from these maps.
Our suite consists of 80 independent 5123 N-body runs, covering seven different cosmologies, varying
three cosmological parameters Ωm, w, and σ8 one at a time, around a fiducial ΛCDM model. In each
cosmology, we use ray-tracing to create a thousand pseudo-independent 12 deg2 convergence maps,
and use these in a Monte Carlo procedure to estimate the joint confidence contours on the above
three parameters. We include redshift tomography at three different source redshifts zs = 1, 1.5, 2,
explore five different smoothing scales θG = 1, 2, 3, 5, 10 arcmin, and explicitly compare and com-
bine the MFs with the WL power spectrum. We find that the MFs capture a substantial amount of
information from non-Gaussian features of convergence maps, i.e. beyond the power spectrum. The
MFs are particularly well suited to break degeneracies and to constrain the dark energy equation
of state parameter w (by a factor of ≈ three better than from the power spectrum alone). The
non-Gaussian information derives partly from the one-point function of the convergence (through
V0, the “area” MF), and partly through non-linear spatial information (through combining different
smoothing scales for V0, and through V1 and V2, the boundary length and genus MFs, respectively).
In contrast to the power spectrum, the best constraints from the MFs are obtained only when
multiple smoothing scales are combined.

PACS numbers: 98.80.-k 95.36.+x 98.65.Dx

I. INTRODUCTION

Forthcoming large weak gravitational lensing (WL)
surveys, such as those by the Large Synoptic Survey Tele-
scope (LSST), will provide a growing number of cosmic
shear measurements of increasing quality. This prospect
poses the theoretical challenges of (i) how much statisti-
cal information could be extracted from the expected WL
maps, and (ii) to what extent this information will help
constrain cosmological models. The power spectrum, or
equivalently the two-point correlation function, are of
unquestionable importance, but are nevertheless incom-
plete statistical descriptions of the lensing maps. This
is because gravity is non-linear, and it generates non-
Gaussianity on small scales. Perhaps the most natural
way to proceed and characterize non-Gaussian statisti-
cal signatures is by using higher–order poly-spectra [1],
or equivalently, three–point and higher–order correlation
functions [2–10].1 An interesting, and less explored alter-
native, originally suggested in the context of the cosmic

1 One might note that even the power spectrum for a non-Gaussian
field has correlated and non-Gaussian error bars [11].

density field [12], is to utilize topological features.

As an example of this approach, the genus of dif-
ferent iso-density contour surfaces [13–17] has recently
been measured in the Sloan Digital Sky Survey (SDSS).
The genus curve—i.e. genus as a function of density
threshold—was derived for both the luminous red galaxy
(LRGs) and the main galaxy samples, and found to devi-
ate from the theoretical prediction for a Gaussian random
field. These deviations then allowed a testing of differ-
ent galaxy formation scenarios, through their nonlinear
biasing and other gravitational effects [18, 19].

The genus is only one of several topological measures
of iso-density surfaces (in three-dimensions) or contours
(in two-dimensions), which are collectively known as the
Minkowski functionals (MFs) [20]. The full set of MFs
has been successfully applied to maps of Cosmic Mi-
crowave Background (CMB) temperature anisotropies,
to probe primordial non-Gaussianity. There one com-
pares the MFs derived from the data to those expected in
standard inflationary models with Gaussian initial condi-
tions [21–23]. The current constraints from the MFs on
the commonly used non-Gaussianity parameter fNL are
comparable to those from the bispectrum [24]. However,
the MFs have the additional ability to test models of the
early universe with non-Gaussianity only appearing at
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the level of trispectrum or beyond [25].

Motivated by these demonstrations that MFs are pow-
erful yet simple probes of non-Gaussianity, we here per-
form a detailed and systematic study the MFs of the cos-
mic shear field and their potential use to differentiate be-
tween cosmological models. Related previous works have
considered the Ωm–dependence of the one–point func-
tion and WL peak statistics, using ray-tracing simula-
tions [47, 48], and have demonstrated the ability of WL
MFs to distinguish standard cold dark matter (SCDM),
open CDM and ΛCDM models [26, 27]. It has also been
shown that one of the MFs, the area statistic, could place
strong constraints on the properties of dark energy [28].
Finally, a recent theoretical analysis presents both a per-
turbative description of WL MFs as well as a halo model
based approach [29].

Our work here extends the previous studies in many
ways, including the scope, detail, and the level of inter-
pretation of the results. In particular, we have run a large
suite of N -body simulations with ray-tracing to generate
WL maps for seven different cosmological models. We
vary three cosmological parameters, Ωm, w, and σ8, one
at a time, around a fiducial model. Using our simula-
tion suite, we are able to compute the joint confidence
levels on these three parameters through a Monte Carlo
procedure. We quantify in detail where these constraints
come from, finding ideal combinations of galaxy source
redshifts and smoothing scales. Finally, in order to iso-
late the non-Gaussian information, we explicitly compare
and combine the constraints from the MFs with those
from the WL power spectrum.

The core finding of this paper is that the MFs capture
significant non-Gaussian, cosmology-dependent informa-
tion. In particular, the dark energy equation of state
parameter w is constrained by a factor of approximately
three better than from the power spectrum alone. We
attribute this improvement to the MFs breaking degen-
eracies between w and the other parameters. We also
explore combinations of the three different MFs, and of
the MFs with the power spectrum. This allows us to as-
sess the amount of additional information contained in
the MFs (beyond the power spectrum), and to interpret
the nature of the non-Gaussian information.

The rest of this paper is organized as follows. The de-
tails of our simulations and mock WL maps are described
in Section II. The basics of MFs and the algorithm to
measure them from our simulated maps are described in
Section III A, while Section III B describes our use of the
WL power spectrum. Our Monte Carlo procedure, using
the maps to compute the confidence levels on the parame-
ters, is described in Section IV, along with a discussion of
the required number of pseudo-independent realizations.
Section V presents our main results, showing the con-
straints on the cosmological parameters. Various combi-
nations of the observables are studied: using individual
MFs separately, combining MFs with the power spec-
trum, using redshift tomography, combining smoothing
scales, using maps with and without intrinsic ellipticity

noise, etc.; and we also discuss several possible sources
of inaccuracy, some quantified here, as well as some left
for future work. In Section VI we compare our power-
spectrum-alone constraints to the literature as a consis-
tency check, and compare the information gain by the
MFs over the power spectrum to published projections
for the bispectrum. Finally, in Section VII, we summa-
rize our conclusions and the implications of this work.

II. SIMULATION SUITE AND WEAK LENSING
MAPS

A. N-body Simulations

The large-scale structure simulations and lensing maps
were created with our new Inspector Gadget lensing sim-
ulation pipeline [30, 31] on the New York Blue super-
computer, which is part of the New York Center for
Computational Sciences at Brookhaven National Labo-
ratory/Stony Brook University. The center features an
IBM Blue Gene/L with 36,864 CPUs and a Blue Gene/P
with 8,192 CPUs. We ran a series of 80 CDM N -body
simulations with 5123 particles each and a box size of
240h−1 Mpc. This corresponds to a three-week test run
for our pipeline. We used a modified version of the pub-
lic N-body code Gadget-2 [32], which we adapted for the
Blue Gene/L and /P, and enhanced to allow the dark
energy equation of state parameter w 6= 1, as well as
to compute weak lensing related quantities, such as co-
moving distances to the observer. Gadget’s adjustable
parameters were fine-tuned for maximum throughput on
the cluster. Volker Springel kindly provided us with the
initial conditions (IC) generator N-GenIC. The total lin-
ear matter power spectrum, which is an input for the IC
generator, was created with the Einstein-Boltzmann code
CAMB [33] for z = 0, and scaled to the starting redshift
of our simulations at z = 100 following the linear growth
factor. The WL maps were created, and the rest of the
analysis were performed with our own proprietary codes
and file formats. Up to 70TB of simulation and lensing
products were stored in the process of this work.

A total of 80 N-body simulations were run, covering 7
different cosmological models in multiple runs with dif-
ferent random initial conditions. A total of 50 of the runs
were performed in our fiducial cosmology, with parame-
ters chosen to be {Ωm = 0.26, ΩΛ = 0.74, w = −1.0,
ns = 0.96, σ8 = 0.798, H0 = 0.72}. These runs all
used the same input power spectrum, but a different and
strictly independent realization, yielding a statistically
robust set of maps, and allowing us to assess how much
the use of fewer independent realizations (used in the
other models) affects the results. In each of the other
six cosmological models, we varied one parameter at a
time, keeping the others fixed, with the following values:
Ωm = {0.23, 0.29} (while ΩΛ = {0.77, 0.71} such that
the universe stays spatially flat), w = {−0.8,−1.2}, and
σ8 = {0.75, 0.85}. For these six non-fiducial cosmolog-
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Identifier σ8 w Ωm ΩΛ # of sims
Fiducial 0.798 -1.0 0.26 0.74 45
Auxiliary 0.798 -1.0 0.26 0.74 5
Om23 0.798 -1.0 0.23 0.77 5
Om29 0.798 -1.0 0.29 0.71 5
w12 0.798 -1.2 0.26 0.74 5
w08 0.798 -0.8 0.26 0.74 5
si75 0.750 -1.0 0.26 0.74 5
si85 0.850 -1.0 0.26 0.74 5

TABLE I: Cosmological parameters varied in each model.

ical models we ran 5 simulations each, with a different
realization of the initial conditions.2

B. Lensing Maps

The weak lensing maps were created with a standard
two-dimensional ray-tracing algorithm. We refer the
reader to our previous work [34] and to [30] for the full
description of our methodology. The code developed and
used in that paper was adapted here for the Blue Gene/P
and /L and parallelized to deal with the stringent mem-
ory requirements, but in its core equations it remained
the same, so we will list here only the specifications as
well as any changes and additions we have made.

We chose to implement the ray-tracing algorithm de-
scribed in [35]. Earlier work with similar algorithms in-
clude [36–38]. The large-scale structure from the N-body
simulations was output as particle positions in boxes at
different redshifts, starting at redshift z = 2. The parti-
cles were then projected onto planes perpendicularly to
the planes and the central line of sight of the map. We
used the triangular shaped cloud (TSC) scheme [39] to
place the particles on a grid on these two-dimensional
density planes; the particle surface density was then con-
verted into the gravitational potential via the Poisson
equation. The algorithm then followed light rays from
the observer back in cosmic time. The deflection angle,
as well as the weak lensing convergence and shear were
calculated at each plane for each light ray. These de-
pend on the first and second derivatives of the potential,
respectively. Between the planes, the light rays travel
in straight lines. For simplicity, in this work we utilized
only the convergence maps; shear maps were also created
and will be used in the future.

The maps were created for 2048×2048 light rays, with
the lens planes spaced 80h−1Mpc apart along the line of
sight. The lens planes themselves recorded the gravita-
tional potential on a finer 4096×4096 grid, to avoid losing

2 We also ran ten additional simulations, bracketing the scalar
spectral index ns = {0.92, 1.00}, but were unable to reliably dis-
tinguish these from the fiducial model. These runs will therefore
not be described further in this paper, and the scalar spectral
index will be fixed at its fiducial value of ns = 0.96.

power on small angular scales, as pointed out in [40]. We
have found a similar fall-off, and therefore increased the
resolution on the density planes from our previous pub-
lication [34].

We created one thousand 12-square-degree conver-
gence maps for each cosmology, by mixing simulations
with different random initial conditions, and by randomly
rotating and shifting the simulation data cubes. For the
maps in each non-fiducial cosmology, lens planes mixed
from all five independent N-body runs were used. In the
fiducial cosmology, we created two sets of 1,000 maps.
One of these sets was created from the five independent
N-body runs with the same five quasi-identical3 initial
conditions as in the non-fiducial cosmologies, and will
hereafter be referred to as the “auxiliary” set. The sec-
ond was created by mixing lens planes from the remaining
larger ensemble of 45 independent N-body runs, and will
be referred to as the “fiducial” set.

Results from the fiducial and auxiliary map sets will
be compared below to verify that they do not depend
on a particular set of maps and simulations. Having two
independent sets will also be utilized in our Monte Carlo
procedure, which involves a χ2–minimization. This cru-
cially requires that the maps for which the best-fit model
parameters are found are independent of the set used to
compute the covariance matrix.

For simplicity, we assumed the source galaxies are con-
fined to planes at a fixed redshift. The convergence
maps were generated for three different source redshifts,
zs = 1, 1.5, and 2. After the raw maps with the lensing
signal were generated, ellipticity noise from the random
orientations of the source galaxies was added to the maps
pixel by pixel. We assumed the noise is represented by a
Gaussian random field (with a top-hat filter of pixel size;
or equivalently a random lattice noise model, e.g [41]).
We further assumed a uniform source galaxy surface den-
sity of ngal = 15 galaxies/arcmin2 on each source plane
(neglecting other effects, such as shot noise from random
galaxy positions, or magnification of the source galaxies)
and a redshift dependent root-mean-square of the noise
in one component of the shear [42]

σγ(z) = 0.15 + 0.035z. (1)

The r.m.s. noise for a pair of pixels ~x and ~y on the con-
vergence maps was then taken to be

〈κnoise(~x)κnoise(~y)〉 =
σ2
γ

ngalA
δ~x~y, (2)

3 By “quasi-identical”, we mean that the random number seeds to
create the initial particle distributions from the power spectra
were kept the same across all cosmological models, but the nor-
malization of the power spectra themselves was adjusted such as
to yield the desired σ8 today in every cosmology. This adjust-
ment is necessary due to the difference in growth factors between
the models.
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where δ~x~y is the Kronecker delta function, and A is the
solid angle of a pixel. The galaxy densities adopted for a
single source redshift is fairly low. This lets us combine
the three redshifts to employ tomography with a total
ngal = 45 galaxies/arcmin2, a typical value expected for
galaxy surveys with the depth of LSST (e.g. [43] and
Eq. (3.7) in [44]). Once noise in each pixel is added, we
smooth the maps with a finite version of a 2D Gaussian
filter, with the kernel around every pixel φ0,

WG(φ, φ0) =
1

πθ2
G

exp

(
− (φ− φ0)2

θ2
G

)
, (3)

truncated at 6θG. We employ five different smoothing
scales, θG = 1, 2, 3, 5, 10 arcmin. The smallest smooth-
ing scale retains the most information but also the most
noise. Hence, the strategy is to combine MFs with sev-
eral different smoothing scales to extract additional in-
formation, despite strong correlations between maps with
different θG.

In Section III B below, we will discuss the accuracy
of our simulations pipeline and the convergence power
spectrum derived from the maps.

III. MINKOWSKI FUNCTIONALS AND
POWER SPECTRA

A. Minkowski Functionals

Minkowski Functionals are morphological statistics of
thresholded smoothed random fields, complementary to
the more familiar hierarchy of correlation functions. If
the fields are strictly Gaussian, then there exist one–to–
one mappings between the power spectrum and the MFs.
In the weakly non-Gaussian case, one can also find an
approximate map between the two statistics [45], or ex-
pand the MFs perturbatively as a function of the power
spectrum [29, 46]. In the general case, however, MFs en-
code information from correlation functions of arbitrarily
high order, which is what makes them useful probes of
non-Gaussianities (see also [29] for a halo model based
theoretical description). Since weak lensing convergence
maps are expected to contain small scale non-Gaussian
information, they are particularly well suited to this ap-
plication.

As mentioned in the Introduction, a few previous at-
tempts have been made to use morphological statistics to
analyze weak lensing maps. The early works [47] and [48]
considered the Ωm–dependence of the one–point func-
tion and peak statistics, using ray-tracing simulations,
while [26] and [27] used MFs to discern between SCDM,
OCDM and ΛCDM models. More recently, [28] used the
fractional area of “hot spots” of a thresholded map as a
statistic, [49, 50] explored the extent to which 2D projec-
tions of the 3D mass field trace cosmology, while [34, 51]
and later [52–55] used counts of peaks (defined as lo-

cal maxima) in convergence and shear maps. 4 Finally,
[56] constructed an analytical approximation to the peak
number counts—their approximate statistic turns out to
be the genus, which, as we will see below, is identical to
one of the three MFs.

In general, for a given D-dimensional smoothed field,
one can construct D+1 Minkowski Functionals Vj . Since
we analyze 2D weak lensing maps in this paper, we re-
strict ourselves to reviewing MFs in two dimensions, and
refer the interested reader to [20, 57, 58] for a more com-
prehensive discussion. The three MFs in 2D, V0, V1, and
V2, measure the area, boundary, and Euler characteristic,
respectively, of the excursion set Aν of an image, defined
to include the part above a certain threshold ν.

The convergence is a smooth scalar field κ(x). For a
given threshold ν, the excursion set Aν is defined as the
set of points x with κ(x) > ν. The area statistic, V0(ν),
is the fractional area above the threshold,

V0(ν) =

∫
Θ(κ− ν) da, (4)

where Θ(κ − ν) is the Heaviside step function. The
boundary length statistic, V1(ν), is the total length of
iso-density contours. For computational simplicity, we
convert it into an area integral by inserting a delta func-
tion and the appropriate Jacobian,

V1(ν) =
1

4

∫
|∇κ|δ(κ− ν) da, (5)

where ∇κ denotes partial derivatives. Finally, the genus
statistic, V2(ν), is the integration of the principal cur-
vature K along the iso-density contours, which we can
similarly convert into the area integral

V1(ν) =
1

2π

∫
|∇κ|δ(κ− ν)K da, (6)

with

K = |∇γ̇ γ̇| (7)

where γ̇ is the tangent vector along the curve γ defining
the contour, and ∇γ̇ is the covariant derivative along the
curve.

The reason we have re-expressed the MFs as integrals
of invariants is that the integrands reduce to depend
solely on the threshold ν and the 1st and 2nd order
derivatives of the field κ,

V0(ν) =

∫
Θ(κ(x)− ν) da, (8)

V1(ν) =

∫
δ(κ(x)− ν)

√
κ2
x + κ2

y da, (9)

4 The peaks containing most of the cosmological information were
found to have relatively low amplitudes, and are not typically
produced by single collapsed objects [54].
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and

V2(ν) =

∫
δ(κ(x)− ν)

2κxκyκxy − κ2
xκyy − κ2

yκxx

κ2
x + κ2

y

da,

(10)
where κx means partial derivative with respect to x, etc.

In this form, numerical calculation of the MFs Vj(ν)
from a pixelized map becomes simple: we calculate the
derivatives in coordinate space via finite difference and
then sum them over the entire space with its correspond-
ing threshold value ν.

For illustrative purposes, Figure 1 shows one of our
12-square-degree convergence maps in the top left panel,
and the excursion set (shown as the black regions) in
the other three panels for the three different thresholds
κ = 0.0, 0.02 and 0.07. The left column of Figure 2 fur-
ther shows the mean MFs in each of the 7 cosmologi-
cal models studied in this paper, averaged over all 1,000
maps in each case (V0, V1, and V2; top to bottom). The
right column shows the difference between the mean MF
in the fiducial cosmology and the corresponding MF in
each of the other cosmologies. The error bars in all pan-
els denote the standard deviation among the 12-square-
degree maps in the fiducial model (they are similar in the
other cosmologies and are omitted for clarity).

Since MFs are statistics on smoothed fields, while our
convergence maps are pixelized, one might worry that a
discretized implementation of Eqs. (8)–(10) can lead to
spurious “residuals” as seen by some earlier work on MF
(see for example Refs. [24, 45, 46]). It turns out the resid-
uals are in fact not caused by pixelization, but instead by
the discretization of the thresholds, i.e. finite bin-sizes,
as first pointed out by Ref. [59]. These errors scale like
(δν)2/σ0 which can be analytically calculated and sub-
tracted if the underlying distribution is known. On the
other hand, if we do not know the underlying map, we
can work around this problem by using small bin-sizes.
While a small bin size means that each bin is more noisy
as there are less pixels binned, there are more bins hence
once integrated over the amount of information remains
the same.

To check for this, we generated 200 2048 × 2048 pix-
elized maps of Gaussian random fields (GRF), and nu-
merically calculated the MFs. In the GRF case, the ex-
pectation values for the MFs can be calculated analyti-
cally [60],

V GRF
0 (ν) =

1

2

[
1− erf

(
ν − µ√

2σ0

)]
, (11)

V GRF
1 (ν) =

1

8
√

2

σ1

σ0
exp

(
− (ν − µ)2

2σ2
0

)
, (12)

and

V GRF
2 (ν) =

ν − µ
4
√

2

σ2
1

σ3
0

exp

(
− (ν − µ)2

2σ2
0

)
, (13)

where µ = 〈κ〉 is the mean,

σ0 =
√
〈κ2〉 − µ2 (14)

is the standard deviation, and

σ1 =
√
〈κ2
x + κ2

y〉 (15)

is its first moment.
We average the MFs measured from these 200 GRF

maps, each with 200 threshold bins from ν/σ0 = −5 to
ν/σ0 = 5, to find the mean 〈Vj〉, and then compare it
to the analytic expressions given by Eqs. (11)-(13). In
the latter, we use the values 〈µ〉, 〈σ0〉 and 〈σ1〉 obtained
by averaging over the same 200 maps. As can be seen
from Fig. (3), which shows the difference between our nu-
merically calculated and theoretically expected MFs, our
procedure reproduces the MFs in the GRF case highly
accurately.

It is instructive to briefly comment on what the MFs
measure in broader, qualitative terms. The properties of
random fields can be roughly divided into four distinct
categories: (a) the histogram, which probes the distribu-
tion of pixel values, but is insensitive to their spatial dis-
tribution, (b) spatial correlations, which depend on the
distances between pixel values, but not about the shapes
of structures that lie in between, (c) the shape of objects,
and (d) topology, which cares about the connectedness of
objects, but by itself is insensitive to their distances or
shapes, as it is independent of the underlying metric.

The power spectrum is a pure measure of (b), while the
MFs are also sensitive to (a), (c) and (d). In fact, V0, the
cumulative probability distribution function (PDF), is a
pure measure of (a). V2, the Euler characteristic of the
excursion set, measures the topology (d). However, V2 is
not a pure measure of connectedness of structures, as it
is “contaminated” by the histogram. Intuitively, V1 also
contains information on (c). This broad classification of
information will be useful when interpreting the origin
of the constraints from the MFs for different smoothing
scales.

B. Power Spectra

In order to study the non-Gaussian information con-
tent of the MFs explicitly, we also compute the power
spectrum from our convergence maps. The power spectra
were first pre–computed for 1000 equally spaced bins of

the angular wave vector ~̀ between 100 ≤ |~̀| ≤ 100, 000,
covering the full range of angles from our pixel size (∼ 6
arc-sec) to the linear size of our maps (∼ 3.5 deg). We
further adopted the flat sky approximation, assumed spa-
tial isotropy, and averaged modes with the same length

of the wave vector ~̀ in different directions, to find the 1D

power spectrum P (`) as a function of ` = |~̀| alone.
The power spectrum can be derived using the Limber

approximation [61] and integrating the 3D matter power
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-0.124                            -0.009                             0.106                              0.221

FIG. 1: Top left panel: example of a simulated 12-square-degree convergence map in the fiducial cosmology, with intrinsic
ellipticity noise from source galaxies and θG = 1 arcmin Gaussian smoothing. A source galaxy density of ngal = 15/arcmin2

at redshift zs = 2 was assumed. Other three panels: the excursion sets above three different convergence thresholds κ, i.e. all
pixels with values above (below) the threshold are black (white). The threshold values are κ = 0.0 (top right), κ = 0.02 (bottom
left), and κ = 0.07 (bottom right). The Minkowski Functionals V0, V1, and V2 measure the area, boundary length, and Euler
characteristic (or genus), respectively, of the black regions as a function of threshold.

spectrum along the line of sight. To check the accuracy
of our simulations, ray-tracing code, and construction
of the lensing maps, we compare our numerically mea-
sured lensing power spectra to the fitting formulae in
[62]. For this comparison, we derived power spectra from
raw 12-square-degree WL maps (without adding noise
or smoothing), and averaged over the 1,000 maps in our

fiducial model. The results are shown by the solid curves
in Figure 4 for the three different redshifts zs = 1, 1.5,
and 2, with error bars showing the standard deviation of
the power in each `-bin. The dashed curves show the ex-
pectations from [62], which we computed with the public
code Nicaea [63].

The figure shows that our simulations lose power below
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FIG. 2: Left column: the three Minkowski Functionals in two dimensions, V0 (area), V1 (boundary length), and V2 (Euler
characteristic) as a function of threshold κ derived from 12-square-degree convergence maps in different cosmologies. Right
column: differences of MFs in various cosmologies, compared to the fiducial model: control (“auxiliary”) map set in the fiducial
model itself, with different realization of initial conditions (black), Ωm = 0.23 (red), Ωm = 0.29 (pink), w = −0.8 (blue),
w = −1.2 (turquoise), σ8 = 0.75 (green), and σ8 = 0.85 (yellow). The black error bars show the standard deviation of the MFs
among the 1,000 maps of the fiducial map set. A source galaxy density of ngal = 15/arcmin2 at redshift zs = 2 was assumed
and θG = 1 arcmin Gaussian smoothing was applied.

` ∼ 400, due to our finite box size. On smaller scales, we
find excellent agreement out to ` ∼ 20, 000 for zs = 1 and
out to ` ∼ 30, 000 for zs = 1, 5 and 2, corresponding to
our resolution limit. Because of this limitation, we will
employ smoothing scales no smaller than 1 arcmin below.
Comparing Figure 4 to Figure 3 in [34], we notice that
the drop-off in power has been pushed out to higher `,

due to the increased resolution of the density planes.

Our results rely mostly on the cosmology-dependence
of the power spectrum (and MFs), rather than its abso-
lute value. We therefore compare the differences of the
power spectra in various cosmologies from the fiducial
case. The results are shown in Figure 5, which shows
that the agreement is excellent for the dependence of the
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FIG. 3: Comparison between the average MFs numeri-
cally calculated from 200 mock Gaussian random field maps
with unit variance, and the analytic expectations given by
Eqs. (11)–(13). The x axis shows the value of the threshold,
and the y axis shows the fractional differences in the MFs
normalized to the maximum value of the respective MF, as
labeled.

power spectrum on all three parameters, down to scales
of ` ∼ 20, 000. The theoretical predictions for the un-
derlying non-linear matter power are good only to about
∼10% on scales down to ∼ 0.1Mpc [64], which can cause
an under-prediction for the convergence power spectrum
as well [40, 65, 66]; the differences are therefore within
the accuracy of the theory down to these `.
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FIG. 4: Convergence power spectra in the fiducial model from
our simulations, for source galaxies at redshift zs = 1, 1.5, and
2 (from bottom to top, in blue, green, and red, respectively)
compared to theoretical predictions calculated with Nicaea [63]
(black dashed curves). The simulated spectra have been av-
eraged over 1,000 maps, without ellipticity noise or smooth-
ing, and the error bars show the r.m.s. variation among these
maps. Power is missing on large scales due to the finite box
size of the simulations, and on small scales due to mass res-
olution and resolution on the 40962-pixel density planes.

IV. STATISTICAL METHODS OF ANALYSIS

A. Statistical Descriptors

Together, we generically refer to the MFs and the
power spectra as statistical “descriptors” of the conver-
gence map. The descriptors can be combined into a sin-
gle vector, Ni, where i indexes the threshold for MFs
and the multipole for the the power spectrum. Combin-
ing the data from several source redshifts or smoothing
scales simply makes the descriptor vector longer, but we
still treat it in the same way. For each MF, we divide
the range into 15 threshold bins. Similarly, we divide
the power spectrum into 15 scale bins (we require such a
small number to keep the covariance matrix tractable, as
discussed below). The most comprehensive case we con-
sider uses three source redshifts, each with five smoothing
scales for each of the three MFs, plus the power spectrum,
for a total of 15×3×5×4 = 900 entries in the Ni vector.

To constrain cosmology, we are interested in the true
ensemble average5 (denoted henceforth by brackets 〈 〉)
and covariance of these descriptors as a function of cos-
mological parameters (p = {Ωm, w, σ8}). These of course
are not available to us, but can be estimated from the
simulations. Averaging over the pseudo-independent
map realizations within a given cosmology, we can es-

5 Averaged over all possible universes with the same cosmological
parameter values.
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timate the ensemble average by

〈Ni(p)〉 ≈ N i(p) ≡ 1

R

R∑
r=1

Ni(r,p), (16)

where Ni(r,p) is the descriptor vector for a single realiza-
tion and r runs over our R = 1000 map realizations. We
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FIG. 5: Convergence power spectra derived from our simula-
tions are compared to theoretical predictions, as in Figure 4,
except we only show results for source galaxies at redshift
zs = 2, and show the differences between the power spectra
in various cosmologies compared to the fiducial model.

call this estimate the simulation mean. It differs from the
true ensemble average both because of the limited num-
ber of realizations and also because of the limitations
inherent in our simulations. In the absence of a fitting
formula for the MFs in the non-Gaussian case (analogous
to the power spectrum formula from [62]) the simula-
tion mean serves as our proxy for theoretically predicted
MFs. 6

Because of the computational expense, we can only
form this estimate at our few selected cosmologies (Ta-
ble I). Using finite differences between the simulated
cosmologies, we construct a first-order Taylor expan-
sion around our fiducial cosmology to estimate N i(p) for
other cosmologies not explicitly covered by simulations:

N i(p) ≈ N i(p0) +
∑
α

N i(p
(α))−N i(p0)

p
(α)
α − p0α

· (pα − p0α),

(17)
Here, index α = 1, 2, 3 refers to an individual parame-
ter, such as Ωm, w, or σ8, and the sum counts through
all varied cosmological parameters, while p(α) denotes
the cosmological parameter vector of an actually simu-
lated non-fiducial cosmology with only the parameter pα
varied. The fraction in Eq. (17) is the finite difference
derivative. If the non-fiducial cosmology is chosen such

that p
(α)
α − p0α is positive, we call it a “forward deriva-

tive”, if it is negative, we call it a “backward derivative”.
We use either one or the other derivative to compute
parameter constraints to assess the robustness of our re-
sults.

Similarly to the simulation mean, we estimate the co-
variance of the statistical descriptors from the simula-
tions, Cov(Ni, Nj) ≈ Cij , where

Cij(p) ≡ 1

R− 1

R∑
r=1

[Ni(r,p)−N i(p)][Nj(r,p)−N j(p)].

(18)
This covariance matrix contains contributions both from
the sample variance of the true convergence signal and
from the random ellipticity noise. When the size of this
covariance matrix is large, inaccuracies in its estimate
can become challenging, as we explore further below.

B. Parameter Estimation and Constraints

In principle – having numerically evaluated Eqs. (16),
(18) and the finite difference derivatives for Eq. (17) from
the simulated WL maps – one can use the Fisher ma-
trix formalism ([67], and see [68] and [69] for comprehen-
sive reviews of this application) to compute parameter
constraints. In fact, at least four groups have followed

6 Alternatively, the recently proposed perturbative and halo model
based descriptions of WL MFs [29] could serve this purpose.
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this approach recently for weak lensing simulations, some
with redshift tomography [53–55, 70]. In practice, how-
ever, the Fisher matrix is a forecasting tool and mis-
estimation of the covariance from the (simulated) data
makes this procedure unstable as we combine smooth-
ing scales and redshifts. As the descriptor Ni surpasses
several hundred entries, the marginalized error on param-
eters ∆pmarg.

α =
√

(F−1)αα derived from the Fisher ma-
trix F shows a runaway behavior to smaller errors. (Here
again, index α = 1, 2, 3 refers to an individual parameter,
such as Ωm, w, or σ8.) [71] attribute this to the fact that
the estimator for the covariance matrix in Eq. (18), when
inverted, is a biased estimator of the inverse covariance
matrix, and needs to be multiplied by a corrective fac-
tor of (R − I − 2)/(R − 1) after inversion, as found by
[72]. I here is the number of bins Ni enumerated by i.
However, in the method we propose below, this prefac-
tor falls out of the calculation – the effect of the noise in
our covariance matrix is therefore different from the bias
treated in [71]. In particular, the behavior we observe is
consistent with a mis-estimation of the covariance matrix
arising from a small number of independent realizations.
When the number of realizations is insufficient, outliers
will be absent, so covariances will typically be underesti-
mated, resulting in overly optimistic error-bars. This ef-
fect is exacerbated by the tendency of the Fisher matrix
to “jump” on these underestimates and claim stronger
distinction based on them.

Since we want to combine many descriptors, we need
a procedure which is robust and conservative when the
covariance is poorly estimated. With these requirements,
we chose to use χ2-minimization to fit for parameters,
then measure the distribution of parameter fits using an
ensemble of Monte Carlo realizations.

For realizations drawn from the fiducial cosmology p0,
χ2 is

χ2(r,p) ≡
∑
i,j

∆Ni(r,p) [Cov−1(p0)]ij ∆Nj(r,p) (19)

where

∆Ni(r,p) ≡ Ni(r,p0)− 〈Ni(p)〉. (20)

For each Monte Carlo realization, we minimize χ2 with
respect to p using a simulated annealing algorithm. In
practice, the simulation-based estimates described above
replace the ensemble average and covariance. Note that
we fix the covariance matrix to our estimate at the fidu-
cial cosmology, Cij(p0), but below argue that, for this
procedure, having the exact covariance matrix is not cru-
cial. The covariance matrix is inverted with singular
value decomposition and condition number 106, discard-
ing any problematic eigenvectors. The simulation means,
finite differences between cosmologies, and the covariance
matrices are all computed with the auxiliary data set (5
N-body simulations), which has the same cosmology as
the fiducial data set, but shares random seeds, and there-
fore large-scale structures, with the realizations from the

alternative cosmology simulations. In this way we probe
more directly the effect of cosmological differences on
these statistical descriptors. It is also important that
the covariance matrix is constructed from a map set that
is strictly independent of the maps for which χ2 is being
evaluated, lest the covariance be erroneously “tuned” to
the specific data set.

The maps built from the much larger fiducial data set
(45 N-body simulations) make up our Monte Carlo en-
semble. The Ni vectors computed from these maps are
our best representation of the distribution of measured
descriptors. The distribution of the parameters fit to
these descriptors is used to compute the error bars and
confidence contours below. Marginalized errors are com-
puted from the variance of each parameter. To illustrate
covariances, we plot approximate two-dimensional error
ellipses by computing the covariance between parame-
ters (evaluated over the Monte Carlo ensemble), drawing
the 68.4% confidence limit from a corresponding bivari-
ate Gaussian distribution with the same covariance. We
checked these contours against the Fisher matrix con-
tours in a few cases, finding good agreement when the
covariance matrix is small.

For a large numbers of bins, the Monte Carlo confi-
dence limits are stable, and do not show the runaway
behavior we saw for the Fisher matrix estimates. Fur-
thermore, the parameter fits are not strongly biased by a
bad choice of covariance matrix (if the system were lin-
ear there would be zero bias) although the resulting error
bars are not optimal. This means that errors in the esti-
mate of the covariance matrix tend to make our estimate
more conservative. Finally, we introduce the notation

χ2
min(r) ≡ min

p
χ2(r,p) (21)

for the minimized χ2 for map r, and χ2
min/n for the χ2

per degree of freedom in this best-fit model. Here the
number of degrees of freedom is the length of Ni minus
the three model parameters varied. Averaged over real-
izations, χ2

min/n is an indicator for the typical goodness
of fit (and in the case of Gaussian errors, would be <∼ 1).
On the other hand, errors in the covariance estimate will
make the fit worse, so we use this quantity as a diagnostic
of the quality of the estimate.

C. Binning

Here we give more details on our choices of binning. We
pre-compute the MFs for 200 equally spaced convergence
thresholds κ and the power spectrum for 1,000 equally
spaced values of `. Before the analysis, we divide the MFs
into 15 equally spaced bins in κ. To avoid bins lying in
noisy regions where outliers in a few maps dominate (i.e.
very high and low thresholds κ), we restrict ourselves to
the range where the simulation mean of the MFs is at
least 5% of its maximum value. In the case of V0, we
use the differential (instead of the standard cumulative)
version of the MF to determine the κ range.
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The power spectrum is originally computed in narrow,
equally spaced bins, which we rebin into 15 logarithmic
bins (based on the bin minimum), as close to logarithmic
as possible without interpolation. The logarithmic bins
span ` = 100–20, 000, from the largest mode in the map
to our smallest smoothing scale θG = 1 arcmin. Using
upper cutoffs at ` = 40, 000 and ` = 80, 000 does not
change the results appreciably.

D. Breakdown of the Covariance Matrix Estimate

The size of our covariance matrix varies from 15 × 15
elements for a single descriptor, redshift, and smoothing
scale to 900 × 900 elements for all three MFs combined
with the power spectrum, redshift tomography with three
source galaxy planes, and five smoothing scales all com-
bined. Unless all descriptors are highly correlated, it is
clearly very difficult to estimate all elements accurately
from merely R = 1000 maps. We therefore expect that
as we increase the number of threshold or multipole bins,
combine more descriptors, redshifts, or smoothing scales,
at some point, our results become unreliable just because
we have too few maps.

When we compute the marginalized errors both from
the Fisher matrix and from the Monte Carlo procedure,
as mentioned above, they agree for small Ni vectors. Ide-
ally, as the vector’s number of entries is increased beyond
the point where no more information can be gleaned from
the fine shape of the MFs or the power spectrum, the
errors computed from the Fisher matrix and from the
Monte Carlo method would both reach a plateau. In
practice, as one increases the number of entries further
beyond the quality limit of the dataset, the marginalized
errors from the Fisher matrix start improving further as
long as one keeps adding bins, even if there is no new
information content in them. This is clearly unphysi-
cal (and comes from underestimating the [co]variances,
as pointed out above). In contrast, we find that the
Monte Carlo errors start increasing modestly in such a
situation. This behavior of the Monte Carlo results is
also unphysical—the constraints on parameters cannot
become worse when no or more information is added.

The difference between the behavior of the Fisher ma-
trix and the Monte Carlo is crucial when applying these
techniques to simulation data, as opposed to doing fore-
casting from a predictive analytic theory. In particular,
the derived constraints become unreliable if the qual-
ity of the dataset is insufficient (or just barely suffi-
cient) to reach the plateau, i.e. the covariance matrix
gets corrupted before (or just as) the best constraints are
reached. Then no plateau can be identified and the Fisher
matrix constraints keep continuously improving – most
importantly, there is no indication of when one transi-
tions into the unphysical breakdown regime. The Monte
Carlo method, on the other hand, provides a conserva-
tive estimate in this case: as long as the quality of the
data allows it, the parameter constraints will improve,

and when the quality limit of the data is reached—not
because there is no more information in principle, but
because there is insufficient data to give good enough es-
timates for the covariance matrix—the constraints start
to worsen again modestly. In that case one can sim-
ply take the tightest Monte Carlo constraints achievable
to get the best constraints which the given dataset al-
lows. In our cases with multiple descriptors, redshifts,
and many smoothing scales, we have found it difficult to
get a good enough dataset to see a plateau.

In addition to seeing the constraints degrade, the min-
imum value of χ2 can indicate when this breakdown oc-
curs. Empirically, we note that as the confidence con-
tours reach their achievable minimum from our data, the
χ2

min/n starts to rise, eventually reaching χ2
min/n ≈ 2

which signals the beginning of the unphysical breakdown.
For example, when all three MFs are combined, with all
three redshifts and all five smoothing scales, we have 675
entries in Ni and χ2

min/n ≈ 1.9, at which point the con-
tours become a few percent larger than for just three
smoothing scales. Further adding the power spectrum to
these constraints results in 900 entries and χ2

min/n ≈ 2.8,
and the contours begin to widen noticeably. We therefore
take this limit as the breakdown of our simulated map
set.

This behavior, which is the opposite of the Fisher ma-
trix approach that tends to underestimate the errors,
makes our Monte Carlo results conservative with respect
to inaccuracies in the covariance matrix.

V. RESULTS

Using the Monte Carlo procedure, we were able to ob-
tain reliable constraints for combinations of three source
redshifts zs = 1, 1.5, 2 and five smoothing scales θG =
1′, 2′, 3′, 5′, 10′ for nearly all combinations of the MFs and
power spectra.

Figure 6 shows two-dimensional confidence contours,
in each case marginalized over the third parameter, from
the three individual MFs V0 (blue), V1 (green), and V2

(red), from all three MFs combined (pink), as well as
from the power spectrum alone (turquoise). The lower
panels also show the MFs with the power spectrum com-
bined (black). The ellipses shown in this figure enclose
68.4% of the likelihood, as calculated from the covariance
of the best-fit parameter values with our Monte Carlo
procedure described in Section IV B. Table II shows the
corresponding 68.4% confidence limits on individual pa-
rameters, marginalized over the other two parameters.

The table and the figure are both scaled from the simu-
lated 12-square-degree maps to the 20,000-square-degree
solid angle of a full-sky survey, such as LSST (i.e. by a

factor of
√

12/20, 000 ≈ 1/40). All results shown in this
section were computed using the backward finite differ-
ence derivative in (17), which in our cases yielded slightly
wider constraints than the forward derivative. We ex-
plore the difference between the two derivative types ex-
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plicitly in Sec. V F.

∆Ωm ∆w ∆σ8

zs = 2; θG = 1′

V0 0.00317 0.0152 0.00393
V1 0.00191 0.0111 0.00263
V2 0.00187 0.0118 0.00262
PS 0.00297 0.0193 0.00478

MFs 0.00175 0.00979 0.00237
zs = 2; θG = 1′, 2′, 3′, 5′, 10′

V0 0.00153 0.00846 0.00215
V1 0.00163 0.0087 0.00226
V2 0.00158 0.00931 0.00228
PS 0.00288 0.0189 0.00475

MFs 0.00121 0.00668 0.00183
zs = 1, 1.5, 2; θG = 1′

V0 0.00174 0.011 0.00204
V1 0.00141 0.00982 0.00188
V2 0.00135 0.00998 0.00183
PS 0.00156 0.0159 0.00206

MFs 0.00122 0.00846 0.00174
zs = 1, 1.5, 2

θG = 1′, 2′, 3′, 5′, 10′

V0 0.000958 0.0064 0.00143
V1 0.000916 0.00634 0.00131
V2 0.00095 0.00642 0.0014
PS 0.0015 0.0151 0.00206

MFs 0.000912 0.00552 0.00144

TABLE II: 68.4% confidence limits on cosmological param-
eters from the three Minkowski Functionals and from the
power spectrum, marginalized over the other two varied
parameters—with and without combining smoothing scales
and with and without using tomography, as indicated in the
table. Intrinsic ellipticity noise from source galaxies with a
surface density of ngal = 15/arcmin2 on each redshift plane
has been included. The numbers have been scaled from our
12-square-degree maps to a full-sky LSST-like survey.

Figure 6 has four rows. In each row, the 3 panels
show the 3 projections of the likelihood ellipsoid in the
Ωm, w, σ8 space. The top two rows show the constraints
from a single redshift zs = 2, with either a single smooth-
ing scale θG = 1′ (first row) or all five smoothing scales
θG = 1′, 2′, 3′, 5′, 10′ combined (second row). The lower
set of two rows show the same, except using redshift to-
mography with zs = 1, 1.5 and 2 combined. We use only
three smoothing scales θG = 1′, 3′, 10′ for the last row of
the figure, because for the power spectrum it does not
make any difference and for the combined MFs it gives
slightly tighter constraints by a few percent for the nu-
merical reasons described in Sec. IV D.7 The individual
MFs show very similar constraints to each other and keep
the same relative size to the combined-MF contour as in
the second row, so we retain them only in Table II for the

7 The small difference can be seen by comparing the last row of
Table II with the middle row of Table IV.

redshift tomography case. For the individual MFs, the
constraints are tightest with all smoothing scales com-
bined, even in the case of redshift tomography. We will
comment on the black ellipse in the third and fourth row
of Figure 6 in Sec. V D.

These are the main results of this paper, and we next
turn to interpreting them further.

A. Information Beyond the Power Spectrum

A comparison of the pink ellipse (MFs combined) with
the turquoise (power spectrum) in Figure 6 shows that
the MFs constrain all three parameters Ωm, w, and σ8

more tightly than the power spectrum. The tightest con-
straints are obtained when all five smoothing scales are
combined and redshift tomography is included (the bot-
tom row in the figure). The “MFs” and “PS” rows in Ta-
ble II demonstrate the same result for the marginalized
errors on the individual parameters. While Ωm and σ8

are constrained by the MFs only modestly better, there
is a much more significant improvement on the w con-
straint, by a factor of ≈three. Therefore, the MFs ap-
pear particularly useful to improve constrains on dark
energy.8

We would next like to understand the origin of these
constraints better. Looking at the leftmost panel of the
first row in Figure 6, we see that the power spectrum
has a degeneracy in the (w, σ8)–direction. This degen-
eracy appears consistent from the changes in the power
spectra in panel 2 in Figure 5, which shows that for σ8

fixed, the overall normalization of the power spectrum is
a bit lower for the w = −0.8 model than for the fidu-
cial cosmology, and therefore σ8 in the w = −0.8 model
would need to be increased slightly to make it look more
like the fiducial model power spectrum. This explana-
tion, however, ignores the fact that in Figure 6 a third
parameter is varied, Ωm. Further, we note that in addi-
tion to the overall growth, geometrical distance factors
contribute importantly to the overall w-sensitivity of the
convergence power spectrum, e.g. [73].

Interestingly, the MFs show an even stronger degen-
eracy in the (w, σ8) plane, but in a nearly orthogonal
direction. All three MFs place tights constraints in the
direction of the degeneracy of the power spectrum, even
without tomography or combining multiple smoothing
scales. It is instructive to further examine the behavior
of the constraints from V0, with and without combining
smoothing scales. As mentioned above, in the case of a
single smoothing scale, V0 is equivalent to the fractional
area statistic (or histogram), but when multiple scales
are combined, V0 receives, additionally, spatial informa-
tion. We see that combining several smoothing scales

8 At least for the simple models studied here with a constant w.
We plan to study evolving w = w(z) models in the future.
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FIG. 6: Comparison of constraints from the Minkowski Functionals (Vi) and the convergence power spectrum, scaled to a full
sky survey with a source galaxy density of ngal = 15/arcmin2 per source redshift plane. The colors denote: V0 (blue), V1 (green),
V2 (red), V0, V1, and V2 combined (pink), power spectrum (turquoise), and—only in the lower panels—MFs combined with the
power spectrum (black). The ellipses depict 68.4% confidence contours, marginalized over the third parameter not shown in
each panel. The top two rows show the constraints from a single redshift zs = 2, with either a single smoothing scale θG = 1′

(first row) or all five smoothing scales θG = 1′, 2′, 3′, 5′, 10′ combined (second row). The lower set of two rows show the same,
except using redshift tomography with zs = 1, 1.5 and 2 combined. Only three smoothing scales θG = 1′, 3′, 10′ were combined
in the lowest row to improve numerical stability. The MFs constrain all cosmological parameters more tightly than the power
spectrum alone, especially the dark energy equation of state parameter w (by a factor of ∼two). Combining smoothing scales
tightens the MF constraints much more significantly than those from the power spectrum; tomography helps to further tighten
constraints.
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tightens the V0 constraints only modestly in the (w, σ8)–
correlation direction, but results in a significant improve-
ment in the orthogonal, (w, σ8)–anticorrelation direction.
We conclude that in this (w, σ8)–anticorrelation direc-
tion, the non-Gaussian information in the maps is com-
ing from beyond the histogram, whereas in the direction
of (w, σ8)–correlation, most of the information is already
contained in the histogram. This suggests that most of
the value of the MFs, which helps break degeneracies of
w with other parameters in the power spectrum, is con-
tained in V0, and the single smoothing scale ∼ 1arcmin
is sufficient to get most of the benefits. We elaborate on
this finding further in Section V C below.

Upon the suggestion of Ue-Li Pen, we have performed
a null test by generating a full set of 2D Gaussian ran-
dom field maps with the same average power spectra and
dimensions as our simulated WL maps. On these, we
repeated our analysis. We found that for pure Gaus-
sian random fields the MFs provide weaker constraints
than the power spectrum. This is as it should be, since
Eqs. (11)–(15) state that for Gaussian random fields MFs
can be expressed as integrals of the power spectrum. It
proves that the observed stronger constraints from the
MFs in our WL maps indeed come from the non-Gaussian
aspects of these maps.

B. Redshift Tomography

As is well–known, varying either Ωm or w changes both
the expansion history of the universe and the redshift
dependence of the amplitude of the power spectrum. In
contrast, σ8 changes only the overall normalization of the
power spectrum, without modifying its redshift evolution
(at least in the linear regime). For a single redshift, the
amplitude of the matter fluctuations σ8 can be tuned to
compensate for the changes in Ωm or w, but this de-
generacy is broken when several redshifts are considered
simultaneously.

As Table II shows, redshift tomography is especially
useful to break the (Ωm, σ8)–degeneracy in the con-
straints from the power spectrum, improving constraints
on Ωm and σ8 by factors of 2–3. The tomographic im-
provements for w, and on all three parameters from the
MFs, are somewhat more modest (∼ 20 − 30%). To-
mography affects the constraints somewhat more weakly
for the MFs, in part because the (Ωm, σ8)–degeneracy is
weaker to begin with. Interestingly, Fig. 6 shows further
that in the (w, σ8) plane, tomography tightens the power
spectrum constraints almost entirely in the σ8 direction,
leaving the constraint on w relatively unimproved. This
is why, in comparison, the MFs provide a factor of ∼three
better marginalized constraint on w, even after redshift-
tomography is included.

C. Combining Smoothing Scales

Combining smoothing scales turns out to be crucial
for MFs – even more important than tomography. This
was already anticipated in [28], and is here clearly ev-
idenced by the tighter constraints in the 2nd and 4th
row in Figure 6, where multiple smoothing scales are
combined. Also, [74] combined smoothing scales for the
three-point auto-correlation function and most recently
[55] confirmed the importance for peak counts as well.
This is in sharp contrast to the power spectrum, where
combining smoothing scales results in negligible improve-
ments (as it should, at least in the linear regime). The
improvements are most pronounced in the constraints
from V0, especially for a single redshift, as can be seen
by comparing the upper left panel with the left panel in
the second row. We thus further examine this case, as an
example of how MFs derive information from smoothing
scale combinations.

Consider the (w, σ8)–anticorrelation direction in the
top left panel of Figure 6. As we have noted above, the
power spectrum constraints are strongest in this direc-
tion. The power spectrum measures spatial correlations,
and V0 is completely blind to spatial arrangements of
pixel values, when only a single smoothing scale is used.
It is therefore unsurprising to see that V0 constraints in
this direction are particularly weak. The other two MFs
– both sensitive to aspects of shape and topology – incor-
porate some spatial information, and fare much better.
However, when we combine multiple smoothing scales,
the V0 constraint tightens to the same level as the other
MFs (see left panel in the second row). This makes intu-
itive sense, since combining smoothing scales adds spa-
tial distribution information to V0: Whether peaks on
smaller scales are clustered together determines if they
survive large-scale smoothing or get washed out by it.

The above interpretation can be further illuminated by
considering the theoretical predictions for the MFs for
GRFs. We see from Eqs. (14)–(15) that V0 depends only
on σ0, defined in Eq. (14). This is a simple integral of
the power spectrum, and is insufficient to capture all the
cosmological information in the (w, σ8)–anticorrelation
direction. In comparison, V1 and V2 depend, addition-
ally, on σ1, the first moment of the power spectrum de-
fined in Eq. (15), which weighs high ` more than σ0. In
combination, these two integrals provide additional cos-
mological information from the shape of the power spec-
trum. When combining different smoothing scales, the
power spectrum is truncated at different values of `. As
a result, the combination of σ0’s from different smooth-
ing scales captures information from the `–dependence of
the power spectrum, providing V0 with information that
is similar to V1 and V2.

This raises the question: How many smoothing scales
does one need? Combining too many smoothing scales
increases the size of the covariance matrix and can ren-
der the results unreliable, as discussed above. Table III
shows the marginalized constraints from different indi-
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vidual smoothing scales and from their combinations for
all three MFs combined.

Unsurprisingly, the smallest smoothing scale, θG =
1 arcmin, provides the tightest constraints, and the con-
straints get progressively weaker for larger smoothing
scales, up to a factor of ∼ 2 for θG = 10 arcmin. Nev-
ertheless, there is complementary information in these
larger scales. Interestingly, the table shows that one
needs to combine at least three scales to get most of the
improvement shown by the combination of all five scales
we studied. (Since we have not probed more than five
smoothing scales, we cannot say whether adding even
more scales may further improve the result.)

∆Ωm ∆w ∆σ8

θG = 1′ 0.00175 0.00979 0.00237
θG = 2′ 0.00199 0.0106 0.00268
θG = 3′ 0.00201 0.0108 0.00283
θG = 5′ 0.00225 0.0127 0.00316
θG = 10′ 0.00322 0.0152 0.00468
θG = 1′, 3′ 0.00155 0.00849 0.00211
θG = 1′, 5′ 0.00149 0.00816 0.00212
θG = 1′, 2′, 3′ 0.00142 0.00757 0.00197
θG = 1′, 3′, 10′ 0.00139 0.00735 0.00196

θG = 1′, 2′, 3′, 5′, 10′ 0.00121 0.00668 0.00183

TABLE III: Marginalized constraints on cosmological param-
eters from all three MFs combined, for different individual
smoothing scales and from various smoothing–scale combina-
tions. See the caption of Table II for a further explanation of
the numbers in the table. A single source redshift zs = 2 was
assumed. The table shows that combining smoothing scales is
advantageous for MFs and does not reach a minimum for at
least five scales.

D. MFs combined with Power Spectrum

We have so far compared the constraints from MFs
with those from the power spectrum. Since the con-
straints from the MFs is stronger, it is clear that the MFs
contain information beyond the power spectrum. How-
ever, another interesting question is: To what extent are
the constraints from the MFs and the power spectrum in-
dependent? Could constraints tighten further when they
are combined?

To answer this question, ideally we would like to com-
bine the MFs with the power spectrum, using all five
smoothing scales, as well as redshift tomography. Un-
fortunately, as discussed above, the covariance matrix in
this case exceeds the maximum reliable size allowed by
our simulated datasets.

However, we have found that combining only three
smoothing scales, the results remain stable (in the sense
discussed in §IV D above) even when tomography with
all three redshifts zs = 1, 1.5, 2 is used. Table IV and the
last row of Figure 6 show the results in this case. The
figure shows the projected error ellipses from the power

spectrum only (turquoise), from all three MFs combined
(pink), and from the combination of all three MFs and
the power spectrum (black); the table shows the corre-
sponding marginalized constraints on the individual pa-
rameters. Clearly, adding the power spectrum does not
yield any improvement on the constraints already avail-
able from the MFs.

Since we are operating at the quality limit of our
dataset, we evaluated several other combinations with
smaller covariance matrices. The third row of Figure 6
shows redshift tomography with only one smoothing
scale. At first glance, here adding the power spectrum to
the MFs seems to show a small advantage: The contours
get 11% tighter for Ωm and 14% tighter for w and σ8.
However, this is because only a single smoothing scale is
used, which does not extract the maximum amount of in-
formation from the MFs. If one studies only one redshift
and combines all five smoothing scales, again nothing is
gained from adding the power spectrum to the MFs.

This paints a complete picture. We conclude that as
long as several smoothing scales are combined, the MFs
already extract all the information which is in the power
spectrum.

∆Ωm ∆w ∆σ8

PS 0.00147 0.0151 0.00209
MFs 0.000858 0.00549 0.00126

MFs+PS 0.000815 0.00553 0.0012

TABLE IV: Marginalized constraints on cosmological param-
eters from the power spectrum, the three Minkowski function-
als (MFs) combined, and from the power spectrum together
with the MFs. Redshift tomography with source planes at
zs = 1, 1.5, 2 and a combination of three smoothing scales
θG = 1′, 3′, 10′ were used (using all five smoothing scales
with tomography would have caused the constraints to widen
by a few percent for numerical reasons, see text). Intrin-
sic ellipticity noise from a source galaxy surface density of
ngal = 15/arcmin2 per redshift plane has been included. The
table shows that the MFs already include all of the informa-
tion that is in the power spectrum: Adding the power spectrum
does not improve the constraints further. These are our tight-
est constraints.

E. Noiseless Minkowski Functionals

To illustrate the effect of ellipticity noise on our con-
straints, we repeated our analysis on noiseless maps, for
all three redshifts zs = 1, 1.5, 2 and three smoothing
scales θG = 1′, 3′, 10′ combined, which constitutes our
best numerically still stable case. For reference, we note
that the r.m.s. fluctuations in κ caused by large-scale
structures at zs = 2 are σκ = 0.022, very close to the
r.m.s. noise σnoise = 0.023 added to the maps [54]. We
thus expect noise to degrade the constraints by of order
a factor of ∼two.
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The results are displayed in Table V and Figure 7.
As before, the figure shows the constraints from the
power spectrum alone (turquoise), the three MFs com-
bined (pink) and the combination of the MFs and the
power spectrum (black).

The table and the figures demonstrate that the con-
straints are tighter than in the noisy case. We also find
that noise hurts the power spectrum somewhat more than
the MFs: The degradation due to noise for the marginal-
ized constraint on Ωm, w, and σ8 is a factor of 2.1, 2.8,
and 1.8 for the power spectrum (close to the expected
factor of ∼two), whereas the corresponding degradations
for the MFs are factors of 3.4, 3.0, and 3.2. As a result, in
the noiseless case, the MFs outperform the power spec-
trum by a factor of ∼ 3, larger than in the noisy case.

∆Ωm ∆w ∆σ8

PS 0.00067 0.00534 0.00105
MFs 0.00025 0.00184 0.000408

MFs+PS 0.00025 0.00183 0.000403

TABLE V: Comparison of marginalized constraints from the
MFs, the power spectrum, and from their combination, but
without adding any intrinsic ellipticity noise. This table is
the noiseless equivalent of Table IV.

F. Accuracy

Here we discuss the variability of the error contours
under different sets of maps for the fiducial model, to
get an estimate of how much our results depend on the
particular set of simulations and realizations of individual
lensing maps. We then enumerate other possible caveats
and systematic errors that we did not explicitly take into
account.

1. Uncertainties Explicitly Evaluated

We have two strictly independent sets of 1,000 maps
in the fiducial model, obtained using different sets of N-
body runs. We thus have a choice of which of these sets
to use for (i) computing the Simulation Mean Eq. (16),
and (ii) computing the covariance matrix Eq. (18), and
(iii) minimizing χ2 and Monte Carlo. In all of our results
so far, we used the auxiliary set for the Simulation Mean
and the covariance matrix, and the fiducial set for Monte
Carlo. We repeated our calculations by swapping the
map sets used for the covariance matrix and for Monte
Carlo, and confirmed that this has a negligible effect on
our results. Additionally, we have found that for the MFs
the results are almost independent of the set used for the
Simulation Mean. Although we found a dependence on
which set is used for the Simulation Mean for the power
spectrum, this is modest: The change is smaller by a

factor of 3–4 than the dominant source of variability de-
scribed in the next paragraph and expresses itself mostly
as a slight rotation of the ellipse rather than a change in
its size.

The largest numerical variability, however, comes from
the difference between the forward vs. backward finite
difference used for the parameter dependence of the de-
scriptors in the Taylor expansion Eq. (17), which can
be taken as an indication of the robustness of our con-
straints. Evidently, our choice of parameter spacing be-
tween the simulations was somewhat outside the linear
regime, such that these two differences yield different
derivatives. This is the dominant source of uncertainty.
We decided against a higher-order interpolation scheme
to improve on our analysis because these variations are
modest in most cases, and furthermore, they affect the
power spectrum and the MF results in similar ways.
Therefore, we have confidence that the relative strength
of our constraints between the power spectrum and the
MFs holds accurately.

We illustrate the effect of using the two different
derivatives on the contours from MFs and the power
spectrum in Figure 8 for one redshift zs = 2 and one
smoothing scale θG = 1 arcmin. This figure is the equiv-
alent of the first row in Figure 6, but with both derivative
cases shown. The solid and dashed curves in the figure
indicate the constraints calculated from backward and
forward finite differences in Eq. (17) between our simu-
lations, respectively. The differences between the ellipses
in the figure are of a representative size: The difference
between the contours from the two derivatives tends to
get smaller as more redshifts and smoothing scales are
combined. In all our other figures and tables we choose
to show only the more conservative of the two: results
using the backward derivative. The difference in the er-
ror contours is still small enough so that it does not affect
our overall conclusions. The errors due to the choices of
map sets are small in comparison and are not shown.

2. Other Sources of Error

Our study was aimed at a theoretical exploration of the
cosmological information content and utility of the MFs.
As such, we made a list of idealized assumptions – we here
present a partial list of neglected sources of systematic
errors, which will have to be quantified in future work.

The N-body simulations we ran were CDM without
baryons. [75] have shown recently with hydrodynamic
simulations including processes like radiative cooling,
star formation, supernovae and feedback from active
galactic nuclei that baryon physics, in particular the
strong feedback required to solve the overcooling prob-
lem, modifies the matter power spectrum on scales rele-
vant for cosmological lensing studies. In [76] they show
that the use of power spectra from pure CDM simula-
tions can lead to significant biases in the cosmological
parameters inferred from the weak lensing shear signal.
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FIG. 7: Comparison of 68.4% confidence ellipses from maps without intrinsic ellipticity noise. This figure is the noiseless
equivalent of the last row of Figure 6. The colors are the same as in that figure. The figure shows that noise hurts the MFs
more than the power spectrum: the MFs (pink) have a larger advantage—a factor of almost ≈ 3— over the power spectrum
(turquoise) than in the noisy maps. As in the case with noise, adding the power spectrum to the MF constraints (black) yields
no further improvement.
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FIG. 8: Illustration of the largest source of variability in our numerical results. In addition to showing the constraints from
using the backward finite difference derivatives (solid) in the Taylor expansion Eq. (17) as in the other figures, here we also show
the ellipses computed from the forward derivatives (dashed). Otherwise this figure is the same as the first row of Figure 6 for
zs = 2 and θG = 1 arcmin, but showing only the constraints from the MFs combined (pink) and the convergence power spectrum
(turquoise). The differences between the ellipses from different derivatives are small enough not to impact our conclusions, and
tend to get even smaller as more redshifts and smoothing scales are combined. Furthermore, the relative differences between the
MFs and power spectrum are well preserved in both cases individually.

Thus a similar effect is to be expected for the part of the
shear signal beyond the power spectrum probed herein.

We used convergence in our maps, rather than the re-
duced shear that will be available directly from the ob-
servations. One can, in principle, convert one quantity
to the other; in practice, on small scales, where the MFs
derive most of their constraining power, the errors intro-
duced by this conversion will not be negligible, and must
be taken into account when extracting cosmological pa-
rameters from actual data (e.g. [77]).

We assumed the noise from the intrinsic ellipticities
of the source galaxies is given by independent Gaus-
sian distributions, with a single width determined by
the assumed average source galaxy density. This ne-
glects effects such as shot noise from random galaxy po-
sitions, correlations due to intrinsic alignments of galax-
ies, and magnification bias. In the future, ellipticity

noise should be incorporated more accurately, using a
mock galaxy catalog with random galaxy positions and
intrinsic ellipticity components drawn from more realistic
(non-Gaussian) probability distributions, which would
then have to be added to the two independent compo-
nents of the shear signal separately. Additionally, a re-
alistic redshift-distribution of source galaxies should be
employed, and photometric redshift errors folded in the
analysis, rather than confining all galaxies to fixed red-
shift planes.

Furthermore, there are systematic effects from the at-
mosphere and the instrument of a real telescope on one
hand, as well as holes in the maps due to foreground
stars and other impurities, which we have not taken into
account.

The small simulation box size causes a fall–off in the
power spectrum on large scales, and we were unable to
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study correlations between fields larger than 12 square
degrees, assuming them to be independent in our ideal-
ized full-sky scaling.

Finally, the variance in our MF bins may be somewhat
underestimated, because we use only 45 independent N-
body simulations to create our pseudo-independent 1000
convergence maps for the fiducial cosmology, and only 5
N-body simulations for the maps of the other cosmolo-
gies. We plan to create a larger suite of N-body simula-
tions, and study the importance of the number of inde-
pendent runs required for weak lensing map generation,
in a future paper. On the positive side, a larger suite
of runs would allow us to study the dependence of the
(co)variances Cij themselves on the background cosmol-
ogy, and to assess whether these add significant extra
information.

VI. COMPARISON TO PREVIOUS RESULTS

In this section, we compare our results to a few previ-
ous studies. On the one hand, we want to make sure that
our power spectrum constraints are consistent with pre-
vious publications, to validate our simulations and anal-
ysis. This is done in Section VI A. On the other hand,
we would also like to compare our claim that the MFs
can place tighter constraints on cosmological parameters
than the power spectrum to similar findings for other
non-Gaussian statistics, such as the bispectrum. Sec-
tion VI B addresses this.

A. Comparison of Power Spectra

To validate our simulation pipeline, as well as our re-
sults, we next compare the results of our Fisher matrix
analysis for the power spectrum to a recent theoretical
study [8]. While there are many other previous estimates
for cosmological constraints from the WL power spec-
trum (e.g. [42], and for a very recent study, examining
constraints from power spectrum of the logarithm of the
convergence field, see [70]) the specifications in the study
by [8] are closest to the present work. In particular, those
authors present a two–dimensional Fisher ellipse, in Fig-
ure 5 of their paper, in which they vary only the two
parameters Ωm and σ8 . Their results were computed for
a source galaxy redshift distribution around zs = 1 and
surface density of ngal = 40/arcmin2. We have therefore
rerun our analysis for the same source galaxy surface den-
sity, and plot our power spectrum constraints in Figure 9
for zs = 1. We have also kept w fixed at its fiducial
value of w = −1. The solid (dashed) ellipse uses back-
ward (forward) finite differences. The agreement between
both the orientation and overall size of our error ellipse
and that shown in Figure 5 of [8] is very good, especially
considering that theirs is for a different cosmology with
(Ωm, σ8) = (0.3, 0.9). Ours is a factor of 1.25 larger in
Ωm and a factor of 1.4 in σ8.
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FIG. 9: Error ellipse from the convergence power spectrum
alone in the (Ωm, σ8) plane, with w held fixed. This is to be
compared to Figure 5 in ref. [8], who use ngal = 40/arcmin2

and a source galaxy redshift distribution around zs = 1 for
a different cosmology (Ωm, σ8) = (0.3, 0.9). To resemble the
parameters of [8] as closely as possible, we adopted ngal =
40/arcmin2 and zs = 1, but use our fiducial cosmology. The
dashed [solid] contour uses forward [backward] finite difference
derivatives. The agreement of our ellipse with Figure 5 in [8]
is very good, validating our pipeline and results.

B. Comparison to Bispectrum

The bispectrum—or equivalently its Fourier transform,
the three-point correlation function—is the lowest order
polyspectrum beyond the power spectrum and therefore
often used to measure non-Gaussian features. A di-
rect numerical calculation of the constraints from the
bispectrum, using our maps, would unfortunately be
far more computationally expensive than computing the
MFs. In fact, while semi-analytic predictions exist (e.g.
refs.[6, 78, 79]), to our knowledge, the covariance matrix
for the bispectrum has not been computed from simula-
tions directly. Such a numerical calculation is beyond the
scope of the present work, as well, and will be performed
elsewhere. Instead, here we compare our results to the
theoretical Fisher ellipse predictions obtained previously
in [6, 79], and the likelihood analysis for a related, sim-
pler quantity, 〈κ3〉, published in [74].

The authors of [6] vary Ωm (assuming a spatially flat
universe), w0 (which corresponds to our parameter w),
wa (a parameter allowing for the redshift evolution of
dark energy, which we keep fixed at zero), and σ8. They
impose Planck priors on ns, Ωbh

2, and h, all three of
which we have kept fixed. Therefore, they have a larger
parameter space. Their results in Figure 7 of [6] with red-
shift tomography with three redshift bins indicate that
the bispectrum provides constraints very comparable to
those of the power spectrum, but with a slightly differ-
ent degeneracy direction. This different direction helps
break the degeneracy when the bispectrum is combined
with the power spectrum, resulting in a solid factor of 2
improvement in combined constraints for each of the four



19

varied parameters.9

Just like in our analysis, [6] do not place any priors
on the four parameters varied, and in this regard their
results are conservative. On the other hand, it should
be noted, however, that for consistency of their proce-
dure the authors ignore the cross-covariance between the
power spectrum and the bispectrum in their analysis and
simply add the two Fisher matrices (see their Eq. (36)).
Therefore they may overestimate the usefulness of adding
the bispectrum to the power spectrum.

[79], who discuss a nulling technique to reduce the 3-
point intrinsic-shear alignment systematics, find a factor
of 3 improvement in the figure of merit from adding the
bispectrum to the power spectrum constraints. This im-
provement on the figure of merit translates to an improve-
ment on each individual parameter which is noticeably
weaker than the result in [6] (though the authors state
that a direct comparison is prohibited by the different
fiducial parameter values adopted and different survey
specifications).

Finally, [74] study a set of related statistical descrip-
tors, namely 〈κ2〉, 〈κ3〉, and the skewness S3(κ). The
first observational detection dark matter skewness was
reported by [80]. [74] take into account realistic sur-
vey configurations and study the effect of survey ge-
ometry (shallow/wide vs. deep/narrow) on the useful-
ness of these statistics. Varying the parameters Ωm and
σ8, they find that combining the three– and two–point
auto-correlation functions gives an improvement of a fac-
tor of ∼2.5 on the above parameters over the two-point
auto-correlation function alone, for a CFHTLS-Wide-like
survey. Although the auto-correlation functions appear
dissimilar from the bispectrum and power spectrum,[74]
combine 20 different smoothing scales for both 〈κ2〉 and
〈κ3〉. Effectively, their set of twenty 〈κ2〉’s becomes a
coarsely binned measure of the power spectrum with 20
bins in `, while the set of 〈κ3〉’s remains an average over
of the bispectrum over different triangle shapes. The lat-
ter is a sign that the full bispectrum may contain even
more information than the already large improvement
these authors find. Since they vary only Ωm and σ8 and
have very different survey specifications from ours, again
their numbers are not directly comparable.

An attempt at adding 〈M3
ap〉 to 〈M2

ap〉 constraints in
the COSMOS survey [82] has shown very little improve-
ment [81], in accordance with the predictions in [74] for
narrow, deep surveys.

Given the wide range of improvement factors reported
for the bispectrum by the above references and their de-
pendence on survey specifics and cosmological parame-
ters varied, it is difficult to make a direct comparison
to our work. Since the improvement factor we obtain

9 The authors also study the cases of two redshift bins and no to-
mography at all. The less tomography, the more the constraints
on dark energy benefit from a combination of the power spectrum
and the bispectrum.

is stronger than any of the previously quoted values, it
is tempting to infer that the MFs may be able to ex-
tract even more non-Gaussian information than the bis-
pectrum. Unfortunately, this conclusion would be pre-
mature, since our survey geometry and parameter space
is different from the above references. For a precise
quantitative comparison of the bispectrum with our MF
results—to see if there is much information beyond the
bispectrum—one would have to compute the bispectrum
directly from the same simulations used for the MFs.
Also, analogously to the bispectrum, some survey ge-
ometries may be more suited for MFs than others, and
we encourage taking MFs explicitly into account in fu-
ture WL survey strategy planning. We intend to explore
these questions in our future work.

VII. CONCLUSIONS

We have studied the cosmological information content
of Minkowski functionals (MF) derived from mock weak
lensing maps from an extensive suite of ray-tracing N-
body simulations. While there have been a few smaller
precursor works, applying MFs to weak lensing maps,
this is the first large systematic study to our knowledge.
Our N-body simulations cover seven different cosmolog-
ical models, bracketing the parameters Ωm, σ8, and w
around a fiducial ΛCDM cosmology. We created conver-
gence maps with ray-tracing, added intrinsic ellipticity
noise from the source galaxies, and obtained joint con-
fidence limits on parameters with a Monte Carlo proce-
dure.

Our main result is that there is a substantial amount
of information from non-Gaussian features in WL maps,
which, as we have explicitly verified, is coming from
beyond the power spectrum. In particular, the con-
straints on the dark energy equation of state parameter,
w, marginalized over Ωm and σ8, is nearly a factor of
three tighter than from the power spectrum alone. From
combining the MFs with the power spectrum, we also
demonstrated that the MFs contain all of the informa-
tion available from the power spectrum.

The non-Gaussian information extracted by the MFs
resides in part in the one-point function of the conver-
gence, which places constraints primarily in the (w, σ8)–
correlation direction, and helps break the strongest de-
generacy between these parameters present in the power
spectrum. When multiple smoothing scales are com-
bined, the MFs derive further information from the mor-
phology and topology of the iso-convergence contours,
and place tight constraints in the orthogonal (w, σ8)–
anticorrelation direction. We further find that redshift
tomography is important to break the degeneracy be-
tween Ωm and σ8. However, the marginalized constraint
on w from the power spectrum alone remains much less
affected by tomography.

It would be interesting to study how the constraints
from Minkowski functionals complement those from the
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power spectrum under more realistic survey conditions—
with improved theoretical modeling, and including in-
strument and atmospheric systematics. The MFs will be
available automatically in future WL survey data, and
our results suggest that they will improve cosmological
constraints. Their treatment here is an important step
towards realizing the full potential of weak lensing maps,
including the information from nonlinear structures.
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