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We study a regression characterization for the quadratic estimator of weak lensing, developed by
Hu and Okamoto [17, 18, 30], for cosmic microwave background observations. This characterization
motivates a modification of the quadratic estimator by an adaptive Wiener filter which uses the
robust Bayesian techniques described in [3, 4, 37]. This technique requires the user to propose a
fiducial model for the spectral density of the unknown lensing potential but the resulting estimator
is developed to be robust to misspecification of this model. The role of the fiducial spectral density
is to give the estimator superior statistical performance in a “neighborhood of the fiducial model”
while controlling the statistical errors when the fiducial spectral density is drastically wrong. Our
estimate also highlights some advantages provided by a Bayesian analysis of the quadratic estimator.

I. INTRODUCTION

The cosmic microwave background (CMB) measures
temperature fluctuations in the early Universe some
400,000 years after the big bang. These fluctuations pro-
vide us with a picture of the Universe at the instant of
recombination and contains a wealth of information for
cosmology and cosmic structure. One important charac-
teristic of the observed CMB is that the photon paths
have been distorted, or lensed, from the gravitational
effect of intervening matter. Estimating this lensing is
important for a number of reasons including, but not
limited to, understanding cosmic structure, constrain-
ing cosmological parameters [21, 34, 36] and detecting
gravity waves [22, 24, 31]. There have been a num-
ber of proposed estimators for the lensing of the CMB
[1, 5, 7, 13, 14, 17, 18, 30]. The most widely used was de-
veloped in [17, 18, 30] and is referred to as ‘the quadratic
estimator’. This estimator has recently been used by
[6] to report the first detection of gravitational lensing
from the CMB alone (ACT collaboration) with a similar
analysis just released in [38] (SPT collaboration). This
estimator, up to leading order, is an unbiased minimum
variance estimator. In this paper we study the potential
advantages obtained by relaxing the unbiasedness con-
straint, borrowing statistical techniques from Bayesian
and regression theory.
The effect of lensing is to simply remap the CMB,

preserving surface brightness. Up to leading order, the
remapping displacements are given by ∇φ, where φ de-
notes a lensing potential and is the planer projection
of a three dimensional gravitational potential (see [8],
for example). The lensed CMB can then be written
Θ(x + ∇φ(x)) where Θ(x) denotes the unlensed CMB
temperature fluctuations projected to the observable sky.
In this paper we work in the small angle limit and use
a flat sky approximation so that x ∈ R

2. The isotropic
and Gaussian assumptions for Θ(x) translates to inde-
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pendence under the Fourier transform. However, for
a fixed lensing potential φ, the lensed CMB becomes
non-isotropic, leading to correlated Fourier modes. The
quadratic estimator takes advantage of this correlation
and uses weighted sums of Fourier cross products to un-
biasedly (up to leading order) estimate the lensing po-
tential.
By relaxing the unbiasedness constraint and utilizing

Bayesian techniques (originally developed in [3, 37] for
statistical regression) we propose an adaptive shrinkage
adjustment to the nominal quadratic estimator. The new
estimator is given by

φ̃(L) =

[
1− F φ̂

L

2AL

Cφφ
L,fid + 2AL

]
φ̂(L) (1)

where φ̂(L) is the regular quadratic estimator at fre-

quency L ∈ R
2; Cφφ

L,fid is a fiducial spectral density model
for the gravitational potential φ; 2AL is the approximate

variance of φ̂(L) derived in [18]; and F φ̂
L is an adaptive

shrinkage factor defined in Section IVB. The formula
makes it clear that the estimator is essentially an adap-

tive Wiener filter: shrinking φ̂(L) when 2AL/C
φφ
L,fid is

large and retaining φ̂(L) when 2AL/C
φφ
L,fid is small. The

adaptive shrinkage factor F φ̂
L is derived as a posterior

expected value in a generalized Bayesian procedure and
adapts the Wiener filter to account for uncertainty associ-

ated with misspecification of Cφφ
L,fid. Indeed, the Bayesian

viewpoint is the principal advantage of the estimate: us-
ing posterior draws of the lensing potential φ, one can
construct estimates and quantify the uncertainty for any
non-linear function of the gravitational potential, includ-
ing spectral density estimate. Moreover, in Section IVB
we show that our Bayesian procedure is easy to simu-
late without resorting to expensive Markov Chain Monte
Carlo (MCMC).
The non-informative prior for this Bayesian procedure

is parameterized by a fiducial spectral density Cφφ
L,fid for

the lensing potential φ and utilizes a hierarchal struc-
ture to induce robustness. Robustness, in this context,
pertains to the stability under mis-specification of the
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fiducial spectral density. We illustrate this property
with simulations that demonstrate the similarity between
φ̃(L) and the optimal Wiener filter if one had access to
the true spectral density for φ, even when the fiducial
model is wrong by a relatively large factor (similar ro-
bustness properties have been demonstrated in [3]). In

fact, φ̃(L) also has a frequentist interpretation that is in-
dependent of the Bayesian underpinnings. At the end of
Section IVB we discuss the connection with a general-
ized James-Stein shrinkage estimator [19], where the role
of the fiducial spectral density is essentially to specify a
shrinkage direction.
It should be noted that our Bayesian posterior is es-

sentially an approximation since we model the lensing
operation using the same first order Taylor approxima-
tion present in the quadratic estimator. Therefore, the
well known bias in the quadratic estimator, derived in
[11, 23], is still present in the estimate φ̃(L) and in the
associated posterior samples. In the context of spectral
density estimation one may be able to simply subtract

this bias using the fiducial model Cφφ
L,fid. However this

would require some stability of the bias under misspeci-

fication of Cφφ
L,fid which is yet to be established.

The remainder of this paper is organized as follows.
In Section II we establish the connection between regres-
sion and the quadratic estimator. This connection is then
used in Section III to derive the optimal Wiener filter of
the quadratic estimate when the true spectral density
for φ is known. In Section IV we derive the adaptive
shrinkage estimator (1) using Bayesian techniques when
the spectral density for φ is unknown. Finally, in Sec-
tion V we present some simulation examples exploring
the advantages of the estimator (1) and its Bayesian in-
terpretation.

II. REGRESSION AND THE QUADRATIC
ESTIMATOR

In this section we characterize the quadratic estima-
tor in terms of generalized least squares regression. The
main utility of this connection is the incorporation of
tools from statistical regression that lead to the shrink-
age estimators given in sections III and IV.
The quadratic estimator is derived under the assump-

tion that the observed lensed CMB field is contaminated
by additive noise and an instrumental beam. Through-
out this paper we let Θ̃(x) denote the observed CMB
field with lensing, beam (denoted by ϕ) and noise (de-
noted N(x)) so that

Θ̃(x) = N(x) +

∫
Θ(y +∇φ(y))ϕ(x − y) dy.

The quadratic estimator is based on a first order Taylor
approximation in ∇φ on the lensed CMB field: Θ(x +
∇φ(x)) = Θ(x)+∇φ(x) ·∇Θ(x)+O(φ2). By truncating
O(φ2) terms one gets the following approximation for the

correlation of Fourier modes induced by lensing:

〈
Θ̃(ℓ+L)Θ̃(ℓ)∗

〉
≈ δLC

ΘΘ
ℓ,expt + fL(ℓ)φ(L) (2)

where fL(ℓ) ≡ (2π)−1
[
(ℓ+L) ·LCΘΘ

ℓ+L−ℓ ·LCΘΘ
ℓ

]
ϕ(ℓ+

L)ϕ∗(ℓ), CΘΘ
ℓ denotes the flat sky power spectrum for

Θ and CΘΘ
ℓ,expt ≡ |ϕ(ℓ)|2CΘΘ

ℓ + CNN
ℓ so that CΘΘ

ℓ,expt de-
notes the power spectrum for the unlensed CMB cor-
rupted with experimental noise and beam. To avoid
any confusion notice that we are adopting the nota-
tional convention of [28] (see Section 4.1) so that CΘΘ

ℓ

is defined by 〈Θ(ℓ)Θ(ℓ′)∗〉 = δℓ−ℓ′C
ΘΘ
ℓ where Θ(ℓ) ≡∫

e−ix·ℓΘ(x)d
2x
2π and δℓ ≡

∫
eix·ℓ d2x

(2π)2 . Throughout the

remainder of the paper we let angled brackets (as used in
(2)) denote expectation over the unlensed CMB and the
instrumental noise, while holding the potential φ fixed.
Equation (2) exposes the nonstationarity in the lensed

temperature field through the cross correlation of Fourier
modes. The quadratic estimator uses this correlation
to estimate φ(L) by weighted averaging cross products

of Θ̃(ℓ) separated at lag L 6= 0. In particular, let
k = 1, 2, . . . index a set of frequencies ℓk ∈ R

2. Now,
for each k define the normalized cross product at lag
L, vL,k ≡ Θ̃(ℓk +L)Θ̃(ℓk)

∗/fL(ℓk) and the correspond-
ing vector of these cross products vL ≡ (vL,1, vL,2, . . .)

†.
Since L 6= 0, equation (2) implies that each vL,k is a noisy
unbiased estimate of φ(L) (up to the approximation in
(2)). Writing this statement in a regression setting one
obtains

vL = 1φ(L) + eL (3)

where for each fixed L, eL is an error vector and 1 is
a vector of ones. Approximation (2) establishes that
〈eL〉 ≈ 0. The generalized least squares regression es-
timator for φ(L) is then

φ̂(L) ≡ (1†
N

−1
L 1)−11†

N
−1
L vL (4)

where NL is the covariance matrix of eL which is approx-
imated as follows:

(
NL

)
k,j

≡ 〈vL,kv
∗
L,j〉 − |φ(L)|2

≈ [δ2ℓk−ℓj
+ δ2ℓk+ℓj+L]

CΘΘ
ℓk+L,exptC

ΘΘ
ℓk,expt

fL(ℓk)fL(ℓj)∗
.

The above approximation is obtained from (2) using
Wick’s theorem and discarding any O(φ) terms. Also no-
tice that, in practice, the covariance matrix NL is based
on a discrete grid approximation in Fourier space that
arises from finite sky observations of Θ̃. In particular, δℓ
is approximated as 1/∆L when ℓ = 0 and zero otherwise,
where ∆L is the area element of the grid in Fourier space.
For the remainder of the paper we do not distinguish the
discrete case versus the continuous and simply equate δ0
with 1/∆L leaving it understood that equality holds in
the limit as ∆L → 0.



3

This is not the typical derivation of the quadratic es-
timator. However, it should be no surprise they are re-
lated since both are minimum variance estimators. To
connect the two, notice that the only reason δℓk+ℓj+L ap-

pears in NL is that the terms Θ̃(ℓ+L)Θ̃(ℓ)∗/fℓ(L) and

Θ̃(ℓ′+L)Θ̃(ℓ′)∗/fℓ′(L) are the same when ℓ+ℓ′+L = 0.
Therefore, if we only include unique observations in vL,
NL becomes diagonal. It is now easy to see that

1†
N

−1
L vL =

1

2δ0

∫
fL(ℓ)

∗Θ̃(ℓ+L)Θ̃(ℓ)∗

CΘΘ
ℓ+L,exptC

ΘΘ
ℓ,expt

dℓ (5)

1†
N

−1
L 1 =

1

2δ0

∫ |fL(ℓ)|2
CΘΘ

ℓ+L,exptC
ΘΘ
ℓ,expt

dℓ. (6)

where the equalities are understood to hold in the
continuous-to-discrete approximation inherent in δ0 and
the above integrals. Notice that the factor of 1/2 comes
from the fact that the integrals have non-unique terms in
the integrand. Returning to the original characterization

of the quadratic estimator developed in [17, 18], φ̂ has the

form AL

∫
Rd Θ̃(ℓ+L)Θ̃(ℓ)∗gℓ(L) dℓ where the weights g

must satisfy the constraint gL(ℓ)fL(ℓ) ≥ 0 and the nor-
malizing constant AL is given by A−1

L ≡
∫
gL(ℓ)fL(ℓ) dℓ

to ensure unbiasedness. In [17] the optimal weights g are
derived to be proportional to fL(ℓ)

∗/[CΘΘ
ℓ+L,exptC

ΘΘ
ℓ,expt].

Now, plugging in these optimal weights and using (5) and
(6) one immediately gets

φ̂(L) ≡ (1†
N

−1
L 1)−11†

N
−1
L vL

= AL

∫

Rd

Θ̃(ℓ+L)Θ̃(ℓ)∗gL(ℓ) dℓ.

Moreover, the prediction variance follows easily from
standard regression theory which gives the following vari-

ance of φ̂

〈
φ̂(L)φ̂(L′)∗

〉
−φ(L)φ(L′)∗

=

{
(1†

N
−1
L 1)−1, if L = L′;

0, otherwise

= δL−L′2AL

where the last equality holds by (6).

III. SHRINKING THE QUADRATIC
ESTIMATOR WHEN C

φφ

L IS KNOWN

The main reason the regression characterization of the
quadratic estimator is useful is to easily see how one
would relax the unbiasedness constraint when the true
Cφφ

L is known. Indeed, a natural extension to the gener-
alized regression estimate is called ridge regression which
can be written

φ̃λL
(L) ≡ (1†

N
−1
L 1+ λ−1

L )−11†
N

−1
L vL (7)

where λL is a ridge parameter which regularizes the in-
trinsic instability that arrises when 1†

N
−1
L 1 is small (i.e.

when the variance of the re-construction is large). When
φ(L) is a realization from a mean zero Gaussian ran-
dom field and λL is set to the variance of φ(L) then the

ridge regression estimate φ̃λL
(L) can be interpreted as

the posterior expected value given the data vL under the
assumption that both eL (defined in (3)) and φ(L) are
uncorrelated, mean zero and jointly Gaussian. Returning
to the original characterization of the quadratic estimate
this leads to the following expression for φ̃λL

(L):

φ̃λL
(L) =

1

A−1
L + 2/Cφφ

L

∫

Rd

Θ̃(ℓ+L)Θ̃(ℓ)∗gL(ℓ) dℓ

when setting λL = δ0C
φφ
L .

Moreover, the posterior variance of φ(L), under this
Bayesian interpretation, is simply (1†

N
−1
L 1 + λ−1

L )−1 =

δ0/
[
(2AL)

−1 + (Cφφ
L )−1

]
.

The above Bayesian interpretation of φ̃λL
(L) relies on

the assumption that vL,k is Gaussian. This is clearly
violated since vL,k is a product of two Gaussians. How-
ever, one can also interpret the ridge regression estimate
φ̃λL

(L) in the spirit of a Wiener filter of the quadratic
estimator which makes the Gaussianity assumption less
worrisome. In particular, if one treats the quadratic es-

timate φ̂ as data, the approximate unbiasedness of the
quadratic estimator allows one to write

φ̂(L) = φ(L) + ǫ(L) (8)

where 〈ǫ(L)〉 ≈ 0 and
〈
ǫ(L)ǫ(L′)∗

〉
= δL−L′2AL. The

supposition that ǫ is Gaussian becomes more believable

since φ̂ is a weighted average of vL,k which are approxi-
mately independent random variables (up to zero order
in φ). If one now applies the Bayesian paradigm un-
der the assumption that φ and ǫ are uncorrelated mean
zero Gaussian random fields, then the posterior expected

value of φ when observing φ̂ becomes

φ̃λL
(L) =

Cφφ
L

2AL + Cφφ
L

φ̂(L) (9)

when setting λL = δ0C
φφ
L .

This agrees with (7) and is clearly recognized as a Wiener

filter of the quadratic estimate φ̂.

IV. ADAPTIVE SHRINKING WHEN C
φφ

L IS
UNKNOWN

The previous section derived the optimal Wiener fil-
ter of the quadratic estimate when the spectral density

Cφφ
L is known. In this section we study the scenario that

Cφφ
L is not known. The main question is how to de-

rive a shrinkage factor, as in the Wiener filter (9), with-
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out knowledge of Cφφ
L . This is derived using a hierar-

chal Bayesian analysis which establishes that the shrink-
age factor is a mixture over the possible values of the

Cφφ
L supported by the data. In IVA we first discuss the

full Bayesian analysis which requires a prior distribution

on the unknown spectral density Cφφ
L . To circumvent

computational difficulties with such an analysis we then
recommend a non-informative generalized prior, in IVB,
which gives rise our robust adaptive shrinkage estimator
(1) presented in the introduction.
To align our notation with standard statistical theory

it will be useful to concatenate the values of φ̂(L), for
different frequencies L, into one data vector of length
n, denoted φ̂. Define φ similarly as the vector of φ(L)
values for the matching frequencies L used to construct
φ̂. We make the additional assumption that φ and φ̂

contain only unique elements up to complex conjugation
(so there are no distinct coordinates with values w and
z such that z = w or z = w∗). Working with the vectors

φ and φ̂, instead of the functions φ and φ̂, has the addi-
tional advantage that one can easily extend to the case
where the adaptive shrinkage is done on separate annuli
in Fourier space (which is discussed in Remark 1 at the
end of Section IVB).
We work under the viewpoint, used to derived equation

(9), that treats φ̂ as “data” which are then used to esti-
mate φ. Translating equation (9) to our vector notation,
the Weiner filter is given simply by matrix multiplication

φ̃Λ ≡ Λ(Λ + Σ)−1φ̂ (10)

where the matrices Σ and Λ are defined by

Σ ≡
(
δLk−Lj

2ALk

)n

k,j=1

Λ ≡
(
δLk−Lj

Cφφ
Lk

)n

k,j=1
.

In addition, our notation allows us to clearly write the
relationship between φ and φ̂ in a hierarchal Bayesian
setting

φ̂
∣∣φ ∼ N (φ,Σ) (11)

φ
∣∣Λ ∼ N (0,Λ) (12)

where φ
∣∣Λ ∼ N (0,Λ) means Re(φ) and Im(φ) are in-

dependent Gaussian random vectors with individual dis-
tributions given by Re(φ) ∼ N (0,Λ/2) and Im(φ) ∼
N (0,Λ/2).

A. The Bayes Solution

The Bayesian paradigm is the clearest way to under-
stand how one adapts (10) when Λ is unknown. Indeed, if
one is willing to model the uncertainty in Λ (equivalently

in Cφφ
L ) using a prior probability density P(Λ), then

Bayes theorem in conjunction with (11) and (12) gives

a posterior density P(φ,Λ|φ̂) ∝ P(φ̂|φ)P(φ|Λ)P(Λ).

The posterior density P (φ,Λ|φ̂) quantifies the joint un-
certainty in the unobserved φ and Λ when observ-
ing the data φ̂. Notice that one can marginalize out

Λ to obtain a posterior on φ exclusively, P(φ|φ̂) =∫
P(φ,Λ|φ̂)dΛ =

∫
P(φ|Λ, φ̂)P(Λ|φ̂)dΛ where dΛ cor-

responds to coordinate-wise area element. Now the pos-
terior expected value of φ given the data φ̂ can be com-
puted as

∫
φP(φ|φ̂) dφ =

∫ [∫
φP(φ|Λ, φ̂) dφ

]

︸ ︷︷ ︸
Weiner filter (10)

P(Λ|φ̂) dΛ

=

∫
φ̃ΛP(Λ|φ̂) dΛ. (13)

The advantage of (13) is that it clearly exposes how to
handle the situation when Λ is unknown: average the
Wiener filter φ̃Λ over different possibilities for Λ sup-

ported by the data (through the posterior P(Λ|φ̂)). In

fact, since φ̃Λ depends on Λ only through a multiplicative
factor, (13) simplifies to
∫

φ̃ΛP(Λ|φ̂) dΛ =

[∫
Λ(Λ + Σ)−1P(Λ|φ̂) dΛ.

]

︸ ︷︷ ︸
posterior expected
shrinkage factor

φ̂ (14)

Therefore, to account for uncertainty in Λ when estimat-
ing φ simply replace the shrinkage factor Λ(Λ + Σ)−1 in
(10) with it’s expected value under the posterior distri-

bution on Λ, P(Λ|φ̂).

B. Robust generalized Bayesian adaptive shrinkage

The Bayesian analysis, while being a complete proba-
bilistic combination of the data φ̂ and the prior knowl-
edge for Λ, can be time consuming for two reasons. First,
one needs to translate the knowledge in Λ to a prior dis-
tribution P(Λ). Secondly, getting posterior samples from

P(Λ|φ̂) often requires advanced Monte Carlo techniques
(similar to those found in [9, 39] for example). For these
reasons we present a simplified non-informative general-
ized prior on Λ, originally developed in [3, 37], for quick
exploratory analysis. This prior requires the user to spec-

ify a fiducial spectral density model, denoted Cφφ
L,fid, and

is designed to be both robust against alternative spectral
truths and computationally simple.
To specify the prior start by defining the following ma-

trix based on the fiducial spectral density

Λfid ≡
(
δLk−Lj

Cφφ
Lk,fid

)n

k,j=1
.

The non-informative generalized prior for Λ is given by

Λ ∼ ξ(Σ + Λfid)− Σ (15)

ξ has generalized density ∝ ξ−1 on (ρ,∞) (16)
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where ρ is the largest eigenvalue of Σ(Σ+Λfid)
−1 (which

ensures that ξ(Σ + Λfid)− Σ is always positive definite).
Since the support of ξ contains 1, the prior includes the
fiducial model Λfid as a possible truth. The generalized
density ξ−1 is an improper prior (it integrates to infin-
ity) which can be derived as the well known Jeffereys’
non-informative prior within the class of distributions
Λ ∼ ξ(Σ + Λfid) − Σ for the hierarchal parameter ξ.
The theoretical properties of this and similar priors have
been extensively studied in the statistical literature (see
[3, 4, 37]) and has been shown to yield estimators with
desirable statistical properties.
One of the advantages of this prior is that marginaliz-

ing over φ and Λ collapses (11), (12) and (15) to

φ̂
∣∣ξ ∼ N

(
0, ξ(Σ + Λfid)

)
. (17)

Now it is easy to obtain the posterior distribution on
ξ. In particular, let P(φ̂|ξ,Λfid,Σ) denote the marginal

density of φ̂ in (17) so that

P(φ̂|ξ,Λfid,Σ) ∝
1

ξn|Σ+ Λfid|
exp

(
−‖φ̂‖2fid/ξ

)

where ‖φ̂‖2fid is defined by

‖φ̂‖2fid ≡
∥∥∥(Σ + Λfid)

−1/2Re(φ̂)
∥∥∥
2

+
∥∥∥(Σ + Λfid)

−1/2Im(φ̂)
∥∥∥
2

.

Note, the number of elements in φ̂ is n (so that the vector

(Re(φ̂)†, Im(φ̂)†)† has 2n entries, for example). Therefore
a formal application of Bayes theorem for ξ under the
model (17) gives

P
(
ξ|φ̂

)
∝ P(φ̂|ξ,Λfid,Σ)P

(
ξ)

∝ 1

ξn+1
exp

(
−‖φ̂‖2fid/ξ

)
(18)

on (ρ,∞) where P(ξ) ∝ ξ−1 denotes the prior for ξ. This

shows that the posterior P(ξ|φ̂) has a truncated inverse
gamma distribution, which can easily be sampled from,
as in Algorithm 1 below.

Algorithm 1 Sample from P(ξ|φ̂)
1: Simulate a Gamma random variable ζ with density pro-

portional to ζn−1 exp(−ζ‖φ̂‖2fid)
2: if ζ−1(Σ + Λfid) − Σ is positive definite then go to step

3, else go back to step 1
3: return ξ ← ζ−1

The posterior samples from P(ξ|φ̂) do not have a direct
physical interpretation. However, Algorithm 2 shows how
sampling from P(ξ|φ̂) allows easy sampling from P(φ|φ̂).
Actually, it is not immediately obvious that Algorithm 2
gives samples from P(φ|φ̂) since the prior P(ξ) is im-
proper. However, a careful application of Fubini shows,

indeed, Algorithm 2 samples P(φ|φ̂). In addition, the
posterior expected shrinkage factor in (14) can be com-
puted as follows

∫
Λ(Σ + Λ)−1P(Λ|φ̂)

=

∫ [
I − ξ−1Σ(Σ + Λfid)

−1
]
P(ξ|φ̂)dξ

= I − F φ̂Σ(Σ + Λfid)
−1 (19)

where F φ̂ ≡
∫
ξ−1P(ξ|φ̂) and I denotes the n×n identity

matrix. Keeping track of the normalization factor in (18),

one obtains the following analytic expression for F φ̂

F φ̂ =
n− 1

‖φ̂‖2fid
P
(
n, ‖φ̂‖2fid/ρ

)

P
(
n− 1, ‖φ̂‖2fid/ρ

) (20)

where P (a, x) is the normalized incomplete gamma func-
tion given by P (a, x) ≡ 1

Γ(a)

∫ x

0
ta−1e−tdt. Combining

equations (19) and (14) one obtains the following adap-

tive shrinkage estimate of φ given φ̂

φ̃ ≡
∫

φP(φ|φ̂) =
[
I − F φ̂Σ(Σ + Λfid)

−1
]
φ̂ (21)

which is recognized as the matrix form of (1).
Remark 1: In our implementation of (21) we par-

tition the Fourier frequencies L into concentric annuli
around the origin and construct the posteriors P(ξ|φ̂)
and P(φ|φ̂) separately on each annuli. In this way we

obtain distinct shrinkage factor adjustments F φ̂ for each

annuli, hence the dependence of F φ̂ on L, written F φ̂
L in

(1). This essentially adds flexibility by allowing indepen-
dent priors P(ξ) for each annuli. In fact, if 2AL changes
drastically within an annuli, one may further partition
with the goal of obtaining partitions within which the
values of 2AL are similar.
Remark 2: Although, one has access to an analytic

expression for the F φ̂ given in (20), this formula be-

comes numerically unstable when either ‖φ̂‖2fid is small
or n large. Therefore we recommend approximating

F φ̂
L =

∫
ξ−1P(ξ|φ̂)dξ by averaging samples of ξ−1 ob-

tained from Algorithm 1.

Algorithm 2 Sample from P(φ|φ̂)
1: Simulate ξ from Algorithm 1
2: Set Λ← ξ(Σ + Λfid)−Σ and simulate

φ ∼ N
(

Λ(Σ + Λ)−1
φ̂, [Σ−1 + Λ−1]−1

)

3: return φ

Remark 3: To connect the Bayes estimator (21) with
alternative non-Bayesian estimates of φ, it is instructive
to consider the limit as n → ∞. The cleanest connection
occurs when the fiducial model Cφφ

L,fid is set to 0 (so that
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FIG. 1. Example 1: Pixel space estimates (bottom row) of the filtered lensing potential φ(L)1|L|≤104 (top). The lensed
simulation is done with arcmin pixels, a beam FWHM set to 1 arcmin and additive white noise with a standard deviation of 25
µK-arcmin. The quadratic estimate is shown bottom left and the robust Bayes estimate is show bottom right using an input
fiducial spectral density C

φφ

L,fid set 10 times smaller than the simulation truth spectral density C
φφ

L . The bottom middle two

plots show the Wiener filter of the quadratic estimate given by (9) based on C
φφ

L,fid (middle left) and the true but unknown

spectral density C
φφ

L (middle right).

Λfid = 0) which postulates no lensing in the observed
CMB. Making the additional assumption Σ = 2σ2I the

estimate (21) simplifies to φ̃ =
[
1− F φ̂

]
φ̂. In Appendix

B we show

[
1− F φ̂

]
=

[
1− (2n− 2)σ2

φ̂
†
φ̂

∗

]+

+ o(1) (22)

where o(1) → 0 uniformly in φ̂ as n → ∞ and x+ ≡
max{0, x}. The right hand side of (22) is the shrinkage
factor used in the famous James-Stein shrinkage estima-
tor [19]. This follows since the real and imaginary parts

of φ̂ are modeled as 2n independent Gaussian random
variables, each with variance σ2. In fact, for any fixed
number ǫ > 0, the supremum of |o(1)| over the region
φ̂

†
φ̂

∗

2n−2 ≥ σ2 + ǫ converges to zero exponentially fast as
n → ∞. Therefore if one changes 2n− 2 in the numera-
tor of (22) to, say 2n, this exponential convergence fails
to hold. Even more is true: under the same assumptions
on Λfid and Σ, the results of [2] show that φ̃ is a min-
imax and admissible estimate of φ with respect to the
quadratic loss when n ≥ 2. Similar results for (21) and
other Bayes estimates have been derived in the statistical
literature (see [4, 26] for a review of the literature).

V. SIMULATIONS

We present three simulation examples which give an
overview of some of the advantages provided by the ro-
bust Bayesian procedure developed in Section IV. The
first example demonstrates robustness and compares
with the optimal Wiener filter. The second compares
point-wise error quantification with the quadratic esti-
mator. The final example explores spectral power esti-
mation and demonstrates the robust Bayesian method
can generate more accurate detection levels than the
quadratic version based on spectral density estimation.

Example 1

In this example we consider the problem of imaging (in
pixel space) the band-pass filtered potential φ(L)1|L|≤104

where 1|L|≤104 is the top hat indicator with radius 104.
We remove all frequencies with wavelengths smaller than
2π10−4 for the simple reason that, otherwise, the noise
completely dominates the visualization of the quadratic
estimate. The bottom row of images in FIG. 1 show four
different estimates of the filtered lensing potential in pixel
space based on a lensed CMB simulation in a 17o × 17o

patch of periodic flat sky observed on arcmin pixels. The
lensed CMB simulations are done using a Gaussian beam
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FIG. 2. Example 2: Pixel space line transect plots of the robust Bayes estimate (right, blue) and quadratic estimate (left, blue)
of the filtered lensing potential φ(L)1|L|≤104 plotted in red for both left and right diagrams. The shaded region corresponds to
2σ error bars on the left and a point-wise 95% posterior region on the right. The lensed simulation is done with arcmin pixels,
a beam FWHM set to 2 arcmin and additive white noise with a standard deviation of 7 µK-arcmin. The input fiducial spectral
density C

φφ

L,fid used for the robust Bayes estimate is set 10 times larger than the simulation true spectral density.

FWHM of 1 arcmin and additive white noise with stan-
dard deviation 25µK-arcmin (further simulation details
can be found in Appendix A). These simulation param-
eters were chosen to resemble the realistic experimen-
tal conditions found in ACT/SPT [6, 38]. The top plot
shows the simulation truth φ(L)1|L|≤104 . The bottom
left shows the corresponding quadratic estimate and the
bottom right shows the robust Bayesian estimate given in

(1) where the fiducial spectral density Cφφ
L,fid is 10 times

smaller than simulation truth spectral density Cφφ
L . The

middle two plots show Wiener filters of the quadratic
estimate given by (9) based on the true, but unknown

spectral density Cφφ
L (middle right) and on the same fidu-

cial spectral density Cφφ
L,fid (middle left) used to generate

the robust Bayes estimate.

Our implementation of the robust Bayes estimate uses

distinct shrinkage factor adjustments F φ̂
L on concentric

annuli around the origin (of width 22) in frequency space
(up to 5000, then one shrinkage factor for the remaining
frequencies). As discussed in the remarks at the end
of Section IVB, this adds additional flexibility to the
estimate when the shape of the fiducial spectral density is
wrong, rather than a simple amplitude mis-specification.

There are three things to notice here. First, the ro-
bust Bayes estimate successfully shrinks the noisy high
frequency terms in the quadratic estimate (i.e. far left is
noisier than than far right). Secondly, if one simply used
the Wiener filter (9) based on the wrong fiducial model

Cφφ
L,fid one would seriously over shrink the quadratic esti-

mate (i.e. middle left over shrinks). Three, the adaptivity

factor F φ̂
L is adjusting the robust Bayes estimate to be-

have more like the optimal Wiener filter (9) when one

has access to the true spectral density Cφφ
L (i.e. middle

right and far right look similar). This demonstrates some
robustness to mis-specification of the fiducial model.

Example 2

The second simulation compares point-wise error quan-
tification for estimating the same filtered potential
φ(L)1|L|≤104 as in last example. To contrast with the
last example, we use a different fiducial spectral density:
one that is 10 times too large rather than 10 times too
small. We also change the beam FWHM to 2 arcmin and
additive noise standard deviation to 7µK-arcmin (the
pixel size and sky coverage is the same as the last ex-
ample). FIG. 2 shows line transect plots of the filtered
simulation truth, plotted in red for both left and right di-
agrams. The left diagram shows the quadratic estimate
(blue) with 2σ error regions shaded grey. The 2σ region
is computed using the Fourier space variance approxi-
mation 2AL1|L|≤104 for the filtered quadratic estimate.
The right diagram shows the robust Bayesian estimate
(blue) with the shading region denoting a 95% the pos-
terior region (point-wise) which is determined from sim-
ulation. We also included a plot of one posterior sample
(dashed). The point-wise error bars corresponding to the
Bayes estimate are somewhat smaller than those from
the quadratic estimator. However, the main feature of
these plots is that, even though the fiducial model is 10
times too large, the Bayes estimate successfully shrinks
the noisy high frequency terms in the quadratic estima-
tor. One can also see the advantage of having poste-
rior realizations of possible truths supported by the data
(dashed) which allow joint quantification of uncertainty



8

rather than simple point-wise mean and standard error
bars provided by the quadratic estimate.

Example 3

In this example we explore spectral power detec-
tion and demonstrate that the robust Bayesian method
can generate more accurate detection levels than the
quadratic version based on spectral density estimation.
CMB gravitational lensing surveys often focus on de-
tecting non-zero spectral density power in the so called
convergence field κ(x) ≡ −∇2φ(x)/2 (using the nota-
tion found in [40]) which is a tracer of projected mass.
Typically, the quadratic estimate is used to estimate the
spectral density Cκκ

L which, along with standard error
bars, are then used to report σ-detection levels. However,
when estimating the spectral density there is always un-
avoidable cosmic variance, which limits the σ-detection
level achievable. To illustrate this fact, consider the case
that one is able to observe the κ(x) field directly, with
no noise. In this case there is no uncertainty in lensing
detection. However, there is still cosmic variance uncer-
tainty for estimating the spectral density Cκκ

L . We ex-
plore this issue by taking advantage of the robust Bayes
method which easily produces estimates of the spectral
power in κ directly, instead of through Cκκ

L . We demon-
strate better σ-detection levels for gravitational lensing
than would be obtained through quadratic estimates of
Cκκ

L .

The parameter of interest, in this case, is the spectral
power in κ. Under the isotropic assumption on κ it is
natural to radially average the spectral power over con-
centric annuli about the origin. We only consider annuli
which are cut in half since κ(−L) = κ(L)∗, because κ(x)
is a real random field, which implies redundant informa-
tion on the other half of the annuli. In particular, for
each half annuli A, we want to estimate the quantity

∆L

#A
∑

L∈A

|κ(L)|2 (23)

where ∆L denotes the area of the grid spacing in Fourier
space arising from finite sky observations, and #A de-
notes the number of observed Fourier frequencies in A.
Notice the factor ∆L makes (23) an unbiased estimate
of Cκκ

L when the annuli radii and ∆L are infinitesi-
mally small (this follows by the equality 〈κ(L)κ(L′)∗〉φ =
δL−L′Cκκ

L where 〈·〉φ denotes expectation with respect to
φ).

The Bayesian estimate for (23) is exceedingly easy to
construct: simply average the quantity (23) computed
on each posterior sample φ obtained from Algorithm 2.
To compare with the quadratic estimate of the spectral
density Cκκ

L , which is typically used for detection, we use
the following unbiased (up to leading order) quadratic

estimate of Cκκ
L

Ĉκκ
L ≡ ∆L

#A
∑

L∈A

|κ̂(L)|2 − 1

#A
∑

L∈A

|L|4AL/2 (24)

where κ̂(x) ≡ −∇2φ̂(x)/2 and φ̂ is the quadratic esti-
mate. Under the Gaussian approximation one gets the

following variance for Ĉκκ
L

var Ĉκκ
L =

1

(#A)2

∑

L∈A

(
Cκκ

L + |L|4AL/2
)2

(25)

This approximation agrees with [23] and [11] (in the
curved sky) when 2AL is rotationally symmetric (the
missing factor of 2 found in [23] and [11] appears since
our A is only half an annuls). Notice that to compute

the variance of Ĉκκ
L one must know the unknown spec-

tral density Cκκ
L . To approximate var Ĉκκ

L we therefore
replace Cκκ

L in the right hand side of equation (25) with

the estimate Ĉκκ
L .

Our first comparison of the Bayes and quadratic esti-
mates of (23) is shown in the left plot of FIG. 3 and is
based on one realization of a lensed CMB field (17o×17o

periodic sky, arcmin pixels, beam FWHM = 1 arcmin,
white 25µK-arcmin noise) with spectral density Cκκ

L

shown in red. We computed two Bayes estimates (es-
timates are denoted with circles and stars) using two

different fiducial models Cφφ
L,fid shown at left in FIG. 3

(with line types −− and − ·−). The estimates are based
on the first 5 concentric half annuli (width = 50) about
the origin. The attached error bars correspond to 2.5th

and 97.5th posterior percentiles. The squares show the
quadratic estimate (24) with 2σ error bars based on (25).
There are two points here. First, the Bayesian error bars
are smaller and more naturally handle the positivity con-
straint. Secondly, the Bayesian regions are relatively ro-

bust with respect to misspecification of Cφφ
L,fid (i.e. the

error bars attached to the circles and the stars are about
the same size).
For our second comparison we check the posterior cov-

erage probabilities, the quadratic estimate coverage prob-
abilities and the relative sizes of the quadratic and Bayes
error bars. We simulated 1000 independent lensed CMB
realizations (with the same simulation configuration as
above) using independent realizations of the unlensed
CMB, the noise and the lensing potential for each simula-
tion. The right hand plot of FIG. 3 shows the histograms
of the corresponding quadratic and Bayes estimates of
(23) at frequency |L| = 200 (with half annuli width set to
50). The Bayes estimates were generated using the fidu-
cial spectral density plotted with line type − · − shown
at left in FIG. 3. The dashed red vertical lines designate
the value of the true spectral density Cκκ

200.
The two histograms in FIG. 3 are similar with a slight

variance and bias reduction in the Bayes estimates (18%
smaller variance and 54% smaller bias). However, the
main difference can be found in the associated error bars.
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FIG. 3. Example 3: The left plot illustrates spectral power estimation for the convergence κ(L) using the quadratic estimate
(squares) and the robust Bayesian method (circles and stars) for two different input fiducial models (dashed and dashed-dotted
lines). The error bars for the Bayesian estimates correspond to 2.5 and 97.5 posterior percentiles, whereas the quadratic
estimate is displayed with 2σ error bars (see Section V for simulation details). The histograms, at right, show the quadratic
estimates and the Bayes estimates of the spectral power in κ(L) at wavelength L = 200 based on 1000 independent lensing
simulations. The dashed red vertical lines in the histogram plots designate the value of the true spectral density Cκκ

200. See
Section V for further details.

For the Bayes estimate we use a posterior region based on
2.5th and 97.5th posterior percentiles for estimating (23),
not Cκκ

200. Out of 1000 independent simulations, 952 of
the predicted posterior confidence regions contained the
true value of (23), which is different in each simulation.
Conversely, 931 out of the 1000 2σ-error bars associated
with the quadratic estimate covered the true value of
Cκκ

200. One would expect typical Monte Carlo fluctua-
tions of about ±7 (if true coverage was 95%) so this gives
moderate evidence that the quadratic estimate error bars
slightly undercover the truth. Moreover, the width of the
posterior regions are 15% smaller than the correspond-
ing error bars for the quadratic estimate. This is due to
the fact that the Bayes estimate does not contain cosmic
variance uncertainty between (23) and Cκκ

200.
It should be noted that it is possible to adjust the vari-

ance calculation (25) to represent the uncertainty for esti-
mating (23), rather than the uncertainty for Cκκ

L . This is
somewhat beside the point, however, that the Bayesian
estimates do this naturally no matter what functional
one is estimating. There still needs to be a verifica-
tion process that the Bayesian method behaves appro-
priately, however, for any rigorous scientific application.
This most likely would include some type of simulation
study. It may also include, as is done in Remark 3 of
Section IVB, a derivation of the frequentest properties
of the Bayesian estimates.

VI. DISCUSSION

The unbiasedness constraint in the quadratic estimator
forces large variability in the estimated gravitational po-

tential, especially at high frequency. This can present
difficulties for exploratory data analysis, mapping the
lensing potential and estimating nonlinear functionals of
the gravitational potential, for example. In this paper
we study the potential advantages obtained by relaxing
the unbiasedness constraint in the quadratic estimator.
To accomplish this we derived a regression characteri-
zation of the quadratic estimate which then allows one
to clearly see how bias can be introduced for a reduc-
tion of variance: through ridge regression and Bayesian
techniques. The Bayesian framework is especially cogent,
essentially treating the quadratic estimate as data while

incorporating prior information on Cφφ
L . The resulting

estimate is an adaptive Wiener filter adjustment to the
raw quadratic estimate—shrinking frequencies with small
SNR and retaining those with high SNR. As an alterna-
tive to a full Bayesian analysis, which can be somewhat
demanding, we present a non-informative prior which not
only leads to estimates with desirable frequentist prop-
erties (such as an asymptotic James-Stein shrinkage be-
havior) but also yields a posterior distribution which is
easy to simulate without resorting to Monte Carlo tech-
niques. The non-informative prior requires the user to
input a fiducial model, but is designed to be robust to
misspecification of this input model.

One clear advantage of the Bayesian analysis is the
availability of posterior samples to construct estimates
and uncertainty quantification for any non-linear func-
tion of the gravitational potential, including spectral den-
sity estimation. Indeed, rather than using the shrinkage
formula (1) directly (it becomes numerically unstable)
we recommend averaging samples from the posterior ob-
tained from algorithms 1 and 2 given in Section IVB. In
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Section V we explored the advantages gained by having
easily obtained posterior samples: estimating and quan-
tifying uncertainty in functionals of the gravitational po-
tential and joint quantification of uncertainty.

A drawback of the above Bayesian analysis—indeed of
the quadratic estimate itself—is the bias obtained from
the Taylor truncation on the lensed CMB used to derive
the quadratic estimate. The spectral properties of this
bias is relatively well understood [11, 23] when marginal-
izing over the randomness inherent in the large scale
structure. However, it is unclear how this bias effects
other features of the estimate of φ. Therefore, when ap-
plying the Bayesian methods described in the paper, we
recommend avoiding the frequencies which are shown to
be contaminated by biases. An alternative to avoiding

frequencies is adjust 2AL to include the so called N
(1)
L

and N
(2)
L biases. However, until we have a good under-

standing of the sensitivity of N
(1)
L and N

(2)
L to a fiducial

model this remains an unexplored possibility.

Regardless of the bias inherent in the quadratic esti-
mate (from Taylor truncation), de-noising will always be
necessary for any type of pixel space analysis or visu-
alization of the quadratic estimate. Essentially, the es-
timate presented here replaces a simple band-pass filter
with an adaptive robust Wiener filter that has additional
Bayesian structure which can be used for error quantifi-
cation. Our new estimate does introduce additional bias
in the quadratic estimate, but this is simply from atten-
uating noisy frequencies which is a necessary byproduct
of any de-noising procedure.

We conclude by noting that the robust Bayesian pro-
cedure developed in Section IVB is not exclusive to the
quadratic estimate. Indeed, the robust Bayesian esti-
mate can be easily ported to other problems where the
Wiener filter is preferable but the signal spectral density
is unknown. Since the estimate is easy to construct, the
posterior is easy to sample from, and the method only re-
quires an initial guess for a fiducial spectral density, this
technique has the potential for much broader application
in general astrophysical problems. One interesting pos-
sibility is the development of quick Bayesian exploratory
data analysis which can then be followed by a full-scale
Bayesian study. Another possibility is for fast adaptive
filtering done in a scientific pipeline where the posterior
samples can be used to easily propagate uncertainty.

Appendix A: Simulation Details

The fiducial cosmology used in our simulations is
based on a flat, power law ΛCDM cosmological model,
with baryon density Ωb = 0.044; cold dark matter
density Ωcdm = 0.21; cosmological constant density
ΩΛ = 0.74; Hubble parameter h = 0.71 in units of
100 km s−1Mpc−1; primordial scalar fluctuation ampli-
tude As(k = 0.002Mpc−1) = 2.45× 10−9; scalar spectral
index ns(k = 0.002Mpc−1) = 0.96; primordial helium

abundance YP = 0.24; and reionization optical depth
τr = 0.088. The CAMB code is used to generate the
theoretical power spectra [27].
To construct the lensed CMB simulation used in this

paper we first generate a high resolution simulation of
Θ(x) and the gravitational potential φ(x) on a periodic
17o × 17o patch of the flat sky with 0.25 arcmin pixels.
The lensing operation is performed by taking the numer-
ical gradient of φ, then using linear interpolation to ob-
tain the lensed field Θ(x+∇φ(x)). We down-sample the
lensed field, every 4th pixel to obtain the desired arcmin
pixel resolution for the simulation output. A Gaussian
beam is then applied in Fourier space using FFT of the
lensed fields. Finally white noise is added in pixel space.

Appendix B: Derivation of equation (22)

Start by letting s ≡ ‖φ̂‖2fid/(n− 1) which simplifies to
φ̂

†
φ̂

∗

σ2(2n−2) when Λfid = 0 and Σ = 2σ2I. Notice that ‘s’ be-

haves like a ratio between the observed signal power and
the nominal noise level. To make the following calcula-
tions more readable we also let m = n− 1. To establish
(22) it will be sufficient to show

1− 1

s

P (m+ 1,ms)

P (m,ms)
=

[
1− 1

s

]+
+ o(1) (B1)

where o(1) is a function of both m and s such that

sup
s>0

|o(1)| → 0 as m → ∞. (B2)

Notice that 1 − 1
s
P (m+1,ms)
P (m,ms) is increasing in s. This

was shown in Lemma 2.1.1(vii) of [3] where it is noted
that the density for the random variable ξ−1 has a de-
creasing monotone likelihood ratio in s. This is sufficient
for stochastic domination (see Lemma 3.4.2 in [25], for

example) which implies the expected value 〈ξ−1|φ̂〉 ≡∫
ξ−1P(ξ|φ̂) = 1

s
P (m+1,ms)
P (m,ms) goes down when s goes up.

Therefore the supremum sup0<s≤1 |o(1)| is attained at

s = 1. This follows by the fact that 1 − 1
s
P (m+1,ms)
P (m,ms) is

increasing and positive (because it equals 1−〈ξ−1|φ̂〉 and
ξ−1 is supported in (0, 1]). Therefore to prove (B2) it will
be sufficient to establish sups≥1 |o(1)| → 0 since

sup
0<s≤1

|o(1)| ≤ sup
s≥1

|o(1)|.

To study the case s ≥ 1, integration by parts gives

1− 1

s

P (m+ 1,ms)

P (m,ms)
= 1− 1

s

P
(
m,ms

)
− (ms)me−ms

m!

P
(
m,ms

)

= 1− 1

s
+

mm

m!

(se−s)m

sP
(
m,ms

) .
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Therefore

sup
s≥1

|o(1)| = (m/e)m

m!
sup
s≥1

(se1−s)m

sP
(
m,ms

)

≤ (m/e)m

m!P
(
m,m

) (B3)

∼ 2√
2πm

→ 0 (B4)

Line (B3) follows since se1−s ≤ 1 (with equality only
when s = 1) and the fact that P (m,x) is an integral of
a positive function over the interval (0, x]. Line (B4)
follows by Stirling’s approximation and the fact that
P (m,m) = Pr[

∑m
k=1 Xk ≤ m] where Xk are indepen-

dent Gamma random variables with mean and variance
1. The central limit theorem then says P (m,m) =
Pr[

√
m

∑m
k=1(Xk − 1) ≤ 0] → Pr[Z ≤ 0] = 1/2 where Z

is a standard normal random variable.

Appendix C: FFT and the quadratic estimator

Unfortunately the regression format is not amenable
to computation. Therefore one must take advantage of
the Fourier filtering characterization of the quadratic es-
timator to implement it on the computer. There are a
few details that we mention here. The nominal form of
the quadratic estimator is

φ̂(L) = AL

∫

Rd

Θ̃(ℓ+L)Θ̃(ℓ)∗gL(ℓ) dℓ

where the weights g must satisfy the constraint
gL(ℓ)fL(ℓ) ≥ 0 and the normalizing constant A−1

L ≡∫
gL(ℓ)fL(ℓ) dℓ ensure unbiasedness. In [17] the op-

timal weights g are derived to be proportional to
fL(ℓ)

∗/[CΘΘ
ℓ+L,exptC

ΘΘ
ℓ,expt]. However there may be cases

where some pairs of frequencies (ℓ, ℓ + L) need to be

excluded. For example, when Θ̃ is approximated us-
ing a discrete FFT one wants to avoid using the fre-
quencies that have a large amount of aliasing: when
|ℓ1| > 2π/(2∆x1) or |ℓ2| > 2π/(2∆x2) (the Nyquist lim-
its, where ∆x1 is the grid spacing in the first coordinate
position space). In addition we want to avoid using Θ̃(0)
(since it contains no information on lensing). To handle
this we introduce a masking function M(ℓ) and absorb

it into the optimal g

gL(ℓ) ≡
fL(ℓ)

∗

CΘΘ
ℓ+L,exptC

ΘΘ
ℓ,expt

M(ℓ)M(ℓ+L).

In our case we use the following mask

M(ℓ) = 1|ℓ1|<
π

2∆x1
1|ℓ2|<

π
2∆x2

1ℓ 6=0

to avoid aliasing errors (we cut at half the Nyquist) and
the 0 frequency. This masking slightly alters the gradient
filtering characterization of the quadratic estimate found
in [17]. Under the assumption that the masking function
satisfies M(ℓ) = M(−ℓ) one can derive following charac-
terization of the quadratic estimator:

φ̂(L) = −2iALL ·
∫

e−ix·L ~G(x)W (x)
dx

2π
(C1)

where ~G(ℓ) ≡ iℓCΘΘ
ℓ

ϕ(ℓ)∗M(ℓ)

CΘΘ
ℓ,expt

Θ̃(ℓ) and W (ℓ) ≡
ϕ(ℓ)∗M(ℓ)

CΘΘ
ℓ,expt

Θ̃(ℓ).

Since the masking function is not radially symmetric,
the normalization factor AL will not be either. Since a
nominal Riemann approximation to the integral is com-
putational intensive (a two dimensional integral is re-
quired for each L) we derive a Fourier representation
similar to (C1) which can utilize a Fast Fourier Trans-
form. The normalizing factor becomes

A−1
L ≡

∫
gL(ℓ)fL(ℓ) dℓ

=

∫ |fL(ℓ)|2
CΘΘ

ℓ+L,exptC
ΘΘ
ℓ,expt

M(ℓ)M(ℓ+L) dℓ

=

d∑

k,j=1

LkLj

π

∫
e−ix·L[A(x)Ck,j(x)−Bk(x)Bj(x)]

dx

2π

where A(ℓ) ≡ |ϕ(ℓ)|2M(ℓ)
CΘΘ

ℓ,expt

, Bk(ℓ) ≡ iℓkC
ΘΘ
ℓ A(ℓ) and

Ck,j(ℓ) ≡ ℓjℓk(C
ΘΘ
ℓ )2A(ℓ) for k, j = 1, 2.

ACKNOWLEDGMENTS

We gratefully acknowledge enlightening discussion
with Jim Berger, Lloyd Knox and Alexander van En-
gelen.

[1] Anderes, E., Knox, L. & van Engelen, A., Phys, Rev D
83, 043523 (2011)

[2] Berger, J., Ann. Statist. 4, 223-226 (1976)
[3] Berger, J., Ann. Statist. 8, 716-761 (1980)
[4] Berger, J., Statistical Decision Theory and Bayesian

Analysis, Springer (1980)
[5] Bucher, M., Carvalho, C. S., Moodley, K., Remazeilles,

M., arXiv:1004.3285 (2010)
[6] Das, S., et al., Phys. Rev. Lett. 107, 021301 (2011)
[7] Carvalho, C. S., Moodley, K., Phys. Rev. D 81, 123010

(2010)
[8] Dodelson, S., Modern cosmology, Academic Press (2003)
[9] Eriksen, H. et al., ApJS 155, 227 (2004)

[10] Guzik, J., Seljak, U. & Zaldarriaga, M., Phys. Rev. D 62,



12

043517 (2000)
[11] Hanson, D., Challinor, A., Efstathiou, G., Bielewicz, P.,

arXiv:1008.4403 (2010)
[12] Hirata, C. M., Ho, S., Padmanabhan, N., Seljak, U. &

Bahcall, N. A.. Phys. Rev. D 78, 043520 (2008)
[13] Hirata, C., & Seljak, U., Phys. Rev. D 67, 043001 (2003a)
[14] Hirata, C., & Seljak, U., Phys. Rev. D 68, 083002 (2003b)
[15] Horn, B. 1990, Int’l J. Computer Vision, 5, 37-75
[16] Hu, W., Phys. Rev. D 62, 043007 (2000)
[17] Hu, W., ApJ 557: L79-L83 (2001)
[18] Hu, W., & Okamoto, T., ApJ 574: 566-574 (2002)
[19] James, W. & Stein, C., Proc. Fourth Berkeley Symp.

Math. Statist. Prob., 1, pp. 361379 (1961)
[20] Kamionkowski, M., Kosowsky, A., Stebbins, A., Phys.

Rev. D 55, 7368-7388 (1997)
[21] Kaplinghat, M., Knox, L., Song, Y., Phys. Rev. Lett. 91,

241301 (2003)
[22] Kesden, M., Cooray, A., Kamionkowski, M., Phys. Rev.

Lett. 89, 011304 (2002)
[23] Kesden, M., Cooray, A., Kamionkowski, M., Phys. Rev.

D 67, 123507 (2003)
[24] Knox, L., Song, Y., Phys. Rev. Lett. 89, 011303 (2002)
[25] Lehmann, E. & J. Romano Testing Statistical Hypothe-

ses, Springer (2005)
[26] Lehmann, E. & G. Casella Theory of Point Estimation,

Springer (1998)
[27] Lewis, A., Challinor, A. & Lasenby, A., ApJ, 538: 473-

476 (2000)
[28] Lewis, A. & Challinor, A., Phys. Rep. 429, 1 (2006)
[29] Neidinger, R., SIAM Review, Vol. 52, No. 3, pp.545-563

(2010)
[30] Okamoto, T., & Hu, W., Phys. Rev. D 67, 083002 (2003)
[31] Seljak, U, & Hirata, C., Phys. Rev. D 69, 043005 (2004)
[32] Seljak, U., & Zaldarriaga, M., arXiv:astro-ph/9805010

(1998)
[33] Seljak, U., & Zaldarriaga, M., Phys. Rev. Letters, 82, 13,

2636-2639 (1999)
[34] Sherwin, B., et al., Phys. Rev. Letters, 107, 021302

(2011)
[35] Simchony, T., Chellappa, R., & Shao, M. 1990, IEEE

Trans. Pattern An. Machine Intell. , 12, 435-446
[36] Smith, K., Hu W., Manoj, K., Phys. Rev. D 74, 123002

(2006)
[37] Strawderman, W., Ann. Statist. 42 (1), 385 - 388 (1971)
[38] van Engelen, A., arXiv:1202.0546 (2012)
[39] Wandelt, B, Larson, D., Lakshminarayanan, A., Phys.

Rev. D 70, 083511 (2004)
[40] Zaldarriaga, M., & Seljak, U., Phys. Rev. D 59, 123507

(1999)
[41] Zaldarriaga, M., Phys. Rev. D, 62 (2000)


