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Abstract

We explore the interactions of two strangeness -3 baryons in multiple spin channels with lattice

QCD. This system provides an ideal laboratory for exploring the interactions of multi-baryon

systems with minimal dependence on light quark masses. Model calculations of the two-Ω− system

in two previous works have obtained conflicting results, which can be resolved by lattice QCD.

The lattice calculations are performed using two different volumes with L ∼ 2.5 and 3.9 fm on

anisotropic clover lattices at mπ ∼ 390 MeV with a lattice spacing of as ∼ 0.123 fm in the spatial

direction and at ∼ as/3.5 in the temporal direction. Using multiple interpolating operators from

a non-displaced source, we present scattering information for two ground state Ω− baryons in

both the S=0 and S=2 channels. For S=0, k cot δ is extracted at two volumes, which lead to an

extrapolated scattering length of aΩΩ
S=0 = 0.16± 0.22 fm, indicating a weakly repulsive interaction.

Additionally, for S=2, two separate highly repulsive states are observed. We also present results on

the interactions of the excited strangeness −3, spin-1
2
states with the ground spin-3

2
states for the

spin-1 and spin-2 channels. Results for these interactions are consistent with attractive behavior.

PACS numbers: 12.38.Gc, 12.39.Fe
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I. INTRODUCTION

Lattice QCD calculations have advanced to the point that scattering phenomena for

multi-hadron systems can be reliably calculated from first principles. These calculations,

performed through the analysis of two or more hadrons in a finite volume, allow for phase

shifts and potential bound states to be studied non-pertubatively[1, 2]. The majority of the

focus of these calculations has been to explore baryon-baryon and meson-meson systems,

where in the latter the scattering length for the I=2 ππ scattering system has been calculated

to within a few percent[3–9]. Additionally, high precision calculations of bound states for

the two lambda system[10, 11], as well as the deuteron and ΞΞ system[12] were performed

recently. In this work, we explore a different hyperon-hyperon system, namely the two

strangeness -3 baryon (ΩΩ) system, where we present the scattering results for both ground

and excited states.

While lattice QCD calculations of excited states using cubic irrep sources are well es-

tablished, these lattice techniques have only been applied to mesonic scattering[7] and have

yet to be applied to two baryon scattering. Single hadron excited states have seen a great

deal of attention from the lattice community for both mesons[13, 14] and baryons[15–17],

where many states are consistent with their experimental counterparts. Recent advances

include calculations of the isoscalar meson spectrum[14] with the use of the latest algo-

rithmic methods for calculating disconnected diagrams[18] and the employment of GPU

technology[19]. We extend this approach of utilizing multiple embeddings of lattice ir-

reducible representations[20] to the two baryon system, with the ultimate goal being to

extract higher partial wave interactions of nucleons from fundamental lattice calculations.

As a starting point, we apply these techniques to the ΩΩ system in a relative s-wave state.

The lattice study of the ΩΩ system is of interest for several reasons. Like most hyperon-

hyperon systems, the interactions between two or more Ω− baryons are poorly understood

experimentally due to their large mass and relatively short lifetime. To this end, lattice

QCD calculations can predict phenomena in these systems and pinpoint signals for heavy

ion scattering experiments, such as STAR or ALICE. The ΩΩ system has not received as

much theoretical attention as its lighter hyperon counterparts, such as the H-dibaryon[21]

and single Λ hypernuclei[22–24]. However, within the last decade, this system was studied in

the context of the chiral quark model[25], where it was found to prefer a bound ground state
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with a binding energy on the order of 100 MeV. A conflicting analysis[26] using the quark

dislocation model finds the system to be weakly repulsive. Additionally, the interactions of

the ΩΩ system, along with the interactions between the Ω− and other baryons, may prove

to be relevant in dense systems several times nuclear density, such as the core of a neutron

star[27]. These interactions may also play a role in the core of a supernova, ultimately

determining whether the system becomes a neutron star or a black hole.

Another attractive aspect of studying the ΩΩ system on the lattice is the fact that the

system is believed to primarily depend on the physical strange quark mass as opposed to the

unphysically large light quark masses with which these lattice calculations are performed.

This assertion is found to be true for the Ω− and several of its excited states in Ref. [16]

and, consequently, the Ω− mass is often used to set the lattice scale[28]. Thus, unlike most

nuclear calculations involving light quarks, calculation of two-Ω− systems at the physical

point should rely less on chiral extrapolations. Additionally, the inversions involving only

the strange quark are less computationally expensive and the resulting signal involving

strange baryons is cleaner. For these reasons, the multi-Ω− system is the ideal laboratory

for understanding nuclear interactions on the lattice directly as it not only could provide

insights into two or more nucleon interactions[12, 29–31], but it also provides a unique

opportunity to study a host of nuclear interactions, such as the tensor forces and s-wave

three-baryon forces[32, 33].

This work is organized as follows: In Sect. II, the basic properties of the ΩΩ system are

mapped out along with differences from the two nucleon systems. In Sect. III, the ΩΩ system

in a finite box is explored, conventions are defined, and the methods of multiple embeddings

are discussed. In Sect. IV, the calculation details and analysis methods are explained, with

the lattice results presented in Sect. V and Sect. VI. Finally, in Sect. VII the scattering

results are derived, with a conclusion in Sect. VIII.

II. TWO Ω BARYON SYSTEM IN INFINITE VOLUME

As in the case of two nucleons in the isospin limit, the channels with which two-Ω−

baryons can interact are restricted by the Pauli exclusion principle. Each Ω− contains three

valence strange quarks and is spin-3/2 in its ground state. Pauli statistics dictate that

the two Ω− wavefunction must be antisymmetric. Where the ΩΩ system differs from two
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nucleons is each Ω− is spin-3/2 as opposed to spin-1/2 and there is no isospin wavefunction.

In general, two spin-3/2 particles can exist in a total spin S = 0, 1, 2, or 3 state. However,

the additional condition for an anti-symmetric wavefunction leads to the result that two Ω−

baryons in an s-wave state can only have two non-trivial spin channels: S=0 and S=2.

As mentioned previously, there have been two model calculations of the ΩΩ system in the

S=0 channel. The first model calculation in Ref. [26] explores potential di-baryon systems

via the quark dislocation and color screening model. In this model, the quark model is

generalized in several notable ways. Namely, the color screening/string tension interaction

is included in the Q-Q potential along with a delocalized quark orbit in the wavefunction.

The authors find good agreement with the experimental N-N system. For the ΩΩ system,

the authors find a weakly repulsive interaction[26]

∆EΩΩ = EΩΩ − 2MΩ = 43± 18 MeV. (Quark Disloc./Color-screen Model) (1)

Here, the positive ∆E value implies the theory is not bound and likely weakly repulsive

(near threshold).

The calculation in Ref. [25] explores the ΩΩ system in the chiral SU(3) quark model.

In essence, the chiral SU(3) quark model generalizes the quark model, consisting of one-

gluon exchange and a confining potential, to an SU(3) sigma model in order to account for

non-perturbative effects that affect the constituent quark mass. The resulting Hamiltonian

from the confining potential in this set up (whose 17 free parameters are determined from

experiment) allows for two baryons systems to be studied by solving the resonating group

method equations. The authors find good agreement with experimental N-N and Y-N phase

shifts, and find for the ΩΩ system[25]

∆EΩΩ = EΩΩ − 2MΩ = −116 MeV. (SU(3) Chiral Quark Model) (2)

The depth of this bound state is significant and could be detected in heavy ion experiments,

as detailed in Ref. [25]. Also, a binding energy of this magnitude would easily be resolved

in state-of-the-art lattice QCD calculations by multiple standard deviations. Reference

[25] also points out potential issues with the quark delocalization model due to non uniform

confinement potentials[34]. Ultimately, one would prefer a first-principle, model-independent

lattice QCD calculation to address this debate.

An over-arching goal of lattice studies of multi-baryon systems is to explore the connec-

tions between lattice calculations and parameters of many-body effective field theory. This
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FIG. 1: Leading diagram involving pion exchange for the ΩΩ system.

has been a primary goal for light baryons, but due to unphysically large quark masses this

connection has proved difficult to achieve. In the case of the multi-Ω− system, the light quark

mass dependence is expected to play a minimal role, as the leading order interaction involv-

ing pions is given by processes involving pair-produced two pion vertices[35], as depicted in

Fig. 1. Consequently, lattice calculations with unphysical light-quark masses should provide

‘near-physical’ results in the Ω-only sector. To date, there has not been much development

in multi-Ω− EFT due to the fact that low-energy physics of weakly decaying Ω− baryons is

difficult to probe physically. However, with lattice QCD calculations, acquiring parameters

for a meson-less EFT of multiple Ω− baryons should be possible. Recent work[36–38] has

touched on this subject within the context of dark matter, and in a forthcoming paper we

develop in detail the two flavor EFT for the two-Ω system.

In this work, we examine both ground state interactions and interactions of excited states

in the s-wave two Ω− system at a single pion mass of 390 MeV with two separate volumes.

Ultimately, we intend to probe tensor interactions by projecting the initial and final state

baryons to higher partial waves. Future calculations will quantify to what extent the claim

of minimal dependence on the light quark mass is valid. Once understood, a new gateway

to understanding interactions and systematics between EFT and lattice QCD calculations

can be probed in a way currently inaccessible to light baryon systems.
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III. TWO Ω SYSTEM IN A FINITE BOX

There are several well-known complications when studying scattering calculations on the

lattice. First, discretized lattice calculations with periodic boundary conditions no longer

preserve the O(3) rotational symmetry observed in the continuum, but rather preserves an

octahedral subgroup. Thus, in order to extract information about the continuum S=0 and

S=2 states, the appropriate irreducible representations of the octahedral group must first be

understood. Second, lattice calculations are performed in Euclidean space, where the usual

LSZ formalism only holds at kinematic threshold[39]. As a result, phase shifts have to be

extracted by analyzing energy shifts of hadrons in finite volume. For two hadrons (A and

B) in a finite volume, the energies associated with the four-point correlation function are

given by

E =
√

k2 +m2
A +

√

k2 +m2
B = ∆E +mA +mB, (3)

where ∆E is the energy of interaction and k is the associated momenta in the center of mass

frame. As was shown in Refs. [1, 2], this interaction momenta at a given volume can be

related to scattering phase shifts by

k cot δ(k) =
1

πL
S

(

(

kL

2π

)2
)

, (4)

where the function S is given by the regularized three-dimensional zeta-function

S(η) =

|j|<Λ
∑

j 6=0

1

|j|2 − η
− 4πΛ. (5)

The value of k cot δ(k) extracted then has the normal effective range expansion given by

k cot δ(k) = −1

a
+

1

2
rk2 + ... (6)

and given multiple values of k cot δ(k) at multiple values of k2 (obtained through lattice

calculations of the same system at differing lattice volumes or through the use of boosted

systems) one can make an extraction of the specific scattering parameters a, r, and so on. It

is important to note that the relation in Eq. 4 holds for elastic scattering processes and no

longer holds when the energy of interaction exceeds twice the pion mass, while the relation

in Eq. 6 is only valid below the t-channel cut. These facts often limit the number of excited

scattering states that can be extracted from the lattice at a fixed volume. The best way
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TABLE I: Lattice irreps Γ used in this work and dominant overlap with spin J in the infinite

volume limit (L → ∞).

Γ (L 6= ∞) J (L = ∞)

A+
1 0

T−
1 1

E+ 2

T+
2 2

G+
1

1
2

H+ 3
2

to understand this is through the realization that two non-interacting hadrons in a finite

volume have quantized non-relativistic energy levels given by 4πn/(mL2) for select integer

values of n. At a fixed volume, this reduces the access to excited scattering states for light

hadrons, but allows for more excited scattering states to be explored for two Ω− baryons.

Thus, for extracting excited behavior between multiple hadrons, including higher partial

wave and tensor interactions, the two Ω− system is superior. However, as will be discussed

in more detail in the following sections, having more excited states accessible leads to more

excited state contamination when trying to extract a given state.

In order to extract information about the Ω−, one must first calculate using an operator

that has some (preferably large) overlap with the ground state. Systems with definite integer

spin modes in the continuum limit have dominant overlaps with different lattice irreducible

representations (irreps), labelled by A1, A2, E, T1, and T2. The same can be said for fermionic

modes which can map on to the lattice irreps G1, G2, or H . Further, each representation Γ

will have an associated parity, which we label as Γ± for postive or negative parity. Table I

enumerates the different lattice irreps used in this work and provides their dominant spin

content in the infinite volume limit. As seen from this table, the spin-3/2 Ω− particle is

represented by the H+ irrep in finite cubic volumes.

The interpolating operator representing the Ω− baryon is given by[20]

Ωαβγ = ǫabcs
a
αs

b
βs

c
γ , (7)

where a, b, and c are color indices and α, β, and γ are spinor indices. Appropriate linear com-

binations of the spinor indices will produce Ω− interpolating operators with definite lattice
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symmetry. For non-displaced sources and following Ref. [20], there are two representations,

or embeddings, of the Ω− particle in the H+ irrep given by

1H+ :

Interpolating operator |J, Jz〉

Ω111 |3/2, 3/2〉
√
3 Ω112 |3/2, 1/2〉

√
3 Ω122 |3/2,−1/2〉
Ω222 |3/2,−3/2〉

2H+ :

Interpolating operator |J, Jz〉
√
3 Ω133 |3/2, 3/2〉

2Ω134 + Ω233 |3/2, 1/2〉
Ω144 + 2Ω234 |3/2,−1/2〉
√
3 Ω244 |3/2,−3/2〉

.

For a given embedding (1H+ or 2H+), each infinite volume |J, Jz〉-state and its corresponding

source are given. It is important to note that each state within a given embedding is

orthogonal to the other states in that embedding after averaging over configurations. Thus,

each embedding can lead to four statistically independent calculations of the Ω− two point

function. In the non-relativistic limit, the first embedding maps onto the upper two spinor

components in the Dirac-Pauli basis, while the second maps onto the lower two components.

As such, one expects larger overlap with ground state systems when dealing with the first

embedding. It is also important to note that contracting the same state between two different

embeddings is statistically dependent.

The s-wave states of the two Ω− system can be formed from a tensor product of the

ground state lattice irreps. The lattice irrep that has overlap with the S=0 state is the

A+
1 irrep. In terms of the spin-3/2 states of the Ω− ground state, there is only one linear

combination that leads to A+
1 and it is given by[20]

A+
1 (S = 0) :

1

2

(

H 3

2

H− 3

2

−H− 3

2

H 3

2

+H− 1

2

H 1

2

−H 1

2

H− 1

2

)

(8)

where the subscript indicates the z-component of the spin and the H ’s can be in either

embedding.

For S=2, there are two lattice irreps that have overlap with the ground state, namely E+

and T+
2 , and as a result both lattice irreps can be used as independent calculations of the

S=2 ΩΩ scattering state. Additionally, unlike the A+
1 lattice irrep, both E+ and T+

2 can be

formed by multiple linear combinations of the two H+ states, each of which are statistically

independent determinations of the lattice irrep. For E+, there are two linear combinations
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given by

E+(S = 2) :

1 :
1

2

(

H 3

2

H− 3

2

−H− 3

2

H 3

2

−H− 1

2

H 1

2

+H 1

2

H− 1

2

)

2 :
1

2

(

H 3

2

H 1

2

−H 1

2

H 3

2

−H− 3

2

H− 1

2

+H− 1

2

H− 3

2

)

, (9)

and for T+
2 , there are three linear combinations given by

T+
2 (S = 2) :

1 :
1√
2

(

H 3

2
H− 1

2
−H− 1

2
H 3

2

)

2 :
1

2

(

H 3

2

H 1

2

−H 1

2

H 3

2

−H− 1

2

H− 3

2

+H− 3

2

H− 1

2

)

3 :
1√
2

(

H 1

2

H− 3

2

−H− 3

2

H 1

2

)

. (10)

It is worth noting that all linear combinations for E+ and T+
2 above will yield zero if each

H+ irrep is in the first embedding (the l.h.s. of Eq. (8)). Thus, to extract S=2 state, one

minimally needs one H+ irrep in the first embedding and the other in the second embedding,

which naturally leads to a higher level of excited state contamination.

A good check worth pointing out is that the S=1 system should be trivial. More specif-

ically, the linear combinations that form the T1 irrep should be zero due to parity re-

strictions and anti-symmetry. Following Ref. [20], one such linear combination is given

by 3(H3/2H−1/2+H−1/2H3/2)−4(H1/2H1/2). Since each H represents a source of three iden-

tical strange quarks, the exchange of any two H terms will lead to an overall minus sign.

Thus, the first two terms will exactly cancel with each other and the last term can only be

zero. Thus, this linear combination will yield zero for the two Ω− system.

In addition to the H+ irrep that represents the Ω− ground state, one can additionally

explore excited states that correspond to spin-1/2 in the continuum limit. The lattice irrep

associated with this excited mode is G+
1 , which is given in terms of the Ω− operators

G+
1 :

Interpolating operator |J, Jz〉

Ω134 − Ω233 |1/2, 1/2〉
Ω144 − Ω234 |1/2,−1/2〉

.

Since the H+ baryon and the G+
1 baryon are not identical particles, scattering between these

states can take all the spin values allowed by the addition of angular momenta (S=1,2). The
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s-wave S=1 contribution (in irrep T+
1 ) is given by

T+
1 (S = 1) :

1 :
1

2

(

G 1

2

H 1

2

− 3G− 1

2

H 3

2

)

2 :
1√
2

(

G 1

2

H− 1

2

−G− 1

2

H 1

2

)

3 :
1

2

(

3G 1

2

H− 3

2

−G− 1

2

H− 1

2

)

(11)

and the s-wave S=2 contribution (in irrep E+) is given by

E+(S = 2) :

1 :
1√
2

(

G 1

2

H− 1

2

+G− 1

2

H 1

2

)

2 :
1√
2

(

G 3

2

H− 1

2

+G− 1

2

H− 3

2

)

. (12)

Finally, it is possible to couple two G1 excited Ω particles to form states of definite A1

symmetry, corresponding to an s-wave, S=0 system in the infinite volume limit, using the

coupling coefficients given in Ref. [20]. However, as we point out below, because of the high-

energy levels associated with this system, coupled with limited statistics, we were not able

to extract any statistically meaningful information from this system on the current lattices

that were used in this work.

IV. LATTICE DETAILS

A. Configurations

Our calculations were performed on anisotropic Wilson lattices generated on the uBGL

machine at LLNL using the tuning parameters defined in Ref. [28]. The primary ensemble

used was a 203 × 256 with mπ ≈ 390 MeV, as ∼ .1227 fm, and as/at ∼ 3.5 (see Ref. [12] for

more details of the anisotropic parameters). The spatial extent of these lattices is L ∼ 2.5

fm. On the 203 × 256 ensemble, 50 propagators with random sources were calculated on

every 5 trajectories, where every measurement required one propagator. The propagators

were generated on the Edge GPU cluster at LLNL. For the S=0 two-Ω system, we also

performed measurements on mπ ≈ 390 MeV lattices at a larger volume (323 × 256) in an

attempt to quantify volume effects. Here 25 measurements per configuration, blocked every
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TABLE II: Gauge configuration details

Size ml ms mπ [MeV] mπL Configs × Meas/Config

203 × 256 −0.840 −0.743 ∼ 390 MeV 4.855 1155 × 50

323 × 256 −0.840 −0.743 ∼ 390 MeV 7.74 465 × 25

4 trajectories, were made. Table II gives details of the configurations and measurements

used for this work.

B. Contractions

Due to the three degenerate valance quarks, the Ω− interpolating operator has several

symmetries worth noting. The first symmetry is that the spinor indices can be interchanged

freely,

Ωαβγ = Ωβαγ = Ωβγα = · · · . (13)

This fact is the result of exchanging two quarks leads to both a minus sign from permuting

Grassman number and a minus sign from exchanging indices in the epsilon tensor, which

cancel. As a result, all Wick contractions will have the same relative sign. For the two-Ω

system, it can be shown using these symmetries that all contractions fall into two distinct

forms: ‘direct’ and ‘exchange’, as shown in Fig. 2. Taking advantage of these symmetries

{Ωαβγ

α

β

γ } Ωα’β’γ’

α’

β’

γ’

{Ωδηω } Ωδ’η’ω’

δ’

η’

ω’

δ

η

ω

(a)

{Ωδηω } Ωδ’η’ω’

δ’

η’

ω’

δ

η

ω

{Ωαβγ

α

β

γ } Ωα’β’γ’

α’

β’

γ’

(b)

FIG. 2: Quark contractions types used in the calculation including the (a) direct contributions and

the (b) exchange contributions.

drastically reduces the 6!=720 possible contractions of two-Ω system by an order of mag-

nitude and therefore reduces both computational cost due to matrix multiplication and

required memory to hold the matrices.
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Before performing the contractions, we first calculate the propagator using a Gaussian

smeared source. Upon inverting on that source, we Gaussian smear the sink (referred to

hereafter as shell-shell, or SS measurements) or perform no smearing to the sink (referred

to hereafter as shell-point, or SP measurements). While the SS measurements are expected

to give the best overlap with the ground state spectrum, by utilizing the SS and SP mea-

surements in combination, one can largely eliminate the contribution from the first excited

state and extract a more robust ground state signal that dominates at earlier Euclidean

time[40, 41]. One can further enhance the ground state signal by making use of different

combinations of the embeddings1 discussed in Sect. III. Using the propagator, we form the

relevant irrep “blocks” for a given embedding, and we further suppress the excited states

by projecting the momentum of both individual irrep blocks to zero independently, which

will result in a correlation function where excited states with nonzero back-to-back momen-

tum have been removed[30]. Finally, these irrep blocks are contracted and the correlation

functions of interest are obtained.

By blocking the measurements made within each of the gauge configurations, any corre-

lation between measurements made on the same configuration are automatically accounted

for in the average. A further possible concern is the presence of autocorrelation between the

blocked results of configurations that are nearby in the monte carlo evolution in trajectory

space. To examine this issue we looked at results for the effective mass for the single Ω−

where several configurations had been blocked together. We examined this for case where 0,

5, 10, and 15 configurations were blocked together (corresponding to averaging over 5, 25,

50, and 75 trajectories) and saw no appreciable change in the statistical error of the effective

mass extraction. From this we conclude that the autocorrelation lengths for our ensembles

are significantly smaller than the separation in monte carlo time between our configurations.

C. Analysis Details

The measurements are blocked by configuration and the resulting ensemble is boot-

strapped, with each bootstrap measurement and the final bootstrap ensemble being the

1 Previous studies[15–17, 28, 42] have used a matrix of correlation functions from different embeddings to

extract the low-lying spectrum of several baryons, up to the first few excited states. As we are primarily

concerned with the ground state baryons and their interactions these techniques are not used here.
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same size as the original ensemble. For each embedding correlation function, the SS and SP

measurements are put through a matrix-Prony algorithm as detailed in Ref. [40]. Specifi-

cally (following the notation and derivation of Ref. [40]), the correlation function recursion

relation

MyΓ(t+ tJ)− V yΓ(t) = 0 (14)

has as a solution

M =

[

τ+tW
∑

t=τ

yΓ(t+ tJ)yΓ(t)
T

]−1

, V =

[

τ+tW
∑

t=τ

yΓ(t)yΓ(t)
T

]−1

(15)

for the vector of correlation functions yΓ(t), of irrep and embedding type Γ. Here, the

window of timeslices from τ to τ + tW is the set of values of the correlation function over

which the outer product is taken. This window must include enough information to make

the resulting matrix full-rank and invertible, with subsequent timeslices helping to reduce

statistical noise to some extent[40]. The choice of tJ will increase the “lever-arm” that

the matrix-Prony rotation provides, further mitigating statistical noise but at the price of

increasing systematic fluctuations in the correlation function. As such this integer quantity

should typically be chosen to be small. The eigenvectors qΓ of the matrix V −1M , are defined

by

V −1MqΓ,i = λΓ,iqΓ,i (16)

where the eigenvalues λΓ,i are placed in ascending order. This will return a correlation

function qΓ,0 that has an enhanced ground state contribution. Using the rotation matrix

defined by qΓ on each of the bootstrap measurements for type Γ will lead to an effective

mass plot of the function

Meff ,Γ(t) =
1

tJ
log

(

qΓ,0(t)

qΓ,0(t+ tJ)

)

(17)

with a longer and more robust plateau region. For each of the effective mass plots below, the

values tW = 10 and tJ = 2 have been used, with different rotation points τ for each type Γ.

A fully correlated χ2 minimizing fit is then performed in the plateau region on the ensemble

of bootstrapped effective mass data to extract the ground state energy with a statistical

error. A systematic error from the fit window choice is obtained by modifying the endpoints

of the fit window ±2 timeslices and taking one-half the maximum minus the minimum of
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those fit values. The fit values are displayed along with the χ2/dof for the fit and the Q (or

quality of fit) value, which is the integrated probability distribution of χ2 from the observed

fit χ2 to infinity.

With this (and other black-box) methods there is serious concern that a false plateau

may be recovered, as competing overlap factors under the rotation may produce a temporary

cancelation in the plateau region that mimics the behavior of a real plateau. This behavior

may be particularly problematic for methods with a large number of correlation functions in

the vector yΓ, as the opportunities for cancelations of the wrong form increase. To remove

this complication, in this work all plateaus are initially identified in the effective mass fit

of the SS data for each irrep and embedding Γ. This correlation function is manifestly

positive (up to an overall sign) and so does not suffer from possible overlap cancelations.

The matrix-Prony rotation point τ is then chosen such that qΓ,0 returns an effective mass

plateau fit value within 0.5σ of the SS plateau fit value. The matrix-Prony result will then

return a value that is statistically the same as the real plateau, but with a significantly

improved signal-to-noise ratio.

V. STRANGENESS -3 SYSTEMS

A. s = 3
2
: H+ Irrep

As discussed in Sect. III, the strangeness -3 H+ irrep has a dominant overlap with a

spin-3/2 particle, whose ground state is the Ω− particle. This irrep has two embeddings,

making for a total of four possible source/sink embedding combinations. We will use the

notation H+
ij for correlation functions with source embedding type i and sink embedding

type j. In Fig. 3, these four combinations are plotted for both the pure SS data and for data

that has undergone a matrix-Prony rotation at timeslice τ = 15 for the 203 × 256 lattices.

While the largest overlap is observed in the H+
11 combination, it is apparent from the figure

that the highest embedding combination, H+
22, has a significant amount of excited state

contamination. Furthermore, this embedding combination does not have enough overlap

with the ground state for a signal to appear before the onset of the baryonic noise around

timeslice t = 40. This lack of overlap with the ground state persists even following the

matrix-Prony rotation, indicating that this higher embedding combination has an overlap

14



æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
ææ
æææ

æ
ææææææææææææææææææææææææ

ææ
æææææ

ææ
ææ
æ
æ

æ
æ

æ

æ

à

à

à

à

à

à

à
à
à
à
à
à
à
à à à

à à
à à à à à à à à à à à à à à à à à à à à à

à

à

à

à
à
à

à à
à

à à

à à

à

à à

à

à

à

à

ì

ì

ì

ì

ì

ì
ì
ì
ì
ì
ì
ììì

ììì
ììììììììììììì

ìììì
ì
ì
ì

ì
ì
ìì
ììì

ìì

ì

ì

ì

ì
ì

ì

ìì

ì

ìì

ìì

ò

ò

ò

ò

ò

ò

ò
ò
ò

ò
ò
ò

òòò

ò
òòò

ò

ò

ò

òòò
ò

ò
ò

ò

ò

ò

òò

ò

ò

ò
ò

ò

ò

ò

ò

ò

ò
ò

ò

ò

0 10 20 30 40 50 60
0.20

0.25

0.30

0.35

0.40

att

a t
m

H
+
,L
=

20

(a)

æ

æ

æ

æ

æææ
æ
ææææ

æææ
æ
æææææ

ææææææææææ
æææ

æ
æææ

æ
ææ

ææ
æ
ææ
ææ
ææ

æ
æ
æ

æ

æ

æ

æ

æ

à

à

à
à à
à
à
à à
à à à à à

à à à à
à à
à
à
à à à à à

à à à à à à
à à à

à
à à
à

à

à

à

à

à

à
à

à

à à

à à

à

à à

à

à

à

à

ì

ì
ì
ì

ì
ì

ì
ì
ì
ìììì

ììììììììììììììììì
ìììì

ì

ì

ì

ì
ì

ì
ì
ì
ìì

ìì

ì

ì

ì

ì
ì

ì

ìì

ì

ìì

ìì

ò

ò
ò
ò

ò

ò

ò

ò

ò
òò

ò

òòò
ò

ò

ò

ò
ò

ò

ò

ò

ò

ò
ò
ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò
ò
ò

0 10 20 30 40 50 60
0.20

0.25

0.30

0.35

0.40

att

a t
m

H
+
,L
=

20

(b)

FIG. 3: (Color online) Effective mass plots for the four different H+ embedding combinations

calculated using the 203 × 256 lattices, using (a) the pure SS data and (b) a matrix-Prony rotation

about timeslice τ = 15. The four embedding combinations shown are H+
11 (blue circles), H+

12 (red

squares), H+
21 (brown diamonds), and H+

22 (green triangles).

with the ground state that cannot be resolved with the statistics available for this calculation.

A similar situation is observed for the 323 × 256 lattices.

Given the high number of measurements made for this calculation, this finding throws

into doubt the utility of H22 for any method attempting a better extraction of the Ω− ground

state. Specifically worrisome is the possibility that the contribution of even small amounts

of this correlator to an effective mass plateau may lead to an inaccurately high ground state

energy. As such, this embedding combination is removed from consideration in the following

H+ discussion. The remaining three embedding combinations have significant overlap with

the ground state, and the effective mass plot for the sum of the bootstrap ensembles of the

three lowest embedding combinations is shown in Fig. 4 for both the 203 × 256 and the

323 × 256 lattices. The results of the fits to each data set are shown in Table III.

TABLE III: Fit values for H+ system energy levels (in dimensionless units, atE).

Irrep Lattice Size atE σE,stat. σE,sys. χ2/dof Q

H+ 203 × 256 0.291501 0.000457 +0.000099
−0.000268 1.003 0.460

323 × 256 0.290001 0.000804 +0.000418
−0.000001 0.850 0.708

Using the values in Table III one can determine that the difference in energy between
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FIG. 4: (Color online) Effective mass plots for the H+ (S=3
2
) Ω− baryon calculated using (a)

203×256 and (b) 323×256 lattices. The fit value is the solid red line, with statistical uncertainties

the dashed red line. The grey box is the statistical plus the systematic uncertainties. The fit values

are shown in Table III.

the two volumes is δEH+ = 0.00150 ± 0.00105, where the statistical and systematic errors

have been combined in quadrature. This sub-percent level difference is indicative of very

small volume effects in the calculation. Also, if the most accurate data from the 203 × 256

lattices is used to naively set the scale, the resulting spatial lattice spacing would be as =

0.12038 ± 0.00022 fm, a percent-level difference from the scale set in Ref. [28], reflecting

small differences from the physical point extrapolation.

B. s = 1
2
: G+

1 Irrep

On the 203 × 256 lattice size calculations were also performed on the G+
1 irrep, which

has only one embedding. This is an excited state of the Ω− particle with S = 1
2
, with the

effective mass shown in Fig. 5 and the results of fitting the plateau in Table IV. The results

in Fig. 5 clearly show worse signal to noise behavior than for the H+ state. This behavior

precluded the examination of the two-G+
1 system. The ratio of the extracted G+

1 mass to

the H+ mass lattices compares within error to that extracted in Ref. [16].
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FIG. 5: (Color online) Effective mass plot for the G+
1 (S=1

2
) Ω− baryon calculated using 203 × 256

lattice. The fit value is the solid red line, with statistical uncertainties the dashed red line. The

grey box is the statistical plus the systematic uncertainties. The fit value is tabulated in Table IV.

TABLE IV: Fit values for G+
1 system energy levels (in dimensionless units, atE).

Irrep Lattice Size atE σE,stat. σE,sys. χ2/dof Q

G+
1 203 × 256 0.422541 0.003754 +0.005010

−0.002036 0.409 0.931

VI. STRANGENESS -6 SYSTEMS

A. s =
(

3
2
⊗ 3

2

)

: The A+
1 , E

+, and T+
2 Irreps

Two strangeness -3 H+ baryons (two Ω− particles) can combine to make a strangeness

-6 system. By forcing this system to be in a relative s-wave the angular momentum of the

resulting state will be entirely determined by the spin combinations allowed, which for the

two Ω− system are the S = 0 (the A+
1 irrep) and the S = 2 (the E+ and T+

2 irreps) angular

momentum states.

For the A+
1 irrep each of the H+ baryons can be put into two embeddings at both

17



the source and the sink, allowing for six embedding combinations: A+
1;11,11, A

+
1;11,22, A

+
1;12,11,

A+
1;12,22, A

+
1;22,11, and A+

1;22,22 where Γij,kl has source embeddings i and j with sink embeddings

k and l for irrep Γ. Through a similar analysis of each embedding combination as was

performed for the H+, the combinations A+
1;12,22 and A+

1;22,22 were observed to plateau well

above the common ground state that the other combinations found. Note that these two

are the only combinations where it is impossible to avoid a contribution from contractions

similar to those found in the H+
22 embedding combination, and thus they likely suffer from a

similar set of excited state contaminations. Given these observations, these two embedding

combinations are excluded from the analysis of the A+
1 system.

The remaining embedding combinations are summed and result in the effective mass plots

in Fig. 6 for both the 203 × 256 and the 323 × 256 lattices, with the fit values and energy

shifts (∆E as defined in Eq. 3) given in Table V. In Fig. 7 the effective mass for the ratio

of the A+
1 correlator to the H+ squared are shown for each lattice, which directly results in

the energy shift from the data. The fit values for these plots are shown in the second and

fourth lines of Table V for the 203 × 256 and the 323 × 256 lattices, respectively. Note that

these values are well within errors of the values for ∆E obtained by directly subtracting the

original energy level fit values.
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FIG. 6: (Color online) Effective mass plots for the A+
1 (S=0) two Ω− system calculated using (a)

203×256 and (b) 323×256 lattices. The fit value is the solid red line, with statistical uncertainties

the dashed red line. The grey box is the statistical plus the systematic uncertainties. The fit values

are shown in Table V.

The E+ and T+
2 irreps correspond to the S = 2 two Ω− system. Due to the limited
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FIG. 7: (Color online) Effective mass plots for the energy difference of the A+
1 (S=0) two Ω− system

compared to twice the mass of the H+ (S=3
2
) Ω− baryon calculated using a ratio of correlators

for the (a) 203 × 256 and (b) 323 × 256 lattices. The fit value is the solid red line, with statistical

uncertainties the dashed red line. The fit values are shown in Table V.

TABLE V: Fit values and Energy Shifts for A+
1 system energy levels (in dimensionless units, atE).

The ∆E values quoted for each lattice are those from the direct subtraction of twice the energy of

the H+ system from the A+
1 system (first line) and the energy obtained from the ratio of correlators

in Fig. 7 (second line).

Irrep Lattice Size atE σE,stat. σE,sys. χ2/dof Q at∆E σ∆E,stat.

A+
1 203 × 256 0.586235 0.000843 +0.000091

−0.000348 1.105 0.327 0.00323 0.00124

0.542 0.966 0.00226 0.00131

323 × 256 0.583224 0.002002 +0.000577
−0.000680 1.086 0.350 0.00322 0.00257

0.883 0.639 0.00230 0.00282

number of quark spin states available to make this spin structure, the embedding combi-

nations that will produce a non-zero result are much more limited than in the A+
1 case.

Specifically, placing either both of the source or both of the sink baryons into the first H+

embedding is forbidden. Furthermore, the more complicated structure inherent to this spin

state significantly reduced the signal to noise ratio in many of the remaining embedding

combinations, leaving usable signals only the combinations E+
12,22 and T+

2;12,22. The effective

mass plots for these embeddings are shown in Fig. 8 and the fit values and energy shifts are
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FIG. 8: (Color online) Effective mass plots of the (a) E+ and (b) T+
2 irreps (the S = 2 two Ω−

system) calculated using the 203 × 256 lattice. The fit value is the solid red line, with statistical

uncertainties the dashed red line. The grey box is the statistical plus the systematic uncertainties.

The fit values are tabulated in Table VI.

in Table VI. From Table VI one can see that the two irreps achieve statistically separate

lowest energy states, despite coupling to states with the same set of quantum numbers. This

would indicate that at least one, and possibly both irreps, are failing to achieve the correct

ground state of the S = 2 two Ω− system. In both cases, however, the states achieved are at

a significantly higher energy level than for the S = 0 case, implying a much more repulsive

channel, as expected from Pauli exclusion arguments.

TABLE VI: Fit values and Energy Shifts for the S = 2 two Ω− system energy levels (in dimen-

sionless units, atE).

Irrep Lattice Size atE σE,stat. σE,sys. χ2/dof Q at∆E σ∆E,stat.

T+
2 203 × 256 0.642961 0.007136 +0.002502

−0.005120 0.925 0.514 0.05996 0.00719

E+ 203 × 256 0.67256 0.00293 +0.00013
−0.00329 0.500 0.916 0.08956 0.00307

B. S =
(

3
2
⊗ 1

2

)

: The T+
1 and E+ Irreps

The final system examined in the calculation was the interaction between two strangeness

-3 baryons, one in the H+ irrep and one in the G+
1 irrep, on the 203 × 256 lattices. This

20



system is unique in that it involves explicitly placing one baryon in in the S = 1
2
excited

state. The final spin combinations allowed for this combination are S = 1, which will fall

into the T+
1 irrep, and S = 2 which will again fall into either the E+ or T+

2 irreps. The G+
1

irrep has only one embedding, so the possible embedding combinations are determined solely

by the remaining H+ irrep baryon. In the S = 1, T+
1 case usable signals were recovered

for embedding combinations with the source H+ in the first embedding and the sink in the

second. For the S = 2 case a signal was uncovered only for the E+ irrep again with the

source H+ in the first embedding and the sink in the second. The effective mass plots for

each are shown in Fig. 9 and the fit results and energy shifts are in Table VII.
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FIG. 9: (Color online) Effective mass plots of the
(

3
2
⊗ 1

2

)

-coupled two Ω− system calculated using

the 203 × 256 lattice for (a) T+
1 (S=1) and (b) E+ (S=2) irreps. The fit value is the solid red line,

with statistical uncertainties the dashed red line. The grey box is the statistical plus the systematic

uncertainties. The fit values are tabulated in Table VII.

TABLE VII: Fit values and Energy Shifts for the G+
1 ⊗H+ system energy levels (in dimensionless

units, atE).

Irrep Lattice Size atE σE,stat. σE,sys. χ2/dof Q at∆E σ∆E,stat.

T+
1 203 × 256 0.679179 0.002773 +0.001087

−0.000992 0.389 0.961 -0.03486 0.00469

E+ 203 × 256 0.695768 0.007049 +0.007353
−0.000774 0.747 0.650 -0.01827 0.00800
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VII. SCATTERING AND k · cotδ

With energy levels of each baryon and system of baryons determined in Sect. V and

Sect. VI, respectively, one can now extract scattering information from this data following

the discussion from Sect. III. Returning first to the
(

3
2
⊗ 3

2

)

S = 0 two Ω− system, the data

from two different volumes will allow for two applications of Eq. 4 and, in combination with

Eq. 6, an extraction of the scattering length a. In principle the range parameter r will also be

extracted, however that term in Eq. 6 will also be contaminated by contributions from all of

the higher order terms in the expansion, and as such will be unreliable. This determination

of the scattering characteristics of the two Ω system will allow for definitive statements to

be made on the form of interaction between these baryons in light of the conflicting claims

of Ref. [25] and Ref. [26].

Using the data from Table III and Table V along with Eq. 3 and Eq. 4 one can determine

the k2 and k cot δ(k) values for the S = 0 two Ω− system. The (dimensionful) results are

shown in Fig. 10(a) along with the systematic and statistical errors. To obtain the scattering

length with a correct propagation of errors, a distribution of the parameter a is generated.

To accomplish this a series of 10,000 pairs of random values were taken from the distributions

of k2 for both the 203× 256 and the 323× 256 lattice data. These distributions were normal

distributions defined from the mean value and statistical plus systematic uncertainty of k2

obtained from Table III, Table V, and Eq. 3. Each random pair was then used to generate

a pair of kcotδ values using Eq. 4, which was then fit to Eq. 6 to produce a single value

for the scattering length a. The distribution of these values is shown in Fig. 10(b), with a

resulting two Ω− scattering length in the S=0 channel of

aΩΩ
S=0 = 0.16± 0.22 fm. (18)

Note that the distribution fit to the data is that of a Lorentz distribution and not a normal

distribution, due to the specific form that Eq. 5 takes. If one used standard error propagation

techniques to determine the uncertainty in the scattering length, the form of the distribution

as a Lorentz distribution rather than a normal distribution would result in the quotation of

too large an uncertainty.

From Fig. 10(a) one can see that the central value of k2 observed does not change ap-

preciably between the two different volumes. Also, in Fig. 10(b) the distribution of the

extracted scattering length is strongly peaked at very small values. Both of these pieces of
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FIG. 10: (Color online) Plot of (a) kcotδ and (b) the distribution of scattering lengths a for the

S = 0 two Ω− system. The kcotδ plot consists of the central value (black dot), statistical error

(thick inner red line), and statistical plus systematic error (thin outer blue line) for the 203 × 256

lattices (top line) and the 323 × 256 lattices (bottom line). The scattering length distribution

has the probability density histogram overlaid with a Lorentz distribution fit to the data. This

distribution has a central peak at 0.16 fm with a 68% confidence interval (equivalent to 1σ) of 0.22

fm.

information are indicative of a very weakly repulsive system. Indeed, if one operates with the

assumption of natural sizes for the range and higher order parameters in the effective range

expansion then the Lorentz distribution for the scattering length would provide an 79.5%

chance that the system is repulsive and a 20.5% chance that it is attractive. Additionally,

the ∆E values in Table V are positive (repulsive) and small within the 1σ error band for

both 203 × 256 and 323 × 256 lattices. Thus, from our current lattice calculations, we find

evidence that the system is consistent with the weakly repulsive scenario in Ref. [26] and

inconsistent with the deeply bound state found in Ref. [25]. Ultimately, more calculations

are required to acquire a full error budget of the systematic, but these systematics for the

ΩΩ system are not expected to be appreciable for the reasons mentioned earlier.

Finally, for the other two baryon systems studied on the 203 × 256 lattices a calculation

of k2 and kcotδ can be made in a manner similar to that for the S = 0 two Ω− system

detailed above. However, as these calculations were performed on only one lattice size, a

reliable scattering length cannot be obtained and one can only quote the inverse of kcotδ as

a proxy for the scattering length. The inverse of kcotδ is plotted for each of the two baryon
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systems studied on the 203 × 256 lattices in Fig. 11. The S = 0 two Ω− system already

discussed is the middle of the five points shown.
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FIG. 11: (Color online) Combined results for kcotδ for all two baryon systems studied on the

203 × 256 lattices. These systems are (from left to right) the S = 1 G+
1 H

+ system (orange circle),

the S = 2 G+
1 H

+ system (red square), the S = 0 H+H+ system (brown diamond), the S = 2

H+H+ system in the T+
2 irrep (pink downward triangle), and the S = 2 H+H+ system in the E+

irrep (purple upward triangle). The errors shown are statistical only.

Of note in Fig. 11 is that the G+
1 H

+ excited state system appears to be attractive in both

the S = 1 and the S = 2 channels. Traditionally, without additional lattice volumes one

cannot make a claim as to whether these states would be bound or simply scatter attractively

(resonances). However, proposals for distinguishing loosely bound states from scattering

states in lattice calculations at a single lattice volume have been discussed in Ref. [43]. One

technique discussed examines the energy level of the first state above threshold extracted

from the lattice. If this state falls on the principle branch of the kcotδ function this is an

indication that the extracted ground state is loosely bound, while if it falls on the second

branch this indicates that the ground state is a weakly attractive scattering state (in this

case, however, it may also indicate that the overlap with first excited state is poor, resulting

in the extraction of a higher scattering state).

Our matrix-Prony analysis for the G+
1 H

+ system returns excited state values of atE =

0.8750 ± 0.0032, at∆E = 0.1609 for the S = 1 state and atE = 0.8836 ± 0.0061,

at∆E = 0.1696 for the S = 2 state, resulting in k2 values of 50.9 fm−2 and 53.9 fm−2,
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respectively. These states are on the 7th excited state branch of the kcotδ function, and are

so far above the primary branch that we are forced to conclude that this novel technique

cannot inform our particular situation as to the whether the ground state is bound or scat-

tering. A calculation with better statistics and a second lattice volume would provide the

most straightforward path to a resolution to this question. Also, in nature the G+
1 state

would decay strongly to a Ξ baryon and a kaon in a relative p-wave with the release of

several hundred MeV of energy (assuming a G+
1 mass of 2500 MeV[16]), a far lower energy

arrangement than any putative G+
1 H

+ bound state. One also notes that the ordering of the

G+
1 H

+ systems does seem to follow the general trend observed and expected in the other two

Ω− system calculated, where the lower spin state results in a more attractive/less repulsive

interaction.

For the S = 2 H+H+ system in Fig. 11, the two different irrep calculations clearly

obtain two different states. It is notable that the two states lie on different branches of

the kcotδ function, and that neither are on the principle branch that the S = 0 states

are on. This would indicate both that the S = 2 states are strongly repulsive (which one

could qualitatively predict from the Pauli exclusion principle) and that it is possible that

neither of the extracted states are actually the S = 2 ground state. If the interaction is

repulsive enough then the volume in which the objects are contained may not be able to

physically contain the two baryon system, leading the scattering interaction to be pushed to

higher branches of kcotδ. In a regime where the interaction fits within the lattice volume,

the interaction energy should scale inversely with the volume, with any stronger scaling

indicating a volume that is too small.

Another possible interpretation for the results from the S = 2 H+H+ system would be

that it actually represents the interaction of an H+ omega baryon with a G+
1 omega baryon

in a maximal spin state. From the numbers in Table III, Table IV, and Table VI one can

calculate that the at∆E in that situation would be -0.071 for the S = 2 T+
2 irrep and -0.041

for the E+ irrep, resulting in states that were even more attractive than those discussed for

the directly calculated G+
1 H

+ system (see Table VII). We believe this to be a significantly

less plausible, though still possible, explanation for the behavior of the T+
2 and E+ irreps

than the alternative that neither of these correlators achieved their ground state prior to the

onset of the baryonic noise. A calculation of the S = 2 H+H+ system at a second volume

would point toward a resolution of these questions.
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VIII. CONCLUSION

We have performed the initial s-wave lattice calculations of the two spin-3/2 Ω− system

for S=0 and 2 channels, as well as spin-1
2
/spin-3

2
coupled two-Ω system for S=1 and 2

channels. Using lattice configurations with pion mass mπ ∼ 390 MeV, calculations were

performed in a volume with L=2.5 fm, and in the S = 0 case, also with L=3.9 fm. The S=0

results demonstrate that the two-Ω system in this channel is most likely weakly repulsive,

with a scattering length

aΩΩ
S=0 = 0.16± 0.22 fm. (19)

Also, the energy of interaction was positive and small within errors for both L=2.5 fm and

L=3.9 fm, whose values are states in Table V. As our calculations rely on no phenomenology,

we assert that these findings should provide significant evidence supporting the conclusion of

a weakly repulsive system in Ref. [26], as opposed to a deeply bound state in Ref. [25]. These

results also provide an interesting complement to previous studies[10–12, 30] of hyperon

interactions, where many of the interactions have been found to be attractive and contain

bound states at a pion mass of 390 MeV. The difference between the evidence for other

bound hyperon states and the conclusion in this work of a weakly repulsive ΩΩ state may

simply reflect a much stronger influence of light-quark dynamics in the valence sector of the

ΛΛ and ΞΞ systems. Further studies at different pion masses approaching the physical point

are needed to gain a better understanding of the similarities and differences of each of these

systems.

Central to this work was the use of interpolating operators of definite lattice cubic sym-

metries, which allowed us to look at exotic channels of the two-Ω system. In some of these

channels we find evidence for an attractive interaction. Future studies with larger statistics

and multiple volumes will better elucidate the behavior of two-Ω systems in these channels.

The minimal light-quark dependence of the Ω system implies that the results presented in

this work should be ‘near-physical’. Extension of this work to configurations with lighter

pion mass, as well as the development of an χEFT for this system, will quantify this state-

ment.
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