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Proton decay is a generic prediction of GUT models and is therefore an important channel to detect
the existence of unification or to set limits on GUT models. Current bounds on the proton lifetime
are around 1033 years, which sets stringent limits on the GUT scale. These limits are obtained
under ‘reasonable’ assumptions about the size of the hadronic matrix elements. In this paper we
present a non-perturbative calculation of the hadronic matrix elements within the chiral bag model
of the proton. We argue that there is an exponential suppression of the matrix elements, due to non-
perturbative QCD, that stifles proton decay by orders of magnitude – potentially O(10−10). This
suppression is present for small quark masses and is due to the chiral symmetry breaking of QCD.
Such a suppression has clear implications for GUT models and could resuscitate several scenarios.

I. INTRODUCTION

Proton decay is an important prediction of numer-
ous models of beyond the standard model (SM) physics.
The decay is induced by higher-dimensional, baryon-
number violating operators, suppressed by some high
scale, MGUT [1]. Although there are considerable un-
certainties in the strength of the baryon violating cou-
plings, they are usually assumed to be O(1). One can
then make an order-of-magnitude estimate of the pro-
ton lifetime. For example, a p → π + ` decay channel
contributes

Γp = 2π |Λ|2 |〈π|O|p〉|2ρ(mp), (1)

where |Λ|2 contains the non-hadronic part of the ma-
trix element along with any perturbative coefficients, e.g.
Λ ∼ 1/M2

GUT when baryon-number violation is caused by
four-fermion interactions. For a more complete estimate
of Eq. (1), one also needs to know the hadronic matrix el-
ements, which have previously been estimated in lattice
calculations [2–4], chiral lagrangians [5] and other ap-
proaches. In this paper, we calculate the hadronic matrix
elements within the chiral bag model of the proton [6–13].
The chiral bag model is the marriage of two interesting
phenomenological descriptions of protons. At short dis-
tances the proton is described as a ‘bag’ of free fermions
– massless, or nearly massless fermions in a spherical
bag subject to physically motivated boundary conditions.
Outside of the bag radius, the proton is described with a
Skyrme [14, 15] model.

Combining the two descriptions provides an improved
model of the proton. Unlike the original bag models
(the so-called MIT bag [16–21]), many physical results
in the chiral bag description are insensitive to the bag
radius [22, 23, 25]. Simply, the smaller (larger) the bag,
the more the proton is carried in the Skyrmion (bag). If
the bag radius is taken completely to zero, we recover a
purely Skyrmionic description of the proton. The Skyrme
model has had considerable success in describing some
baryonic properties [14, 15, 26, 27], however it is inade-
quate for describing proton decay since baryon number
is identified with the winding of the pion field into the

Skyrmion and is therefore topologically conserved. How-
ever, for a Skyrmion with a ‘hole’, topological conserva-
tion is not exact and the configuration can be un-wound,
a process which can be interpreted as the Skyrmion (pro-
ton) decaying to the topologically trivial ground state.
The intuitive expectation is that the unwinding of a
Skyrmion involves tunneling through a potential barrier
and therefore comes with some exponential suppression.
The smaller the hole, the harder it is for the proton to
shed its topological portion and decay, and as a result
there could be some topological suppression of the near-
Skyrmion-to-vacuum transition. The chiral bag model is
exactly a Skyrmion with a hole, so it is an interesting
laboratory to study proton decay1. Does the intuitive
picture or proton decay in the chiral bag model hold up?
How large of a suppression is there? How sensitive is it
to the bag radius? These are the sort of questions we
aim to address here.

The setup of this paper is the following: we introduce
the basic facts of the chiral langrangian and the Skyrme
solution in Sec. II, followed by an introduction to quark
bag models (Sec. III). Section IV contains a simplified
calculation of Skyrmion unwinding where we neglect the
interior (bag) dynamics. This calculation is subsequently
improved in Sec. V with a detailed calculation of the
bag energy in the presence of time-dependent boundary
conditions. Numerical results are presented in Sec. IV
and Sec. V. We end with a discussion of our results and
some directions for future work.

II. CHIRAL LAGRANGIAN AND SKYRME
SOLUTION

The low-energy effective theory for QCD is given by
a non-linear sigma model, describing pions as the Gold-
stone bosons from the spontaneous symmetry breaking of

1 For early studies on proton decay within chiral bag models,
see [28, 29]
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chiral symmetry. In our setup, we work with two mass-
less quark flavors, giving rise to an exact chiral SU(2)
symmetry. The pion Lagrangian is

Lπ =
f2π
4

Tr
[
∂µU

†∂µU
]
, (2)

where U is the SU(2) valued pion field. This is a four-
dimensional non-linear sigma model, where the ground
state is given by constant field that we are free to choose
to be U = 1.

It is convenient to introduce Xµ = U∂µU
† = −X†µ

which is an element of the su(2) Lie algebra. The total
energy of a static field configuration is given by

E0 =
f2π
4

∫
d3xTr

[
XiX

†
i

]
. (3)

Finite energy solutions must have U → 1 at infin-
ity, hence finite energy solution can be compactified to
maps of S3 → SU(2) = S3. These maps are clas-
sified by π3(S3) = Z, so there exist topological non-
trivial field configurations. However, via simple scaling
arguments, Derrick’s theorem [30] shows that these non-
trivial field configurations are unstable against scaling.
Skyrme [14, 15] added an extra term to the Lagrangian

L = Lπ +
1

32e2
Tr [Xµ, Xν ]

2
, (4)

which is the unique, lowest dimensional, higher-order
term that satisfies all the symmetry constraints and is
second order in time derivatives. This term stabilizes the
field against scaling, thus allowing for stable non-trivial
solitons.

For our purposes, it is convenient to Wick rotate and go
to dimensionless variables. Specifically, we set xµ → Ryµ

where we have introduced the characteristic length scale
R = 1

2efπ
, so from now on everything will be dimension-

less. With this, the (Euclidean) Skyrme action becomes

SE = − 1

4e2

∫
d4y

(
1

4
Tr[XaXa] +

1

8
Tr[Xa, Xb]

2

)
. (5)

The symmetry group of this model is SU(2)L×SU(2)R
where U → LUR†, in perfect correspondence with the
QCD symmetry group. The axial U(1) symmetry is
broken because U is restricted to SU(2), which corre-
sponds to the anomalous breaking of U(1)A in QCD.
However, the baryonic U(1)V symmetry is not present,
as U → eiφUe−iφ = U , so there is no Noether current
associated with the baryon current. However this theory
has an extra conserved current,

Bµ =
εµναβ

24π2
Tr [XνXαXβ ] . (6)

This current is conserved identically without invoking the
equation of motion. This current is purely topological
and its conserved charge

B =

∫
d3xB0(x) (7)

counts the topological winding of the U field. Identifying
B with baryon number, the solitonic solutions of the the-
ory are interpreted as baryons. With this identification,
baryon number is a topologically conserved quantity, so
protons cannot decay. This property, and the extra stabi-
lizing feature which it requires, makes it reasonable that
proton decay may be suppressed more than naively ex-
pected, even outside the strict confines of the Skyrme
model.

The proton is the stable solitonic solution (Skyrmion)
with winding number one. It can be found by making
the ansatz

U = exp [i F (r) x̂ · σ] (8)

supplemented by the boundary conditions that F (∞) =
0 and F (0) = π. With these boundary conditions, U
wraps around the SU(2) exactly once. For this ansatz,
the energy is given by

E[F ] =
π

2 e2

∫
dr r2

[(
F ′2 + 2

sin2(F )

r2

)
+

4 sin2(F )

r2

( sin2(F )

r2
+ 2F ′2

)]
. (9)

Minimizing E[F ] with respect to the function F deter-
mines the profile of the Skyrmion, which is shown in
Fig. 1.
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FIG. 1: Profile of the Skyrmion solution.

The boundary condition at r → 0 is set by the re-
quirement that the Skyrmion has baryon number equal
to one. Integrating the topological charge for the Skyrme
solution from r0 to infinity, we get

B =
1

π
(F (r0)− 1

2
sin 2F (r0)). (10)

For F (0) = π, the baryon number B = B(0) = 1 .
Beautiful as this model is, experiments have clearly

shown that the quark picture is the correct picture for
small distance scales. The chiral bag model incorporates
this by punching out a hole in the Skyrmion and replacing
physics in that hole with a bag of free quarks; in essence,
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the hybrid bag models factorize QCD in short- and long-
distance regimes. We will return later to how the hole
effects Skyrmion properties. However, first we will review
some properties of quark bag models.

III. CHIRAL BAG

As a first approximation, the inside of the bag sim-
ply contains free quarks. As such, it is described by the
Minkowski path-integral∫

Dψ̄Dψ exp
{
i

∫
d4x ψ̄(i /D)ψ

}
, (11)

where integration is restricted to a spherical region of
radius rbag. The boundary conditions, at rbag, are chosen
such that they respect the symmetries of QCD:

i /nψL = U(nrbag)ψR.

i /nψR = U†(nrbag)ψL,

i /nψ = (UPR + U†PL)ψ = U5ψ

(12)

Here nµ is a radial unit vector pointing outwards, and
the matrices U are the non-linear pion field at the bag
boundary. One can now easily see that this model has
the right SU(2)L×SU(2)R symmetry structure, of ψR →
RψR, ψL → LψL, U → LUR†. For now we take U =
exp[iθn · σ], U5 = exp[iθγ5n · σ], for some value of θ.
However eventually we will make the identification θ =
F (rbag), the solution to Eq. (9). This boundary condition
will then link the properties inside the bag to the Skryme
solution on the exterior. The conditions in Eq. (12) imply
no vector currents flow through the boundary, as

−iψ̄/n = iψ†/nγ0 = ψ†U†5γ
0 = ψ̄U5 (13)

thus

iψ̄/nψ = ±ψ̄U5ψ = 0. (14)

Therefore, baryon and color currents through the bag
boundary are zero2. However, unlike the original (MIT)
bag models, the axial SU(2) current is continuous along
the boundary of chiral bags once we identify θ = F (r),
because of the full presence of the axial symmetry.

We have shown that the baryon number is confined for
fixed θ. If θ varies, the baryon number of the Skyrmion
changes, but so does the baryon number of the bag! The
Dirac sea eigenstates energies are modified by and depend
nontrivially on the boundary rotation θ. Through the

2 Because the boundary couples flavor states but leaves color un-
touched and we neglect full QCD inside, there is a NC -fold de-
generacy of all eigenstates. Therefore we focus on one color eigen-
state and multiply by NC where appropriate in the rest of the
paper.

n · σ term on the boundary, spin and isospin are linked
together, so eigenstates must be classified by the sum
~S + ~I, rather than spin or isospin individually. One can
show using the map ψE → γ5ψE that the spectrum is
invariant under E → E and θ → θ + π hence periodic
with period π. Using ψE → γ0ψE once can show that
the spectrum obeys the symmetry E → −E and θ →
π − θ. Therefore the spectrum has a zero-mode at θ =
π/2. The θ-dependent eigenvalues have been worked out
in Ref. [11] and sketched in Fig. 2. However, we are
interested in properties of the bag as a whole, such as its
total energy density or baryon number, rather than the
individual eigenvalues.
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FIG. 2: Visualization of the eigenstates as function of θ. The
spectrum at θ = π is the same as θ = 0, but all levels go down
by one step, n→ n− 1. At θ = π/2 there is a zero-mode.

The baryon number of the vacuum is defined with re-
spect to a state in which every state is ‘half’ filled. Every
empty state therefore counts as baryon number − 1

2 , and

every filled state as 1
2 . Summing over all modes,

Bsea = −1

2

∑
n

sgn(En), (15)

which must be suitably regulated. In Ref. [9], the sum
in Eq. (15) was evaluated, and the baryon number for a
chiral bag of radius r was shown to be

Bsea =
1

π

({
−θ θ < π/2
π − θ θ > π/2

}
+

1

2
sin(2θ(r))

)
. (16)

Identifying θ with the value of the Skyrme profile func-
tion at the boundary F (rbag) and summing Eqs. (16)
and (10), all dependence on rbag drops out and the net
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(Skyrmion + bag) baryon number remains constant at
one.3 This shows that, indeed, the topological current is
the baryon current and baryon number is a globally con-
served current. This remarkable property is referred to
as the Cheshire Cat principle [22] in the literature and it
gives confidence to the idea that (at least some properties
of) baryons can be consistently factorized into short dis-
tance quark (and gluon) physics and long distance pion
physics. In addition, the full SU(2)L × SU(2)R symme-
try is maintained, making the chiral bag model a model
for baryons.

Having seen that the quark bag and Skyrmion scenar-
ios can be stitched together to form a consistent picture
of the proton, we now want to study proton decay within
this setup. We will proceed in steps. We first calcu-
late the unwinding of a ‘punctured’ Skyrmion neglecting
changes to the bag interior. Then we add two crucial
ingredients, the Casimir energy of the interior bag and
source terms for baryon-number violation in the action.

IV. NEGLECTING THE INTERIOR

Before proceeding, it is important to differentiate pro-
ton decay from other baryonic processes one might want
to calculate. Isospin-changing decays, such as neutron
decay, ∆ decay, etc. are fully described by the Skyrme
theory alone and do not require the punctured picture
in order to make sense. Similarly, baryon form-factors,
spins, moments, etc., when calculated in a chiral bag
model, receive two contributions: one from the interior
and one from the exterior. The topology of the bag is
completely irrelevant for these calculations, and rbag is
simply a parameter which can be tuned to better match
data. Only proton decay is sensitive to the fact that
a punctured Skyrmion is not a topologically conserved
state, allowing transitions into the vacuum state.

Our approach to the classical solution describing the
decay is the following: we take a Skyrmion with fixed
puncture size rbag, then consider dilations of that solu-
tion, F (r) → F (λ(t)r). The dilation parameter depends
on time, with λ(−∞) = 1. As λ grows, more of the
Skyrmion is sucked into the hole, and as λ → ∞ the
Skyrmion disappears completely and we are left with the
trivial ground state. Changing variables in Eq. (5) to
r → λ(t)r, and plugging in the Skyrme ansatz, we find

S =
π

e2

∫
dτ

∫ ∞
λrbag

dr
1

2

( r4
λ5

+
8 r2 sin2(F )

λ3

)
F ′2 λ̇2

+
(2 sin2(F ) + r2 F ′2

2λ
+ λ
(4 sin4(F )

r2
+ 8 sin2(F )F ′2

))
,

(17)

3 Except when θ becomes less than π/2. We comment on this in
section V.

where primes indicate derivatives with respect to r and
dots indicate a time derivative4. Substituting the Skyrme
solution F (r, t) into the above and performing the spatial
integration, we are left with a one-dimensional problem.

S[λ] =

∫
dτ λ̇2K(λ) + V (λ). (18)

Because the integral for K(λ) is convergent when one sets
rbag = 0 in the lower limit, we have approximated K(λ)
by

K(λ) =
A

λ3
+
B

λ5
. (19)

Plotting the potential V (λ), there is a meta-stable mini-
mum at λ = 1, and an absolute minimum at λ→∞. Be-
tween the minima is the potential barrier associated with
unwinding the Skyrmion. Transmission through the bar-
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FIG. 3: The potential V (λ) for a Skyrmion with bag radius
rbag = 0.1R, where we have subtracted off V (1) ≡ V0. The
tunneling probability is calculated by inverting the potential,
V → −V and determining the bounce solution. For this par-
ticular example, the turn-around point is λ∗ ∼ 28.

rier can be calculated using instanton/WKB techniques,
by which we construct a ‘bounce’ solution that starts at
λ(−∞) = 1, rolls down the inverted potential to the other
side reverses, and ends up at λ(+∞) = 1 (in Eq. (17),
(18) we have already been working with the Euclidean
action). The action of this ‘bounce’ solution is5

Stunnel = 4

∫ λ∗

1

dλ
√
K(λ)(V (λ)− V (1)) (20)

where λ∗ is the turnaround point for the bounce solution.
The width of the decay of the punctured Skyrmion is
proportional to e−Stunnel .

4 As we have gone to dimensionless variables, time derivatives are
taken with respect to τ = t/R.

5 Note there has to be at local minimum at λ = 1, unlike in Fig.3.
However just imagine a small change to make it a local minimum.
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The ‘bounce’ solution can be thought of as the
Skyrmion unwinding, then rewinding. To get an idea for
the size of the suppression, we can plug in some numbers.
For puncture sizes of rbag/R = 0.05, 0.1, 0.3 we find expo-
nential suppression of 5.7× 10−6, 1.1× 10−4, 2.5× 10−2

respectively. From the height and width of the potential
in Fig. 3, one may have expected a larger suppression.
The reason the suppression is not larger is because of the
λ−3, λ−5 terms in K(λ); these terms quickly shrink as λ
increases, resulting in a smaller than expected tunneling
action.

The calculation at this point clearly depends strongly
on the size of the puncture, an issue we will return to
soon. For now we simply remark that bag radii 0.1−0.3R
are consistent with values of rbag from chiral bag model
fits to form-factor data [24]6. In neglecting the bag inte-
rior, however, this calculation is missing some physics.
As the Skyrmion is pushed into the hole, the value
θ = F (rbag λ(τ)) of the Skyrmion at the bag boundary
changes. The changing boundary condition shifts the
energy levels of the bag fermions, an effect we need to
incorporate.

V. INCLUDING THE INTERIOR

To include the effects of the fermions in the bag we
need to consider the effects of the fermionic path-integral.
The resulting functional determinant, for static bound-
ary conditions, was derived in Ref. [25] and is also pre-
sented in Appendix A. Schematically, the fermionic
path integral results in a θ-dependent functional de-
terminant which, once regulated, can be shown to be
exp[−TEcas(θ)], where Ecas is the Casimir energy and T
is a large time7. Since Ecas depends on θ, the interior
Casimir energy acts as an additional potential term in
the action for θ,∫

DUDψ†Dψ exp
{
−
∫

d4x
(
LE(θ) + ψ†(∂τ +H(θ))ψ

)}
→
∫
DU exp

{
−
∫

d4xLE(θ) +NC

∫
dτ Ecas(θ)

}
,

(21)

where the Hamiltonian is H(θ) = −iγ0 /∇ together with
the boundary conditions (Eq. 12 with angle θ). We have
reverted back to using θ to describe the boundary angle
in this section, however the reader should keep in mind
that θ is set by the Skyrmion solution at the interface,
θ = F (rbag). The Casimir energy of the spectrum of the
Hamiltonian is defined as Ecas = − 1

2

∑
n |En| and we in-

serted a factor of NC to account for the color degeneracy

6 We thank Mannque Rho for bringing this to our attention.
7 For now we imagine placing the system in a temporal interval

with ends at ±T/2, with T →∞.

of the bag fermions. The Casimir energy is [25]:

Ecas(θ) =
1

rbag

( 3

4π

({
θ2 θ < π/2

(π − θ)2 θ > π/2

}
− sin2 θ

)
+ C2 sin2(θ) + C4 sin4(θ) (22)

+ C6 sin6(θ) + C8 sin8(θ)
)
,

where the coefficients are:

C2 = −0.13381, C4 = 0.05085 (23)

C6 = −0.01247, C8 = 0.01241.

The total energy of a static solution is thus given by the
sum of Skyrme energy (Eq. (9)) and the Casimir energy
(Eq. (22)). In Fig. 4, the total energy is shown and one
can see that it is remarkably flat as a function of the bag
size, further evidence of Cheshire Cat principle.
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FIG. 4: The energy of the Skyrmion (dashed, in blue), the
Casimir energy (solid, in red) and the total energy (dotted,
in black) as function of the bag size.

A few comments are in order regarding Ecas(θ). First,
Eq. (22) only contains the θ dependent pieces of the
Casimir energy; θ-independent terms, still proportional
to r−1bag do exist (see Ref. [25]) but do not effect our in-
stanton calculation. Second, there is a sharp transition
in Ecas at θ = π/2, which can be traced to the energy
of the lowest lying eigenmode crossing zero. Varying θ
from < π/2 to > π/2, a bag eigenmode is dragged out of
the Dirac sea and becomes a valence mode. This state
is filled but its energy (valence quarks) is not contained
in the Casimir energy, so it must be added separately.
Once included, the valence modes make the interior bag
energy completely smooth in θ. Likewise, the valence
mode must be added separately to the baryon number
of the Dirac sea (see Eq. (16)), keeping the net baryon
number constant.

Having reviewed the role of the bag action for static
boundary conditions, we now need to see what hap-
pens when the boundary conditions change as a function
of time. In our ‘bounce’ solution describing Skyrmion
unraveling, the boundary F (rbag) changes as a func-
tion of time, while, simultaneously, the bag dynamics
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will influence the optimal path of this ‘bounce’ solution.
As a first approximation, we assume the bag dynam-
ics change adiabatically and simply change Ecas(θ) →
Ecas(F (rbagλ(t))). In terms of the instanton calculation,
this amount to changing the potential in Eq. 18:

V (λ)→ V (λ) + Ecas(F (rbag λ)). (24)

The new potential is shown below in Fig. 5 –the Casimir
contribution is clearly important. We also point out that
Ecas depends on rbag in a relatively simple way, Ecas ∼
r−1bag. Using the Casimir-improved V (λ) we calculate the
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FIG. 5: The energy profile including the Casimir energy
(solid). The Skyrmion contribution, as shown in Fig. 3, is
indicated by the dashed line.

tunneling exponential to be

e−Stunnel =

 6.7× 10−7 rbag/R = 0.05
1.1× 10−5 rbag/R = 0.1
1.5× 10−3 rbag/R = 0.3

(25)

Adding the Casimir has shrunk the tunneling by roughly
an order of magnitude.

To see whether all consequences of time-dependent
boundary conditions are captured by Eq (24), a more
thorough investigation is necessary. As the detailed cal-
culation provided in the next section shows, Eq (24) is
not complete. An adiabatic calculation involves keeping
the bag boundary static except for a short duration in
which the bounce happens. Within the bounce, there are
two special times which will prove to be important and
whose effect is not included in Eq (24): at some time t1
in the course of the unwinding, F (rbag) will become less
than π/2, signifying that a mode from the Dirac sea has
been lifted out. Similarly, as the Skymion rewinds, this
same mode will dive back into the sea at some later time
t2. This criss-crossing of F (rbag) = π/2 indicates that
the system has a zero-mode, as shown in the cartoon of
the Dirac sea in Fig. 2. This zero-mode has important,
subtle implications8.

8 By the Atiyah-Patodi-Singer theorem [33–35], if the system at

A second consequence of time-dependent boundary
condition absent in Eq (24) is that the Casimir energy
depends on both F (rbag) as well as on its time derivative,

Ḟ (rbag). When manipulated into the bounce action, the

Ḟ terms become λ̇ terms, and the coefficient of the λ̇2

term will play the role of a ‘mass’ for λ. As such, it will
affect the Skyrmion decay rate in a similar fashion to the
K(λ) term in Eq. (20).

A. The non-static case

For time-dependent θ(τ) = F (rbagλ(τ)), the result of
the fermionic path integral is det(∂τ + H(τ)), where we
have recast the time-dependent boundary conditions as
a time-dependent Hamiltonian. In order to calculate the
determinant we have to solve for the eigenvalues. Sup-
pose

(∂τ +H(τ))|ψ(τ)〉 = κ |ψ(τ)〉, (26)

and we define 〈n(τ)| to be the eigenstates of H(τ). We
have

〈n(τ)| ∂
∂τ
|ψ(τ)〉+ En(τ)〈n(τ)|ψ(τ)〉 = κ 〈n(τ)|ψ(τ)〉

∂

∂τ
〈n(τ)|ψ(τ)〉+ En(τ)〈n(τ)|ψ(τ)〉− (27)

〈ṅ(τ)|ψ(τ)〉 = κ〈n(τ)|ψ(τ)〉

Defining cn(τ) = 〈n(τ)|ψ(τ)〉, we obtain

ċn(τ) + En(τ)cn(τ)−
∑
m

〈ṅ(τ)|m(τ)〉cm(τ) = κ cn(τ).

(28)
If the boundary conditions are changing slowly, the third
term on the left-hand side is small and can be treated
as a perturbation. We can rewrite the fermionic path
integral as∫

Dc†Dc exp
[
−
∫
dτ
(
c†n(τ)Dnm(τ)cm(τ)−

c†n(τ)Vnm(τ)cm(τ)
)]
, (29)

where Dnm(τ) = (∂τ + En(τ)) δnm and Vnm(τ) =
〈ṅ(τ)|m(τ)〉. Treating the first term in the exponent as
the propagator and the second as a perturbation, the re-
sult is

det /D = detDnm exp
[∑

connected diagrams
]

(30)

The determinant of Dnm is easily evaluated because it
is a disconnected set of one dimensional equations. The

any given instant has a zero mode solution, the full, time-
dependent system will also exhibit a zero mode solution (see
[36]).
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eigenfunctions cn(τ) are

cn(τ) = exp

[
κτ −

∫ τ

−T2
dτ ′En(τ ′)

]
. (31)

To determine κ, we impose anti-periodic temporal
boundary conditions, cn(T/2) + cn(−T/2) = 0:

κT −
∫ T

2

−T2
dτ ′En(τ ′) = 2π i

(
m+

1

2

)
→ (32)

κ = i
2π(m+ 1

2 )

T
+

1

T

∫ T
2

−T2
dτ ′En(τ ′) ≡ i ωm + Ēn,

where Ēn =
1

T

∫ T/2

−T/2
dτ En(τ) (33)

In appendix A we provide an explicit calculation of
detDnm, determined by the product over all κ. The re-
sult, for time-dependent boundary conditions, is

detDnm = exp[−T Ecas] (34)

T Ecas = −1

2
T
∑
n

|Ēn| = −
1

2

∑
n

∣∣∣∣∫ dτEn(τ)

∣∣∣∣ .
Therefore, working to lowest order in an adiabatic ap-
proximation, we see that the functional determinant is
the same as in the static case with the Casimir energy
promoted to a function of time.

Corrections to this result will be determined shortly,
however, even at lowest order there is a subtlety incor-
porating Eq. (34) into the action for F (rbag) related to
interchanging the absolute value and the integral over dτ .
For all n such that En(τ) doesn’t change sign we have∣∣∣ ∫ dτEn(τ)

∣∣∣ =

∫
dτ |En(τ)| (35)

and the expressions in the static (Eq. (21)) and adia-
batic (Eq. (34)) calculations are consistent. However, as
we noted regarding Eq. (22), the sign of the lowest energy
eigenvalue changes as we cross F (rbag, τ) = θ = π/2; in
our case (the bounce), E0 goes from negative to positive
at t1 and back at t2. When the energy flips sign, inte-
grating dτ and taking the absolute value do not commute.
Instead,∣∣∣ ∫ dτE0(τ)

∣∣∣ =

∫
dτ |E0(τ)| − 2

∫ t2

t1

dτ |E0(τ)|. (36)

Including the above expression for the lowest energy
eigenvalue, the total function determinant becomes

detDnm = exp
{
−NC

(∫
dτ Ecas(τ) +

∫ t2

t1

dτ |E0(τ)|
)}

,

Ecas(τ) = −1

2

∑
n

|En(τ)| (37)

Between t1 and t2, the profile at rbag is less than π/2 –
a negative energy state has been lifted out of the Dirac
sea, and, as we know from the static case, valence modes
are not part of the Casimir sum and must be added sep-
arately. Thus, the extra piece in Eq. (37) is the energy of
a valence mode. The valence contribution is yet another
potential term in our instanton barrier,

V (θ) = Ecas(θ) +

{
E0(θ) θ < π/2

0 θ > π/2

}
. (38)

In Fig. 6 the effect of this on the potential for κ is
shown. With the valence contribution, the barrier in λ
becomes impassable, and the chiral bag is a stable con-
figuration. Thus, it appears Skyrmion unwinding (and,
thereby, proton decay) is not possible once all contribu-
tions to the action are included. However, as we will
show shortly, the existence of the valence piece is inti-
mately tied to the existence of a fermion zero mode.

0 10 20 30 40 50
0

10

20

30

40

50

Λ

V
HΛ

L-
V

0

FIG. 6: The energy profile including the Casimir and the
valence quarks. The Casimir (dashed) and Skyrmion (dotted)
contributions are the same as in Fig. 5.

Before discussing the zero mode, we calculate the per-
turbative corrections to Eq. (37). For this we need the
propagator D−1nm. Focusing on one energy level, we define
two functions

ψn(τ) = exp

[
−
∫ τ

0

dτ ′En(τ ′)

]
ψ̃n(τ) = exp

[∫ τ

0

dτ ′En(τ ′)

]
.

(39)

These functions satisfy Dnmψm = ψ̃nDnm = 0. If
En(±∞) < 0 then we can use ψn, ψ̃n to construct the
states

ψn,τ ′(τ) = ψn(τ)θ(τ ′ − τ)

ψ̃n,τ ′(τ) = ψ̃n(τ)θ(τ − τ ′).
(40)

These are normalizable functions for which it holds that

Dnmψm,τ ′(τ) = −ψn(τ ′)δ(τ − τ ′)
ψ̃n,τ ′(τ)Dnm = −ψ̃m(τ ′)δ(τ − τ ′)

(41)
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The inverse is solved through the following trick

ψ̃m,τ1DD
−1Dψn,τ2 = δnm ψ̃n(τ1)ψn(τ2)〈τ1|D−1|τ2〉

ψ̃m,τ1Dψn,τ2 = −δnm ψ̃n(τ2)ψn(τ2)θ(τ2 − τ1)

(42)

From which it follows

〈τ1|D−1nm|τ2〉 = −δnm exp

[∫ τ2

τ1

dτEn(τ)

]
θ(τ2 − τ1).

(43)
Similarily for positive energy levels we have

〈τ1|D−1nm|τ2〉 = δnm exp

[
−
∫ τ1

τ2

dτEn(τ)

]
θ(τ1 − τ2).

(44)
Now we can systematically include the corrections by cal-
culating Feynman diagrams order by order in insertions
of Vnm. Because the vertex is of degree 2, the only con-
nected Feynman diagrams are simple loops with n ver-
tices, as shown in Figure. 7. The loop with one vertex

FIG. 7: The first few perturbations of the fermion functional
determinant.

is zero, as we can always use rephasing freedom to set
〈ṅ|n〉 = 0. The second order correction is given by

−1

2

∫
dτdτ ′

∑
n 6=m

Vnm(τ)Vmn(τ ′)Dnm(τ ′, τ)Dmn(τ, τ ′).

Due to the presence of θ-functions in the propagators, the
diagram is nonzero only if the energy levels n and m have
opposite signs. Combining propagators (for En > 0), we
get

Dnm(τ ′, τ)Dmn(τ, τ ′) ∼

exp
{
−
∫ τ ′

τ

dξ (|En(ξ)|+ |Em(ξ)|)
}
θ(τ ′ − τ). (45)

This propagator falls off exponentially in |τ − τ ′| because
of the difference in energy between n and m. Therefore,
to a good approximation, we can approximate it by a
delta function

Dnm(τ ′, τ)Dmn(τ, τ ′) ∼ 1

|En(τ)|+ |Em(τ)|
δ(τ ′ − τ).

(46)
Expanding Vmn(τ ′) about τ and keeping only the lead-

ing piece, the energy correction becomes

1

2

∫
dτ
∑
n,m

|Vnm(τ)|2

|En(τ)|+ |Em(τ)|
. (47)

Using the chain rule, we have ṅ = n′θ̇. The energy cor-
rection above therefore adds to the coefficient of the θ̇2

term which, in analogy with Eq. (18), corresponds to the
‘mass’ term of the instanton.

Direct evaluation of Eq. (47) is arduous and beyond
the scope of this work, however we can get some intuition
from dimensional analysis on the potential importance of
this term. From Eq. (47) we see that the non-adiabatic
correction is proportional to rbag, while V (λ) is propor-

tional to r−1bag. For bigger bag sizes, the potential barrier
becomes smaller, but the smaller potential is compen-
sated by a bigger mass term. The effects of the non-
adiabatic piece are exacerbated because the Skyrme con-
tribution to K(λ) (∼ λ−3) becomes vanishingly small at
large λ – so any λ-independent (or mildly λ-dependent)
piece of Eq. (47) will quickly become the dominant term.
If K(λ) goes to a constant, V (λ) alone will determine
the tunneling rate and the suppression will get bigger.
However, without a full calculation of Eq. (47) we can-
not be more quantitative. One option is to forget about
the non-adiabatic corrections to K(λ) and only use the
Skyrmion contribution. This simplification limits us to
small bag sizes, and really only gives us a lower limit on
the size of the exponent. As a second option, we can
parameterize the non-adiabatic contribution,

K(λ)→ K(λ) + const× rbag. (48)

To give a rough estimate, if the constant above is simply
one, the exponential suppression becomes

e−Stunnel ∼

 10−35 rbag/R = 0.05
2× 10−16 rbag/R = 0.1
2× 10−5 rbag/R = 0.3

(49)

However, before these numbers can be relevant, we need
to somehow remove the stability exhibited in Fig. 6.

B. The zero mode and B-violating operators

Up to this point, the only ingredient we have been
working with is QCD, and we find chiral bag baryons to
be stable. This is as it should be! – QCD does not violate
baryon number, hence something would be wrong if our
construction of baryons somehow lead them to decay. To
induce proton decay, a microscopic source for B-violation
must be introduced. For our purposes, the origin and ex-
act nature of the microscopic B-violation is unimportant,
so we will simply include the higher-dimensional operator

εij...NC

M3/2(NC+1)−4ψiψj ..ψNCχ ≡ Λ εij...NCψiψj ...ψNC .

(50)
Here χ represents some lepton and M is the scale sup-
pressing these operators; for convenience, we combine ev-
erything into a (fermionic) coefficient Λ.

The key to how an operator like Eq. (50) undoes the
barrier present in Eq. (38) (and shown in Figure 6) lies in
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(approximate) zero modes. Localized around t1, where
E0(t) changes from negative to positive, Eq. (31) has a
(near) right-handed zero-mode solution,

ψ0,t2 ∝ exp
{
−
∫ t

t1

dξE0(ξ)
}
θ(t2 − t). (51)

There is a similar left-handed zero-mode solution local-
ized around t2, where the E0(t) changes back from posi-
tive to negative

ψ̃0,t1 ∝ exp
{∫ t

t2

dξE0(ξ)
}
θ(t− t1). (52)

Past t2, the mode Eq. (51) blows up, hence the θ function
is needed to maintain normalizability. The farther apart
t1 and t2, the closer Eq. (51, 52) are to exact zero modes.

When a system has fermionic zero modes, det( /D) = 0.
However, despite the fact that the functional determinant
is vanishing, it is well known that correlation functions
of operators in such systems can be nonzero. This fact
is most easily proven by adding classical sources J, J† to
the fermion Lagrangian; then, functional derivatives with
respect to the sources cancel the zeros in the fermionic
determinant. To account for these non-vanishing cor-
relation functions, a semi-local operator – the ’t Hooft
vertex [31, 32] – must be added to the action.

Proceeding by analogy, it is precisely when∫ t2
t1
dτ |E0(τ)| is large and there are approximate

left- and right-handed zero modes of D that the barrier
for tunneling is large (i.e. the fermion functional deter-
minant is suppressed). Adding in sources J, J† for the
zero modes and performing the usual steps of shifting
and completing the square, the resulting fermionic
path-integral Z[J, J†] is

det( /D) exp
{
−
∫
dτ ′dτ J(τ)D−10 (τ, τ ′)J(τ ′)

}
=

exp

[
−NC

(∫
dτEcas(τ) +

∫ t2

t1

dτ |E0(τ)|
)

+ J†D−10 J

]
(53)

Each set of functional derivatives with respect to the

sources δ2

δJ†δJ
brings one factor of the zero-mode inverse

propagator D−10 which, from Eq. (43), is

D−10 (τ, τ ′) = exp
{∫ τ ′

τ

dξE0(ξ)
}
θ(τ ′ − τ). (54)

The largest value for the inverse is thus attained when
τ = t1 and τ ′ = t2 (recall E0 > 0 between these times).
These time values will dominate the partition function.
Therefore, to a good approximation, we replace

J†D−10 J → exp
{∫ t2

t1

dξE0(ξ)
}

(J†ψ0,t1)(ψ̃0,t2J). (55)

Note that the integrand and limits of integration in the
above expression are exactly the same as in the valence

term of Eq. (37). The factors of ψ0,t1 , ψ0,t2 in Eq. (55)
are left- and right-handed zero modes. They enter once
we divide the integration in D−10 into regions τ < t1, (τ <
t1, t2 < τ ′) and τ ′ > t2 in going from Eq. (54) to Eq. (55).

Now we are ready to include the microscopic baryon-
number violation. Adding the operator in Eq. (50) and
rewriting the interacting theory in terms of δ

δJ ,
δ
δJ†

,

Z/B = exp
{
−
∫ (

Λ
( δ

δJ

)NC
+ Λ†

( δ

δJ†

)NC)}
×Z[J, J†]

∣∣∣
J=0

. (56)

Next, we expand out Z[J, J†] in powers of J, J† and ex-
pand the interactions term in powers of δ

δJ ,
δ
δJ†

. As the
leading term in the interaction comes with NC deriva-
tives, the only nonzero term in the expansion of Z[J, J†]
will be the term with NC powers of both J and J†. The
fermionic sources are exactly cancelled when we apply
the functional derivatives (in Eq. (56)) corresponding the
baryon number violating interaction. The surviving term
in Z[J, J†] carries along NC copies of D−10 – just the right
amount to cancel the E0 term in the functional determi-
nant. The relevant term (before applying the functional
dervatives) is

Z[J, J†] 3 exp

[
−NC

∫
dtEcas(t)

]
×

(J†(t1)ψ0,t1 ψ̃0,t2J(t2))NC . (57)

The interpretation of this term is that J† destroys a parti-
cle localized around t1 – when its energy becomes positive
– and J creates it when its energy becomes negative.

With the valence piece cancelled, tunneling can oc-
cur again and the proton will decay. The value of the
tunneling exponential, within the adiabatic approxima-
tion, is the same as the static case shown in Eq. (25):
e−Stunnel ∼ 10−7 − 10−3 depending on the bag radius.

Our picture of proton decay is that of a meta-stable
chiral bag with only the negative states filled. There is an
instanton bounce solution, where the Skyrmion unwinds
pulling the valence quarks out of the vacuum, at which
point they are destroyed by the baryon violating oper-
ator. The bounce solution can be calculated by adding
the Casimir energy to the potential, as postulated in the
previous section. The usual instanton gas approximation
still works, with the understanding that every bounce
is also accompanied by the factor ΛΛ† coming from the
necessary insertions of the baryon violating operators to
make the bounce solution possible. Including this pref-
actor to the bounce solution, the net proton width is

Γp ' ΛΛ†e−Stunnel . (58)

The ΛΛ† gives the perturbative suppression of Eq. (1),
as it should. We find, however, the extra exponential
suppression of the hadronic matrix element coming from
the unwinding.
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In the above, we have ruthlessly suppressed several fac-
tors. In particular, one may expect that quark wave-
functions are more likely to overlap in a smaller bag,
increasing the rate for decay. Such an enhancement is
geometric, rather than exponential. We emphasize that
the calculation as it stands will not give a precision re-
sult, however, the presence of an exponential suppression
in the hadronic matrix element is our main result, and it
can be very relevant.

VI. DISCUSSION

In this work we have provided an instanton calculation
for the decay of a “baryon” in the context of the chiral
bag model. The chiral bag model can be seen as a setup
where valence quarks attract anti-quarks from the sur-
rounding Dirac sea like a charge in a di-electric. In doing
so, a topological twist in the chiral phase of the conden-
sate is generated, described by the Skyrmion of the pion
field. The binding of the valence quarks with the anti-
quarks lowers their energy, driving them into the Dirac
sea of negative states. Within this description, to draw a
valence quark out of the Dirac sea such that it can be an-
nihilated with a baryon-number violating operator, the
proton must tunnel to a state with higher energy. From
this perspective, a non-perturbative suppression is to be
expected

The calculation we have done remains sensitive to the
bag radius, and therefore does not obey the ‘Cheshire Cat
principle’ as nicely as one may have hoped. The chiral
bag is, however, just a leading order factorization model
of hadronic QCD: the non-interacting free quark theory
within the bag cannot possibly generate the spontaneous
symmetry breaking necessary for the pion field, so the
bag size cannot be arbitrarily large. Similarly, the pion
field description also breaks down for small bag size, due
to the running of the coupling. Given the limitations of
the chiral bag, dependence on rbag it not surprising.

Numbers aside, our main qualitative point is that this
model gives the right picture of what a proton is, and
that therefore a tunneling suppression is to be expected.
If a more sophisticated calculation including NLO effects
results in a regime in which the calculation stabilizes, this
would certainly strengthen our result.

Applying the suppression we find to simple GUT mod-
els has profound implications. An additional ∼ 10−4

suppression would mean the unification scale could be
lowered by an order of magnitude for dimension-six
baryon-number violation, or two orders of magnitude
for dimension-five baryon number violation. Further-
more, 10−4 should be viewed as an upper limit. In-
cluding a parametrization of the non-adiabatic terms (see
Eq. (49)), we found 10−12 suppression was perfectly rea-
sonable, implying a three (six) order of magnitude drop
for dimension six (five) baryon number violation. A more
exact value for the exponent requires a rigorous calcula-
tion of Eq. (47). A change in the required GUT scale

of this order would certainly resuscitate several scenar-
ios [37–43]! According to our calculation other tests of
baryon number violation, such as neutron-antineutron
oscillation [44–46], should also be highly suppressed.

Throughout our calculations we have completely
ignored any mass for the interior quarks. Adding in a
mass, the energy levels of the bag fermions all shift by
+m. If the shift is large enough, the mass can effectively
prevent valence quarks from diving in the vacuum. If
the valence quarks retain positive energy, they can decay
immediately and do not need to be lifted by unwinding
the pion field. The baryon is then an ordinary bound
state. The role quark masses play in this calculation
may also explain the apparent disagreement between
our result and estimations of proton decay matrix
elements based on lattice QCD [2–4]. The suppression
in the chiral bag model comes primarily from the chiral
symmetry and its twisting. Exact chiral symmetry is a
difficult regime to probe on the lattice due to difficulties
with chiral symmetry of fermions and with fitting the
Compton wavelength of low mass states into the finite
lattice volume. Lattice results therefore depend on
extrapolation of quark mass and system volume into
the physical regime. If the dependence of proton decay
matrix elements on lattice artifacts is different than for
the more conventional observables (meson masses, etc.),
extrapolations, motivated by conventional observables,
would be inappropriate and may explain the apparent
differences between our result and the lattice. The
mass-dependence in our result is a subtle issue and
deserving of additional study.

Appendix A: Deriving the Casimir energy

The eigenvalue spectrum is given by

κ = i

(
2π
(
m+ 1

2

)
T

)
+ Ēn (A1)

This spectrum is symmetrical around the real axis, so we
can pair every conjugate pair and we have

detD =
∏
n

∏
m

(ω2
m + Ē2

n)
1
2 (A2)

Using zeta-function regularization we have

detD = exp

[
−1

2

d

ds

∑
n

∑
m

(ω2
m + Ē2

n)−s

]
(A3)

In the limit T → ∞ we can replace
∑
m →

T
2π

∫
dω, we

obtain∫
dω(ω2 + Ē2

n)−s = |Ēn|−2s+1
√
πΓ(s− 1

2
)/Γ(s) (A4)

Because of the Γ[s] = Γ[s + 1]/s we see that the above
expression is 0 at s = 0. Therefor the only way to get
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a non-zero values is if the differential operator is applied
to kill s. We are thus left with

detD = exp[−1

2

∑
n

|Ēn|−2s+1 T

2π

√
πΓ(s−1

2
)/Γ(s+1)]|s=0.

(A5)
This can be written as

detD = exp[−EcasT ], (A6)

where the Casimir energy Ecas is

Ecas = −1

2

(∑
|Ēn|(Ē2

n)−s
)∣∣∣
s=0

, (A7)

– exactly the zeta-function regularization of the vacuum
energy.
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