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We compare observables to the finite size scaling hypothesis in SU(2) lattice gauge theory with
two Dirac fermions in the adjoint representation. The fits that we obtain yield an estimate of the
anomalous mass dimension that is consistent with four loop perturbation theory: γ = 0.50 ± 0.26,
with the error due to systematic uncertainties in the finite size scaling analysis. The result is
consistent with Schrödinger functional studies and perturbative results.
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I. INTRODUCTION

In technicolor models, the Higgs mechanism occurs
through condensation of new fermions that are subject to
a gauge interaction that is strong at the TeV scale [1, 2].
Walking technicolor is a version of this theory that can
suppress flavor-changing neutral currents by raising the
extended technicolor scale, while still having phenomeno-
logically acceptable Standard Model fermion masses, due
to condensate enhancement [3–5]. Higher representations
of the gauge group are believed to avoid problems with
the S-parameter, i.e. electroweak precision constraints
[6, 7]. All of this has motivated the study of Minimal
Walking Technicolor (MWTC) [8], which is SU(2) gauge
theory with two Dirac fermions in the adjoint (triplet)
representation.
In order to study technicolor proposals nonperturba-

tively and from first principles, several groups have been
using the techniques of lattice gauge theory; see the re-
view [9] and references therein. One of the key ques-
tions is whether the theory “walks” (very slow running
of the coupling) or is attracted to an infrared fixed point
(IRFP). An important quantity that can be computed in
the process of answering this question is the anomalous
mass dimension γ, which needs to satify γ ≈ 1 in order for
the standard walking technicolor picture to succeed. (Al-
ternatives such as “ideal walking” are now being inves-
tigated as improvements over the standard picture [10].)
One of the ways in which the lattice community has com-
puted γ is through the Schrödinger functional method. It
was employed for SU(3) gauge group with sextet fermions
in [11] and for MWTC in [12, 13]. Analysis of the distri-
bution of eigenvalues of the Dirac operator has also been
used [14–16].
An alternative approach is to compare observables

computed in lattice gauge theory (e.g., meson masses,
the “pion” decay constant) to the finite size scaling (FSS)
hypothesis. If the theory is indeed driven to an IRFP,
then the data on observables should fit the FSS hypothe-
sis. Previous studies of FSS in lattice technicolor include
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[15, 17–19]. Fits to the conformal hypothesis that as-
sume a specific form of the FSS function include [20, 21],
where the infinite volume hyperscaling relation is im-
posed. More general forms of the FSS function have also
been considered recently by the authors of [20], with the
result that for these forms the resulting conformal hy-
pothesis for SU(3) gauge group and 12 fundamental fla-
vors has a low degree of confidence in fitting the data
[22]. By contrast, [19] advocates an approach that does
not impose a specific form on the FSS function; this is
one of the FSS methods used in the earlier work [15]. In
this letter, we apply this method to the case of MWTC
in order to extract an estimate of γ under the assumption
that an IRFP exists.

II. FINITE SIZE SCALING

In the scaling regime, the correlation length will have
an asymptotic behavior dependent on the fermion mass
m with exponent ym:

ξ ∼ m−1/ym (2.1)

This exponent is related to the anomalous mass dimen-
sion evaluated at the IRFP:

ym = 1 + γ(g∗) (2.2)

It is a general consequence of the renormalization group
equations that the correlation length ξL at finite size L
is given by a scaling function of the infinite volume cor-
relation length ξ relative to L:

ξL/L = F (ξ/L) (2.3)

Thus we obtain the FSS formula in terms of fermion
mass:

ξL/L = f(mLym) (2.4)

Corrections to scaling will be an important consideration
for us. This translates into a correction that is apprecia-
ble for small L, with an exponent ω:

ξL/L = f(mLym) + L−ωg(mLym) (2.5)



2

This form has also been considered in [22]; there it was
pointed out that fitting data to such a hypothesis would
require an extensive and highly accurate study. For us
the main use of this equation is just that the scaling
violations are largest for the smallest values of L. We
use this as an interpretation of data on small lattices
that does not fall on a scaling curve. Our present study
is not extensive enough to fit to this more general form
and extract ω. Below, we will consider ξL = 1/M or
1/fπ, where M is a meson mass.

III. FITTING METHOD

The method described here seeks to optimize ym such
that all the data falls on a scaling curve. It is due to [23]
and was used in [15, 19]. For each L we have a data set p.
We use this to obtain a fit fp. The types of fit functions
that we consider will be described below. We then use
this fit function on the other values of L, which we label
as Lj.

We minimize the following function with respect to ym.

P (ym) =
1

Nover

∑

p

∑

j 6=p

∑

i,over

(

ξL(mi,j)

Lj
− fp(L

ym

j mi,j)

)2

(3.1)

Here i labels the different partially conserved axial current (PCAC) mass values for a given Lj . The effect of this
is to find a ym such that fp for the other values Lj,mi,j is as close as possible to the curve obtained from fitting
Lp,mi,p. This is summed over all possibilities p. Also, “over” indicates that only i are used such that mi,jL

ym

j falls
within the range of values of mi,pL

ym

p , so that the comparison is to an interpolation of the mi,pL
ym

p data, rather than
an extrapolation. Unweighted fits were used so that the approximation to the scaling curve would pass through data
at small x = mLym , where absolute (statistical) errors are largest. (Using a weighted fit reduces our conclusion for γ
by 4%.)

Type f(x)

Quadratic c0 + c1x+ c2x
2

Log quadratic c0 + c1 lnx+ c2(lnx)
2

Piece-wise log-linear Straight lines connecting data

TABLE I. Interpolating functions that we use to fit data for
a fixed Lp. In the last case, the straight lines interpolating
between data are on a semi-log plot.

For the fitting function we have considered the possi-
bilities listed in Table I. In the case of the quadratic we
follow one of the methods of [15, 19]. The log quadratic
fit was motivated by the behavior of the data when ξL/L
is plotted versus ln(mLym), which is close to a parabola.
The piece-wise log-linear form was used as a third choice
that trivially passes through the data, giving a reasonable
interpolation.

IV. RESULTS

We have used four observables: the “pion” mass
mπ, the “rho” mass mρ, the “a1” mass ma1

, and the
“pion” decay constant fπ. These are all obtained from
standard correlation functions using point sources and
sinks. We fit the correlation functions with a single
exponential, allowing the first time tfirst in the fit to
be large enough for the excited state contributions to
be negligible. This is determined by looking at the
mass of the meson as a function of tfirst and extract-
ing the value on the plateau. Five values of bare masses
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FIG. 1. Collapse of π data for ym = 1.46. Here and in the
other figure, x = mLym .

m0a = −1.0,−1.1,−1.165,−1.175,−1.18 on lattices of
size L/a = 10, 12, 16, 20, 24 were simulated, all at β =
2.25. These are the same configurations as were gener-
ated in [24], and the values of the PCAC mass and details
on the simulations are given there. Also note that the size
of the temporal direction is T = 2L.

Using these results, and performing the minimization
described in the previous section, we obtain values for
ym. In the case of ma1

and fπ, the quantity ξL/L is
small, and scaling violations [cf. Eq. (2.5)] can compete
with the scaling function for small lattices. For this rea-
son we exclude the small lattices L/a = 10, 12 for these
channels. The results for ym are summarized in Table
II. It can be seen that each of the channels, and each of
the fitting methods are consistent with each other within
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Observable Quadratic Log Quad PWL

mπ 1.67(93) 1.26(54) 1.51(33)

mρ 1.67(88) 1.37(39) 1.56(31)

ma1
1.40(52) 1.42(27) 1.41(22)

fπ 1.65(22) 1.49(54) 1.60(29)

TABLE II. The scaling exponent ym = 1 + γ for the various
observables and methods of interpolation. In parentheses,
jackknife error is shown, obtained from eliminating one mi,j

in all possible ways, in the minimization of (3.1). Because we
use a large number of configurations, O(103), statistical error
is negligible by comparison. Weighted averages and standard
deviations are shown in the last column.
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FIG. 2. The a1 data for ym = 1.41.

errors. The approximate collapse of data in the pion
channel is shown in Fig. 1; the rho looks quite similar.
In Figs. 2 we show the of scatter that occurs for the a1;
for fπ the spread in data is similar. In both cases it is
the small L observables that are pulling away from the
curve. We interpret this as being due to scaling viola-
tions, though a thorough study extracting ω would be
required to demonstrate this. Another interpretation is
that the theory does not have an IRFP, and so the FSS
fails for some channels. It is also possible that we are see-
ing the effect of β = 2.25 not being close enough to the
fixed point coupling. However we view the collapse seen
in Fig. 1 as favoring our scaling violation interpretation.

We average the twelve values of ym for the four chan-
nels and three fitting methods, weighted by the jackknife
errors, to obtain γ = 0.50. The standard deviation of
the twelve fits is 0.13. However, the smallest jackknife
error from single elimination of data is 0.22. Treated as
separate systematic errors, we obtain

γ = 0.50± 0.26 (4.1)

In Table III, we compare to other results using variety
of methods. We are in agreement with all but the FSS
studies [17, 18], though only 1.4σ different from their
upper limit.

Method γ

SF [12] 0.05 < γ < 0.56

SF [13] 0.31± 0.06

Perturbative 4-loop [25] 0.500

Schwinger-Dyson [26] 0.653

All-orders hypothesis [27] 0.46

MCRG [28] −0.6 < γ < 0.6

FSS [17] 0.05 < γ < 0.20

FSS [18] 0.22± 0.06

FSS (here) 0.50± 0.26

TABLE III. Summary of all MWTC results for the anomalous
mass dimension. SF is Schrödinger functional and MCRG is
Monte Carlo renormalization group. The perturbative result
γ = 0.500 was also given in the later, corrected version of [26],
and relied on invariants calculated in [29].

V. CONCLUSIONS

We have applied the FSS approach of [19] (one of the
approaches in [15]) to MWTC and find values of the crit-
ical exponent that are in agreement with perturbative
results and Schrödinger functional results. While there
are significant systematic uncertainties, which we inter-
pret as being due to scaling violations on small volumes,
the value of γ is too small for phenomenological mod-
els of condensate enhancement, which requires γ ≈ 1.
The complimentary information obtained by the present
method suggests that it be applied in other gauge theo-
ries of interest for conformal or near-conformal dynam-
ics. Indeed we expect it to work in any case for which
the gauge coupling runs very slowly, so that fixed point
behavior is well approximated on the scales probed by
the study that is performed. Unfortunately, as explained
in [19], a reasonable fit to the FSS assumption does not
rule in or out the existence of an IRFP, since all that is
required is a very slow running.

We have highlighted some of the systematic uncertain-
ties of the method, and have illustrated how working on
small volumes hampers the effort to obtain an accurate
ym. Future work includes simulations on larger volumes
so that ym can be obtained with greater certainty. Also,
an improved lattice action should reduce the size of the
scaling violations, and we are currently working in that
direction for MWTC and other theories. Finally, other
values of the bare coupling β should be studied, since
there is uncertainty as to the precise location of the pu-
tative fixed point.
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