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We present an alternative approach to low-energy supersymmetry. Instead of imposing R-parity

we apply the minimal flavor violation (MFV) hypothesis to the R-parity violating MSSM. In this

framework, which we call MFV SUSY, squarks can be light and the proton long lived without pro-

ducing missing energy signals at the LHC. Our approach differs from that of Nikolidakis and Smith

in that we impose holomorphy on the MFV spurions. The resulting model is highly constrained and

R-parity emerges as an accidental approximate symmetry of the low-energy Lagrangian. The size

of the small R-parity violating terms is determined by the flavor parameters, and in the absence of

neutrino masses there is only one renormalizable R-parity violating interaction: the baryon-number

violating ūd̄d̄ superpotential term. Low energy observables (proton decay, dinucleon decay and n−n̄
oscillation) pose only mild constraints on the parameter space. LHC phenomenology will depend

on whether the LSP is a squark, neutralino, chargino or slepton. If the LSP is a squark it will have

prompt decays, explaining the non-observation of events with missing transverse energy at the LHC.
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I. INTRODUCTION

Supersymmetric extensions of the standard model do not automatically posses the requisite global symmetries of

the standard model: baryon and lepton number violation can be mediated by squark and gaugino exchange, and

flavor-non-universal soft breaking terms can mediate flavor-changing neutral currents (FCNCs). In order to remove

baryon and lepton number violating processes one usually assumes the additional presence of R-parity, while to remove

FCNCs one usually assumes flavor universality (possibly at a high scale). R-parity has very important consequences

for the phenomenology of the MSSM: it renders the lightest superpartner stable, forces superpartners to be pair-

produced, and implies that (when produced) superparticles will always decay to the LSP, which will escape the

detector, resulting in events with large missing energy.

R-parity is clearly not necessary [1–6]: very small R-parity violating terms can be added to the supersymmetric La-

grangian, fundamentally changing the phenomenology of the model without conflicting with any current experimental

bound (for an excellent review see [7]). The introduction of R-parity is therefore linked to the idea of naturalness: if

R-parity were not imposed, many dimensionless couplings in the superpotential would have to be extremely small in

order to ensure a sufficiently long-lived proton.

LHC data, however, is beginning to place severe constraints on the R-parity conserving MSSM, ruling out squark

masses up to about 1 TeV in some scenarios, due to the absence of the expected missing transverse energy events [8, 9].

Increasing the scale of supersymmetry breaking leads to increasingly large radiative corrections to the Higgs mass,

suggesting that low-scale supersymmetry with R-parity may not be the correct solution to the hierarchy problem.

In light of this it is natural to consider R-parity violation, which allows the LSP to decay promptly, and thus

evades searches based on missing transverse energy or displaced vertices. However, besides naturalness, such an

undertaking suffers from a proliferation of undetermined couplings, making it very difficult to constrain the theory

from experimental data.

Here, we consider an alternate approach to low-energy supersymmetry. Instead of assuming R-parity, we only

impose the minimal flavor violation hypothesis on the theory [10–13], positing that the non-abelian flavor symmetries

are only broken by the holomorphic spurions corresponding to the Yukawa couplings.1 As a consequence, all R-parity

violating operators will be suppressed by Yukawa couplings and CKM factors, and the smallness of the R-parity

violating terms is explained in terms of the smallness of the flavor parameters. We find that this assumption is

sufficient to naturally avoid present bounds on baryon- and lepton-number violation, while automatically suppressing

FCNCs as in any MFV model. Thus, we are able to replace two independent ad-hoc assumptions, those of R-parity and

flavor universality, with the single assumption of minimal flavor violation. R-parity then emerges as an approximate

accidental symmetry of the low-energy Lagrangian, where the R-parity breaking terms are determined by the flavor

sector.

We will argue that the simplest form of this model is viable with natural O(1) coefficients for all operators and low,

∼ 100− 300 GeV, superpartner masses. This provides a natural alternative framework for studying supersymmetric

extensions of the standard model. While the R-parity violating couplings are sufficiently small to prevent proton

decay, they are sufficiently large to make the LSP decay promptly. The phenomenology is distinctive, and depends

on only a relatively small number of unknown O(1) parameters, in contrast to the generic R-parity violating MSSM.

The idea that minimal flavor violation can replace R-parity was originally explored in an important paper by

Nikolidakis and Smith a few years ago [14] (see also [15]). Our approach differs from theirs in that we take the

spurions to be holomorphic, which is necessary since they appear in the superpotential as Yukawa couplings, and

should be thought of as VEVs of chiral superfields. Thus, Y † cannot appear in the superpotential, nor in soft-

breaking A-terms,2 which, combined with the MFV hypothesis, severely constrains the form of these terms.

1 While the most general flavor symmetry, U(3)5, is not semi-simple, the abelian U(1)5 component contains R-parity, and would imply
the complete absence of lepton- and baryon-number violating operators. In our spurion analysis, we only impose the nonabelian SU(3)5

component.
2 Nonholomorphic corrections to the A-terms are possible. However, these corrections are subleading, as explored in Appendix B. In

addition, bilinear corrections to the superpotential can be generated nonholomorphically at the scale msoft.
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SU(3)C SU(2)L U(1)Y
Q 1/6

ū 1 −2/3

d̄ 1 1/3

L 1 −1/2

ē 1 1 1

Hu 1 1/2

Hd 1 −1/2

TABLE I. The MSSM fields and their representations under the SM gauge group.

We will show that in the absence of neutrino masses there is no holomorphic invariant violating lepton number, and

there is only a single renormalizable term violating baryon number, the ūd̄d̄ term in the superpotential. Furthermore,

an unbroken ZL3 subgroup of U(1)L — a necessary consequence of MFV — ensures that the first non-holomorphic

(Kähler) corrections violating lepton number appear at dimension eight, and are very strongly suppressed for even a

moderately high cutoff scale. Thus, in the limit of vanishing neutrino masses the proton will be effectively stable. The

constraints from n− n̄ oscillations are easily satisfied, while those from dinucleon decay place a mild upper bound on

tanβ for light squark masses.

Majorana neutrino masses require additional holomorphic spurions charged under ZL3 , and we find that once they are

incorporated into the model through the seesaw mechanism, current bounds on proton decay will impose interesting,

though not too onerous, constraints on the right-handed neutrino sector. Other methods of neutrino mass generation

should also be constrained by proton stability.

The phenomenology of such models is largely determined by the choice of the LSP. If it is a squark, it can decay

directly via the baryon number violating ūd̄d̄ vertex, which yields a lifetime short enough for these decays to be

prompt. If a sparticle other than a squark is the LSP (such as a neutralino, chargino or slepton) then the decays will

involve more particles in the final state and the lifetime will increase, potentially leading to displaced vertices, and in

some cases also to missing energy via neutrinos and tops in the final state.

The paper is organized as follows. In §II we introduce the MFV SUSY framework and list possible superpotential

terms, neglecting neutrino masses. In §III, we focus on the most interesting of these terms, a baryon number violating

vertex. In §IV, we discuss constraints arising from n− n̄ oscillations and dinucleon decay induced by this vertex. In

§V, we modify the model to incorporate neutrino masses, focusing on the seesaw mechanism, and list the relevant

operators, VEVs, and mixings. In §VI, we discuss constraints on the right-handed neutrino sector arising from bounds

on proton decay. In §VII we estimate the LSP lifetime and comment on LHC signals/constraints. We conclude in

§VIII. In a collection of appendices, we classify all possible holomorphic superpotential terms, discuss nonholomorphic

corrections from supersymmetry breaking, argue that diagrams other than those considered in the main text will be

subdominant for the processes of interest, and show that higher-dimensional operators will not affect our conclusions

for a sufficiently high cutoff.

II. MFV SUSY WITHOUT NEUTRINO MASSES

We first consider the limit of vanishing neutrino masses (we introduce them in §V). The MSSM consists of the

standard model (SM) gauge group SU(3)C × SU(2)L ×U(1)Y , together with the usual chiral superfields as shown in

Table I. The matter fields Q, ū, d̄, L, and ē are flavored, and come in three generations. The superpotential

W = µHuHd + YeLHdē+ YuQHuū+ YdQHdd̄ , (II.1)
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SU(3)Q SU(3)u SU(3)d SU(3)L SU(3)e U(1)B−L U(1)H
Q 1 1 1 1 1/3 0

ū 1 1 1 1 −1/3 0

d̄ 1 1 1 1 −1/3 0

L 1 1 1 1 −1 0

ē 1 1 1 1 1 0

Hu 1 1 1 1 1 0 1

Hd 1 1 1 1 1 0 −1

Yu 1 1 1 0 −1

Yd 1 1 1 0 1

Ye 1 1 1 0 1

TABLE II. The transformation properties of the chiral superfields and the spurions under the non-anomalous flavor symmetries
preserved by the µ term. We omit discrete symmetries and a non-anomalous U(1)R which is broken by the soft terms, including
the Bµ term.

is necessary to generate the SM fermion masses and charged higgsino masses. The additional (renormalizable) super-

potential terms allowed by gauge invariance are

W ′ = λLLē+ λ′QLd̄+ λ′′ūd̄d̄+ µ̄LHu . (II.2)

These superpotential terms violate lepton and baryon number, and therefore should be absent or very small. The

traditional approach is to impose a Z2 symmetry, called matter parity, under which the matter fields Q, ū, d̄, L, and

ē are odd and the Higgs fields Hu and Hd are even. This Z2 symmetry forbids all unwanted superpotential terms in

W ′, leaving only those in (II.1). A combination of matter parity with a discrete subgroup of the Lorentz group gives

R-parity, under which all SM fields are even and superpartners odd.

The imposition of R-parity is not the only ad-hoc assumption needed to make the MSSM phenomenologically

acceptable. Soft terms needed to break supersymmetry and mass-up the superpartners generically induce large flavor-

changing neutral currents. In order to reduce FCNCs, one usually imposes flavor universality: i.e. the assumption

that at some scale all soft breaking masses are flavor universal and the A-terms are proportional to the corresponding

Yukawa couplings.

Our approach will be to replace these two ad-hoc assumptions with the single assumption of Minimal Flavor

Violation (MFV). MFV is based on the observation that apart from the µ term, most of the terms in the superpotential

(II.1) are small due to the smallness of the Yukawa couplings. It is then natural to analyze the spurious symmetries

preserved by the µ-term but broken by the Yukawa couplings, which are given in Table II. Excepting U(1)B−L and a

U(1)2 subgroup of SU(3)L × SU(3)e representing intergenerational lepton number differences, the Yukawa couplings

are charged under all of these symmetries, which are therefore broken by the superpotential.

The basic assumption of minimal flavor violation [10–13] is that the Yukawa couplings Yu, Yd, and Ye are the only

spurions which break the nonabelian SU(3)5 flavor symmetry. No assumption on baryon or lepton number is made.

Thus, while flavor non-singlet terms may be written in the superpotential, or as soft breaking terms, their coefficients

must be built out of combinations of Yukawa couplings and their complex conjugates in a way which respects the

underlying spurious flavor symmetry. The main new ingredient in applying MFV to SUSY theories is that the spurions

also have to be assigned to representations of supersymmetry. Since the spurions Yu,d,e appear in the superpotential in

the Yukawa terms, the most natural assumption is to assign these spurions to chiral superfields, with the expectation

that in a UV completion these spurions would emerge as VEVs of some heavy chiral superfields. This assignment for

the spurions ensures that the conjugate Yukawa couplings Y † cannot appear in the superpotential, which will lead to

a very restrictive ansatz, both for R-parity violating terms and for higher dimensional operators.

The MFV hypothesis can be shown to naturally suppress FCNCs [12, 13], thereby solving the new physics flavor
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SU(3)C SU(2)L U(1)Y U(1)B U(1)L ZR2
(QQQ) 1 ��� 1/2 1 0 −
(QQ)Q 8 � 1/2 1 0 −

(Yuū)(Yuū)(Ydd̄) 8⊕ 1 1 −1 −1 0 −
(Yuū)(Ydd̄)(Ydd̄) 8⊕ 1 1 0 −1 0 −

det ū 1 1 −2 −1 0 −
det d̄ 1 1 1 −1 0 −
QYuū 8⊕ 1 −1/2 0 0 +

QYdd̄ 8⊕ 1 1/2 0 0 +

LYeē 1 1/2 0 0 +

Hu 1 1/2 0 0 +

Hd 1 −1/2 0 0 +

TABLE III. The irreducible holomorphic flavor singlets. We omit flavor-singlet spurions (irrelevant to our analysis) as well as
flavor singlets formed from SU(3)C × SU(2)L contractions of products of the operators listed here.

problem. It is also RGE stable, due to the spurious flavor symmetries, which prevent flavor violating terms from being

generated radiatively except those proportional to the original spurions themselves. As explored in [14], it is possible

to impose the MFV hypothesis on spurious (and even anomalous) U(1) symmetries as well. However, we will not do

so, since the abelian symmetries are not needed to suppress FCNCs, and furthermore, imposing such a hypothesis

will generally lead to phenomenology which is closer to the R-parity conserving MSSM, while our primary goal is to

demonstrate a viable supersymmetric model with vastly different phenomenology.

In addition to FCNCs, low-energy CP violation (CPV) searches and measurements also impose strong constraints

on new physics. Experimentally, CPV has been discovered only in flavor changing processes in K and B decays. In

the SM, this is explained by the fact that the only source of CPV is the one physical phase of the CKM matrix. When

extending the SM, however, many new sources of CPV can arise, both in flavor changing as well as flavor conserving

couplings. The MFV framework suppresses all new flavor-changing CPV effects, but does not address the problem of

flavor diagonal sources of CPV. In SUSY, in particular, new flavor diagonal couplings can give rise to large EDMs,

and thus the new phases cannot be order one, and must be tuned to satisfy experimental constraints [16]. Within

MFV, one solution is to assume that all CP violating spurions come from the Yukawa matrices. In this work, we

will not consider the problem of CP violation any further, as we do not expect that the problem will be qualitatively

different for MFV SUSY than for other MFV models [17].

Thus, we will make the “minimal” assumption that the holomorphic spurions Yu, Yd, Ye are the only sources

of SU(3)5 breaking, discarding R-parity as a means of stabilizing the proton. This assumption, together with the

holomorphy of the Yukawa couplings, turns out to be very restrictive. It is straightforward to find the complete list of

irreducible holomorphic flavor singlets, shown in Table III. The superpotential is therefore built from gauge invariant

combinations of these operators. In particular, since none of these operators carry lepton number, U(1)L is an exact

symmetry of the superpotential.

While holomorphy also forbids lepton number violation in the soft breaking A terms, lepton number violation can

still occur in the Kähler potential, and in bilinear superpotential terms,3 B terms, and the soft mass mixing term

L̃H̃d
?

+ c.c.. However, while such terms will play an important role when we introduce neutrino masses in §V, in

the case of massless neutrinos they are absent for the following symmetry reason. There is a ZL3 ∈ SU(3)L × SU(3)e

symmetry of the form:

L→ ωL , ē→ ω−1ē , Ye → Ye , (II.3)

3 These can be generated nonholomorphically after SUSY breaking, as shown in Appendix B.
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where ω ≡ e2πi/3 and the other fields and spurions are not charged under ZL3 . In particular, ZL3 lies within the Z3×Z3

center of SU(3)L × SU(3)e, and is also a Z3 subgroup of U(1)L. As all spurions are neutral under ZL3 , we conclude

that lepton number can only be violated in multiples of three. Soft terms of this type are not possible, whereas

the lowest-dimension ∆L = ±3 Kähler potential corrections are dimension eight, and are strongly suppressed for a

sufficiently high cutoff.

Since, in the absence of light unflavored fermions, proton decay requires lepton number violation, we conclude that

the proton is effectively stable for massless neutrinos. Thus, proton stability will only constrain the neutrino sector,

as discussed in §VI.4

In addition to the R-parity conserving terms (II.1), MFV allows only one additional renormalizable correction to

the superpotential:

WBNV =
1

2
w′′(Yu ū)(Yd d̄)(Yd d̄) , (II.4)

where w′′ is an unknown O(1) coefficient. In combination with the MFV structure of the soft terms, most of the

interesting phenomenology of our model arises from this baryon-number and R-parity violating term.

The Kähler potential need not be canonical, and is subject to non-universal corrections. At the renormalizable

level, these take the form:

K = Q†
[
1 + fQ(YuY

†
u , YdY

†
d )T + h.c.

]
Q+ ū†

[
1 + Y †u fu(YuY

†
u , YdY

†
d )Yu + h.c.

]
ū

+d̄†
[
1 + Y †d fu(YuY

†
u , YdY

†
d )Yd + h.c.

]
d̄

+L†
[
1 + fL(YeY

†
e )T + h.c.

]
L+ ē†

[
1 + fe(Y

†
e Ye) + h.c.

]
ē , (II.5)

where the fi are polynomials in the indicated (Hermitean) matrices. While the renormalizable Kähler potential can

be made canonical by an appropriate change of basis, such a change of basis is not compatible with the holomorphy

of the spurions. The situation is analogous to that of the supersymmetric beta function, where the one-loop NSVZ

result can be shown to be exact in an appropriate holomorphic basis, but the “physical” all-loop beta function is

still subject to wave function renormalization, since the gauge boson kinetic term is non-canonical in the holomorphic

basis. Similarly, in MFV SUSY the form of the superpotential is highly constrained, but the Kähler potential is still

subject to a large number of unknown corrections. Fortunately, these unknown corrections are suppressed by the

smallness of the Yukawa couplings.

The allowed A and B terms are in direct correspondence with the allowed superpotential terms, and carry the same

flavor structure, except that the A-terms are subject to certain subleading non-holomorphic corrections:

Lsoft ⊃ Yu(1 + Y †uYu + . . .)˜̄u(Yd
˜̄d)(Yd

˜̄d) + (Yu ˜̄u)(Yd
˜̄d)Yd(Y

†
d Yd + . . .) ˜̄d , (II.6)

and similar corrections to the other A terms, as explained in Appendix B. However, as with corrections to the Kähler

potential, these corrections are suppressed by the smallness of the Yukawa couplings.

The soft breaking scalar masses have the same basic flavor structure as the Kähler terms listed above. This implies

in particular that, while FCNCs can occur via squark exchange, they are suppressed by the GIM mechanism [18], just

as in the standard model. This automatic suppression of FCNCs is a universal feature of MFV scenarios. We will

quantify the flavor-changing squark mass-mixings in §IV A.

We defer consideration of higher-dimensional operators to Appendix E, where we show that such operators will give

subdominant contributions to baryon-number violating processes.

4 The situation changes if the gravitino (or another unflavored fermion, such as an axino) is lighter than mp. We discuss the resulting
constraints on m3/2 in §VI.
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III. THE BARYON-NUMBER VIOLATING VERTEX

Most of the interesting phenomenology of our model arises from the interaction (II.4), which we now discuss in

more detail. Performing an SU(3)5 transformation, we choose a basis where

Yu =
1

vu
V †CKM



mu 0 0

0 mc 0

0 0 mt


 , Yd =

1

vd



md 0 0

0 ms 0

0 0 mb


 , Ye =

1

vd



me 0 0

0 mµ 0

0 0 mτ


 , (III.1)

where VCKM is the CKM matrix and vu,d = 〈Hu,d〉 are the Higgs VEVs, with v2 = v2
u+v2

d ≈ (174 GeV)2 the standard

model Higgs VEV. Since the Yukawa couplings are RG dependent quantities, we should in principle evaluate them at

the squark-mass scale to estimate (II.4), integrate out the superpartners, and then run the resulting couplings down

to the QCD scale. However, to obtain a rough estimate, it is sufficient to estimate them using the following low-energy

quark masses [19]:

mu ∼ 3 MeV , mc ∼ 1.3 GeV , mt ∼ 173 GeV ∼ v ,

md ∼ 6 MeV , ms ∼ 100 MeV , mb ∼ 4 GeV , (III.2)

together with the lepton masses:

me ' 0.511 MeV , mµ ' 106 MeV , mτ ' 1.78 GeV . (III.3)

For the magnitudes of the CKM elements, we take

VCKM ∼




1 λ λ3/2

λ 1 λ2

λ3 λ2 1


 , (III.4)

where λ ∼ 1/5 approximates all elements to better than 20% accuracy.

The lepton and down-type Yukawa couplings depend strongly on tanβ ≡ vu/vd. We consider a broad range,

3 . tanβ . 45, where the lower bound is motivated by electroweak symmetry breaking, and the upper bound by

perturbativity of the bottom Yukawa coupling, yb . 1. Consistent with the lower bound tanβ & 3, we will usually

assume tanβ � 1, which simplifies many formulae.

Using the assumptions outlined above, we now estimate the size of the baryon-number violating term (II.4), which

is conventionally written in the form:

WBNV =
1

2
λ′′ijkε

abcūiad̄
j
bd̄
k
c , (III.5)

where a, b, c are color indices and i, j, k are the flavor indices, with summation over repeated indices understood. The

factor of one-half is due to the anti-symmetry of the operator in the down-type flavor indices (which is a consequence

of the color contraction). Using the basis (III.1), we find

λ′′ijk = w′′y
(u)
i y

(d)
j y

(d)
k εjklV

?
il , (III.6)

where y
(u)
i and y

(d)
i are the up and down-type Yukawa couplings, and the coupling scales like (tanβ)2 for large tanβ.
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s b b d d s

u 5× 10−7 6× 10−9 3× 10−12

c 4× 10−5 1.2× 10−5 1.2× 10−8

t 2× 10−4 6× 10−5 4× 10−5

TABLE IV. Numerical estimates of λ′′ijk for tanβ = 45 and w′′ ∼ 1.

Using the CKM estimate (III.4), we find

λ′′usb ∼ t2β
mbmsmu

m3
t

, λ′′ubd ∼ λt2β
mbmdmu

m3
t

, λ′′uds ∼ λ3t2β
mdmsmu

2m3
t

,

λ′′csb ∼ λt2β
mbmcms

m3
t

, λ′′cbd ∼ t2β
mbmcmd

m3
t

, λ′′cds ∼ λ2t2β
mcmdms

m3
t

,

λ′′tsb ∼ λ3t2β
mbms

m2
t

, λ′′tbd ∼ λ2t2β
mbmd

m2
t

, λ′′tds ∼ t2β
mdms

m2
t

. (III.7)

where we tβ as a shorthand for tanβ. Taking the extreme value tanβ = 45, and using the quark masses (III.2) and

λ ∼ 1/5, we obtain the numerical estimates shown in Table IV.

Due to the Yukawa suppression, the largest coupling, λ′′tsb, involves as many third-generation quarks as possible,

without any first generation quarks. This coupling, however, will contribute subdominantly to low energy baryon

number violation, due to the CKM suppression required for the third generation quarks to flavor change into first

generation external state quarks.

There are many bounds on specific combinations of RPV couplings [7]. These bounds typically assume a generic

form for the soft-masses, and thus do not necessarily apply to MFV SUSY. However, due to the flavor suppression,

the predicted values of the RPV couplings in our case are small, and all of these bounds are satisfied.

IV. CONSTRAINTS FROM ∆B = 2 PROCESSES

The baryon number violating interaction (II.4) will lead to baryon number violating processes which are, in theory,

observable at low energy [20]. In particular, the most stringent limits on baryon number violation without lepton

number violation come from the lower bound on the neutron-anti-neutron oscillation time [21]

τn−n̄ ≥ 2.44× 108 s , (IV.1)

and from the lower bound on the partial lifetime for pp→ K+K+ dinucleon decay [22]

τpp→K+K+ ≥ 1.7× 1032 yrs . (IV.2)

Both limits come from null observation of 16O decay to various final states in the Super-Kamiokande water Cherenkov

detector. Present limits on other dinucleon partial lifetimes are somewhat weaker, at ∼ 1030 yrs [19].

In this section, we will only consider the simplest, tree-level diagrams for the processes of interest. While these

will turn out the be the dominant diagrams, it is necessary to check that other contributions are subdominant. We

outline a systematic scheme for doing so in Appendices C and D.
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g̃, Ñ

d̃

d̃

b̃

b̃

d

d

u

ū

d̄

d̄




n̄n





Figure 1: The leading contribution to n − n̄ oscillation.

Since the squarks in Fig. 1 are initially right-handed, the required flavor changing is
suppressed by an additional Yukawa coupling. Depending on the initial flavor of the squark,
we obtain

b̃R → d̃L ∼ ybλ
3 , s̃R → d̃L ∼ ysλ

5 . (4.6)

As the vertex factor is also larger for a b̃ squark, b̃R → d̃L is clearly dominant.
Gathering all factors, we obtain the amplitude

Mn−n̄ ∼ Λ̃ t6β λ
8 m2

um
2
dm

4
b

m8
t

�
Λ̃

mq̃

�4 �
g2

s

�
Λ̃

mg̃

�
+ . . .

�
, (4.7)

where we write the hadronic matrix element as Λ̃6, with Λ̃ ∼ ΛQCD in rough agreement
with the estimates of [6, 21]. The omitted terms come from neutralino, rather than gluino,
exchange and can be important if the gluino is very heavy.

The n − n̄ oscillation time is approximately tosc ∼ M−1. Therefore, assuming that the
tree-level amplitude (4.7) gives the dominant contribution, we find

tosc ∼ (9 × 109 s)

�
250 MeV

Λ̃

�6 � mq̃

100 GeV

�4 � mg̃

100 GeV

�� 45

tan β

�6

, (4.8)

where we take αs ≡ g2
s/4π ∼ 0.12. This must be compared to the experimental bound (4.1),

τ ≥ 2.44 × 108 s. Thus, unless we have substantially underestimated the hadronic matrix
element, n − n̄ oscillations place no constraint on our model.

4.2 Dinucleon decay

The simplest diagrams for dinucleon decay take the same form as the tree-level n−n̄ diagram
(see Fig. 1), with the addition of two spectator quarks, as shown in Fig. 2. There are two pos-
sibilities, depending on whether the exchanged sparticle is a chargino or a gluino/neutralino.
In the former case, the squarks undergo charged flavor changing while converting to quarks,
much like quarks exchanging a W boson; charge conservation then requires that one squark

10

FIG. 1. The leading contribution to n− n̄ oscillation.

A. n− n̄ oscillations

There is a unique tree-level diagram for n − n̄ oscillations, up to crossing symmetry, the choice of the exchanged

fermionic sparticle, and the squark flavors (see Fig. 1). The down-type squarks cannot be first generation, due to the

antisymmetry of λ′′ijk in the last two indices. Thus, to achieve the required flavor-changing, the squarks must change

flavor via mass insertions, arising from soft-terms of the form:

Lsoft ⊃ m2
soft Q̃

?
(
YuY

†
u + YdY

†
d

)
Q̃+ . . . , (IV.3)

where the omitted terms are higher order in the Yukawa couplings or are diagonal in the quark mass basis.

Thus, off-diagonal mass-mixing between left-handed down-type squarks of flavors i and j is suppressed by

V
(neutral)
ij ≡

δm2
ij

m2
soft

∼
∑

k

V †ik

[
y

(u)
k

]2
Vkj , (IV.4)

with a similar expression for up-type squarks. The sum in (IV.4) is dominated by the third generation except in the

case of V
(neutral)
uc , where there is a competitive (though not dominant) contribution from the second generation. We

find:

V
(neutral)
ds ∼ λ5, V

(neutral)
db ∼ λ3 , V

(neutral)
sb ∼ λ2 ,

V (neutral)
uc ∼ y2

b λ
5/2, V

(neutral)
ut ∼ y2

b λ
3/2 , V

(neutral)
ct ∼ y2

b λ
2 . (IV.5)

Since the squarks in Fig. 1 are initially right-handed, the required flavor changing is suppressed by an additional

Yukawa coupling. Depending on the initial flavor of the squark, we obtain

b̃R → d̃L ∼ ybλ
3 , s̃R → d̃L ∼ ysλ

5 . (IV.6)

As the vertex factor is also larger for a b̃ squark, b̃R → d̃L is clearly dominant.

Gathering all factors, we obtain the amplitude

Mn−n̄ ∼ Λ̃ t6β λ
8 m2

um
2
dm

4
b

m8
t

(
Λ̃

mq̃

)4 [
g2
s

(
Λ̃

mg̃

)
+ . . .

]
, (IV.7)

where we write the hadronic matrix element as Λ̃6, with Λ̃ ∼ ΛQCD in rough agreement with the estimates of [7, 23].

The omitted terms come from neutralino, rather than gluino, exchange and can be important if the gluino is very

heavy.



9

t̃

g̃, Ñ
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Figure 2: Dinucleon decay via neutral gaugino exchange (left) and chargino exchange (right).

is up-type and the other down-type. In the latter case, the squark/quark/neutralino vertex
is flavor diagonal, but neutral flavor changing via squark mass mixing is still possible.

For simplicity, we only consider diagrams of this type.4 The external quarks must be
light quarks, no more than two of which may be strange quarks. Since the quark legs do not
change flavor, only ubs, ubd, uds, cds, and tds vertices may be used. By enumerating all
possibilities, one can check that the dominant diagram involving chargino exchange combines
a tds vertex with a ubs vertex, whereas the dominant diagram involving gluino/neutralino
exchange combines two tds vertices with t̃ → ũ flavor-changing mass mixing along the squark
lines. The two diagrams are shown in Fig. 2, with flavor suppressions yuydy

2
sy

2
bλ

6/2 for the
chargino exchange diagram, and y2

dy
2
sy

4
bλ

6/4 for the gluino/neutralino exchange diagram.
Ignoring order-one factors (including gauge couplings), the gluino/neutralino diagram is
dominant if

yd y2
b

2 yu

� md

2 mu

�
mb

mt

�2

tan3 β >∼ 1 . (4.9)

Thus, for tan β >∼ 12 the gluino/neutralino diagram dominates; we focus on this possibility
for the time being.

Following Goity and Sher [21], we obtain the dinucleon NN → KK width:

Γ ∼ ρN
128πα2

sΛ̃
10

m2
Nm2

g̃m
8
q̃

�
λ3mdmsm

2
b

2m4
t

tan4 β

�4

, (4.10)

where mN � mp is the nucleon mass, ρN ∼ 0.25 fm−3 is the nucleon density, and Λ̃ is the
“hadronic scale,” arising from the hadronic matrix element and phase-space integrals. Thus,

τNN→KK ∼
�
1.9 × 1032 yrs

��150 MeV

Λ̃

�10 � mq̃,g̃

100 GeV

�10
�

17

tan β

�16

, (4.11)

4For a more systematic treatment, see Appendices B and C.
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is up-type and the other down-type. In the latter case, the squark/quark/neutralino vertex
is flavor diagonal, but neutral flavor changing via squark mass mixing is still possible.

For simplicity, we only consider diagrams of this type.4 The external quarks must be
light quarks, no more than two of which may be strange quarks. Since the quark legs do not
change flavor, only ubs, ubd, uds, cds, and tds vertices may be used. By enumerating all
possibilities, one can check that the dominant diagram involving chargino exchange combines
a tds vertex with a ubs vertex, whereas the dominant diagram involving gluino/neutralino
exchange combines two tds vertices with t̃ → ũ flavor-changing mass mixing along the squark
lines. The two diagrams are shown in Fig. 2, with flavor suppressions yuydy
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Thus, for tan β >∼ 12 the gluino/neutralino diagram dominates; we focus on this possibility
for the time being.

Following Goity and Sher [21], we obtain the dinucleon NN → KK width:

Γ ∼ ρN
128πα2
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8
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where mN � mp is the nucleon mass, ρN ∼ 0.25 fm−3 is the nucleon density, and Λ̃ is the
“hadronic scale,” arising from the hadronic matrix element and phase-space integrals. Thus,

τNN→KK ∼
�
1.9 × 1032 yrs
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�
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tan β
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, (4.11)

4For a more systematic treatment, see Appendices B and C.
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The n− n̄ oscillation time is approximately tosc ∼M−1. Therefore, assuming that the tree-level amplitude (IV.7)

gives the dominant contribution, we find

tosc ∼ (9× 109 s)

(
250 MeV

Λ̃

)6 ( mq̃

100 GeV

)4 ( mg̃

100 GeV

)( 45

tanβ

)6

, (IV.8)

where we take αs ≡ g2
s/4π ∼ 0.12. This must be compared to the experimental bound (IV.1), τ ≥ 2.44× 108 s. Thus,

unless we have substantially underestimated the hadronic matrix element, n − n̄ oscillations place no constraint on

our model.

B. Dinucleon decay

The simplest diagrams for dinucleon decay take the same form as the tree-level n− n̄ diagram (see Fig. 1), with the

addition of two spectator quarks, as shown in Fig. 2. There are two possibilities, depending on whether the exchanged

sparticle is a chargino or a gluino/neutralino. In the former case, the squarks undergo charged flavor changing while

converting to quarks, much like quarks exchanging a W boson; charge conservation then requires that one squark

is up-type and the other down-type. In the latter case, the squark/quark/neutralino vertex is flavor diagonal, but

neutral flavor changing via squark mass mixing is still possible.

For simplicity, we only consider diagrams of this type.5 The external quarks must be light quarks, no more than two

of which may be strange quarks. Since the quark legs do not change flavor, only ubs, ubd, uds, cds, and tds vertices

may be used. By enumerating all possibilities, one can check that the dominant diagram involving chargino exchange

combines a tds vertex with a ubs vertex, whereas the dominant diagram involving gluino/neutralino exchange combines

two tds vertices with t̃→ ũ flavor-changing mass mixing along the squark lines. The two diagrams are shown in Fig. 2,

with flavor suppressions yuydy
2
sy

2
bλ

6/2 for the chargino exchange diagram, and y2
dy

2
sy

4
bλ

6/4 for the gluino/neutralino

exchange diagram. Ignoring order-one factors (including gauge couplings), the gluino/neutralino diagram is dominant

if

yd y
2
b

2 yu
' md

2mu

(
mb

mt

)2

tan3 β & 1 . (IV.9)

5 For a more systematic treatment, see Appendices C and D.
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Thus, for tanβ & 12 the gluino/neutralino diagram dominates; we focus on this possibility for the time being.

Following Goity and Sher [23], we obtain the dinucleon NN → KK width:

Γ ∼ ρN
128πα2

sΛ̃
10

m2
Nm

2
g̃m

8
q̃

(
λ3mdmsm

2
b

2m4
t

tan4 β

)4

, (IV.10)

where mN ' mp is the nucleon mass, ρN ∼ 0.25 fm−3 is the nucleon density, and Λ̃ is the “hadronic scale,” arising

from the hadronic matrix element and phase-space integrals. Thus,

τNN→KK ∼
(
1.9× 1032 yrs

)(150 MeV

Λ̃

)10 ( mq̃,g̃

100 GeV

)10
(

17

tanβ

)16

, (IV.11)

where, as before, we take αs ∼ 0.12. Comparing with the experimental bound (IV.2), τ ≥ 1.7 × 1032 yrs, we obtain

an upper bound

tanβ . 17

(
150 MeV

Λ̃

)5/8 ( mq̃,g̃

100 GeV

)5/8

. (IV.12)

This bound is illustrated in Fig. 3.

There remains considerable uncertainty in the hadronic matrix element. Goity and Sher consider values for Λ̃/mq̃,g̃

between 10−3 and 10−6 [23]. An earlier paper by Barbieri and Masiero, while taking a substantially different approach,

obtains a result consistent with Λ̃ ∼ 150 MeV [24]. We will take Λ̃ = 150 MeV as a representative value. While this

is somewhat smaller than the “natural” ∼ ΛQCD scale that one might expect, the matrix element is expected to be

suppressed by hard-core repulsion between the nucleons, motivating the yet-smaller scales considered by [23]. Due to

the uncertainty in Λ̃, we leave the dependence on it explicit in (IV.12); Fig. 3 illustrates the effect of varying Λ̃.

Assuming mq̃,g̃ & 100 GeV, the charged flavor-changing diagram does not alter the above bounds, since both

amplitudes increase with tanβ, whereas the neutral flavor-changing diagram is already sufficiently suppressed at

tanβ ∼ 12, below which charged flavor-changing becomes dominant.
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SU(3)L SU(3)e SU(3)N U(1)B−L U(1)H U(1)N
L 1 1 −1 0 0

ē 1 1 1 0 0

N̄ 1 1 1 0 1

Ye 1 0 1 0

YN 1 0 −1 −1

MN 1 1 −2 0 −2

TABLE V. The spurious leptonic flavor symmetries of the MSSM with right-handed neutrinos. We omit discrete and anomalous
symmetries.

V. INCORPORATING NEUTRINO MASSES

We have seen that in the absence of neutrino masses the MFV SUSY approach approximately conserves lepton

number, leaving an exact ZL3 lepton number symmetry unbroken. To introduce neutrino masses, we therefore require

additional spurions, which will lead to additional allowed operators in the Lagrangian [25, 26]. It is important to

fully characterize such operators as, in combination with the baryon number violating vertex (II.4), they can induce

proton decay.

We focus on the see-saw mechanism to generate Majorana masses for the neutrinos. We add three right-handed

sterile neutrinos, N̄ , which obtain Majorana masses at a heavy scale MR. Through a Yukawa coupling YN to the left-

handed neutrinos, this gives the left-handed neutrinos a small Majorana mass of order Y 2
N v

2/MR upon electroweak

symmetry breaking. Due to the additional flavored field, the nonabelian spurious symmetry of the lepton sector is

extended to SU(3)L × SU(3)e × SU(3)N . The superpotential required to generate neutrino masses is

Wlept = YeLHd ē+ YNLHuN̄ +
1

2
MN N̄N̄ , (V.1)

where the elements of MN are assumed to be of order MR. Thus, there are now three spurions in the lepton sector:

Ye, YN and MN . The transformation properties of the leptonic sector under the spurious symmetries are shown in

Table V. As before, we do not impose the MFV hypothesis on the (spurious) U(1) symmetries.

A subtlety arises when applying the MFV hypothesis to MN , since it is dimensionful. Instead, we will expand in

the dimensionless spurion:

µN ≡
1

ΛR
MN , (V.2)

where ΛR is an unknown heavy scale. Perturbativity of the spurion expansion requires MR . ΛR. In addition

ΛR � msoft is required for a valid low-energy description. Otherwise, ΛR is an unknown scale, which may or may not

be related to other cutoff scales in the theory.

As shown in Appendix A, the complete list of holomorphic flavor singlets involving YN , MN or N̄ is that given in

Table VI, where we denote the matrix of cofactors of a matrix Y as Ỹ ≡ (detY )Y −1. From these flavor singlets, only

one of the three renormalizable lepton number violating superpotential terms of (II.2), λLLē, can be constructed:

W
(hol)
LNV =

1

2ΛR
w (LL)

(
ỸNMN ỸN

)
(Yeē) , (V.3)

where w is an unknown O(1) coefficient.

In addition, as shown in Appendix B, bilinear superpotential terms, and in particular the lepton-number violating

term LHu, can be generated nonholomorpically after SUSY breaking. As we saw before in the absence of neutrino

masses, a ZL3 symmetry ensures that lepton number is preserved mod 3, forbidding this term. However, while the ZL3
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SU(2)L U(1)Y U(1)L ZR2
(LL)(ỸNMN ỸN )(LL) 1 −2 4 +

(LL)(ỸNMN ỸN )(Yeē) 1 0 1 −
(LL)ỸNMN N̄ 1 −1 1 −

L(YNM̃NYN )(Yeē)(YN N̄) 1/2 −1 −
LYN N̄ −1/2 0 +

ēYeỸNMN N̄ 1 1 −2 +

(Yeē)(ỸNMN ỸN )(Yeē) 1 2 −2 +

L(YNM̃NYN )L −1 2 +

MN N̄N̄ 1 0 −2 +

TABLE VI. A complete list of holomorphic flavor singlets involving YN and MN . We indicate the lepton number of the fields
only, not counting that “carried” by the spurion MN .

symmetry is not broken by YN , it is broken by MN , which is charged under ZL3 . Therefore, bilinear lepton-number

violating terms are allowed, though they necessarily involve at least one factor of µN ∼MR/ΛR.

The non-holomorphic corrections to the superpotential take the form:

W
(non−hol)
LNV = msoft[V†]aLaHu , (V.4)

where there are two potentially leading contributions to the dimensionless spurion V:

V(1)
a =

1

ΛR
εabc

[
Ỹ †N

]b
i

[M†N ]ij [YN ]
c
j , V(2)

a =
1

ΛR
εabc

[
YeY

†
e

]b
d

[
YNM

†
NYN

]cd
. (V.5)

V(2) contains more spurions, but if YN � 1 then the presence of the additional Ye spurions can be easily compensated

by the omission of one YN insertion, especially at large tanβ.

The corresponding B-term can also be generated, and takes the form:

Lsoft ⊃ m2
soft[V†]aL̃aHu + h.c. , (V.6)

This will lead to a left-handed sneutrino VEV

〈La〉 ∼ −vu Va , (V.7)

up to an unknown O(1) coefficient. Inserting this VEV into the canonical Kähler potential L†L, we obtain the

gaugino/lepton mixing

L ⊃ −vu λ (V†L) + c.c. . (V.8)

This mixing is of approximately the same order as the lepton/higgsino mixing arising from (V.4). Lepton number

violation can also appear in the Kähler potential,

KLNV ∼ [V†]aLaH†d + h.c. , (V.9)

and in the correspond soft mass term. This will lead to further gaugino/lepton mixing, but proportional to vd instead

of vu.

In the presence of R-parity violation it is not always simple to define which linear combination of the four fields

Li, Hd is the Higgs, and which are leptons [27]. The physical effects of R-parity violation arise from a basis independent
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misalignment of the different mixings between the lepton and Higgs superfields. In our case there are several mixing

terms, and cancellations can occur. As supersymmetric sources of bilinear lepton-number violation can be eliminated

by the field redefinition L→ L−VHd, these cancellations will depend on the mechanism of supersymmetry breaking.

Indeed, some cancellation may naturally occur in gauge-mediated supersymmetry breaking models, since, due to

the flavor-blind nature of gauge interactions, SUSY breaking effects are flavor universal, up to RGE running and

subleading corrections induced by the supersymmetric sources of flavor-breaking. We do not, however, assume a

particular mechanism for SUSY breaking, and thus will take the mixings (V.4) and (V.8) to be representative without

substantial cancellation. Any such cancelation will only make the lepton-number violating effects smaller, and so

ignoring such a possibility is a conservative assumption.

The mixing (V.8) can lead to additional contributions to the left-handed neutrino masses via a weak-scale see-saw

mechanism. We find

δmν ∼
V2v2

u

mλ
. (V.10)

Imposing |δmν | . 1 eV, we obtain an upper bound

V . 2× 10−6
( mλ

100 GeV

)1/2

(V.11)

Proton decay, however, will impose a much stronger bound on V, and consequently the weak see-saw contribution to

the left-handed neutrino masses will be negligible.

In the above discussion, we have focused on the see-saw mechanism for generating small neutrino masses. If we

instead integrate out the heavy neutrinos and consider the theory below the scale MR, only one combination of the

YN and MN spurions, YNM
−1
N Y TN , is relevant for neutrino mass generation. If we ignored all other spurions built from

YN and MN , taking a viewpoint that is agnostic about the high-scale mechanism for neutrino mass generation, we

would obtain a theory for low-energy lepton-number violation which is more restrictive than that considered above.

We have also neglected the effects of RGE running below the scale MR. While such effects can be significant in

detailed numerical calculations [28], they will not substantially alter our order of magnitude estimates.

VI. CONSTRAINTS FROM PROTON DECAY

In combination with the baryon-number violating interactions studied in §III and §IV, the lepton-number violating

interactions enumerated in §V will lead to a finite proton lifetime. The strongest constraint on the proton lifetime

comes from the bound [29]

τp→π0e+ ≥ 8.2× 1033 yrs . (VI.1)

However, this bound only constrains the partial lifetime for the particular final state π0 e+. For other final states, the

partial lifetime bounds are weaker, often substantially [19].

As we show below, MFV SUSY has a strong preference for final states with positive strangeness. Such decay modes

are also strongly constrained [19, 30]:

τp→e+K0 ≥ 1.0× 1033 yrs , τn→e−K+ ≥ 3.2× 1031 yrs ,

τp→µ+K0 ≥ 1.3× 1033 yrs , τn→µ−K+ ≥ 5.7× 1031 yrs ,

τp→ν K+ ≥ 2.3× 1033 yrs , τn→ν K0 ≥ 1.3× 1032 yrs , (VI.2)

where we also show the (weaker) limits on bound-neutron partial lifetimes. There are similar bounds on some three-

body decays of the form N → `+ π +K.
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Before discussing the constraints arising from these bounds, we first estimate the size of the coefficients of the

lepton-number violating operators. We use the generic parametrization of the neutrino Yukawa couplings of Casas

and Ibarra [31]:

Y TN =
1

vu
diag

(√
MR1,

√
MR2,

√
MR3

)
R diag (

√
mν1,

√
mν2,

√
mν3) U† , (VI.3)

where R is a complex orthogonal matrix describing mixing among the right-handed neutrinos, U is the left handed

neutrino mixing matrix giving rise to atmospheric and solar neutrino oscillations, and MRi and mνi (i = 1, 2, 3) are

the heavy right-handed neutrino masses and the light left-handed neutrino masses, respectively. The mixing angles

in U are large and the elements of U non-hierarchical.

Since R and the right-handed neutrino masses cannot be measured at low energies, we will assume a generic flavor-

structure for YN . For simplicity we will assume that the right-handed neutrinos have masses of the same magnitude,

and that the left-handed neutrinos also have roughly equal masses of order 0.1 eV, with order-one neutrino mixing

angles. Substantially lighter neutrino masses would imply a more hierarchical spectrum, with small Yukawa couplings

YN and consequently more suppressed lepton-number violation, whereas substantially heavier neutrino masses begin

to conflict with cosmological bounds.

The neutrino Yukawa coupling is then approximately

YN ∼
√
MRmν

vu
, (VI.4)

where we assume that the entire YN matrix has elements of this order. The LLē coupling is therefore

λijk ∼
M3
Rm

2
ν

ΛR v4
u

y
(e)
k , (VI.5)

whereas the V spurions are

V(1)
i ∼ M

5
2

Rm
3
2
ν

ΛR v3
u

, V(2)
e, µ ∼

M2
Rmν

ΛR v2
u

y2
τ , V(2)

τ ∼ M2
Rmν

ΛR v2
u

y2
µ . (VI.6)

Note that

λijk ∼ y(e)
k YN V(1) , (VI.7)

up to flavor structure. Therefore, due to the smallness of the Yukawa couplings, the LLē superpotential term will be

a subdominant source of lepton-number violation.

We now search for the largest possible nucleon decay diagram. The simplest diagrams for nucleon decay to a

meson and a lepton are those shown in Fig. 4, where the squark emits a chargino or neutralino, which mixes into

an outgoing charged lepton or neutrino, respectively, via (V.8).6 Requiring the external quarks to be light, with at

most one strange quark, it is straightforward to check that the leading diagram for charged lepton emission involves a

tds vertex with t̃→ d flavor changing at the chargino vertex, whereas the leading diagram for neutrino emission also

involves a tds vertex, but with t̃→ ũ mass mixing on the squark line.

The neutrino diagram has an additional flavor suppression of order y2
b/2 relative to the charged-lepton diagram.

However, the latter diagram, which leads to n → K+µ− decay, suffers from a chiral suppression, as we illustrate

in Fig. 4. The suppression occurs because the right to right chargino propagator is roughly /p/m2
C̃

, leading to an

additional suppression of at least ∼ mp/mC̃ relative to the right to left propagator. This chiral suppression is not

6 The lepton/higgsino mixing (V.4) gives another contribution to this mixing of a similar form.
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Figure 4: The leading charged (left) and neutral (right) flavor-changing diagrams for n →
�−K+ and p → K+ν̄ nucleon decay, respectively. Arrows indicate chirality. The charged
flavor-changing diagram has less flavor suppression, but suffers from a chiral suppression due
to the right → right chargino propagator.

Comparing with the experimental bound (6.2), we obtain

V tan3 β <∼ (3 × 10−14)
� mq̃

100 GeV

�2 � mÑ

100 GeV

�
. (6.10)

For sufficiently large tanβ, we have V (2) � V (1) and V (2) gives the dominant contribution to
V . Using mν = 0.1 eV, we then obtain the upper bound on MR

MR <∼ (108 GeV)

�
10

tan β

�5/2 � mq̃,Ñ

100 GeV

�3/2
�

ΛR

1016 GeV

�1/2

. (6.11)

One can check that V (1) gives a weaker bound than this as long as

tan β >∼ 4
� mq̃,χ

100 GeV

�3/13
�

ΛR

1016 GeV

�1/13

. (6.12)

Thus, for ΛR = 1016 GeV and mq̃,Ñ
<∼ 1 TeV, V (2) is dominant for tanβ >∼ 7, whereas for

tan β <∼ 7, V (1) is dominant for sufficiently large superpartner masses. The bound on MR,
including both contributions, is illustrated in Fig. 5.

The bound on MR depends strongly on ΛR. For instance, if ΛR ∼ 10 TeV, the bound (6.11)
is reduced by six orders of magnitude. If the right-handed neutrinos are sufficiently light,
they could be produced at colliders, though the Yukawa couplings are necessarily very small,
so that such a scenario is unlikely to be excluded in the near future.

If the gravitino is sufficiently light, proton decay can proceed via the baryon-number
violating vertex (2.4) alone, without lepton number violation [32]. In particular, the gravitino
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ũL

t̃L

uL

dR

u

ν̄

s̄R

u

Ñ
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V . Using mν = 0.1 eV, we then obtain the upper bound on MR

MR <∼ (108 GeV)

�
10

tan β

�5/2 � mq̃,Ñ

100 GeV

�3/2
�

ΛR

1016 GeV

�1/2

. (6.11)

One can check that V (1) gives a weaker bound than this as long as

tan β >∼ 4
� mq̃,χ

100 GeV

�3/13
�

ΛR

1016 GeV

�1/13

. (6.12)

Thus, for ΛR = 1016 GeV and mq̃,Ñ
<∼ 1 TeV, V (2) is dominant for tanβ >∼ 7, whereas for

tan β <∼ 7, V (1) is dominant for sufficiently large superpartner masses. The bound on MR,
including both contributions, is illustrated in Fig. 5.

The bound on MR depends strongly on ΛR. For instance, if ΛR ∼ 10 TeV, the bound (6.11)
is reduced by six orders of magnitude. If the right-handed neutrinos are sufficiently light,
they could be produced at colliders, though the Yukawa couplings are necessarily very small,
so that such a scenario is unlikely to be excluded in the near future.

If the gravitino is sufficiently light, proton decay can proceed via the baryon-number
violating vertex (2.4) alone, without lepton number violation [32]. In particular, the gravitino
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FIG. 4. The leading charged (left) and neutral (right) flavor-changing diagrams for n → `−K+ and p → K+ν̄ nucleon decay,
respectively. Arrows indicate chirality. The charged flavor-changing diagram has less flavor suppression, but suffers from a
chiral suppression due to the right → right chargino propagator.

present in the p→ K+ν̄ diagram. Combined with the stronger partial lifetime bound for this decay mode, the latter

diagram will give the strongest constraints.

The amplitude is

Mp→K+ν̄ ∼
λ3mdmsm

2
b

2m3
t mÑ

(
Λ̃

mq̃

)2

V tan4 β . (VI.8)

up to order-one mixing angles and gauge couplings, where Λ̃2 is a hadronic matrix element. We will take Λ̃ ∼ 250 MeV,

in rough agreement with lattice computations [32, 33]. The width is

Γ ∼ mp

8π
|M|2 . (VI.9)

Comparing with the experimental bound (VI.2), we obtain

V tan4 β . (3× 10−14)
( mq̃

100 GeV

)2 ( mÑ

100 GeV

)
. (VI.10)

For sufficiently large tanβ, we have V(2) � V(1) and V(2) gives the dominant contribution to V. Using mν = 0.1 eV,

we then obtain the upper bound on MR

MR . (3× 107 GeV)

(
10

tanβ

)3( mq̃,Ñ

100 GeV

)3/2(
ΛR

1016 GeV

)1/2

. (VI.11)

One can check that V(1) gives a weaker bound than this as long as

tanβ & 6
( mq̃,χ

1 TeV

)3/14
(

ΛR
1016 GeV

)1/14

. (VI.12)

Thus, for ΛR = 1016 GeV and mq̃,Ñ . 1 TeV, V(2) is dominant for tanβ & 6, whereas for tanβ . 6, V(1) is dominant

for sufficiently large superpartner masses. The bound on MR, including both contributions, is illustrated in Fig. 5.
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FIG. 5. Left: the upper bound on MR due to the nonobservation of nucleon decay, in units of 106 GeV. For this plot, we have
fixed ΛR = 1016 GeV and mν = 0.1 eV. Near the left edge, the dominant constraint comes from the V(1) spurion; elsewhere
V(2) is dominant. Right: the approximate lower bound on m3/2, in KeV, due to the nonobservation of p→ K+G̃.

The bound on MR depends strongly on ΛR. For instance, if ΛR ∼ 10 TeV, the bound (VI.11) is reduced by six

orders of magnitude. If the right-handed neutrinos are sufficiently light, they could be produced at colliders, though

the Yukawa couplings are necessarily very small, so that such a scenario is unlikely to be excluded in the near future.

If the gravitino is sufficiently light, proton decay can proceed via the baryon-number violating vertex (II.4) alone,

without lepton number violation [34]. In particular, the gravitino is derivatively coupled to chiral superfields [35]:

Lint = − 1√
3m3/2Mpl

ψ̄Lγ
µγν(∂µG̃)(Dνφ) + c.c. , (VI.13)

where G̃ is the gravitino, (φ, ψ) is any chiral superfield, and Mpl is the reduced Planck mass. If kinematically allowed,

the decay p→ K+G̃ will proceed via the diagram in Fig. 6, with the width

Γ ∼ mp

8π

(
Λ̃

mq̃

)4(
Λ2

√
3m3/2Mpl

)2
λ6m2

dm
2
sm

4
b

4m8
t

tan8 β , (VI.14)

where we use the same matrix element as above, replacing the momentum insertions with a characteristic energy

scale, Λ.

While we are unaware of a direct search for p → K+G̃, for a very light gravitino p → K+ν gives the same

experimental signature. If we conservatively assume that the p→ K+ν bound (VI.2) applies to p→ K+G̃ decays for

any gravitino mass, we obtain an approximate lower bound on m3/2:

m3/2 & (300 KeV)

(
300 GeV

mq̃

)2(
tanβ

10

)4

, (VI.15)

where we take Λ ∼ Λ̃ ∼ 250 MeV. This bound is illustrated in Fig. 5.
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Figure 6: The leading contribution to p → K+G̃ decay.

7 LSP decay and LHC phenomenology

The phenomenology of MFV SUSY models will be very different from the R-parity conserving
MSSM, and is distinctive among R-parity violating theories. In this section, we attempt
to explore the general phenomenological features of these models. The results depend on
the spectrum, and we will not attempt to exhaustively enumerate all possibilities, instead
focusing on the general features for various LSPs.

We will not assume that the LSP is electrically and color neutral; since it decays there
is no particular motivation for that requirement. Thus the LSP could be either a squark,
a slepton, a neutralino, a chargino, or the gluino. However, MFV places restrictions on the
squark and slepton masses. In particular, the mass matrix for up-type squarks must be of
the form

M2
Ũ

= m2
soft

�
1 + αYuY

†
u + βYdY

†
d δ Yu

δ� Y †
u 1 + γY †

u Yu

�
+ . . . , (7.1)

where the omitted terms are higher-order in the Yukawa couplings, δ is some combination
of holomorphic parameters specifying the left-right mixing (coming from the Yukawa and
A-terms), α and β are non-holomorphic parameters coming from the left-handed squark
masses, and γ is another non-holomorphic parameter coming from the right-handed squark
masses.

Naturalness, in this context, indicates that α, β, γ, and δ should be order-one numbers.
Thus, the leading deviations from universality will involve only the O(1) top Yukawa cou-
pling, and, in particular, it is very easy to make one of the stops very light. Since other
non-universal terms are suppressed by Yukawa couplings and/or CKM factors, the remain-
ing squarks are expected to be nearly degenerate. A similar argument applies to down-type
squarks, where the left-handed bottom squark can be made light. In the charged slepton
sector, the leading non-universal term comes from the yτ suppressed left/right mixing, im-
plying a nearly degenerate spectrum, except at very large tan β. The sneutrinos will be even
more degenerate, since this left/right term is absent, and the leading non-universality comes
from y2

τ suppressed soft-mass corrections.
Thus, it is very natural for the stop or the (left-handed) sbottom to be the LSP. A
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FIG. 6. The leading contribution to p→ K+G̃ decay.

VII. LSP DECAY AND LHC PHENOMENOLOGY

The phenomenology of MFV SUSY models will be very different from the R-parity conserving MSSM, and is

distinctive among R-parity violating theories. In this section, we attempt to explore the general phenomenological

features of these models. The results depend on the spectrum, and we will not attempt to exhaustively enumerate all

possibilities, instead focusing on the general features for various LSPs.

We will not assume that the LSP is electrically and color neutral; since it decays there is no particular motivation for

that requirement. Thus the LSP could be either a squark, a slepton, a neutralino, a chargino, or the gluino. However,

MFV places restrictions on the squark and slepton masses. In particular, the mass matrix for up-type squarks must

be of the form

M2
Ũ

=

(
m2
Q̃

(1 + αuYuY
†
u + αdYdY

†
d ) + du,L Au Yu

A?u Y
†
u m2

ũ (1 + βuY
†
uYu) + du,R

)
+ . . . , (VII.1)

where the omitted terms are higher-order in the Yukawa couplings, Au is some combination of holomorphic parameters

specifying the left-right mixing (coming from the Yukawa couplings and A-terms), αu,d and βu are non-holomorphic

parameters coming from the left and right-handed squark masses, respectivley, and du,L and du,R are the flavor-

universal D-term contributions to the squark masses.

Naturalness, in this context, indicates that αu,d and βu should be order-one numbers, whereas mQ̃, mũ, and Au

are of order msoft. Thus, the leading deviations from universality will involve only the O(1) top Yukawa coupling,

and, in particular, it is very easy to make one of the stops very light. Since other non-universal terms are suppressed

by Yukawa couplings and/or CKM factors, the remaining squarks are expected to be nearly degenerate. A similar

argument applies to down-type squarks, where the bottom squark can be made light. In the charged slepton sector, the

leading non-universal term comes from the yτ suppressed left/right mixing, implying a nearly degenerate spectrum,

except at very large tanβ. The sneutrinos will be even more degenerate, since this left/right term is absent, and the

leading non-universality comes from y2
τ suppressed soft-mass corrections.

Thus, it is very natural for the stop or the sbottom to be the LSP. A stau (or tau sneutrino) LSP, however, typically

implies a nearly degenerate spectrum, and is somewhat less natural in this context. Other squarks or sleptons are not

likely to be the LSP.

Since the largest R-parity violating operator is in the quark sector, the most interesting scenario is when the LSP

is the stop or the sbottom. We consider the stop LSP case in detail. The direct decay of the stop is given by the
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Figure 7: The leading diagrams for stop (left) and left-handed sbottom (right) LSP decay.

stau (or tau sneutrino) LSP, however, typically implies a nearly degenerate spectrum, and
is somewhat less natural in this context. Other squarks or sleptons are not expected to be
the LSP.

Since the largest R-parity violating operator is in the quark sector, the most interesting
scenario is when the LSP is the stop or the sbottom. We consider the stop LSP case in
detail. The direct decay of the stop is given by the diagram in Fig. 7. The partial widths
Γ(t̃ → d̄id̄j) are given by

Γij ∼
mt̃

8π
sin2 θt̃|λ��

3ij|2 , (7.2)

where θt̃ is the stop mixing angle. To estimate the lifetime numerically, we use the renor-
malized quark masses at a scale mt ∼ v ∼ 174 GeV, which are approximately [34,35]:

mu ∼ 1.2 MeV , mc ∼ 600 MeV , mt ∼ v ∼ 174 GeV ,

md ∼ 3 MeV , ms ∼ 50 MeV , mb ∼ 2.8 GeV , (7.3)

Using these masses to compute the relevant Yukawa couplings, we find a lifetime

τt̃ ∼ (2 µm)

�
10

tan β

�4�
300 GeV

mt̃

��
1

2 sin2 θt̃

�
. (7.4)

Thus no displaced vertices are expected except for very small values of tanβ and a very light
LSP. The decay length of the stop LSP is shown in Fig. 8.

Note that in this case one does not expect a large number of top quarks in the final state,
nor, of course, any missing energy. Roughly 90% of decays will go to bottom and strange
quarks, about 8% to bottom plus down, and a few percent to down plus strange. These
branching ratios are fixed by the flavor structure. Thus, most of the events will contain
b-quarks, and a generic signal for supersymmetry will be an overall increase in the number
of events with b-jets, but with possible resonances in the jet spectrum at the squark masses.
Since production of the superpartners would still be mainly through the R-parity conserving
couplings, most SUSY events would actually end up with at least four jets, two of which
are b-jets. Other superpartners will first decay to the stop. For example the neutralino is
expected to decay to a stop plus charm as in Fig. 9. The neutralino lifetime for the case of
a stop LSP is given by

ΓÑ ∼ mÑ

8π
g2λ4m4

b

m4
t

tan4 β , τÑ ∼ (10−19 s)

�
10

tan β

�4�
300 GeV

mÑ

�
. (7.5)
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Figure 7: The leading diagrams for stop (left) and left-handed sbottom (right) LSP decay.

stau (or tau sneutrino) LSP, however, typically implies a nearly degenerate spectrum, and
is somewhat less natural in this context. Other squarks or sleptons are not expected to be
the LSP.

Since the largest R-parity violating operator is in the quark sector, the most interesting
scenario is when the LSP is the stop or the sbottom. We consider the stop LSP case in
detail. The direct decay of the stop is given by the diagram in Fig. 7. The partial widths
Γ(t̃ → d̄id̄j) are given by

Γij ∼
mt̃

8π
sin2 θt̃|λ��

3ij|2 , (7.2)

where θt̃ is the stop mixing angle. To estimate the lifetime numerically, we use the renor-
malized quark masses at a scale mt ∼ v ∼ 174 GeV, which are approximately [34,35]:

mu ∼ 1.2 MeV , mc ∼ 600 MeV , mt ∼ v ∼ 174 GeV ,

md ∼ 3 MeV , ms ∼ 50 MeV , mb ∼ 2.8 GeV , (7.3)

Using these masses to compute the relevant Yukawa couplings, we find a lifetime

τt̃ ∼ (2 µm)
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tan β

�4�
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mt̃

��
1

2 sin2 θt̃

�
. (7.4)

Thus no displaced vertices are expected except for very small values of tanβ and a very light
LSP. The decay length of the stop LSP is shown in Fig. 8.

Note that in this case one does not expect a large number of top quarks in the final state,
nor, of course, any missing energy. Roughly 90% of decays will go to bottom and strange
quarks, about 8% to bottom plus down, and a few percent to down plus strange. These
branching ratios are fixed by the flavor structure. Thus, most of the events will contain
b-quarks, and a generic signal for supersymmetry will be an overall increase in the number
of events with b-jets, but with possible resonances in the jet spectrum at the squark masses.
Since production of the superpartners would still be mainly through the R-parity conserving
couplings, most SUSY events would actually end up with at least four jets, two of which
are b-jets. Other superpartners will first decay to the stop. For example the neutralino is
expected to decay to a stop plus charm as in Fig. 9. The neutralino lifetime for the case of
a stop LSP is given by

ΓÑ ∼ mÑ

8π
g2λ4m4

b

m4
t

tan4 β , τÑ ∼ (10−19 s)

�
10

tan β

�4�
300 GeV

mÑ

�
. (7.5)
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FIG. 7. The leading diagrams for stop (left) and left-handed sbottom (right) LSP decay. A right-handed sbottom decays
similarly, without the mass insertion.
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FIG. 8. The decay length (cτ) of a stop (or right-handed sbottom) (left) or left-hand sbottom (right) LSP, in units of µm.
Displaced vertices are expected only for small tanβ and a light LSP.

diagram in Fig. 7. The partial widths Γ(t̃→ d̄id̄j) are given by

Γij ∼
mt̃

8π
sin2 θt̃|λ′′3ij |2 , (VII.2)

where θt̃ is the stop mixing angle. To estimate the lifetime numerically, we use the renormalized quark masses at a

scale mt ∼ v ∼ 174 GeV, which are approximately [36, 37]:

mu ∼ 1.2 MeV , mc ∼ 600 MeV , mt ∼ v ∼ 174 GeV ,

md ∼ 3 MeV , ms ∼ 50 MeV , mb ∼ 2.8 GeV , (VII.3)

Using these masses to compute the relevant Yukawa couplings, we find a lifetime

τt̃ ∼ (2 µm)

(
10

tanβ

)4(
300 GeV

mt̃

)(
1

2 sin2 θt̃

)
. (VII.4)

Thus no displaced vertices are expected except for very small values of tanβ and a very light LSP. The decay length

of the stop LSP is shown in Fig. 8.

Note that in this case one does not expect a large number of top quarks in the final state, nor, of course, any

missing energy. Roughly 90% of decays will go to bottom and strange quarks, about 8% to bottom plus down, and a
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of µm. Displaced vertices are expected only for small tan β and a light LSP.

c̃

Ñ
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Figure 9: Neutralino NLSP decay.

Thus, absent a nearly-degenerate spectrum, the other superpartners are expected to be
short-lived.

It is also possible for the left-handed bottom squark to be the LSP, decaying as shown
in Fig. 7. The partial widths Γ(b̃L → ūid̄j) are

Γij ∼
mb̃

8π
y2

b |λ��
ij3|2 , (7.6)

giving a total lifetime

τb̃L
∼ (41 µm)

�
10

tan β

�6�
300 GeV

mb̃L

�
. (7.7)

Thus, displaced vertices are expected at low tanβ, as illustrated in Fig. 8. The phenomenol-
ogy is distinct from that of a stop LSP: roughly 99% of decays will be to top and strange
or top and down quarks, with less than one percent going to charm and strange quarks,
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FIG. 9. Neutralino NLSP decay.

few percent to down plus strange. These branching ratios are fixed by the flavor structure. Thus, most of the events

will contain b-quarks, and a generic signal for supersymmetry will be an overall increase in the number of events with

b-jets, but with possible resonances in the jet spectrum at the squark masses. Since production of the superpartners

would still be mainly through the R-parity conserving couplings, most SUSY events would actually end up with at

least four jets, two of which are b-jets. Other superpartners will first decay to the stop. For example the neutralino

is expected to decay to a stop plus charm as in Fig. 9. The neutralino lifetime for the case of a stop LSP is given by

ΓÑ ∼
mÑ

8π
g2λ4m

4
b

m4
t

tan4 β , τÑ ∼ (10−19 s)

(
10

tanβ

)4(
300 GeV

mÑ

)
. (VII.5)

Thus, absent a nearly-degenerate spectrum, the other superpartners are expected to be short-lived.

It is also possible for a bottom squark to be the LSP, decaying as shown in Fig. 7. For a right-handed sbottom,

the lifetime is similar to that of a stop LSP lifetime, unless the decay is near threshold. The decay of a left-handed

sbottom LSP is further suppressed by a left-right mass insertion. In this case, the partial widths Γ(b̃L → ūid̄j) are

Γij ∼
mb̃

8π
y2
b |λ′′ij3|2 , (VII.6)

giving a total lifetime

τb̃L ∼ (41 µm)

(
10

tanβ

)6
(

300 GeV

mb̃L

)
. (VII.7)

Thus, displaced vertices are expected at low tanβ, as illustrated in Fig. 8. The phenomenology is distinct from that of

a stop LSP: roughly 99% of decays will be to top and strange or top and down quarks, with less than one percent going

to charm and strange quarks, and a small fraction to other final states. Thus, an increase in top quark production

is expected, with most SUSY events containing at least two top-jets. However, fewer b-jets will be produced, except

those arising from top decays.7

Otherwise, the LSP can be a chargino, a neutralino, or a slepton. Each of these will give a distinct phenomenology.

Assuming that the LSP is a neutralino, its decay will be dominated by the diagram in Fig. 10. The width is

approximately

ΓÑ ∼
mÑ

128π3
|λ′′tsb|2 , (VII.8)

where we estimate a phase-space suppression of 1/16π2 for each additional final state particle. The lifetime is then

τÑ ∼ (12 µm)

(
20

tanβ

)4(
300 GeV

mÑ

)
. (VII.9)

7 If mb̃L
. mt, the phenomenology will be different yet again, with displaced vertices more likely due the reduced width, but no extra

top production.
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Figure 10: Neutralino/gluino (left) and chargino (right) LSP decays.

and a small fraction to other final states. Thus, an increase in top quark production is ex-
pected, with most SUSY events containing at least two top-jets. However, fewer b-jets will
be produced, except those arising from top decays.5

Otherwise, the LSP can be a chargino, a neutralino, or a slepton. Each of these will
give a distinct phenomenology. Assuming that the LSP is a neutralino, its decay will be
dominated by the diagram in Fig. 10. The width is approximately

ΓÑ ∼ mÑ

128 π3
|λ��

tsb|2 , (7.8)

where we estimate a phase-space suppression of 1/16π2 for each additional final state particle.
The lifetime is then

τÑ ∼ (12 µm)

�
20

tan β

�4�
300 GeV

mÑ

�
. (7.9)

As shown in Fig. 11, this scenario is much more likely to produce displaced vertices, although
they can still be avoided in a sizable region of parameter space. Thus, for the case of a
neutralino LSP the expected signal of SUSY would be an increase in the top production
cross section (since the LSP decay involves top quarks), including potentially same-sign
tops, and possibly also displaced vertices for the lights jets. A gluino LSP would decay in
a very similar fashion to a neutralino LSP, whereas a chargino LSP would have a similar
lifetime, but would usually decay via two b-jets without a top quark, as shown in Fig. 10.

The case of a chargino LSP is very similar to that of a neutralino. The one significant
difference, as can be seen from Fig. 10, is that in the chargino case we expect no top in the
final state, and instead expect more b jets.

Finally, the LSP could be a slepton, mostly likely the lighter stau. This would probably
be much easier to observe at the LHC. The leading decay of the stau would be a four-body
decay involving top and bottom quarks, a light jet and either a lepton or missing energy, as
shown in Fig. 12. Since it is a four-body decay, the NDA estimate for the width of the stau
LSP is

Γτ̃ ∼ mτ̃

2048π5
|λ��

tsb|2 , (7.10)

with lifetime of order

ττ̃ ∼ (44 µm)

�
45

tan β

�4�
500 GeV

mτ̃

�
. (7.11)

5If mb̃L
<∼ mt, the phenomenology will be different yet again, with displaced vertices more likely due the

reduced width, but no extra top production.
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and a small fraction to other final states. Thus, an increase in top quark production is ex-
pected, with most SUSY events containing at least two top-jets. However, fewer b-jets will
be produced, except those arising from top decays.5

Otherwise, the LSP can be a chargino, a neutralino, or a slepton. Each of these will
give a distinct phenomenology. Assuming that the LSP is a neutralino, its decay will be
dominated by the diagram in Fig. 10. The width is approximately
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where we estimate a phase-space suppression of 1/16π2 for each additional final state particle.
The lifetime is then
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As shown in Fig. 11, this scenario is much more likely to produce displaced vertices, although
they can still be avoided in a sizable region of parameter space. Thus, for the case of a
neutralino LSP the expected signal of SUSY would be an increase in the top production
cross section (since the LSP decay involves top quarks), including potentially same-sign
tops, and possibly also displaced vertices for the lights jets. A gluino LSP would decay in
a very similar fashion to a neutralino LSP, whereas a chargino LSP would have a similar
lifetime, but would usually decay via two b-jets without a top quark, as shown in Fig. 10.

The case of a chargino LSP is very similar to that of a neutralino. The one significant
difference, as can be seen from Fig. 10, is that in the chargino case we expect no top in the
final state, and instead expect more b jets.

Finally, the LSP could be a slepton, mostly likely the lighter stau. This would probably
be much easier to observe at the LHC. The leading decay of the stau would be a four-body
decay involving top and bottom quarks, a light jet and either a lepton or missing energy, as
shown in Fig. 12. Since it is a four-body decay, the NDA estimate for the width of the stau
LSP is

Γτ̃ ∼ mτ̃
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with lifetime of order
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5If mb̃L
<∼ mt, the phenomenology will be different yet again, with displaced vertices more likely due the

reduced width, but no extra top production.
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FIG. 10. Neutralino/gluino (left) and chargino (right) LSP decays.
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FIG. 11. The decay length (cτ) of a neutralino (left) or stau (right) LSP, in units of µm. For a neutralino LSP, displaced
vertices can arise in a substantial region of parameter space, whereas for the stau, they are expected nearly everywhere.

As shown in Fig. 11, this scenario is much more likely to produce displaced vertices, although they can still be avoided

in a sizable region of parameter space. Thus, for the case of a neutralino LSP the expected signal of SUSY would

be an increase in the top production cross section (since the LSP decay involves top quarks), including potentially

same-sign tops, and possibly also displaced vertices for the lights jets. A gluino LSP would decay in a very similar

fashion to a neutralino LSP, whereas a chargino LSP would have a similar lifetime, but would usually decay via two

b-jets without a top quark, as shown in Fig. 10.

The case of a chargino LSP is very similar to that of a neutralino. The one significant difference, as can be seen

from Fig. 10, is that in the chargino case we expect no top in the final state, and instead expect more b jets.

Finally, the LSP could be a slepton, mostly likely the lighter stau. This would probably be much easier to observe

at the LHC. The leading decay of the stau would be a four-body decay involving top and bottom quarks, a light jet

and either a lepton or missing energy, as shown in Fig. 12. Since it is a four-body decay, the NDA estimate for the

width of the stau LSP is

Γτ̃ ∼
mτ̃

2048π5
|λ′′tsb|2 , (VII.10)

with lifetime of order

ττ̃ ∼ (44 µm)

(
45

tanβ

)4(
500 GeV

mτ̃

)
. (VII.11)
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For a neutralino LSP, displaced vertices can arise in a substantial region of parameter space,
whereas for the stau, they are expected nearly everywhere.

Such long lifetimes will give displaced vertices in almost all of the relevant parameter space,
as shown in Fig. 11. Thus the signal of SUSY in the case of a stau LSP would be events
with displaced vertices, top and bottom quarks, and either a lepton or missing energy.

Current searches for R-parity violating supersymmetry are not very restrictive for MFV
SUSY. The more restrictive searches look for leptons among the final state particles, and
set bounds on the coupling λ�: this is exactly the one vanishing in MFV SUSY. The more
relevant searches are the ones carried out by CMS [36] (and also by CDF [37]): here the
R-parity violating decay of the gluino in the presence of a ūd̄d̄ coupling is considered by
searching for a resonance in 3-jet final states, after appropriate kinematic cuts are introduced
to separate potential SUSY events from QCD background. The most stringent CMS search
(using 35 pb−1 of data) yields a bound on the gluino mass mg̃ > 280 GeV. However, we

Ñ
t̃

�̃

b̄

s̄

t̄

�

C̃
t̃

�̃

b̄

s̄

b̄

ν

Figure 12: Slepton LSP decay without neutrinos (left) and with neutrinos (and thus missing
energy) on the right.
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as shown in Fig. 11. Thus the signal of SUSY in the case of a stau LSP would be events
with displaced vertices, top and bottom quarks, and either a lepton or missing energy.
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R-parity violating decay of the gluino in the presence of a ūd̄d̄ coupling is considered by
searching for a resonance in 3-jet final states, after appropriate kinematic cuts are introduced
to separate potential SUSY events from QCD background. The most stringent CMS search
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FIG. 12. Slepton LSP decay without neutrinos (left) and with neutrinos (and thus missing energy) on the right.

Such long lifetimes will give displaced vertices in almost all of the relevant parameter space, as shown in Fig. 11. Thus

the signal of SUSY in the case of a stau LSP would be events with displaced vertices, top and bottom quarks, and

either a lepton or missing energy.

Current searches for R-parity violating supersymmetry are not very restrictive for MFV SUSY. The more restrictive

searches look for leptons among the final state particles, and set bounds on the coupling λ′: this is exactly the one

vanishing in MFV SUSY. For the case of a stop LSP one could expect a resonance in the dijet searches; however the

production cross section of the stop is typically about three orders of magnitudes smaller [38] than the experimental

sensitivities both at the Tevatron [39] and at the LHC [40, 41].

The more relevant searches are the ones carried out by CMS [42] (and also by CDF [43]): here the R-parity violating

decay of the gluino in the presence of a ūd̄d̄ coupling is considered by searching for a resonance in 3-jet final states,

after appropriate kinematic cuts are introduced to separate potential SUSY events from QCD background. The most

stringent CMS search (using 35 pb−1 of data) yields a bound on the gluino mass mg̃ > 280 GeV. However, we should

emphasize that in these models the gluino does not play an essential role. Thus even if the gluino is in the TeV energy

range the model could be completely natural. While these searches are very promising, an eventual null-result of this

particular experiment would not remove the motivation for these theories, since this search relies on the production

of a light gluino.

Another relevant search is for massive colored scalars in 4-jet events [44]. Here the four most energetic jets are paired

up and a resonance in the average invariant masses of the two pairs is searched for. Stop pair production followed by

decays to jets would contribute to this channel. The current bounds on the mass of a colored scalar octet using 2010

LHC data are in the 150 − 180 GeV range. However, the production cross section for scalar triplets is smaller, and

this bound will be substantially weakened or eliminated if applied to the stop. Better background rejection can be

achieved using b-tagging, since almost all the stop quarks include at least one b-jet. A recent simulation [45] showed

that such a search at the 14 TeV LHC will be able to discover stops decaying through the ūd̄d̄ coupling up to 650

GeV with 300 fb−1 data. A search for a lepton together with many jets has also been suggested [46]. This search

could probe MFV SUSY if the LSP is a slepton, or if it decays to top quarks, which can produce a lepton in the final

state.

Throughout this paper we have been assuming a squark mass scale of order a few-hundred GeV. This is necessary to

make SUSY a natural solution of the hierarchy problem. However, in this case the Higgs mass in the simplest MSSM-

type extension will usually be too light. One needs an extension of the Higgs sector, for example to NMSSM-type

models, to raise the Higgs mass over the 114 GeV LEP bound. Such an extension should not significantly alter the

MFV structure of the theory. For example, while the Z3 symmetric version of the NMSSM has restricted couplings

due to the (weakly broken) discrete symmetry, the superpotential (II.4) is Z3 invariant, leaving the essential features

of our model intact.

One of the outstanding problems of the SM and the MSSM is the issue of baryogenesis. The Higgs mass is too

high in both of these theories to account for the observed matter/antimatter asymmetry directly, and the leading

explanation is baryogenesis via leptogenesis. In MFV SUSY, the appearance of the λ′′ baryon number violating
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Figure 13: Gravitino decay via neutrino-photino mixing (left) for gravitinos below ∼ 1
GeV, and to hadrons (right) for masses above ∼ 1 GeV. The illustrated hadronic decay
G̃ → B+Ξ−

c , along with other decays arising from permutations of the cbs flavor labels and
from changing the flavor of spectator quark, is dominant when kinematically allowed.

Imposing the bound (6.10), we obtain a lower bound on the gravitino lifetime,

τG̃
>∼ (4 × 1039 yr)

�
1 GeV

m3/2

�3�
300 GeV

mq̃

�4�
tan β

10

�8

. (7.13)

If the gravitino is heavier than ∼ 1 GeV it can decay to hadrons via the R-parity violating
ūd̄d̄ vertex. While the exact decay mode will depend on what is kinematically available, for
m3/2 >∼ 10 GeV all hadronic two-body decays are kinematically allowed, and the dominant
mode will be that shown in Fig. 13. The width for the illustrated decay is

ΓG̃→B+Ξ−
c
∼

m3
3/2

24πM2
pl

�
Λ̃

mc̃

�4
λ2 m2

cm
2
sm

2
b

m6
t

tan4 β . (7.14)

Taking the matrix element to be large, Λ̃ ∼ 1 GeV, we find that

τG̃ ∼ (2 × 1022 yrs)
� mq̃

300 GeV

�4
�

10

tan β

�4�
100 GeV

m3/2

�3

. (7.15)

In either case a gravitino LSP is generically very long lived, with a lifetime much greater
than the age of the universe. Thus, the gravitino is a dark matter candidate, though more
study is needed to determine if it is a realistic one.

If the gravitino is the LSP, the NLSP can either decay to jets via the R-parity violating
vertex, (2.4), or to the gravitino itself. The partial width for the simplest gravitino decay,
e.g. t̃ → t + G̃, takes the form:

Γ ∼ m5
NLSP

24πm2
3/2M

2
pl

(7.16)

for a squark or slepton NLSP, with a similar expression in the case of a gaugino NLSP. Thus,
the rate is enhanced for a lighter gravitino, and if we assume that m3/2 saturates the lower
bound (6.15), then we obtain a branching ratio:

Γt̃→tG̃

Γt̃→SM

∼ (7 × 10−10)
� mt̃

300 GeV

�8
�

10

tan β

�12

(7.17)
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If the gravitino is heavier than ∼ 1 GeV it can decay to hadrons via the R-parity violating
ūd̄d̄ vertex. While the exact decay mode will depend on what is kinematically available, for
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mode will be that shown in Fig. 13. The width for the illustrated decay is

ΓG̃→B+Ξ−
c
∼

m3
3/2

24πM2
pl

�
Λ̃

mc̃

�4
λ2 m2

cm
2
sm

2
b

m6
t

tan4 β . (7.14)

Taking the matrix element to be large, Λ̃ ∼ 1 GeV, we find that

τG̃ ∼ (2 × 1022 yrs)
� mq̃

300 GeV

�4
�

10

tan β

�4�
100 GeV

m3/2

�3

. (7.15)

In either case a gravitino LSP is generically very long lived, with a lifetime much greater
than the age of the universe. Thus, the gravitino is a dark matter candidate, though more
study is needed to determine if it is a realistic one.
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FIG. 13. Gravitino decay via neutrino-photino mixing (left) for gravitinos below ∼ 1 GeV, and to hadrons (right) for masses

above ∼ 1 GeV. The illustrated hadronic decay G̃ → B+Ξ−c , along with other decays arising from permutations of the cbs
flavor labels and from changing the flavor of spectator quark, is dominant when kinematically allowed.

operator, (II.4), opens new possibilities for baryogenesis. Several scenarios that make use of this coupling have been

proposed in [47–51]. For example the model of [51] would rely on out-of-equilibrium decays of the lightest neutralino

Ñ → ūd̄d̄ and needs λ′′ couplings in the 10−4 − 10−3 range.

Finally we comment on dark matter. One of the main motivations for R-parity is that it provides a stable heavy

superpartner, which in many cases can be a candidate for a WIMP. In MFV SUSY we are obviously forgoing this

possibility. However, this does not necessarily imply that there cannot be a good dark matter candidate in these

models. While we are assuming the LSP within the SM superpartners to be the stop or another sparticle, the

gravitino can still be lighter and be the real LSP. A gravitino dark matter scenario within R-parity violating SUSY

has been advocated in [52]. There it was found that the leading decay of the gravitino is G̃→ γν (see Fig. 13) with

a width of

ΓG̃ ∼
1

32π
|Uγν |2

m3
3/2

M2
Pl

, (VII.12)

where Uγν is the photino-neutrino mixing due to the small sneutrino VEV. In our case the mixing is set by the spurion

V: Uγν ∼ vuV/mÑ where mÑ is a characteristic gaugino mass. Imposing the bound (VI.10), we obtain a lower bound

on the gravitino lifetime,

τG̃ & (4× 1039 yr)

(
1 GeV

m3/2

)3(
300 GeV

mq̃

)4(
tanβ

10

)8

. (VII.13)

If the gravitino is heavier than ∼ 1 GeV it can decay to hadrons via the R-parity violating ūd̄d̄ vertex. While the

exact decay mode will depend on what is kinematically available, for m3/2 & 10 GeV all hadronic two-body decays

are kinematically allowed, and the dominant mode will be that shown in Fig. 13. The width for the illustrated decay

is

ΓG̃→B+Ξ−
c
∼

m3
3/2

24πM2
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mc̃

)4
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Taking the matrix element to be large, Λ̃ ∼ 1 GeV, we find that

τG̃ ∼ (2× 1022 yrs)
( mq̃

300 GeV

)4
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)4(
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)3
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In either case a gravitino LSP is generically very long lived, with a lifetime much greater than the age of the universe.

Thus, the gravitino is a dark matter candidate, though more study is needed to determine if it is a realistic one.
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If the gravitino is the LSP, the NLSP can either decay to jets via the R-parity violating vertex, (II.4), or to the

gravitino itself. The partial width for the simplest gravitino decay, e.g. t̃→ t+ G̃, takes the form:

Γ ∼ m5
NLSP

24πm2
3/2M

2
pl

(VII.16)

for a squark or slepton NLSP, with a similar expression in the case of a gaugino NLSP. Thus, the rate is enhanced for

a lighter gravitino, and if we assume that m3/2 saturates the lower bound (VI.15), then we obtain a branching ratio:

Γt̃→tG̃
Γt̃→SM

∼ (7× 10−10)
( mt̃

300 GeV

)8
(

10

tanβ

)12

(VII.17)

for a stop NLSP. Thus, the branching ratio is generically small, but depends strongly on the NLSP mass and on

tanβ.8 For other NLSPs, this branching ratio is enhanced, whereas it can always be suppressed by increasing m3/2.

Depending on all the parameters, NLSP to gravitino decays could generate a significant gravitino relic density, which

is of cosmological interest. We defer further consideration of this interesting topic to a future work.

VIII. CONCLUSIONS

We have presented an alternative approach to R-parity in supersymmetric extensions of the standard model. We

have shown that imposing minimal flavor violation in a manifestly supersymmetric way is powerful enough to reduce

all baryon and lepton number violating amplitudes below current experimental bounds, while allowing a sufficiently

rapid decay of the LSP such that no events with large missing transverse energy would be expected at the LHC.

The basic MFV assumption is that the only sources of flavor violation are the SM Yukawa coupling matrices Yu,d,e.

In a supersymmetric context these spurions should be treated as VEVs of chiral superfields. The flavor symmetry

together with supersymmetry will pose very stringent restrictions on the low-energy effective Lagrangian, and R-parity

will be an approximate accidental symmetry. The R-parity violating terms will be determined in terms of the flavor

parameters of the theory, giving an underlying theory for these parameters. 9

In the absence of neutrino masses only a single renormalizable R-parity violating flavor structure is allowed, and

the proton is effectively stable, while n − n̄ oscillations and dinucleon decay are sufficiently suppressed with mild

restrictions on tanβ. In the presence of neutrino masses there are more R-parity violating spurions, including a cubic

superpotential term, and quadratic Kähler and soft breaking terms. Proton decay will now place a mild bound on

the right handed neutrino mass scale.

The phenomenology of the model depends strongly on the nature of the LSP. The most plausible candidate for

the LSP is the stop, which can decay to two quarks via the R-parity violating superpotential term. If the LSP is

a neutralino/chargino, the decay might include displaced vertices and top quarks, while a slepton LSP would most

likely decay with displaced vertices, and might also involve missing energy. While the LSP is necessarily unstable in

such models, a gravitino LSP is sufficiently long lived to be a dark matter candidate.

There are a number of interesting directions for future work. The constraints on MFV SUSY arising from dinucleon

decay are nontrivial, and a better understanding of the relevant hadronic matrix elements would help to establish

a robust set of bounds on the parameter space of the model, as well as clarifying how the model can be probed

using low energy observables. Detailed collider studies are needed to determine the cleanest experimental signatures

of this model at the LHC, especially in light of the various possibilities for the LSP. Furthermore, the cosmological

implications for baryogenesis and dark matter should be explored in detail.

8 For a very heavy NLSP at low tanβ, it is possible for gravitino decay to dominate, though not in a particularly promising region of
parameter space.

9 For other theories of the R-parity violating terms see [53, 54].
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Finally, possible UV completions of the model should be explored. In R-parity conserving models, MFV is usually

applied only to the SUSY breaking terms, which can be motivated by RGE evolution from flavor-universal soft

terms, as in gauge mediation scenarios. In MFV SUSY, however, it is necessary to apply the MFV hypothesis to

the superpotential as well, which cannot be similarly motivated. Nonetheless, an MFV structure can arise from

weakly broken flavor symmetries, and constructing a well-motivated UV completion should prove to be an interesting

challenge. If such a model can be found, it would give more information about the unknown flavor-singlet parameters.
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APPENDICES — SYSTEMATICS OF MFV SUSY

MFV SUSY is a highly constrained theory, and its structure allows for a systematic approach to many problems.

We outline several examples of this in these appendices. In Appendix A, we show that the form of the superpotential

is highly constrained by systematically classifying holomorphic flavor singlets. In Appendix B, we examine the effect

of supersymmetry breaking on arguments based on holomorphy. In Appendix C, we develop a heuristic scheme for

estimating the flavor suppression of a given diagram, and in Appendix D we apply this technique to demonstrate

that the diagrams presented in §IV and §VI are the leading contributions to low energy baryon-number violating

observables. Finally, in Appendix E, we show that higher dimensional baryon and lepton-number violating operators

are not dangerous for a sufficiently high cutoff Λ ≤MGUT .

Appendix A: Classifying holomorphic flavor singlets

To classify all terms which can appear in the superpotential, we now systematically construct all holomorphic flavor

singlets, treating the spurions as holomorphic. In the quark sector, the irreducible holomorphic SU(3)u × SU(3)d

singlets are Yuū, Ydd̄, det ū, det d̄, and the flavor-singlet spurions detYu,d. Ignoring the flavor singlet spurions, and

combining Yuū and Ydd̄ with Q to form SU(3)Q singlets, it is straightforward to show that Table III contains a

complete list of the irreducible SU(3)Q × SU(3)u × SU(3)d singlets.

The lepton sector is more complicated. We first write down all possible holomorphic SU(3)N singlets. Note that

for any 3× 3 matrix M

M ijMklεikm = εjlnM̃nm , (A.1)

where M̃ is the matrix of cofactors, satisfying M̃M = MM̃ = (detM)1. Thus, while in general a flavor singlet can

contain an arbitrary number of ε-tensors, by repeated application of (A.1) we can reduce such a singlet to a form

where no two MN ’s, M̃N ’s, YN ’s, or ỸN ’s are contracted with the same SU(3)N ε-tensor, apart from factors of detYN

and detMN . Since at most one N̄ can contract with a given ε-tensor, the only surviving ε-tensors must be contracted

as follows:

M̃ ij
N Ỹ

k
a N̄

lεjkl = −εabc(M̃ ij
N Y

b
j )(Y ck N̄

k) , (A.2)

which is a reducible product of SU(3)N singlets. Incorporating Yeē and L, we obtain a relatively short list of irreducible



25

SU(2)L U(1)Y SU(3)L ZR2
N̄MN N̄ 1 0 1 +

YN N̄ 1 0 −
Yeē 1 1 −
L −1/2 −

ỸNMN N̄ 1 0 −
ỸNMN ỸN 1 0 +

YNM̃NYN 1 0 +

TABLE VII. The irreducible SU(3)N × SU(3)e singlets (we omit flavor-singlet spurions.)

SU(3)N × SU(3)e singlets, as shown in Table VII.

The next step is to classify irreducible SU(3)L singlets. Note that

(ỸNMN ỸN )(YNM̃NYN ) = (detYN )2(detMN )1 . (A.3)

Thus, up to normalization, ỸNMN ỸN is the matrix of cofactors of YNM̃NYN , and we can omit singlets containing

more than one of either contracting with the same SU(3)L ε-tensor. There is then a finite list of possible irreducible

flavor singlets. Of these, some will be reducible due to the identities satisfied by YN and ỸN and MN and M̃N .

For instance, any contraction involving YN ỸN or ỸNYN is obviously reducible, since YN ỸN = ỸNYN = (detYN )1.

Furthermore, certain ε-tensor contractions of YN with itself or ỸN with itself will be reducible. In particular, we have

(YN N̄)(YNM̃NYN )(YN N̄) ∼ N̄ ỸNM̃N ỸN N̄

∼ (N̄MN ỸN )(ỸNMN N̄)− (N̄MN N̄)(ỸNMN ỸN ) ,

(ỸNMN ỸN )ỸNMN N̄ ∼ (detYN )(MN ỸN )(MN N̄)YN ∼ (detYN )YNM̃N ỸN N̄

∼ (detYN )(YNM̃NYN )(YN N̄) , (A.4)

up to unimportant factors.

Keeping these reductions in mind, it is straightforward to verify that Table VI contains a complete list of SU(3)L×
SU(3)e × SU(3)N invariants, apart from LYeē, which appears in Table III.

Appendix B: Nonholomorphic operators from SUSY breaking

In the absence of supersymmetry breaking, the superpotential is constrained to be holomorphic, and only holomor-

phic combinations of spurions can appear there. We now explore the role of supersymmetry breaking in introducing

nonholomorphic spurion combinations into the superpotential. To keep the discussion of supersymmetry break-

ing generic, we introduce a supersymmetry-breaking spurion X, a chiral superfield which acquires an F -term vev

〈X〉F = F . We assume that X couples to the MSSM fields via nonrenormalizable operators, where the cutoff M is

the messenger scale.

The resulting soft supersymmetry breaking terms will appear a scale msoft ∼ F/M . In particular, since we assume

the absence of renormalizable couplings between X and the MSSM, the leading contributions to supersymmetry

breaking come from the superpotential interactions

W 6SUSY ⊃
X

M
AijkΦiΦjΦk +

X

M
M

(i)
λ TrW 2

(i) (B.1)
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and the Kähler potential interactions:

K6SUSY ⊃
X†

M
µ̃ijΦ

iΦj +
X

M
J̃ji ΦiΦ†j +

X†X

M2
B̃ijΦ

iΦj + c.c.+
X†X

M2
M̃ j
i ΦiΦ†j (B.2)

where nonholomorphic couplings are denoted with a tilde. The couplings Aijk and Mλ generate A-terms and gaugino

masses, whereas B̃ij and M̃ j
i generate B-terms and soft-masses, µ̃ij generates bilinear superpotential terms, and J̃ji

gives rise to a scalar/F-term mixing, the effects of which we discuss in detail below. In singlet extensions of the

MSSM, including the NMSSM and see-saw models, supersymmetry breaking tadpoles can also arise:

K
(tad)
6SUSY =

X†X

M
ẼiΦ

i (B.3)

where the dimensionful coefficient is large, F 2/M ∼ Mm2
soft � m3

soft. While these tadpoles are potentially problem-

atic, whether they are generated and at what level will depend on the particular model of supersymmetry breaking.

We will assume that they are suppressed by some mechanism, and will not consider them further.10

Thus, we conclude that A-terms are generated holomorphically, whereas the other soft terms are generated non-

holomorphically. Furthermore, nonholomorphic bilinear couplings can appear in the superpotential at the scale

msoft. Nonholomorphic contributions to the A-terms and trilinear superpotential terms are suppressed. The leading

contributions arise from the interactions

K6SUSY ⊃
X†

M2
λ̃ijkΦiΦjΦk +

XX†

M3
ÃijkΦiΦjΦk

which are suppressed by O (msoft/M) relative to the leading holomorphic contributions.

So far we have ignored the nonholomorphic scalar/F-term mixing J̃ji . We will show that these couplings give rise to

nongeneric nonholomorphic contributions to the A-terms after a field redefinition, similar in form to (nonholomorphic)

wavefunction renormalization effects.

We first write the renormalizable superpotential and Kähler potential in the form:

W = msoftµijΦ
iΦj + λijkΦiΦjΦk

K = K̃j
i ΦiΦ†j

where K̃j
i is the Hermitean positive-definite Kähler metric. (Note that we cannot in general set K̃j

i = δji by a field

redefinition without introducing nonholomorphic couplings into the superpotential.) The scalar/F-term mixing can

be eliminated by redefining

Φi → Φi +
X

M
P̃ ijΦ

j

for P̃ ij = −
[
K̃−1

]i
k
J̃kj . This redefinition produces additional A-terms of the form:

W 6SUSY ⊃
X

M

[
λljkP̃

l
i + λilkP̃

l
j + λijlP̃

l
k

]
ΦiΦjΦk

as well as corrections to the soft-masses and B-terms.

By contrast, writing the Kähler potential in the form

K̃i
j = δij + k̃ij

10 For instance, a right-handed snuetrino tadpole is forbidden by Z(L)
3 in the case of Dirac neutrino masses (MN = 0).
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and assuming that k̃ij is a subleading correction, we obtain similar nonholomorphic corrections to the superpotential

itself (as well as the A-terms) upon moving to a canonical basis. Thus, we conclude that the qualitative effects of

nonholomorphic scalar/F-term mixing are captured by nonholomorphic corrections to the Kähler potential, though

J̃ ij leads to some additional “splitting” between the A-terms and superpotential terms.

Appendix C: A heuristic estimation scheme

In §IV and §VI, we estimated the dominant contribution to low-energy baryon-number violating processes by

choosing the simplest diagrams and then finding the dominant flavor structure. The resulting diagrams were heavily

suppressed by Yukawa couplings, CKM factors, and heavy propagators. Thus, in principle other diagrams could

give competitive contributions. However, classifying all possible diagrams is a difficult task. Instead, we develop a

scheme to estimate the flavor-suppression of a diagram based on its flavor structure alone. This will allow us to isolate

potentially competitive diagrams, which can then be computed by more conventional means.

To do so, it is helpful to reinterpret a Feynman diagram for a candidate process in terms of the flow of “flavor,”

i.e. of SU(3)Q × SU(3)u × SU(3)d charge. If quarks and squarks carry “flavor” and anti-quarks and anti-squarks

carry “anti-flavor,” then flavor can only be created or destroyed at baryon number violating vertices, such as (II.4).

Otherwise, the rest of the diagram contains unbroken flavor lines, which either form closed loops or join to external

quark lines.

Along flavor lines, flavor is altered through left ↔ right mixing, charged CKM mixing, and neutral squark mass

mixing, where each subprocess has an associated cost. In particular, for squarks, left↔ right mixing is suppressed by

the associated Yukawa coupling, whereas charged-current flavor changing (on left-handed squarks) is CKM suppressed.

FCNCs are suppressed by (IV.5), and flavor changing of right-handed squarks is suppressed by the associated Yukawa

couplings to convert them to left-handed squarks, together with the suppression for left-handed flavor changing.

If we assume similar suppressions for flavor-changing processes involving quarks, we obtain a useful heuristic estimate

scheme for the MFV-dictated flavor-suppression of any given diagram. In particular, the least suppressed diagrams

for a given process will involve a minimum number of baryon-number violating vertices, and a minimum of flavor

changing. For each baryon number violating vertex (II.4), all three flavor lines should connect to external quarks;

otherwise the diagram involves extra insertions of (II.4), and is subdominant.

Thus, we can estimate the amplitude for the diagram by specifying the flavor structure, by which we mean the

flavors of the right-handed quarks/squarks connected to the baryon-number violating vertex (II.4), as well as the

flavors of the external quarks on the flavor lines emanating from the BNV vertex. In addition to the vertex factor, the

required charged and/or neutral flavor changes then come with a right → left Yukawa suppression, together with a

CKM suppression for charged flavor-changing or a suppression of the form (IV.4) for neutral flavor-changing, whereas

quarks/squarks which do not change flavor receive no additional Yukawa suppression.

Given a flavor structure, the heuristic estimation scheme outlined above should give an approximate upper bound on

the amplitude, once suppression from the superpartner propagators and loop suppression (if applicable) is accounted

for. As the number of possible flavor structures is finite, and much smaller than the number of possible diagrams, it

becomes straightforward to obtain an approximate upper bound on the amplitude for all relevant flavor structures.

If we can find a diagram with amplitude equal to the upper bound, then this diagram is probably the dominant

contribution to the process in question. The simplest diagrams will often involve only squark flavor-changing, since

otherwise additional W bosons are required. In this case, the heuristic scheme outlined above is essentially exact (up

to unknown MFV coefficients, which are assumed to be order one). However, if quark flavor changing is involved,

the amplitude is somewhat dependent on the details. In particular, while CKM suppression is still present, Yukawa

suppression is less obvious. We now consider this point in detail.

For a light quark, the left ↔ right propagator takes the approximate form mq/E
2, where E ∼ ΛQCD � mq is the

characteristic energy for the baryon-number violating process. By contrast, for a heavy quark (mq � E) the left ↔
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right propagator will take the approximate form 1/mq. In either case, the contribution to the overall amplitude will

be made dimensionless by a factor of ∼ E in the numerator, arising either from loop integrals or from a hadronic

matrix element. Thus, the overall left ↔ right suppression appears to be only mq/E and E/mq for light and heavy

quarks respectively, whereas (for light quarks), the assumed Yukawa suppression is much smaller. However, in general

left ↔ right mixing will be followed by charged flavor-changing — this is the reason for including it in the diagram

— with an associated g2/M2
W = 2/v2 from the W boson propagator, where the dimensions will again be cancelled by

factors of E. Counting one-half of the W propagator suppression. (the other end of W boson line will lead to flavor

changing elsewhere in the diagram), we obtain a net suppression of approximately

mq

v/
√

2
or

E2

mq v/
√

2
, (C.1)

for light and heavy quarks, respectively. Thus, for a light quark, the net suppression is the same as Yukawa suppression

(for tanβ = 1), whereas for a heavy quark, the diagram is suppressed by an additional factor of ∼ (E/mq)
2. At large

tanβ, the suppression is greater than Yukawa suppression for all quarks except for the up-quark, but the difference

here is only 1/
√

2, and is effectively negligible.

The above argument is more subtle in the case of a loop diagram, since q2 within the loop may be much higher

than Λ2
QCD. Roughly, the net effect is to change the distinction between “light” and “heavy” quarks; for instance, if

q2 ∼ M2
W within the loop, then only the top quark is “heavy.” Yet more subtleties arise for flavor-changing neutral

currents of right-handed quarks, since there are then more mass insertions than W vertices. However, the discrepancy

is not very important if the mass insertions lie within a loop dominated by loop momentum q2 & M2
W . Thus, the

estimation scheme outlined above also applies qualitatively to quark flavor changing, where the Yukawa suppression

now comes partly from W boson propagators and/or loop suppression. Although the exact amplitude will depend on

the specifics, this heuristic scheme is a useful way to isolate the larger diagrams contributing to a process of interest.

Appendix D: A systematic search for additional large diagrams

We now apply the estimation scheme developed in Appendix C to search for additional large diagrams which are

potentially competitive with those considered in §IV and §VI.

1. n− n̄ oscillations

We first consider n− n̄ oscillations. The amplitude must be built from two insertions of (II.4), each of which carries

at least one second-generation down-type quark/squark, with all flavor lines connected to external quarks (there are

no spectator quarks). As the external quarks are precisely two up-quarks and four down-quarks, the second and third

generation quarks must all flavor change to first generation quarks. Furthermore, converting the two squarks into

quarks requires the exchange of at least one gaugino or higgsino; any additional three or four-point interactions can

only be present at one-loop or higher.

Due to the strong Yukawa suppression of the tree level amplitude (IV.7), it is conceivable that one-loop amplitudes

can be competitive with it. We now search for the largest such diagrams. In any n− n̄ oscillation diagram of interest,

the external quarks must all be first generation quarks. Thus, for a given flavor structure for the BNV vertex, we can

estimate a minimum flavor suppression by assuming charged flavor-changing to first-generation quarks for each leg,

since neutral flavor changing is never dominant over charged flavor changing in this context. The resulting flavor-

dependent minimum suppression is shown in Table VIII. It is straightforward to check that, for the assumed range

3 . tanβ . 45, tds ∼ tbd gives the weakest suppression, whereas the next weakest, cbd, is . 1/20 as large.

There is only one possible one-loop diagram with two flavor-changing quarks (Fig. 14). Assuming that the dominant
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4

TABLE VIII. The minimum flavor-dependent suppression required for flavor changing to first generation quarks, where the
rows and columns correspond to the flavors of the quarks/squarks attached to the BNV vertex.
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Figure 14: The leading one-loop contribution to n − n̄ oscillation.

C.2 Dinucleon decay

We now consider additional contributions to dinucleon decay. Conservation of electric charge
requires that each up-type → down-type flavor change has a corresponding down-type → up-
type flavor change, which can in principle occur on one of the “spectator” flavor lines (those
not connected to the BNV vertices). However, each such occurrence is strongly suppressed –
by about gΛQCD/MW – due to the W boson propagator, since at most half of the propagator
suppression accounts for necessary Yukawa suppression on the “primary” flavor lines (those
connected to the BNV vertices), as discussed in Appendix B.

Keeping this suppression in mind, we can search for additional large diagrams by exhaus-
tively cataloging the possible flavor structures for each BNV vertex, grouped together on the
basis of the flavors of their external light quarks, estimating the suppression for each flavor
structure according to the scheme of Appendix B. To find the largest diagrams, we find the
least suppressed flavor structures for each set of external quarks, and then take the products
of all pairs of these suppressions, bearing in mind that for final-state strangeness |S| ≥ 3,
two-body decays are not possible (leading to phase-space suppression), and appending a
factor of ∼ gΛQCD/MW for each unit of net charge of the external quarks.

Besides the two diagrams already considered in §4.2, such a search turns up no flavor
structures with a lesser suppression for any 3 <∼ tan β <∼ 45. Thus we conclude that, to
the extent to which the scheme of Appendix B is valid, the two dominant diagrams are the
charged and neutral flavor-changing diagrams already considered.

C.3 Proton decay

Finally, we consider additional contributions to proton decay. In the quark sector, we re-
quire a single baryon number violating vertex (2.4), with a corresponding squark propagator
suppression. Requiring that the external quarks be light with strangeness |∆S| ≤ 1 and
applying the method of Appendix B, we find that a tds vertex with t → d flavor-changing is
the least suppressed, with t → u neutral flavor-changing competitive at large tanβ. These
are the same flavor structure that were considered in §6.

However, as argued in §6, the charged-lepton diagram suffers from a chiral suppression.

33

FIG. 14. The leading one-loop contribution to n− n̄ oscillation.

contribution to the loop integral occurs in the range M2
W . q

2 . m2
t , we estimate:

M∼ g2

16π2
Λ̃ t5β λ

8m
2
dm

4
s

m6
t

(
Λ̃

mq̃

)4(
Λ̃

mχ

)
, (D.1)

for two tds vertices, where the tanβ dependence is less strong than our naive estimate because the strange-quark

left ↔ right mass insertion is not enhanced at large tanβ, unlike the corresponding Yukawa coupling. While (D.1)

is competitive with (IV.7) at tanβ = 3, it grows more slowly at large tanβ, and becomes subdominant. Other

combinations of tds and tbd give a similar result. Since other flavor structures ought to lead to further suppression,

we conclude that the tree-level result (IV.7) is the dominant contribution to n − n̄ oscillations at large tanβ, where

the predicted oscillation time is closest to present experimental bounds.

2. Dinucleon decay

We now consider additional contributions to dinucleon decay. Conservation of electric charge requires that each

up-type → down-type flavor change has a corresponding down-type → up-type flavor change, which can in principle

occur on one of the “spectator” flavor lines (those not connected to the BNV vertices). However, each such occurrence

is strongly suppressed – by about gΛQCD/MW – due to the W boson propagator, since at most half of the propagator

suppression accounts for necessary Yukawa suppression on the “primary” flavor lines (those connected to the BNV

vertices), as discussed in Appendix C.

Keeping this suppression in mind, we can search for additional large diagrams by exhaustively cataloging the

possible flavor structures for each BNV vertex, grouped together on the basis of the flavors of their external light

quarks, estimating the suppression for each flavor structure according to the scheme of Appendix C. To find the largest

diagrams, we find the least suppressed flavor structures for each set of external quarks, and then take the products

of all pairs of these suppressions, bearing in mind that for final-state strangeness |S| ≥ 3, two-body decays are not

possible (leading to phase-space suppression), and appending a factor of ∼ gΛQCD/MW for each unit of net charge of
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the external quarks.

Besides the two diagrams already considered in §IV B, such a search turns up no flavor structures with a lesser

suppression for any 3 . tanβ . 45. Thus we conclude that, to the extent to which the scheme of Appendix C is valid,

the two dominant diagrams are the charged and neutral flavor-changing diagrams already considered.

3. Proton decay

Finally, we consider additional contributions to proton decay. In the quark sector, we require a single baryon

number violating vertex (II.4), with a corresponding squark propagator suppression. Requiring that the external

quarks be light with strangeness |∆S| ≤ 1 and applying the method of Appendix C, we find that a tds vertex with

t → d flavor-changing is the least suppressed, with t → u neutral flavor-changing competitive at large tanβ. These

are the same flavor structure that were considered in §VI.

However, as argued in §VI, the charged-lepton diagram suffers from a chiral suppression. This will occur whenever

the squark is up-type and undergoes charged flavor changing, emitting an `− (via mixing with the chargino), i.e. when

the net-charge of the external quarks connected to the baryon-number violating vertex is −1, since charge conservation

otherwise requires the exchange of a W boson with one of the spectator quarks, resulting in a comparable suppression,

as disucussed in §D 2. Accounting for the chiral suppression and reapplying the methods of Appendix C, we conclude

that the neutral flavor-changing diagram considered in §VI is always dominant.

As the bounds on |∆S| = 0 decays are somewhat stronger, one might be tempted to consider diagrams of this type.

However, according to our estimation scheme, the largest |∆S| = 0 processes — tbd with b → u, d and t → d flavor

changing or tds with t→ d and s→ u flavor changing — receive an additional flavor suppression of about ysλ, or at

least 10−2 for the assumed range 3 . tanβ . 45. Consequently, |∆S| = 1 decays are strongly preferred, and their

non-observation will lead to the strongest constraints.

Appendix E: Higher dimensional operators

We now consider whether higher-dimensional operators can affect our conclusions. We first consider |∆B| = 2

processes. Lepton-number violating interactions are irrelevant, since they are strongly suppressed by YN and µN =

MN/ΛR. At dimension five, there is only one allowed baryon-number violating correction, which appears in the

Kähler potential:

K
(5)
BNV =

1

Λ
(YuY

†
u + YdY

†
d )QQY †d d̄

† . (E.1)

After integrating out the auxiliary fields, this term (combined with the QYdd̄Hd Yukawa coupling), has a similar

effect to a Q3Hd superpotential term, but with at least two Yd spurions, leading to a minimum Yukawa suppression

of y2
b . Together with the dimension-five ∼ v/Λ suppression and CKM suppression (of the same form as for (II.4)),

it is straightforward to check that the vertex factor must be substantially smaller than any of those contributing to

the dominant diagrams considered in §IV — in the latter case we also include any additional suppression from flavor

changing — so long as Λ & 1012 GeV.11 Thus, for a GUT scale cutoff, such contributions are strongly subdominant,

whereas dimension six and higher operators are sufficiently suppressed without any flavor suppression.

In the case of nucleon decay, higher-dimensional |∆L| = 1 operators are potentially dangerous. However, they

necessarily come with a suppression of at least µNY
2
N (ignoring flavor structure) in addition to their ∼ v/Λ cutoff

suppression, and are therefore subdominant to the lepton-gaugino mixing induced by the V(2) spurion. Thus, for a high

11 A more detailed analysis might reveal that an even lower cutoff is permissible.
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cutoff, higher dimensional lepton-number violating operators can only be significant if they lead to an enhancement in

the quark sector. Specifically, operators which violate lepton and baryon number can be dangerous, but these occur

first at dimension six, both in the Kähler potential and the superpotential. Notably, the dangerous (R-parity even)

dimension-five operators Q3L, ūūd̄ē, and ūd̄d̄N̄ are absent from the superpotential due to holomorphy constraints.

Dimension six operators are not dangerous in this context, since the smallness of V spurion (cf. (VI.10)) combined

with cutoff suppression is sufficient to easily evade bounds on the proton lifetime.
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