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Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed
light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon
as the GW event becomes observable. In this paper, we propose a computationally efficient time-
domain algorithm capable of detecting inspiral gravitational waves (GWs) from coalescing binaries
of compact objects with nearly no further delay in addition to the time required to condition the
data into a time series of calibrated gravitational-wave strain. Our algorithm, if can be expanded
to include sky localization, will serve as the first step towards triggering EM observation before
the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called
Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational
cost is further reduced by a template interpolation technique that requires filtering only done for
a “coarse bank”, much sparser than the “fine bank” normally required to sufficiently recover the
optimal signal-to-noise ratio: the filter chain of each coarse-bank template is divided into several
sections, filtering output from these sections are combined appropriately to reconstruct the output
of each of the nearby fine-bank templates. The filter construction and interpolation techniques
are illustrated in this paper using Newtonian-chirp waveforms, although these will be generalizable
to more accurate post-Newtonian waveforms. Towards future detectors with sensitivity extending
to lower frequencies, our algorithm’s computational cost is shown to increase rather insignificantly
compared to the conventional time-domain correlation method using Finite Impulse Response (FIR)
filters.

PACS numbers: 04.80.Nn, 95.75.-z, 97.80.-d, 97.60.Gb

I. INTRODUCTION

using the matched filtering technique [5, 6], which cal-

Coalescences of neutron-star (NS) binaries are primary
sources for ground-based gravitational-wave detectors. It
has been estimated that Advanced LIGO may be able to
detect 10 to 100 such events per year [1, 2]. The merg-
ers of neutron star binaries are also possible progeni-
tors of short hard ~-ray bursts. Although these bursts
are believed to be mostly beamed away from us, the
prompt emission and afterglow they induce in X-ray, op-
tical, infrared and radio frequency bands may well be
less beamed, and therefore be visible to us [3, 4]. If a
statistically significant gravitational-wave trigger can be
obtained before or right after such a coalescence, electro-
magnetic (especially optical) observatories can then be
alerted to search for possible prompt and afterglow emis-
sions — such follow-up observations are likely able to
resolve whether these mergers are indeed the progenitors
of short hard ~-ray bursts, and provide further knowledge
about the nature of these events.

Currently, neutron star - neutron star coalescence sig-
nals are being searched for in gravitational-wave data
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culates the correlation of data with theoretical templates
weighted by noise. In order to reduce the computational
cost, current search pipelines use a frequency-domain
method, which gathers a long stretch of time-series data
containing N points (the duration of which should be
longer than the longest possible signal), then uses a Fast-
Fourier-Transform (FFT) algorithm to search for all pos-
sible signals that end within this stretch of data, with a
cost of O(Nlog N), as opposed to the O(N?) required
by a one-by-one search over merger time. Such a trick,
although efficient, implies that we cannot start analyzing
the data until the collection finishes.

Unless significant changes from current frequency-
domain analysis method are made, the latency caused
by data collection will compromise our ability to obtain a
trigger with the shortest possible delay after the merger,
and will totally prevent us from obtaining the trigger
before the merger. At least two efforts are underway to
suppress latencies for coalescence signals, the Multi-Band
Template Analysis (MBTA) [7] and the Low-Latency On-
line Inspiral Detector (LLOID) [8]. MBTA is a two-band
frequency-domain search method while LLOID provides
an infrastructure that accommodates either time or fre-
quency domain searches. The time-domain aspect of the
LLOID pipeline based on Finite-Impulse-Response (FIR)
filters [9] is described in [8]. Note for a different search



Detector {IZIDIZ'S dur(asglon Neye No.og
iLIGO | 40 25 1.6 x 103]1.7 x 10°
aLIGO | 10 [1.0 x 10°[1.6 x 10*[6.6 x 103

ET 3 [25x10%[1.2 x10°[2.9 x 10*

TABLE I: Basic information for the detection of Newtonian
chirp signals by initial, Advanced LIGO and Einstein Tele-
scope. The columns, from left to right list the names for
present and future detectors, the minimum frequency of the
detector, signal duration and number of wave cycles for a
(1.441.4)Mg NS-NS binary [see Sec. III A], as well as the
number of templates required in order to achieve a match of
0.98 for binaries with individual mass of 1 — 3 Mg [computed
from the metric Eq. (60)].

of short gravitational waves of unknown waveforms, a
program has been set up to analyze available detector
data in near real-time and seek for optical counterpart of
candidate events [10].

In this paper, we propose a straightforward and effi-
cient time-domain search algorithm, which allows zero
and even negative latency (i.e., obtaining trigger before
the merger if the signal-to-noise ratio (SNR) condition
and other consistency conditions are met) in the most
natural way. Admittedly, without the savings made avail-
able by FFT, the computational cost of a straightforward
implementation using FIR filters can be formidable. In
the correlation calculation, each template contains a large
number of wave cycles, and there exists a large number of
templates — and both these numbers increase dramati-
cally with the lowering of the minimum frequency cutoff
fmin (Table I ). This poses serious computational chal-
lenge for detecting GWs from compact object coalescence
for future GW detectors.

We propose two techniques that can dramatically
increase the computational efficiency for time-domain
searches of the inspiral part of GWs from coalescing bina-
ries of compact objects in real-time, and make it feasible
for future detectors with frequency cut-offs at as low as
fmin = 3Hz. The first technique uses the well-known In-
finite Impulse Response, or IIR filters [9], which can be
computed with much higher efficiency than FIR filters.
We propose to filter the data using a bank of IIR filters,
the sum of which approximates each individual binary co-
alescence waveform template. The second technique re-
duces the number of templates by an interpolation tech-
nique that applies to the proposed IIR filter method. In
this approach, we first divide the bank of IIR filters as-
sociated with each template into sub-groups, and then
reconstruct the filter outputs of a fine template bank by
recombining the filter outputs from each of these sub-
groups with appropriate complex coefficients and time
delays. This is similar to the generic multi-band interpo-
lation scheme used in MBTA and LLOID [7, 11, 12].

Several conventions are used in this paper. The term
latency refers generally to the delay from the time when a
signal arrives at the detector to the time the data contain-

ing the signal actually starts to be analyzed. We specifi-
cally focus on the delay starting from the time when the
data are ready to be analyzed. One example of the la-
tency is the delay due to data accumulation before a Fast
Fourier Transformation (FFT) can be performed. The
term real time processing means that data points or data
segments are processed (with outputs generated) at a rate
that is equal to their input rate. Floating Point Oper-
ation is abbreviated as FLOP (plural FLOPs). FLOPS
and flops are used interchangeably to stand for Floating
Point Operations per Second. Throughout this paper, we
follow the convention of counting each real addition and
real multiplication equally as one FLOP.

This paper is structured as follows. In Section II ,
we briefly review the basics of matched filtering tech-
nique and introduce time-domain IIR filters. In Section
III, we use Newtonian-order templates as an example
to construct IIR filters, characterize the error involved
and calculate the computational cost for each individ-
ual template. In Section IV, we present an interpolation
technique that allows us to use a significantly decreased
number of templates for which filter chains must be im-
plemented. In Section V, we make a simple comparison
between the computational cost of IIR filtering and the
straightforward frequency-domain algorithm. In Section
VI, we summarize our main conclusions.

II. MATCHED FILTERING TECHNIQUE

The optimal technique to extract a signal from noisy
data when we have reliable theoretical predictions for the
signal waveform is to use matched filtering [5, 6]. The
output of the matched filtering technique is basically the
correlation of data with expected waveforms weighted by
noise. This can be realized in the frequency or time do-
main. We will give a brief overview of the matched filter-
ing technique, and introduce its frequency-domain imple-
mentation and its time-domain approach using the FIR
and IIR filters.

A. Frequency-domain implementation
1. Single Template

Suppose the output of the interferometer h is a sum of
noise n and, if exists, a signal s:

h=n+s (1)

For the moment, let us assume that s is a single known
waveform. In Eq. (1), we have intentionally left out the
arguments of the functions h, n, and s, which reflects
the point of view that each of them can be equivalently
represented both in the time and frequency domain. More
specifically, we use the following convention for Fourier
transform, which relates h(t) and h(f) (we shall use tilde



to emphasize a frequency-domain representation):

h(f) = [ 7 g (), @)

The power spectral density of n(t) is denoted by Si(f),
which is defined by

R (7)) = 5007~ 1)S(f). ()

Here we use one-sided spectral density, E[ ] denotes the
expectation value over an ensemble of realizations of the
noise and “*” denotes complex conjugation. Sp(f) =
Sr(|f]) as the noise in the time domain n(t) is real.

In order to extract s from h, we perform filtering, which
consists of taking the inner product between data h and
template u, forming a filter output of y:

y = (hlu) = (su) + (nfu) (4)
Here we define inner product as
e L at()b(f)

If both a(t) and b(t) are real valued, this can be further
simplified into

+o0 a* ~
(alb) = 4Re/0 dfé:zl}()ﬂ’

(alb) = (5)

a(t), b(t) € R.(6)

In y, we have a signal component (s|u) and a noise
component (n|u) which fluctuates around zero. If s has
a substantially high amplitude and if the template u is
appropriate, the signal component (s|u) in y will raise to
a high value that merely random fluctuation of (n|u) is
very unlikely to account for. As a consequence, we can
impose a threshold on y — an incidence with y higher
than the threshold is viewed as a detection of a signal.
The detection efficiency depends on the signal-to-noise
ratio (SNR) defined generally as

_ yln=0) — Ely(s = 0)]

Ty(s=0)

, (7)

where 0y (,—0) is the standard deviation of the filter out-
put when data contain noise only. Assuming zero-mean
Gaussian noise, we have for Eq. (4)

(sl
P = Rl )

Note that the SNR does not depend on the normalization
of the template u, and it is conventional to require that
(uJu) = 1. In this case, the cross-correlation of a template
with pure noise (n|u) is a random variable with zero mean
and unity variance. It can be shown that E[{a|n)(n|b)] =
{a|b). So we have

p = (s|u). 9)

According to the Cauchy-Schwarz inequality,

(s]s). (10)

where equal sign takes place when u = As where )\ is
a constant, and normalization of u gives A = 1/4/(s|s).
This means the optimal SNR is given by the modulus
of the signal, (s|s), and the reduction of SNR due to
imperfectness of template is given by the match, which
is also equal to unity minus mismatch, e:

(s|u)

7(u|u><s|s> =1—e¢. (11)

2. Intrinsic and Extrinsic Parameters

In reality, templates are not necessarily placed along
each parameter dimension. The maximization of SNR
over certain parameters can be conducted analytically
and therefore no templates are needed. These parame-
ters are called extrinsic parameters, while those that still
have to be searched over one by one are called intrinsic
parameters.

For example, for any template

a(f) = ao(f)e* et it f >0 (12)
which is constructed from wug(t) by a time shift ¢. and a
phase shift ¢, the SNR, for a target h is given by

_ e B*(f)ﬂo(f) P27 fte+ide
p= 4Re/0 ) e daf . (13)

Optimization over ¢. can be carried out instantly without
having to search over all possible values of ¢., giving

oo B*(f)ﬂo(f)eizwftc
/o Sn(f) a4

maxp =4
¢C p

This makes ¢, an extrinsic parameter. Further optimiza-
tion over all t. can be done by first computing all values
of maxy, p using a Fast Fourier Transform, which cost
O(Nlog N) FLOPs in the discretized case where N is
the number of data points in the time domain. This is
much faster than computing the correlation for all possi-
ble ending times, one by one, which cost O(IN?) operation
counts — and in this way ending time ¢. is converted into
an extrinsic parameters. The method of Fourier trans-
formation will be discussed in detail in subsection V B.

B. Time-domain Approach: FIR and ITR method

For the time-domain filtering we need to obtain a time
series of SNRs as a function of presumed signal arrival



time ¢
p(t) = 2/_0; We“?”ﬁdf
_ / :Cw(t')u(t' byt (15)
with

_o [T h)
which can be thought of as “over-whitened data”; it is a
real-valued function of time. Note that in order to gen-
erate the over-whitened data, we need to convolve h(t)
with the Inverse Fourier Transform of 1/55(f), which is a
time-symmetric, oscillatory function that decays towards
zero when ¢ is much larger than the inverse of the interfer-
ometer’s bandwidth (2 100 Hz), which is about $ 10ms.
This means the over-whitening process has an inherent
latency not much larger than 10ms, which is negligible
compared to the duration of the signal. Note that we
have intentionally not used the real-valued definition (6)
for inner product, because we would like to keep the pos-
sibility of using complex-valued templates.

We now discretize the filtering algorithm. The discrete
form of Eq (15) becomes,

67i27rft’ (16)

k
Pk = Z w;uj—At, (17)

j=—o00

Here we assume t;, = kAt, and that u only have support
within ¢ < 0. While in principle the waveform wuy could
have an infinite support in time, —oco < kAt < 0. How-
ever, the waveform u(t) is always assumed to begin only
after its amplitude reaches sensitivity within the LIGO
band. Hence we instead define the waveform to exist on
the domain —NAt < ¢ <0, and Eq (17) becomes,

k
Pk = Z wju;— kAL, (18)
j=k—N

This summation of the product of data and template
at each step turns out to be the general form of Finite
Impulse Response (FIR) filters. The term finite comes
from the fact that the output py, of the filter (its response)
will become exactly zero after N time steps have passed
since a single initial impulse in the data. For example,
if we assume wy = 1, wy = 0 for k£ # 0, then p will
vanish for & > N. As seen from Eq. (18), each pj, costs
N multiplications and N additions to calculate. This
translates into a computational cost, in terms of FLOPs
per unit time, of ~ N/At.

For certain types of waveforms, Infinite Impulse Re-
sponse (IIR) filters can be used to dramatically reduce
computational cost. The simplest IIR filter is a first-
order recursive algorithm, in which the k-th output yy, is

4

a linear combination of the (k — 1)-th output, yx—1 and
the k-th data, wy:

yp = e~ OTIDAYy, L wpAt, (19)

where 7, {2 are real-valued constants with v > 0 to ensure
stable solutions. It can be shown that, e.g., by using
tools of Z-transform [13], as long as wy, does not diverge
towards k — —oo, then even if the recursion starts at a
finite time step, after an initial transient of several times
1/, the output of the filter achieves a steady state of

k
yp = w;e1TIUTRAAL (20)

j=—o00

Note this is the discretized version of the continuous in-
tegration

y(t) = / w(t)eTTIDEDQ _ . (21)

— 00

Note first that Eq. (20) indeed gives an infinite impulse
response, because for a data series containing only one
impulse, wg = 1 and w, = 0 (k # 0), the output of the
filter, even at very late time steps, never vanishes. More
over, by comparing this with Eq. (15), the IIR filter can
be viewed as a template of a "damped” (looking back in
time) sinusoid:

u(t) = eVt (—t), (22)

where O(t) is the Heaviside function
o(t) = (23)

The IIR filter described above requires only one complex
multiplication and one summation per sampling time,
which means the computational cost is ~ 1/At.

For a simple proof of concept on the computational ef-
ficiency of the IIR over the FIR filtering technique, we
examine the case when we do need to filter for a damped
sinusoid signal with frequency €2 and decay rate . The
data to be filtered has a duration of at least on the order
of 1/~. The Nyquist sampling theorem limits the sam-
pling interval to be at most ~ 1/, meaning that the FIR
template would have the number of data points several
times larger than /7. Subsequently the computational
cost of the FIR in FLOPs per unit time is larger than
02/~. An IIR filter, on the other hand, only has a cost
of ©, which means the cost of IIR filter is v/Q ~ 1/Q
times that of FIR filter, where Q = Q/~v is the quality
factor of the damped sinusoid. As a consequence, if we
can convert our waveforms into a sum of a series of of
high-@ damped sinusoids, IIR filters can be used over
the FIR to dramatically reduce the computational cost.



III. CONSTRUCTION OF IIR FILTERS FOR AN
INDIVIDUAL INSPIRAL WAVEFORM

The simple IIR filter discussed in the previous sec-
tion has the special waveform of a damped sinusoid
[Cf. Eq. (22)]. In this section, we will show that a chain
of IIR filters can be used to “piece together” the wave-
forms of compact binary coalescence. This is possible be-
cause these waveforms are basically sinusoids with slowly
varying amplitude and frequency. For simplicity, in this
paper, we will restrict ourselves to Newtonian Chirps.

A. The Newtonian Chirp Waveform

The Newtonian-chirp is the leading-order waveform
from a compact coalescing binary. In the time domain it
can be written as the real part of the complex expression
(see, e.g., [6], Sec. C),

_ t)—1/4e—i2(5Mc)’S/S(tc—t)‘r’/g-s-iqbc = A(t)ei®®

(24)
where we follow the convention of the geometrized units
with gravitational constant G = 1 and the speed of light
c=1, M. is the chirp mass of the binary,

u(t) o (.

M, = Mn?/® (25)

which depends on the total mass of the binary M and n =
myms/M?, the symmetric mass ratio. The signal finishes
at the ending time t., and ¢. is the constant phase at
the end time. Here we have ignored time-independent
factors of proportionality in the amplitude, which do not
affect template construction. Note that because we are
modeling the inspiral part of the wave, the ending time
t. here is intended to model the end of the inspiral stage,
not the end of the entire coalescence waveform.

We have assigned real-valued functions A(t) and ®(t)
to denote the amplitude and phase of the waveform. Al-
though the actual waveform is the real part of u(t), we
have intentionally kept its complex form, because the
imaginary part of u(t) represents the waveform of a bi-
nary with a phase shift of 7/2 from the real part— there-
fore the real and imaginary parts together form a basis
for the linear space of signals of all phases. This is a
feature of all adiabatic waveforms, which satisfy

A/(QA) <1, Q/Q* < 1. (26)
Here dot represents time derivative, and Q = d is the
instantaneous angular frequency. In other words, the
amplitude A(¢) and angular frequency ®(t) both evolve
at rates much slower than the instantaneous frequency
®. This allows us to use the Stationary Phase Approxi-
mation (SPA) to compute the Fourier Transform of the
waveform in Eq. (24),

(f) oc fTT/0GHAS RStk g (1)

where

3

A:Z

(8wM,)~%/3 (28)
is the intrinsic parameter we need to search for in the
case of Newtonian chirp. Note that when we Fourier-
transform the complex signal of Eq. (24), there is only
positive-frequency component, with a(f) = 0 for f < 0.
On the other hand, if we took the real part of the signal,
we would have a(—f) = a*(f) for f > 0.

The duration of the inspiral wave can be well approxi-
mated as a function of chirp mass M. [See Eq. (25)] and
the detector’s minimum cut-off frequency fumin [33],

647013
(fuin/Hz)¥/3(M./Me)5/3

T(Me, fmin) = S. (29)

One can see that for a fixed fuin, the longest signal dura-
tion corresponds to the smallest chirp mass. The sample
signal durations for the initial, advanced and future GW
detectors of various fiin can be found in Table I, column
3. It is shown that GWs from a canonical (1.4+1.4) Mg
NS-NS binary system will have a duration 40 times longer
for advanced detectors, and possibly 10000 time longer
for the future ET detector than that of the initial detec-
tor.

B. An IIR filter chain

The adiabatic condition in Eq. (26) also implies that
the waveform can be divided into constant-frequency in-
tervals: within each interval it can be approximated as
a sinusoid with constant frequency, while neighboring in-
tervals have slightly different frequencies. This further
indicates that we can attempt to write the entire wave-
form into the sum of a series of damped sinusoids: the
frequency of each sinusoid corresponds to a constant-
frequency interval, the ending time of the sinusoid cor-
responds to the ending time of this constant-frequency
interval, while the decay time should be comparable to
the length of the constant-frequency interval. The ampli-
tude of the damped sinusoid can be set to be comparable
to the amplitude of the original waveform during the cor-
responding constant-frequency interval.

Mathematically, our target is therefore to approximate
the signal template u(t) with the sum of a chain of IIR
filters [Cf. Eq. (22)], which we denote by U (%):

M
U(t) = Z Ble(w_igl)(t_tl)@(tl —t). (30)
=1

Here the chain consists of M filters; for filter | (1 <1 <
M), By is the amplitude of the filter I, £; and =, are the
angular frequency and decay rate, and ¢; is its ending
time.

As a first step, let us determine the relevant portion of
the signal that we need to approximate: this is bounded



by the low frequency cut-off fi,in, below which the chirp
only contributes negligible signal-to-noise ratio, as well as
the high frequency cut-off fi,.x. The minimum frequency
fimin is normally determined by the seismic wall of the de-
tector which is set to be 40 Hz for initial LIGO, 10 Hz for
Advanced LIGO, and might extend to lower frequencies
in future detectors, such as the Einstein Telescope (ET).
The maximum frequency fna.x is either determined by
the end of the Newtonian chirp or the upper end of the
detection band. In this paper we set fiax = 2000 Hz.

Now suppose our Newtonian chirp has a particular
value for the intrinsic parameter A, and t. = 0, ¢, = 0.
Let us define tg = t;,; as the time at which the instanta-
neous frequency of the waveform is equal to fuin (which
means |tg| = —to is the duration of the Newtonian chirp
from fin; to coalescence), and incrementally define

1
t=t1+1T, ‘2©(tl)ﬂ2:e<<l, 1=1,2,...

(31)
until we reach t,;, which corresponds to a frequency at
or beyond fiax. These intervals,

[to,tl], [tl,tg], e [thlatM] (32)

will be the constant-frequency intervals described previ-
ously. The parameter e should be substantially less than
unity, so that the phase error caused by assuming a con-
stant frequency is significantly less than one radian.

For t € [t;—1,t1], we expand ®(t) at t,. = t;—ad; (where
a is an ad hoc parameter to be adjusted later)

(1) = B(t]) + R(t)(t — ]) + %é(ﬁ)(t —t)?  (33)

such that the first term is a constant phase, the sec-
ond term gives a single angular frequency of ®(¢}), while
the third term gives the error of a single-frequency ap-
proximation, which will be small if € is small enough in
Eq. (31). We will then use §; = —®(¢]) as the oscilla-
tion frequency of the IIR filter assigned for this constant-
frequency interval, and prescribe a complex amplitude of

By = A(ty)e!® ) =it (34)
These will assemble into

Ble—in(t—tl) _ A(tl*)eié(t;*)-s-icb(tl*)(t—t;)

~ A)e®® ) g <t<t;. (35)

We must still add a Heaviside function and a damping
component to modify (35) into a form realizable by an
IIR filter. Since the validity of (35) is between ¢;_; and
t;, it is natural to have the Heaviside function cut off
values for ¢ > t;, and to have the damping component
have a time constant comparable to 7;, which gradually
cuts off the filter at ¢t < ¢;_1. Prescribing

with ( yet another ad hoc parameter, we write

Ul(t; Avtc = Oa ¢C = 0)
= Ble—in(t—tz)—’n(tz—t)@(tl _ t) (37)

which is our IIR filter for interval [, for chirps with pa-
rameters A, t. = 0, ¢ = 0. Summing over all U;, we
obtain an IIR chain that approximates the entire com-
plex chirp signal:

U(t;A7tc:07¢c:0): Ul(t;Avtc:0a¢c:0)'

NE

~

1

(38)
If the sum of the complex filter chain U(t) indeed approx-
imates the complex chirp signal u(t) [Cf. Eq. (24)], then
the real and imaginary parts of the output from the fil-
ter chain will be good approximations for filtering chirps
with ¢. = 0 and 7 /2, respectively.

For non-zero t., we will have to apply

Ut; Ajte, e =0)=U(t —te; Ajte = 0,0 =0)  (39)

Note that having Heaviside Function ©(t —t. —¢;) within
U; means we have to collect the IIR filter result of filter [
at t;+t.. The fact that all ¢; are negative means all results
are obtained before the coalescence (which happens at t.)
and hence IIR filtering itself causes no latency — except
for the small latency due to over-whitening, as stated
previously (sec. II B)

C. Filtering for general signal phases and goodness
of match

Since the construction of the IR filter chain is of an ad
hoc nature, we must test how well the resulting IIR filter
chain U can approximate the original signal u. A natural
candidate would be imposing that the match between the
signal u and the template U

)]
PPl = a0 10) (40

must be close to unity.

However, this needs to be connected to the signal-to-
noise ratio achievable by IIR filtering. For doing so, we
must first elaborate how to use the output of the complex
IIR filtering to recover signals with arbitrary phases. If
we write

U = Uy + U (41)

with u,; represent the real and imaginary parts of u in
the time domain, and similarly,

then the true signal of arbitrary phase is a linear combi-
nation of u, and u; written as Aju,+ Asu;, and we should



use a linear combination of the real and imaginary parts
of U, namely B1U, + ByU; as the search template. For
any particular coefficients A; o, the optimal overlap is
given by

<A1UT + Azui|B1Ur + BQU1>
pur (A1, A2) = max
Bia \/(B1U, + B2U;|B1U, + BsU;)
(43)
The worst-case scenario is given by a minimization over

(Al,AQ)Z

worst __

P — min pHR(Al, A2)
IR A1,A \/<A1ur + Agui|A1uT + AQUZ> .

(44)

In fact, when the signal and the template are both highly
adiabatic, it can be shown that prr(A;, A2) is approx-
imately independent of A;», and that to a very good
accuracy:

Peplx ~ Pl - (45)

Eq. (44) is therefore used to calculate the goodness of the
match of the IIR filter chain.

D. Implementation for (1.4 4 1.4)Mg binaries and
initial LIGO

We first apply the prescription described in Sec. III B
to construct an IIR filter chain for (1.4+1.4) Mg binaries
for initial LIGO and use Eq. (44) to test their overlap
with the true signals. We choose (by hand) a = 2.3,
€ = 0.269 and ¢ = 4, an overlap of 0.99 is achieved with
Nir = 200 IIR filters.

We next estimate the computational cost required by
such IIR filtering. We focus on the floating point op-
eration count per unit time required to generate com-
plex outputs from the sum of individual IIR filter out-
puts of Eq. (19). Here we assume the maximum sam-
ple rate for compact-binary coalescence data analysis is
8192 Hz, with 2x down-sampling applied successively to
provide channels with sample rates of 4096 Hz, 2048 Hz,
..., 256 Hz. The IIR filter bank is divided into 6 groups,
each corresponding to a frequency band of 28+5-2k+6 Hy,
for £k =0,1,...,5. For filters in group &, we assume they
are applied to the channel with sample rate of

Sy =288 Hy. (46)

In Table II, we list the actual number of IIR filters re-
quired to achieve a minimum overlap of 0.99 at different
frequency band with downsampling technique. For com-
parison, we list the corresponding numbers for the FIR
method also applied with downsampling technique.

At each time step, each IIR filter needs to per-
form a total of 12 real-number multiplications and addi-
tions namely: 4 real-number multiplications plus 2 real-
number additions for multiplying the current output by
the complex recursive coefficient, 2 real-number multi-
plications for multiplying data (second term in Eq. (19))

with a complex normalization coefficient to yield proper
SNR output, 2 real-number additions for combining the
previous two products, while finally 2 real-number ad-
ditions for adding the result of this filter into the total
output.

If we ignore costs for down- and up-sampling, which
are performed relatively rarely, the total computational
cost for initial-LIGO filters in Table IT is

5
Cir = Y 125, Nup ~ 2.4 x 10°lops.  (47)
k=0

On the other hand, if we carry out the same down
sampling scheme for FIR filtering, the number of points
in group 0 will be

Nrir,0 = So - [t(64 Hz) — tini] (48)

where t(64 Hz) is the time at which the instantaneous
frequency is 64 Hz. For k =1,2,3,...5, we have

NFIR,k = Sk . [t(2k+6 HZ) — t(2k+5 HZ)] (49)

At sample rate Sy, for each time step, we have to perform
two real-valued correlations with array length Npri,
which cost 4Npir i« floating point operations. The total
computational cost of FIR filtering is therefore

5
Crir = Z 48k Nprx =~ 2.0 x 10" flops.  (50)
k=0

This is nearly 8 times the cost of the IIR filter method
assuming downsampling technique applied to both filter-
ing methods. The result of above cost estimation for
the IIR and FIR filtering are also listed in Table II. We
will show in the next subsections that the improvement
is much more significant for advanced detectors as they
venture into lower frequencies.

E. Dependence on initial frequency and future
detectors

As initial frequency fumin is lowered in future
gravitational-wave detectors, we anticipate much longer
signals (see Table I), and therefore a possibly dramatic
increase of computational cost. In this subsection, we
will first obtain analytical scalings in IIR and FIR com-
putational costs, assuming an idealized down-sampling
scheme. We will then provide more realistic estimates of
cost by constructing actual IIR filters and adopting the
same successive 2x down-sampling strategy.

1. Analytical Estimates

Ideally, the minimum sample rate is twice the instanta-
neous frequency of the signal, or S = 2f. For FIR filters,



Rate | Sk (Sil) 16 32 64 128 256 512 1024 2048 4096 8192 N, Total
Type f/Hz | 24| 4-8 |8 16|16 32|32 — 64|64 — 128|128 — 256|256 — 512|512 — 1024|>1024| ~ *°* | Cost
Nr1R X 4547 | 3062 965 304 96 30
LIGO FIR CFIR, k 4.7 6.3 4.0 2.5 1.6 1.0 9004 | 20
IR Nir,x 71 62 34 19 10 4 200 | 2.4
Cir 0.22 0.38 0.42 0.47 0.49 0.39 ’
Nrir x 45835 | 30868 | 9723 | 3062 965 304 96 30
LLIGO FIR 1.7 158 | 100 | 63 10 25 1.6 o | 0883 93
IR Nir 220 | 198 111 62 34 19 10 4 653 | 3.0
Crir 0.17 | 0.30 | 0.34 0.38 0.42 0.47 0.49 0.39 ’
Nrirx [213010]311130|98000 | 30868 | 9723 | 3062 965 304 96 40
BT FIR s 136 [ 398 [25.1] 158 | 100 | 6.3 10 25 1.6 g |067198| 120
B IR Nir x 392 631 | 353 | 198 111 62 34 19 11 3 1814 | 3.3
Cir 0.08 | 0.24 | 0.27 | 0.30 | 0.34 0.38 0.42 0.47 0.54 0.29 ’

TABLE II: Break-down of number of filters and computational cost (over successive two-fold down-sampling channels) of
multi-rate FIR and IIR filtering, of a single template for a (1.4 4+ 1.4) Mg binary for initial, Advanced LIGO and the Einstein
Telescope. See text in Sec. IIID. Here computational costs for each type of filtering and for different sampling channels are
calculated using Egs. (47)—(50), with numerical values quoted in units of MFLOPS or 10° FLOPS. The minimum overlap is
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FIG. 1: Theoretical (dashed curves) and numerical (labeled
by “4+7’s) scaling of the computational cost with fmin for the
FIR (red color) and IIR (blue color) method for one tem-
plate, fixing fmax = 2000 Hz. The theoretical scaling is based
on Egs. (52) and (54) (see Sec. III E 2), numerical values are
taken from Table II, column 15.

we have

te ) _
Ner > 2Neye N/ th:/ﬁdefmfn/S. (51)
tini

Converting the summation Eq. (50) into integral, we ob-
tain:

Crir ~ /QdNFIR ~ il (52)
For IIR filters, during a dephasing time of T' = QG/Q,

we use one filter ANjr = 1 and AQ = QT = v/ 269,

which leads to
ds)

dN1R -5/6
Nur = /dQ = =~ Jmin - (53)
ds V 2€Q)
The computational cost of IIR filtering is
Cur ~ /QdNHR o AR fél/ig (54)

Note that for IIR filtering, the positive power law means
the computational cost scales predominantly with the
higher cut-off frequency, instead of the lower cut-off fre-
quency — we therefore expect the computational cost
not to increase dramatically when fi;, is lowered, if we
already have fiax > fuin-

2. Numerical Estimates

More detailed constructions for Advanced LIGO and
Einstein Telescope (ET) have been carried out, follow-
ing Sec. IIID, assuming f,i;, = 10Hz for Advanced
LIGO and 3Hz for ET. Assuming the same successive
2x down-sampling strategy, we evaluate the single tem-
plate computational cost for (1.4 + 1.4)Mg binaries for
both FIR and IIR filtering. As it turns out, using the
same € = 0.269, but (a,() = (2.5,4.25) for Advanced
LIGO and («,¢) = (2.25,4.5) for ET, will still give us
match above 0.99.

The number of filters in each down-sampling band, as
well as computational cost break-down for a single tem-
plate are shown in the second and third tiers of Table II,
for Advanced LIGO and ET, respectively. We also com-
pare our numerical values with scaling laws predicted in
Egs. (52) and (54), which are plotted in dashed curves
in Fig. 1. [We determined the normalization of the theo-
retical formulas using numerical values of computational



cost at fmin = 40Hz.] The agreement is remarkable,
especially considering that our successive 2-fold down-
sampling is not continuous, and therefore rather non-
ideal.

As we can see from Table II and Fig. 1, the IIR re-
duces computational cost from (multi-rate) FIR filtering
by factor of 8 for initial LIGO. As we move to lower start-
ing frequencies, the saving factor increases to 18 and 40,
respectively. The single-template cost, even when we ex-

trapolate fmin to the rather unlikely 1 Hz, stays at several
MFLOPS.

IV. INTERPOLATION BETWEEN IIR FILTERS
OF DIFFERENT INSPIRAL WAVEFORMS

In order to search for all possible kinds of compact bi-
nary coalescence, we must match the signal with a family
of templates parametrized continuously by the parame-
ters of the binary, e.g., their masses. In practice, al-
though maximization of match over certain parameters
(e.g., initial orbital phase of the binary) can be done an-
alytically, for the rest of the parameters, we must sam-
ple them discretely, and build a template bank — and
match the signal with each member of the bank. The
density of the discretization is usually determined by im-
posing that each member of the continuous family can
be approximated well enough by at least one member of
the bank, with mismatch less than a maximum tolerable
value, €pax.

For advanced detectors, the number of templates can
be as large as 10° [14, 15] posing a significant compu-
tational challenges. Interpolation strategies have there-
fore been conceived (e.g., [16-19]) to reduce the num-
ber of templates, based on the fact that signal-to-noise
ratio is a continuous function of the parameters being
searched over. More specifically, if we refer to the bank
constructed by imposing the maximum tolerance of mis-
match €.« as the fine bank, then the hope is that even
if match is calculated for a coarse bank in which parame-
ters are less densely populated, the signal-to-noise ratio
of the fine bank can still be recovered by interpolation, in
such a way that the total cost of computing coarse-bank
SNRs plus interpolating fine-bank SNRs is less than the
cost of directly computing fine-bank SNRs.

Motivated by Refs. [7, 8, 11, 12], our interpolation
method also divides each coarse-bank template into sev-
eral sub-templates in the frequency (thus time) domain,
and recovers fine-bank SNRs using SNRs from the sub-
templates.  We will show that, although the division
into sub-templates increases the cost of recombination,
it allows a much coarser bank — and finally decreases
the computational cost by a large factor.

A. Template banks in general

To develop a scheme to discretize the parameter space
without losing detection efficiency, we must know how
much the SNR is reduced by using a template whose pa-
rameter values differ from those of the signal. We define
the mismatch between two normalized templates of dif-
ferent sets of parameters as

e=1— (uN)|u(\)). (55)

The template w is specified by a parameter vector \. If
M’ is near to A, we can Taylor expand € at A and have
the approximation to second order of AX =X — X as

1 0%

© T 29(AN)I(AN)

AN AN, (56)
AX=0

from which we define a (positive definite) metric in the
parameter space

0%

1
T3 = 5 B(AN)I(AN;) (57)

AX=0

Equations (56) and (57) indicates that mismatch be-
tween neighboring points in the parameter space can be
viewed as distance measured by metric ~.

Suppose we would like to place a template bank in
a D-dimensional parameter space, with a mismatch no
higher than e, then the most straightforward strategy
would be laying down a cubic grid with proper side length
dl measured by the metric 7;;, such that template placed
at each grid point will be able to cover a cube whose
vertices are centers of neighboring cubes. This means we
have

D(dl)2)* =¢. (58)

The volume spanned by each cube (according to metric
7ij) is therefore

AV =dIP = (24/¢/D)". (59)

The total number of templates in the bank would be the
total volume of the parameter space divided by the vol-
ume of each cell, or

dP X./det||vi;
N: ‘/tot _ f € ||’7J|| (60)

AV~ (2/e/D)P

B. Newtonian Chirps

Through the Stationary-Phase Approximation [20],
the Fourier Transform of a Newtonian Chirp can be writ-
ten as

W(f; Ay te, de) o fT/0HATT202mStet00) - p 50 (61)



and u(f) = a*(—f) for f < 0. The mismatch between
two neighboring templates with parameters (4, t., ¢.)
and (A+ AA, t. + Ate, ¢ + Ag.) can be written as

/f‘“a" 773 cos AP
Si(f)

S(AA Ate, Age) =1 — =22 7773 (©2)
L. sw”
o S0 ()
where
AD = fOBAA+ 21 f AL + A (63)

Expanding Eq. (62) up to second order in A®, we obtain
by comparing with Eqgs. (56) and (57) the metric

1(-12) 1(=3) 1(~4)
bl = |+ 1D ICH [ @

Wy ”n

where “x” indicates terms obtainable by symmetry, and

B } Fmax fﬂ fmax f—7/3
18 =5 [/n deh(f)l / [/fn dfsh(f)] -

and we have used i = 1,2, 3 to label AA, 27At, and A¢,,
respectively. Note the metric depends on the frequency
division and noise spectral density only.

Here among the three parameters, search over ¢. is
done analytically, as discussed in Sec. III C, while search
over t. is carried out systematically at the sample rate
— the only parameter left to discretize is A. Therefore,
A is an intrinsic parameter as described previously. The
correct way to place templates along intrinsic parameter
directions is to “project out” the intrinsic parameters, as
discussed, e.g., by Owen and Sathyaprakash [15].

In our case, the projected metric along direction A is
one dimensional given by

Yi3Y22 — 2712713723 + Y12 V33
V22733 — 7%3

911 = M1 — (66)
which depends on fiin, fmax and the noise curve Sy
through I(8). Following Eq. (60), the number of tem-
plates required to achieve a mismatch ¢ is then

_V gll(Amax - Amin)
N = NG )

where Ain and Apax are the minimum and maximum
values of A. Here we can be more specific about template
placement along the A direction. Given any A, which
is associated with a member of the template bank, and
suppose its mismatch with a neighboring template with
A+ AA IS epax, O

gll(A‘A)2 = €max (68)

then neighboring templates should be placed at A+2AA,
therefore we have

(67)

Amax - Amin

N=="3x1

(69)
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which recovers Eq. (67).
Here we give the noise spectral density we use for initial
LIGO, Advanced LIGO, and the Einstein Telescope. For
the initial LIGO [21], we have z = f/(150 Hz) and
Sp(f) =9-1070[(4.492) "% + 0.162~*5? +0.52
+ 0.322°]Hz"".  (70)
For Advanced LIGO [22], we have x = f/(215 Hz) and
1—22+ %x‘l

1+ 122

Sp(f) =107% |x=*M — 5272 1 111 Hz '

(71)
Note this is different from what is used in [8]. As a result,
two methods are dealing with different number of tem-
plates for the same parameter space. Note also that we
used Newtonian waveforms. These should be taken into
account when we compare the computational cost of the
two methods. For the Einstein Telescope, we adopt ETg
- a broad-band configuration using conventional technolo-
gies [23, 24|, for which z = /(100 Hz) and

Sp(f) = 1072° (2.39 % 107274 =15:64 4 () 34952145
+ L7627 +0.4O9x1'10>HZ_0~5. (72)

Applying Egs. (67) and (68) to these three detectors,
we can show that the number of templates increase by a
factor of 3.9 when we upgrade from initial to Advanced
LIGO, and another factor of 4.4 when we upgrade from
Advanced LIGO to the Einstein Telescope. These num-
bers are listed in Table I, column 5.

C. Subtemplates
1. General Discussion

Now suppose we divide our entire signal frequency in-
terval, (fmin, fmax) into M segments of

[anfl]a [f17f2}7 7[fM—1’f1\/f]v (73)

with fo = fimin and fi, = fmax. (When we later apply this
to IR filter chains, M will be much less than the total
number of filters, N.) For any template u, we define
sub-template uy, J =1,... M, to have the same value as
template u within the frequency interval [f;_1, f;] but
have zero values elsewhere,

ﬂ(f)? fafflgfgffv
iy (f) = (74)
0, otherwise.

Now let us consider two neighboring templates, u and v,
their J*"-sub-innerproduct can be naturally defined as an
integral over frequency segment J:

fr a* (£
/f 5 ) (f)]. 75)

(u|v)y = (uslvy) = 4Re

o Sr(f)




This sub-innerproduct can also be regarded as the con-
tribution to the full inner product (u|v) from segment .J
[Cf. Eq. (5)], and

M
(ufv) = (ufv), (76)
J=1

We denote u and u+ Au as neighboring templates, and
we also define their J*™-sub-mismatch specific to interval
J, in the intrinsic parameter space, as

B (ulu+ Au) 5
\/<U|U>J<7.L + Aulu + AU>J’

EJ =

(77)

which is equal to the “ordinary” mismatch between wu
and uy + Auy as defined in Eq. (55). Up to second
order in Awu, we can show that the total mismatch and
the Jt*P-sub-mismatch are

_ 1 {Au|Au)
=2 (uw) (78)
1 {AufAw),

gy = 27<U|U>J (79)

Using Eq. (76), we can show that

L {ulu)
s:Za] ZLL‘U;L; (80)
J=1

Since

-
3 ulwyy (81)
2 (ulu)

the overall mismatch is therefore a weighted average of
the sub-mismatches. This means to achieve an over-
all mismatch of €, we only need to make sure the sub-
mismatches €; average to €. This has dramatic implica-
tions in the sense that it allows the overall mismatch
to be maintained by (1) dividing the frequency band
into several frequency intervals with non-uniform sub-
mismatches, (2) reducing the size of frequency intervals
to allow larger step size for intrinsic parameters. These
lay the foundation for our template interpolation method.

To qualitatively understand the reason that the grid
size for intrinsic parameter placement can be enlarged
when we restrict ourselves to smaller frequency intervals,
we first note that in the frequency domain, it is the phase
that we need to match, while the amplitude as a func-
tion of frequency is the same for all parameters. We note
that the phase of @(f), which we denote by ®(f), is de-
termined by A, as well as t. and ¢. (Eq. (61)). In Fig. 2,
we plot the phase ®(f) for a particular set of parame-
ters (A,t., ¢.) in blue and also for a neighboring set of
parameters (A + AA, t., ¢.) in red. If we were to use the
template with parameter A to search for a signal with
parameter A + AA, we could shift ¢. and ¢, used in the
search, which corresponds to shifting the blue curve by a
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FIG. 2: Illustration of the phase function ®(f) vs frequency
for the presumed parameter A (blue solid line) and its neigh-
boring parameter A + AA (red line), the linear shift of the
blue line to match the red line (green dashed line), and a
piecewise approximation (black dashed line) of the red line
by shifting segments from the blue line. It shows that with
smaller frequency intervals, it is easier to match phases arising
from different intrinsic parameters.

linear function in frequency. The green dashed line illus-
trates a reasonably optimal attempt — yet the difference
between the green curve and the red curve cannot be
reconciled very well due to the fact that linear functions
do not correct for curvature. However, if we divide the
frequency range into several intervals, and allow differ-
ent values of At. and A¢. to be applied to each interval,
then sub-templates with A can achieve rather low sub-
mismatches with signal with A + AA. This corresponds
to the fact that a curve can be better approximated by
straight lines when divided into smaller intervals.

2.  Newtonian Chirp in the Frequency Domain

Let us now focus on a particular frequency segment J,
with f;_1 < f < f;, and work out the relation between
AA and €5, as A¢p. and At are allowed to readjust their
values (to be different from other segments). This simply
requires us to repeat the procedure in Sec. IV B for each
segment: with AA, At. and Ag., we have the J™-sub-
mismatch of

AA
2w At, (82)
Ag.

ey = [AA 2w At, Ad)c]'y‘]

with



and

1 fa dffﬁ fa df f—7/3
L’“):sz” sh<f>]/ Vf Su(F) 1 (54

Note that the above are identical to Eqgs. (62)-(64),
except with integrations restricted to the interval of
[fr-1, fs]-

The next step is similar to the “projection” process
described by Owen and Sathyaprakash, but restricted to
interval J. With Eq. (82), we ask the following question:
if we are allowed to freely re-adjust individually the val-
ues of At. and Ag, for interval J of the template (i.e., the
J®™_subtemplate), what would be the J*"-sub-mismatch
achievable for AA, and what should the corresponding
A¢. and At. be.

The answer to the question is readily obtainable by a
maximization of the mismatch € over At. and Ag,, fixing
AA. This results in adjustments of

2 At ] {7@12 V3 }_1 [71]2 ]
¢ =— AA 85
{ A¢c‘] 7:‘3]2 ’Yé]3 W’i]:s (85)

which result in the J** sub-mismatch of

s = gl (AA)?, (86)
with
91’1 — 171 _ (V3732 — 205795 + [’7112]273]3. (87)

V92735 — [135]
Following Eq. (80), we have the total mismatch
€= (AA) (88)

where

911 (ulu) s
Z ) (89)

is an effective metric coefficient for any division of the
frequency band. More specifically, g5§ describes the mis-
match achievable by individually adjusting A¢? and At/
for each interval of the division. It can be shown that in
general a finer division of frequency intervals always gives
a smaller ¢5f. As a consequence, if we define

Adg, = | Tmo (90)
911

with the subscript “cb” indicating coarse bank, then
AA., will be greater than AA given by Eq. (68) where
g11 is evaluated using the full frequency band. In order to
make a distinction, we shall rewrite that same equation
as

Adg, = [max (91)
g11

12

but adding a subscript “fb” to indicate the fine bank. In
order to maximize AA., for a maximum mismatch €p,ay,
we should simply minimize g$ff globally, over all possible
frequency division schemes. Because a template at A in
the fine bank covers (A — AAgp,, A+ AAg,), the ratio of
the number of templates in the coarse bank to that of
the fine bank is,

eff
NCb — gll (92)
Na, g11

In summary, given a required maximum mismatch
E€max With a particular frequency subdivision, by adjust-
ing A¢J and At/ individually, a single template at A
can cover the region (A — AAcp, A+ AAcp). For a signal
with [AA| < AAg, the J*"-sub-template for parameter
A+ AA can be constructed by adjusting At and A¢! of
the sub-template of template A using Eq. (85). The in-
terpolated template of parameter A+ A A is therefore the
sum of the constructed sub-templates from a coarse-bank
template A

a(f; A+ AA L., dc)

U (f: At + Ath(AA>7 G+ A¢g(AA))

M=

<
Il

1

ﬂj(f;A7tm¢C)6i27rfAt'L,’(AA)+iA¢Z(AA). (93)

M

J=1

It is straightforward to establish the following proper-
ties of the effective metric: (i) g5 always becomes smaller
when we insert one or more dividing frequencies into an
existing division of [fmin, fmax], (i) if we continue to de-
crease the maximum size of intervals, we can decrease
g5 indefinitely [in fact, for small intervals, g{, scales as
(Af)?, which means g§ff should scale as (A f)*, and hence
AA scales as (Af)~2]. Furthermore, for template fami-
lies with more than one parameter, it is straightforward
to generalize our result to

ga(ulw) s
gab Z bu|u (94)

with the number of templates in the coarse bank given
by
Ncb _ det”gzezg” (95)
N, det||gas |l

D. Application to IIR filtering technique

In this section, we will apply the formalism developed
in the previous subsection and discuss how we can im-
plement IIR filter chains only for a much coarser bank
of templates — while still obtaining SNRs for the entire
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multiply by di(qAAg,)
shift by Atl(qAAgm,)

Ul1 (A + pAACb)

UlJ—1+1(A + pAACb)

data

~

7 Vy ‘ multiply by d; qAAfbﬂ

shift by At (qAAgp,) J

A filter result for
B A+ pAAg, + qAAg,

UlJ (A + pAACb)

~

UlelJrl (A + pAACb)

7 Vu multiply by dar(qAAgm)
N shift by AtM(qAAg,)

UZM (A + pAACb)

R L L A 2

IIR filtering
(coarse bank only)
p=1,2,....N¢cp

reconstruction
(all fine bank members)
g=*x1,... =Ngp/(2Nch)

FIG. 3: Schematic diagram of the IIR filtering process for a template with parameter A+ pAAc, + A As,. The first part is the

IIR filtering for a member of the coarse bank, A+ pA A, which produces a range of filter outputs, labeled by U, . ..
V. The result for A+ pAcy, +gAAg, is obtained by combining these
V’s after each one is multiplied by ds(¢AAg) and shifted by At (¢AAsm).

are grouped into M groups of summed IIR results Vi, ...,

Ui,,- These

The entire data analysis process still computes

Npp, filter results, by including Ngp, possible p’s and Ny, /Ngp, possible ¢’s for each p. [In the special case of ¢ = 0, the V;’s are
directly summed without having to go through multiplications and time shifts.] The downsampling or upsampling process is

not shown.

fine template bank. Discussions made in the previous
sections, although strictly speaking only apply to sharp
divisions in the signal frequency band, still qualitatively
apply to IIR filters that work in time-domain. The trick
is to replace frequency intervals in the previous section
by groups of IIR filters. This approach will work as long
as we include enough number of filters in each “group”,
so that overlaps between different groups are relatively
unimportant. We note that, as is the case for the con-
struction of IIR filter chains, the construction of the in-
terpolation scheme by itself does not justify its efficiency
— a separate test of achievable match will be carried out
explicitly after the interpolation scheme is constructed.

To be more specific, we re-group the entire chain of
N TIR filters into m sub-groups, with group J includ-
ing those whose oscillation frequency lies within the fre-
quency interval J defined in Sec. IV C. In other words,

group J of IIR filters can be written as

VJ(t; A, te, ¢c)
= Z Ul(taAa tC>¢c>

Ql Lelfr-1.f7]

ly

Z Ul(t;Aatcv(bc)a

I=lyj_1+1

J=1,...,M, (96)

where we have [y = 0. We will treat V; as corresponding
to the uy(f; A, te, ) of Sec. IVC. As a consequence,
from Egs. (85) and (93), signal u(t; A + AA,t., ¢c)
can be interpolated by the IIR filters constructed for
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FIG. 4: Matches achievable with a Newtonian-Chirp signal at A + AA, by various templates built for A, using initial LIGO
noise spectral density for a (1.441.4)Mg NS-NS binary. Black solid curves corresponds to the result for a Newtonian-Chirp
template, therefore the match is equal to unity at AA = 0. Red solid curve corresponds to that using IIR filters, while red
dashed curve corresponds to the interpolated match that can be recovered by using 6 filter subgroups.

u(t; A te, dc)
u(t; A+ AA, te, de)

12

Z Vi(t; A te + At ¢ + AdY)

= Ze’A¢c Vit A te + At! 6. . (97)

Here At? and A¢/ should be computed from AA using
Eq. (85).

In practice we can easily generalize the coefficients in
front of V; to further reduce the overall mismatch, by
using a slightly more general reconstruction formula:

u(t; A+ DA te, ¢o) =Y djVi(t: A te + At ¢.), (98)

where d; are complex coefficients that depend on AA,
given by

dJ = ZTJ_]%<VK(A7tCa¢C)|U(A+AAvt(:7¢C)> (99)
K
with the matrix T given by
K = (Vi(A te, 0c)|Vi (A, te, dc)) (100)

E. Full computational cost

Fig. 3 illustrates the procedure of obtaining the out-
puts from IIR filter chain for fine-bank coverage by inter-
polating coarse-bank filter outputs described previously.
Upon obtaining outputs from subgroups of IIR filters for
the coarse bank, we need to reconstruct outputs for all
members of the fine bank. We hereby estimate the cost
for reconstruction. Let’s assume that a member of the
fine bank that is not a member for the coarse bank is AA
away from a coarse-bank template A. For this AA, we
need to go through each group J of filters, take the total

output of this group (which corresponds to filtering by
V), multiply it by the complex number d; (6 floating-
point operations) and shift in time by At/, and then add
it to the sum (2 floating-point operations). The output
eventually yields the SNR corresponding to the member
of the fine bank. Note that both d; and At/ are func-
tions of AA, but they do not need to be recalculated for
each time step.

Assuming our frequency division is made in a way such
that each filter group has the same sample rate (S, for
group J), then the total recombination cost is

—2851

In language of Sec. IIID, if we assume there are Ngroup,k
IIR filter groups for each down-sampling channel, then
the recombination cost can also be written as

Z SSk: group,k

As a consequence, assuming that AA., = RAAg, we
have a total cost of

_ Cur 1
- Nfb |: R + ( R) Crecom:|

12V
N Z [ ]I%IR,IC
k

(101)

recom

(102)

recom

Ctotal

Q

+ 8Ngr0up7k:| Sk , (103)

with the approximation valid when R > 1. In this case,
we can have a good estimate of the computational cost
of IIR filtering with interpolation. For a coarse bank
with density 1/R the fine bank, filtering cost naturally
decreases to 1/R of the cost of conventional IIR filtering
without interpolation. The cost of recombination can
be estimated with a simple rule: for each sample rate,
the cost of recombination is about 2/(37) times that of
conventional IIR filtering, where

_ NiR, &
np = ——— 104
k Ngroup,k ( )
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Sk (sfl) 32 64 128 256 512 1024 2048 4096 8192 | Cost
f/Hz 4-8 | 8-16| 16-32 | 3264 | 64— 128 |128 — 256|256 — 512|512 — 1024|1024 — | Total
Ngroup,k 0 0 0 2 1 1 0 1
iLIGO [{F73 N (fe—-1, f] 52.9 |71.0, 97.3] 141 244 2000 | 0.10
Crecomb, & 0.002 0.008 0.008 0.016 0.066
Ngroup,k 0 1 3 2 1 0 0 1
al1GO {fs} N (fr—1, fx] 12.9 16'285 22'1 40.1, 55.2| 78.5, 122 | 228 2000 0.090
Crecomb, & 0.0005 | 0.003 0.004 0.008 0.008 0.066
Neroup & 2 2 2 1 1 0 0 1
ETs |[{fs} N (fi—1, fx]|5.1, 6.9]9.3,12.8]| 17.8, 25.3 | 37.4 60.3 122 2000 |0.083
Crecomb,k 0.0005 | 0.001 0.002 0.002 0.012 0.008 0.066

TABLE III: Break-down of recombination cost required for obtaining one fine-bank template using the interpolation method,
for initial, Advanced LIGO and the Einstein Telescope — assuming a successive two-fold down-sampling and ignoring the cost
of down- and up-sampling. The IIR filter information is listed in Table II. For each down-sampling channel, we list the number
of filter groups, as well as each of their upper-bound frequency (i.e., fs for group J), and the computational cost as computed
by Eq. (102). Computational cost here is measured by MFLOPS, or 10° FLOPS.

is the average number of IIR filters in groups at the k-th
sample rate. As a consequence, the total cost of the IIR
filtering with interpolation scheme including recombina-
tion can be lowered significantly if we achieve a balance
of R> 1 and n > 1. Note larger R means larger coarse-
bank grid size AA., for a fixed AAy,. This is achieved
by introducing finer frequency intervals. On the other
hand, finer frequency intervals means more IIR groups
Ngroup or smaller 7 within each down-sampling channel.

The computational cost for performing down- or up-
sampling is implementation-dependent (see discussions in
[8]). They are not included in our calculation for simplic-
ity. We only need to perform data downsampling once
for all templates, so the cost should be negligible com-
pared to the total cost. The upsampling process is needed
at least for each coarse-bank template, but only for fil-
ter group outputs. Note the number of filter groups is
much smaller than the total number of the IIR filters.
Depending on the type of upsampling filters, the upsam-
pling cost can be negligible compared to the total cost,
but can also be in similar orders as the recombination
cost. This requires further investigation.

F. Implementation for initial, Advanced LIGO and
Einstein Telescope

We first investigate the case of initial LIGO to demon-
strate the feasibility of our interpolation method. Tak-
ing into account the fact that even the optimal match
between IIR filter and the real signal is not unity, we
need to place the fine-bank ITR template a little denser
than that from theoretical waveform. Theoretically for
the Newtonian waveform, we have AAgn, = 923 (in units
of s7%/3) to have a minimum match of 0.97 for templates
based on the signal waveform. For the IIR filter bank, we
need a smaller spacing of AAHR = 800 s~5/3 in order for
the bank to achieve the same match between an IIR tem-

plate and the signal at A+ AAIR. Fig. 4 shows numer-
ically calculated match as a function of template spacing
AA for templates from the signal waveform (black solid
line) and for the IIR filters (red solid line) for the case
of (1.441.4) Mg binary.  Note that the numbers of
fine-bank templates here are slightly different from those
given in Table I, as we use slightly different overlap and
also we use numerically evaluated matches here, instead
of ones computed analytically assuming high match (in
Sec. IV B).

To test the coarse-bank template placement, for sim-
plicity, we restrict ourselves with the case of subdividing
the frequency band into a total of six segments (or equiv-
alently, six IIR filter groups in the time domain). Accord-
ing to the idealized theoretical calculations in frequency
domain (Sec. IV C2), the optimal frequency subdivision
predicts AAg,/AAg, &~ 26 for a minimum match of 0.97.
This calculation has assumed high match, and divides
signals into parts that are strictly localized within sep-
arate frequency bands. On the other hand, the numer-
ical result using interpolation method on the IIR filter
groups in the time domain (as prescribed in Sec. IV D)
reveals that we can relax the coarse-bank spacing up to
AAUR = 19845 s75/3 (dashed curve in Fig. 4), meaning

AAIR
AALR

~ 25. (105)
This is in very good agreement with the idealized pre-
diction. Fig. 4 shows in dashed line the numerical result
of the match as function of AA for the interpolated IIR
filtering method.

We can now evaluate the total computational cost of
the entire filtering-reconstruction process. For filtering,
since we only have

Nc = (Amax -

templates in the coarse bank [34], and the cost for each
full filtering is 2.4 MFLOPS (see Table II), the cost of

Amin)/2AARY) = 92 (106)



IIR filtering is Cﬁ?{lk = 221 MFLOPS. Since the number
of templates in the fine bank is

Nt = (Amax — Amin)/(2AATR) = 2281, (107)

while the reconstruction cost for each member is
0.10 MFLOPS, the total cost for reconstruction (for
members in the fine bank but not already in the
coarse bank) is 228 MFLOP. Therefore the total cost
for searching for Newtonian Chirps in initial LIGO is
449 MFLOPS, or 0.5 GFLOPS.

We carry out the same procedure for Advanced LIGO
and ETg, with frequency division information listed in
Table III, and interpolation factor as well as break-down
of filtering and recombination costs listed in Table IV. As
we can read from Table IV, the computational power re-
quired for a real-time search of Newtonian Chirps, using
IIR filters and interpolation, in initial, Advanced LIGO
and ET are 0.5 GFLOPS, 1.2 GFLOPS and 4.4 GFLOPS,
respectively. The scaling of cost with f,;, is rather mild
as expected, and the cost, even for ET, seems very man-
ageable.

In summary, it seems possible that to search for tens
to hundreds of thousands of fine-bank templates for ad-
vanced LIGO or ET, we can have the entire search
done with a few desktop computers and fewer if other
acceleration technique such as the Graphics Processing
Unit [25, 26] can be adopted. While our result is based
on the Newtonian chirp, this outcome should be applica-
ble to Post-Newtonian (PN) cases. Note the low-latency
pipeline LLOID with the FIR scheme in combination
with downsampling and SVD technique [8, 11] also pre-
dicts manageable computing power for Advanced LIGO.
MBTA method [7], on the other hand, can already per-
form network analysis to search for inspiral signals using
PN waveforms with a few CPUs for the initial LIGO.
How it scales with advanced detectors while maintaining
low latency remains to be investigated (see also Sec. V for
a comparison of frequency vs time domain method). The
integration of the time-domain IIR filtering method with
the infrastructure of the LLOID pipeline is currently un-
der way. Preliminary result for the application of the IIR
filterbank method to PN waveforms can be found in [27]
and [28].

V. TIME DOMAIN VS FREQUENCY DOMAIN
APPROACH

A. General consideration

In terms of template interpolation, the ideas to divide
the template into segments in the time or frequency do-
main are equivalent in mathematics — both trying to rep-
resent the template by the superposition of a complete
basis of the continuous real-value function space on real
axis. The functions in the basis are much simpler than
the template, and thus easier to deal with. We can im-
prove the computational efficiency by processing the ba-
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sis functions first and then superpose them in the right
way to get the result for a template. Given that the data
we get from the detector is in the time domain, the ad-
vantage of working in the time domain is that we can
avoid procedures required to transform the data into fre-
quency domain (e.g., data accumulation in Fourier trans-
formation) and easily achieve low time latencies. On the
other hand, working in frequency domain allows us to
easily combine the algorithm with down sampling tech-
nique and reduce the number of templates.

The frequency-domain template interpolation tech-
nique, e.g., that used in MBTA([7], usually uses Heavi-
side function to cut the template. So the template can
be superposed smoothly in the frequency domain while
in the time domain the joint of different basis functions
can be quite crude. This means that those methods with
this technique could easily take advantages of working
in the frequency domain, but not both in the time and
frequency domain without substantial additional cost in
computation.

Our algorithm, with IIR filters working in the time do-
main and template interpolation designed from the fre-
quency domain, takes advantages of the benefits from
both the time and frequency domain approach. Because
we use a relatively smooth cut in both domains, we can
both achieve low latency in the time domain and reduce
the total number of templates while taking advantages of
the down sampling technique.

B. Comparison of computational efficiency

When latencies of the analysis are not in concern, the
frequency domain implementation of the cross correla-
tion of data with templates (Eq. 13) is probably the most
computationally efficient approach. This is due to the use
of Fast Fourier Transform technique that has O(N log N)
operation count (N is the number of data points) as com-
pared to the O(N?) operation count for the FIR method
described previously. On the other hand, the operation
count of the ITR filterbank method is O(N) but multi-
plied with a coefficient directly related to the possibly
large number of filters needed to achieve a desired match
to the chirp signal. Here we take latencies into consid-
eration and compare the computational efficiency of the
FFT-based method with the proposed IIR method.

To obtain low-latencies for the FFT-based matched fil-
tering prescribed in Eq. (13), the most straightforward
approach is to analyze data in overlapping segments. We
consider the analysis of equal-length segments of duration
Tstreten as shown in Fig 5 with the duration of overlap
equal to that of the longest signal, and the rest termed
j_iatencya that iS7

Tstretch = j—iongest + ,I‘latency- (108)

Here we assume the same strategy as in the current GW
search pipeline where FFTs are performed with fixed
length that accommodates the longest signal to ensure
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AAH)R Nfb AAH)R Ncb CIIR C]t]o}%al Crecomb C:gggrlnb Ctotal Ctotal /thgtal
iLIGO || 800 | 2281 || 19845 | 92 || 2.4 | 221 0.10 228 449 0.082
aLIGO|| 255 | 7156 || 10500 | 174 || 3.0 | 522 || 0.090 | 628 || 1150 0.054
ET 70 |26069|| 2713 |673|| 3.3 | 2221 || 0.083 | 2108 ||4329 0.050

TABLE IV: Break-down of total computational cost in MFLOPS in searching for Newtonian Chirps in initial LIGO, Advanced
LIGO and ET, assuming interpolation for inspirals of 1-3 Mg individual masses. Here we list numbers of templates in both
the fine (NVp,) and coarse banks (Ncp), the computational cost for each full IIR chain (Cur, taken from Table II), as well as

total)
)

the recombination cost for each template (Crecomb, taken from Table III). We then give the total IIR filtering cost (Crg

total

the total recombination cost (C%*! ), and the grand total cost. We also list the ratio Ciotal/Cioy,y, in which C,,; represents
computational cost for the full bank without using interpolation.

- Tstretch

TI atency

FIG. 5: Analysis with overlapping data segments. The two
horizontal lines represent two adjacent data stretches used for
FFT. The lower data segment starts data accumulation with
a delay of Tjatency relative to the upper one. The duration of
the overlap between the two stretches is that of the longest
signal in the template bank (see text in Sec. V B).

the coverage of signals of all possible duration. Note in
practice, longer Tgipetcn might be needed to take into ac-
count of the windowing effect of the FFTs and issues
like the sharp notch filter problems due to lines in the
noise power spectrum [29]. For each data stretch, the
output of Eq. (13) has also the duration Tytyetch, but due
to the wrap-around effect of FFTs, only outputs (for sig-
nals with ending time) within the last Tjatency are valid.
This means that to obtain a valid output of duration
Tatency, & data stretch of at least Tiongest + Tlatency Deeds
to be processed. The requirement to perform filtering
in real-time implies that the entire analysis needs to be
completed within Tiatency seconds. The minimum total
number of real multiplications and real additions for the
FFT algorithm is about 4N logs N [30, 31]. Therefore
the minimum computational cost in terms of FLOPS for
each template for a real-time FFT-based matched filter-
ing is at least,

45 - Tstretch 1Og2(5 . Tstretch)

T‘latency

Crrr = , (109)

where S is the data sampling rate. Here we assume a
uniform sampling rate.

In the FFT method, the actual delay Tgelay between
the end time of a GW signal and the event triggering

Cost (MFLOPS)

Thatency (seconds)

FIG. 6: Computational cost as a function of Tjatency for a
straightforward FFT analysis with overlapping data segments
(solid line) and for the IIR filter method with downsampling
technique (“4” symbols) and without (“x” symbols ) for real-
time filtering with one template of a (1.4+1.4) Mg binary.
The upper panel shows the cost for aLIGO and the lower one
for ET. The dotted lines illustrate the equal cost between the
FFT and IIR method and the corresponding latencies. The
computational cost of the FFT method is calculated from
Eq. (109) with the longest template taken to be that of (1+1)
Mg binary and sampling rate S=4096Hz. The IIR data are
from Table IT (column 15) (with downsampling) and Eq. (112)
(without downsampling).

depends on where the signal lies in the data stretch. The
longest delay occurs when the ending time of a signal lies
(Tatency — dt) before the end of a data stretch where dt =
1/ is the sampling interval. In this case, after the signal
ends, it takes the segment further (Tiatency — dt) time to
finish accumulating data, and then another Tiatency to be
processed, resulting in a delay of,

TFFT,worst

delay = 2Tlatency —dt = 2,Tlatency

(110)

The shortest latency is achieved when the ending time
of a signal lies just at the end of the data stretch, in which
case the waiting time for the data to be analyzed is zero
and the delay time of obtaining the trigger is simply the



analysis time,

FFT, best
Tdelay = natency-

(111)

Therefore, for the FFT method, the delay time between
the end of the signal and the event triggering is about 1—
2 times of Tjatency. Although in previous LIGO inspiral
search pipelines Titency is usually chosen so that adjacent
data stretches are overlapped by 50%), it can be chosen so
that Tiatency is much smaller, meaning data segments are
analyzed with larger overlaps and higher computational
cost.

In comparison, for the ITR method, every new data
point will be processed immediately when it is available.
The delay time between the end of the signal and the
triggering time can therefore in principle be as small as
the data sampling interval. For real-time processing, the
analysis time of the IIR filters at each time step should
also be within one sampling interval, dt. As discussed
previously, for each output of an IIR filter in (19), a to-
tal of 12 floating point operations are needed. Hence
to produce the IIR filter bank output in real time with-
out downsampling for one template requires the floating
point operation per unit time of

Cligr = 125 - Nyg, (112)
and the delay
Titly = dt. (113)

Here asterisk is used to indicate the computational cost
of the IIR filter method without the downsampling tech-
nique.

Fig. (6) shows the computational cost of one template
for the FF'T method as a function of Tiatency When search-
ing for a GW from a (1.4+1.4) Mg NS-NS binary and
its comparison to that of the IIR filter method with and
without downsampling technique. It shows that the com-
putational cost of the FFT based method increases as la-
tencies decreases, the increase is particularly significant
at latencies less than hundreds to thousands of seconds
(Eq (109)), whereas IIR methods (Eq.(47), Eq. (112))
have an inherent latency of the sampling interval (i.e
not a function of latency). It is clear that the IIR filter
method presented in this paper has significant advantage
over the FFT method in computational efficiency when
low latencies are in demand. In particular, for Advanced
LIGO, the IIR method can be much more efficient at la-
tencies less than a few x10? seconds. For the Einstein
Telescope, IIR filter method can be much more efficient
at latencies less than a few x10% seconds.

It should be mentioned that we compare only the core
computational cost for the IIR and the FFT method for
one template. We purposely leave out the cost of whiten-
ing or the cost to take care of other FFT effect such as
windowing effect as they are very much implementation-
dependent. We also do not include template interpola-
tion method for both methods as they are very much
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implementation-dependent. In practice, both methods
require that the raw data be conditioned, transported,
pre-whitened before they are ready to be analyzed. These
are expected to cause additional latencies on the order of
tens of seconds.

VI. CONCLUSION

In this paper, we show that a time-domain search algo-
rithm, with the flexibility of being able to detect a (non-
precessing) compact-binary coalescence even before the
final merger, is not only feasible for advanced and even
future ground-based gravitational-wave detectors — but
in fact can be realizable by a small number of state-of-
the-art personal computers.

In addition to employing the multi-rate technique for
time-domain filtering, we have developed two additional
key techniques in order to bring down the computational
cost into the realm of feasibility: (i) the conversion of a
chirp signal into a chain of IIR filters, and (ii) an algo-
rithm that allows the reconstruction of filtering results
of a finely spaced template bank from a much coarser
bank, when each template in the coarse bank is divided
into sub-templates. In order to illustrate the main tech-
niques, we have restricted ourselves to the Newtonian
Chirp, but it is rather straightforward to generalize our
algorithms into post-Newtonian templates.

Our main results on computational cost of the time-
domain algorithm, for initial, advanced and future detec-
tors, are summarized in Table IV. With a simple compar-
ison, we also conclude that our time-domain algorithm
should require less computational resources than the con-
ventional frequency-domain approach, when a short la-
tency of less than hundreds to thousands of seconds is
required — as shown in Fig. 6.

Besides being computationally efficient at low (or even
negative) latencies, the IIR filter bank method is also
much simpler to implement than the FFT-based meth-
ods, making it ideal for parallel computing, e.g., with
Graphics Processing Units [25].

Two further ingredients must be added into the search
pipeline before we can set up an early-warning system
for EM follow-ups of compact binary coalescence: (1) a
reliable veto strategy, and (2) an efficient algorithm for
sky localization. The fact that our numerical results for
IIR filter groups agree so well with frequency-domain an-
alytical estimates (Sec. IV C) assuming sharp divisions in
frequency indicates that the sub-ITR-groups can be well-
approximated as independent contributions to the SNR.
This means a x2-like test that compares relative SNR
contributions from filter subgroups to their expectations
would be a promising veto strategy (see also [32] for other
strategies that might be applicable for further efficiency
improvement. )

As for localization, we could in principle adopt the ex-
isting algorithm already in place in the LIGO/VIRGO
pipeline, which is based on coincidences of SNRs among
multiple detectors. Alternatively, the fact that IIR fil-
ters are separated in both time and frequency may pro-



vide a possibility of developing a coherent search pipeline
with feasible computational cost. The reason for the high
number of templates in a coherent search is directly due
to the multiplication of the high number of templates
along the direction of mass parameters and the high num-
ber of sky locations. However, as we divide each template
into frequency segments, we find that in low frequencies,
although there is a large number of cycles, and hence a
requirement for a finer separation in mass parameters,
the sky resolution of a detector network is low and there
does not need a high number of sky patches; in high fre-
quencies, we need a fine grid in the sky, but a coarse grid
in mass parameters. As a consequence, we may need
a much lower number of sub-templates are required for
each frequency segment. This is currently being investi-
gated.
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