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P-vortices, in an SW) lattice gauge theory, are excitations on the center-ptefeZy lattice. We study the
ratio of expectation values of SU(2) Wilson loops, on therojgcted lattice, linked to a single P-vortex, to
that of Wilson loops which are not linked to any P-vorticeshéM these ratios are plotted versus loop area in
physical units, for a range of lattice couplings, it is fouhdt the points fall approximately on a single curve,
consistent with scaling. We also find that the ratios aresratisensitive to the point where the minimal area of
the loop is pierced by the P-vortex.
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I. INTRODUCTION maximize

_ o R=$ Tr{Uu(x)]Tr{U/}(x)] @
The center vortex theory of confinement [1-6] is motivated ]

by the fact that the asymptotic string tension associateld wi
Wilson loops in group representatioyin a pure SUY) gauge
theory, depends only on thé-ality of that representation, i.e.
on the transformation properties of the Wilson loop hologom
with respect to th&y center subgroup. This behavior can be
understood in “particle” language; e.g. the string whicimfe
between a quark and antiquark in the adjoint representation Tri(Uu(x) — zu(x)]lN)(UJ(x) —zL(x)]lN)]
of the gauge group is eventually broken by pair production of t
gluons? egchgof V\I/Dhich binds tg one of thépquaﬁks, resulting = 2N = Tr{z;(x)Uy () +h.d 2)
in two color singlet states consisting of a quark or antiguar is minimized. This mapping of configuratioblg (x) — z, (X)
bound to a gluon. This explains why a zero N-ality loop (suchfrom the SUN) lattice to aZy lattice is known as “center pro-
as a Wilson loop in the adjoint representation) will have ajection.” String tensions computed on the center-projlete
vanishing asymptotic string tension. On the other handgthe tice, in SU(2) lattice gauge theory, are known to have egoell
should also be an explanation purely in “field” language, i.e scaling properties, and agree fairly well with the asymiptot
the dependence di-ality ought to be explicable in terms of string tensions computed on the unprojected lattice, aifeat
the field configurations which dominate the Euclidean funcknown as “center dominancé.The excitations on the pro-
tional integral at very large scales. Such field configuretio jectedzy lattice are known as “P-vortices.” We define a P-
must be organized in such a way that they generate string teplaquette as a plaquette on the projected lattice whose valu
sions for Wilson loops that depend only on tHeality of the  is an element of th&y group different from unity. P-vortices,
loop. To the authors’ knowledge, center vortices are thg onlin D-dimensions, ar® — 2 dimensional objects on the dual
field configurations thus far proposed which have this propiattice, composed of elements (sites, links, or plaquéttes
erty, and which do not have to appeal to some further colorp = 2, 3, 4 respectively) which are dual to P-plaquettes. These
screening mechanism in the particle picture. are the center vortices ofZy gauge theory. The value of a
There is a great deal of lattice Monte Carlo evidence in faWilson loop on the projected lattice is simply unity times th
vor of the center vortex mechanism that has accumulated ovgroduct of P-plaguettes in the minimal area of the loop.
the years, cf. the reviews in refs. [7, 8], which mainly cover The question is whether the location of P-plaquettes in the
the SU(2) case, and also the recent work in [9] for the SU(3kenter-projected lattice is correlated to the value of gaug
gauge group. This data is based on the procedure of cent@wvariant Wilson loops on the unprojected lattice. The evi-
projection in maximal center gauge. One fixes to a gauge (didence in favor of such a correlation is based on the measure-
rect or indirect maximal center gauge [10]) which brings thement of “vortex-limited” Wilson loops. A vortex-limited W
link variables as close as possible, on average, to cerger elson I00pWh, n,...ny_; (C), is the expectation value of all loops
ments. In the direct maximal center gauge, the proceduce is ton the unprojected lattice of shaevhose minimal area con-
tains, on the projected lattice, exaatlyP-plaguettes equal to

via a relaxation technique which reaches a local maximum.
This can be regarded as fixing to Landau gauge in the adjoint
representation. Link variablés, (x) are then projected to the
center element, (X) € Zy which is nearest tdJ,(x) in the
sense that

* Permanent address: Physics and Astronomy Dept., San §canState 1 There are still some ambiguities, connected with Gribovempvhich can
University, San Francisco, CA 94132, USA affect this result, c.f. [8] for a discussion.



center element, = exp2mk/N], fork=1,...,N—1. In the 1
center vortex picture, if we assume that the thick center vor

tices do not overlap the loop boundary, then the effect of the :
center vortices would be to contribute an overall phasefact 05 I%‘&
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to the value of the loop. The area law falloff would be due to T
fluctuations in this phase factor, corresponding to fludbumat i R
in the number of center vortices that are topologically didk }
to the loop. In this article we will only be concerned with

SU(2) lattice gauge theory, where there is only one type of 4 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
center vortex, and the vortex-limited Wilson loops are dedo 0O 01 02 03 04 05 06 07 08 09
Wh(C). The minimal areas of loops contributing ¥, (C) Loop Area (fm?)

are said to be “pierced” by P-vortices. We may also de-

fine Wpqqeven (C) as the expectation value for Wilson loops ) o ) _

pierced by an odd (even) number of P-vortices. It was showi!G. 1. Ratio of vortex-llmlted Wllson .Ioop expgctatlon.uals

in the early work [10] on this subject th¥lé, depends very W_l(C)/VVo(C) vs. loop area in physical units, at various lattice cou-
strongly onn, and the numerical evidence suggests that in th&"9s-

limit of large loop area

Wn(c) n Wodd(c)
W(©) - (-1)" and Wiever(c) — -1, 4)

This is consistent with the idea that a P-plaquette on the pro. L€t W[, J] represent the expectation value of a vortex-
jected lattice is roughly correlated with the location ohigk ~ limited loop, where the loop is a rectangular contour t-
center vortex on the unprojected lattice, and that a thick ce fice units on one side, andilattice units on the other. We
ter vortex, if topologically linked to loo, will contribute ~ Will consider loops wheré = J, a2nd|l —J|=1. The area
a factor of —1 to the loop holonomy. It should be noted Of the loop in physical units isJa“, where the lattice spac-
that numerical simulations have also shown [10] that vertexNd IS given, as usual, by= /01 /0, whereay is the string
limited Wilson 100psib(C), Wever(C) do not, by themselves, tension in lattice units, and we take= (440 MeV)?. Fig. 1
have an area-law falloff, and given that the ratios (4) are oflisplays our results faf4 I, 3]/Wo[l,J] vs. aredJa® in units
O(1), this lack of area law falloff must also hold true for of fm? for lattice couplings ranging frofi = 2.3 to g = 2.55
IWL(C)|,Ws(C), Wegq(C)|. For this reason, it is likely that ©n 24 lattice vol_um_es._ The data seems to f_aII_ roughly on the
this absence of area-law falloff holds true in general for al Same curve, which indicates that ¥/ ratio is a physical
the vortex-limited Wilson loops. The standard Wilson loop 0bservable of some kind. The usual interpretation of these r
expectation value is related to the vortex-limited loogs vi ~ Sults is that a single P-plaquette found on the projectéidéat
in the minimal area of loog, indicates that loog is linked
W(C) = z Pn(CWL(C) , (5)  toathick center vortex on the unprojected lattice. Of cepas
n small loop on the unprojected lattice cannot be affectedhby t
wherep,(C) is the probability that the minimal area of a given full center flux carried by a thick center vortex, so one does
planar loopC containsn P-plaquettes on the projected lattice. not expecity (C) /Wp(C) to equal—1 in that case. This limit
If the W,(C)| all have a perimeter-law falloff, as the numeri- should be obtained, however, when the loop area grows much
cal evidence suggests, then the area law can only be obtain&tger than the cross-sectional area of a vortex, so théesing
from cancellations due to the sign differences among the difvortex linked to the loop does not overlap the boundary of the
ferentW,’s, in complete accordance with the center vortex pic-loop. Fig. 1 appears to be consistent with this expectaéibn,
ture. though only for the lowest couplings are we able to measure
In the early SU(2) work, the ratidy(C)/Wo(C) was only  loops which are large enough, in physical units, such thet th
computed at a lattice coupling Bf= 2.3. There was no effort W /W ratio approaches the expected asymptotic valuelof
to test scaling, i.e. to check whether the Wilson loop ratios We next consider the question of how the ratio
plotted versus area in physical units fall on a universabeur W;(C)/Wp(C) depends on the position of the P-plaquette
In a more recent study, Langfeld [11] investigated the plodse within the minimal area of loofC. For this study we will
vortex-limited Wilson loops in SU(3) lattice gauge theoty a also consider the case, which does not really beloMtan
two lattice couplingsf3 = 5.6,5.8, and obtained results which which the P-plaquette lies in the plane of loop C but just out-
were roughly consistent with scaling. In this article welwil side the minimal area, bordering the perimeter of IGoghe
continue to work with SU(2) loop ratios, as in the early work, ratio of Wilson loops of this kind t&\p will be represented by
but display a larger data set of loop areas at six differeétitéa data points labeled “outside.” Points labeled “inside” tire
couplings, which may give an improved sense of the scalingisual ratios ofM /Wp. We then make the following distinc-
properties. tions: Consider all plaquettes inside the minimal area ef th
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loop, which border the perimeter. These plaquettes belong t

the minimal area bordered l6yand another rectangular loop
C,. If the minimal area ofZ; is non-zero, then the data for
Wi /W, with P-plaguettes in this region betwe@randC;, is
labeled “outer ring.” Next, consider P-plaquettes in thaimi
mal area o€, bordering the perimeter @, and another rect-
angular loopC,. If the minimal area o, is non-zero, these
P-plaquettes belong to the "middle ring,” and any P-plaipset
within the minimal area o€, are denoted “inner.” If, on the
other hand, the minimal area G} is zero, then P-plaquettes
in the minimal area of; are themselves denoted “inner.” Our
conventions are illustrated in Fig. 2.

Outer Ring

Middle Ring

Inner;

outer ring

inner

(@) (b)

FIG. 2. Conventions for labeling P-plaquette positionsigkttes in
the plane of, but just outside the loop, bordering the peemeare
referred to as “outside.”
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FIG. 3. Vortex-limited Wilson loop ratios vs. loop area inysh
cal units, for specific positions of the P-vortex relativetie loop
perimeter (see Fig. 2), &= 2.3.

The numerical results, shown f@ = 2.3 in Fig. 3 and
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FIG. 4. Same as Fig. 3, fit= 2.55.

really striking effect is the dramatic dependence on whethe
P-plaquette lies just outside, or just inside, the perimatthe
loop. If the P-plaquette lies just outside the loop (datan{zoi
labeled “outside”), then the expectation value of the loip d
fers hardly at all fromWg. In sharp contrast, if the P-plaquette
lies anywhere within the minimal area of the loop, including
at the loop perimeter, then the loop expectation value diffe
greatly fromWg. This difference between loops with one in-
side P-plaquette at the perimeter, and loops with one autsid
P-plaquette at the perimeter, increases with loop areait &and
quite remarkable in view of the insensitivity @, /W to the
location of the P-plaquette within the minimal area.

I11. DISCUSSION

We have seen that tivg (C) /Wp(C) ratio scales reasonably
well with 3, and also that there is an extremely strong cor-
relation between the expectation value of a Wilson loop, and
whether a P-plaquette, bordering the perimeter, lies issde
or just outside the minimal area. There are a priori reasons t
expect the scaling property, since, e.g., center-prajestteng
tensions scale rather nicely [10], but such a strong distinc
between P-plaquettes lying just inside or just outsidedbog |
is a little surprising, especially for large loops at lafyye~or a
thick center vortex, one would expect that the amount of cen-
ter flux penetrating the minimal area of the loop would not be
very different if the middle of the vortex were located just i
side, or just outside, the loop perimeter. Yet the trend of ou
data indicates that expectation values of large loops dkpen
very strongly on whether or not a single P-plaquette is letat
inside the loop, but, if inside, the loop expectation valsie i

B = 255 in Fig. 4 are a little surprising, since one would rather insensitive to exactlhereinside. This result would
expect that if the location of a P-vortex were strongly cor-make perfect sense if P-vortices were very strongly coedla

related with the middle of a thick center vortex, then théorat
WA (C)/Wp(C), for a large loop, would systematically fall from

with the position of center vortices on the unprojecteddait
and if those center vortices were only one lattice spacimigwi

outer to middle to inner. While this does seem to be true aBut if that were the case, then the rat(C)/Wp(C) = —1
B = 2.3, itis not a very large effect, and is not observed at allshould be obtained for even the smallest loops, and notgust a
at 8 = 2.55 (if anything, the expected order is reversed). Thean asymptotic limit. On the other hand, if center vortices ar
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rather thick in lattice units, and the location of P-pladgegt aloop is strongly indicative of center flux passing througgn t
and center vortices is only weakly correlated, one would notoop, but does not give us much information about how that
expect such a striking difference in our values labeled-‘outflux is distributed inside the minimal area.

side” and “outer ring,” corresponding to a P-plaquette qust

side or just inside the loop perimeter.

So it appears that the location of a P-plaquette is not a very
good guide to the precise position of a thick center vortax. O
the other hand, the presence of a single P-plaquette angwher
inside the loop tells us that the sign of a large SU(2) Wilson This work is supported in part by the U.S. Department of
loop is, on average, negative. It seems that a P-plaqusttein - Energy under Grant No. DE-FG03-92ER40711.
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