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We present a Monte Carlo renormalisation group study of the SU(2) gauge theory with two Dirac
fermions in the adjoint representation. Using the two-lattice matching technique we measure the
running of the coupling and the anomalous mass dimension. We find slow running of the coupling,
compatible with an infrared fixed point. Assuming this running is negligible we find a vanishing
anomalous dimension, γ = −0.03(13), however without this assumption our uncertainty in the
running of the coupling leads to a much larger range of allowed values, −0.6 . γ . 0.6. We also
attempt to measure the anomalous mass dimension using the stability matrix method. We discuss
the systematic errors affecting the current analysis and possible improvements.
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I. INTRODUCTION

Technicolor theories with fermions in higher repre-
sentations of the gauge group can potentially provide
a dynamical electroweak symmetry breaking mechanism
without conflicting with electroweak precision data. Min-
imal Walking Technicolor is an example of such a theory,
a SU(2) gauge theory with two Dirac fermions in the
adjoint representation [1, 2]. It is expected from per-
turbation theory to be in or near to the conformal win-
dow, although any new infrared fixed point (IRFP) is
thought to occur at strong coupling and so nonpertur-
bative results are necessary. Initial lattice simulations
showed some evidence of walking dynamics and mapped
out the phase diagram of the theory [3, 4]. Subsequent
Schrödinger functional lattice simulations have indeed
found that the gauge coupling runs very slowly [5–7],
more slowly than the perturbative prediction. The more
recent Schrödinger functional study [8] finds a change of
sign in the discrete β function at strong coupling, in-
dicative of an IRFP. A recent study using Creutz ra-
tios to measure the running coupling found evidence for
backwards running or absence of running at strong cou-
pling [9]. If indeed the theory possesses an IRFP, then
the anomalous mass dimension γ at the fixed point cou-
pling will be a scheme independent quantity. One of
the purposes of the present paper is to compute γ us-
ing Monte Carlo renormalisation group methods. In or-
der to be phenomenologically viable (yield the correct
quark masses while having an extended technicolor scale
that is large enough to suppress flavour-changing neutral
currents) the theory must have a large anomalous mass
dimension (γ ≈ 1) [10–12], and recent work suggests that
γ > 1 is required [13].

A conjectured all-order beta function [14] predicts

γ = 11/24 ' 0.458 for this model.1 This value is also
consistent with the perturbative result of γ = 0.500 in
the MS–scheme up to four loops [16, 17]. The anomalous
mass dimension has been measured nonperturbatively in
recent lattice studies [5, 8, 18, 19]. These give a vari-
ety of results: 0.05 < γ < 0.56, γ = 0.31 ± 0.06 and
γ = 0.51± 0.16.

In this work we measure the discrete β function and the
anomalous mass dimension using the Monte Carlo Renor-
malisation Group (MCRG) two-lattice matching method.
This technique has recently been used to investigate the-
ories with many flavours of fermions in the fundamental
representation [20, 21] of SU(3). One of our goals in this
paper is to exhibit the systematic uncertainties in the
MCRG approach. Indeed, we will find that the match-
ing that is involved leads to significant errors, which we
argue is due to being still some distance from the renor-
malised trajectory with the number of renormalisation
group blocking steps that we are able to take. When the
uncertainty in the matching of bare couplings is propa-
gated through into the anomalous mass dimension analy-
sis, a wide range of values is obtained. We also investigate
using the stability matrix MCRG method [22], which in
principle allows the determination of all the critical expo-
nents of a system. For our simulations and measurements
we use the HiRep [23] implementation of the Wilson pla-
quette gauge action with adjoint Wilson fermions and
a rational hybrid Monte Carlo (RHMC) algorithm with
two pseudofermions.

1 This prediction supersedes the original all-order conjecture [15]
of γ = 3/4 for this model.
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II. TWO-LATTICE MATCHING METHOD

Here, the renormalisation group (RG) is implemented
by the real-space method of block transformations. Each
blocking step changes the scale by a factor s; irrelevant
couplings will flow towards the fixed point (FP), and rel-
evant couplings will flow away from it. After a few steps
the irrelevant couplings should die out, leaving the flow
following the unique renormalised trajectory (RT). A cru-
cial point is that the validity of the MCRG method re-
lies on having taken enough blocking steps to end up on
the RT. Spurious results will be obtained if this is not
the case, and for this reason it is important to repeat
studies on larger volumes in order to take more block-
ing steps. This aspect of MCRG also suggests explor-
ing several blocking schemes, something that we do here,
since they will approach the RT at different rates. In-
deed, consistency between different blocking schemes is
an indicator that the RT is being reached. It is also im-
portant that the flow begin in the basin of attraction of
the Gaussian ultraviolet fixed point (m = g = 0), in or-
der to extract continuum physics. This leads one to be
suspicious of results for strong bare coupling.

Suppose we identify two sets of bare couplings which
end up at the same point along the RT after n steps in
one case and n′ = n−1 steps in the second case. Then the

lattice correlation lengths are related by ξ̂ = sξ̂′, where s
is the blocking parameter. Since they correspond to the
same point on the RT, the physical correlation lengths
agree, ξ′ = ξ, and hence the lattice spacings are related
by a′ = sa.

To identify such a pair of couplings, we need to show
that the expectation values of all observables on these
gauge configurations agree, modulo scaling violations. In
the massless theory we only need to tune gauge couplings
β = 4/g2. (On the other hand if one tuned all of the
couplings in a “perfect action” approach, the scaling vio-
lations would vanish and all observables would agree. In
this paper we take the simpler approach of tuning the
unimproved Wilson action, which will lead to larger un-
certainties in our results.) Thus we will end up with a
matched pair β, β′. The quantity

∆β = β − β′ ≡ sb(β; s) (2.1)

is the discrete β function (step scaling function) for the
bare gauge coupling. In the case with nonzero mass, one
must also match the masses m,m′. (Because we use Wil-
son fermions, the masses must be measured; we use the
standard partially-conserved axial current mass.) This
will allow us to extract the anomalous mass dimension.

For the reasons alluded to above, we use three s = 2
RG blocking transforms, defined in Refs. [20, 21, 24]:
ORIG, HYP and HYP2. In the limit of a large num-
ber of blocking steps, our results would be independent
of the choice of blocking. Therefore, the use of three
different blocking transforms allows us to check the sys-
tematic errors of the procedure and the distance from the
RT. The HYP and HYP2 blocking transforms have also
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FIG. 1. Discrete β function obtained from 164 and 84 lat-
tices, where the blocking parameter α is optimized between
the same pair of lattices.

been empirically found to work better than the ORIG
transform at strong coupling [21]. This is because opti-
mization of the blocking forces the blocking parameter α
to be larger than the stability limit α < 0.75 for ORIG,
at strong coupling. We have found the same problem in
some of our analysis.

III. DISCRETE β FUNCTION RESULTS

Here we measure sb(β, s). An IRFP would be indi-
cated by a change of sign as the bare β = 4/g2 is var-
ied from weak to strong coupling. Since the mass is a
relevant operator, while the coupling is expected to be
at best nearly marginal, the mass has to be tuned to
zero. We generated ∼ 3000 configurations on 164 and 84

lattices for a range of β values, each run near the criti-
cal bare mass. We optimized the blocking parameter α
such that n and n− 1 blocking steps agree on the value
of sb. The resulting measurement of sb(β) is shown in
Fig. 1. Errors result from the fact that different observ-
ables (plaquette, six-link loops and eight-link loops) give
different matching pairs, and hence different estimates of
sb. This is interpreted as due to residing still some dis-
tance from the RT after the number of blocking steps that
we are able to perform on these relatively small lattices.
Our results include both the massless and small mass
164 runs; within errors, sb shows no mass dependence for
these small masses. The ORIG matching values of sb are
clearly positive throughout, the HYP values are lower,
and the HYP2 values are consistent with zero within er-
ror bars. There is no clear crossover from positive to
negative values of sb for any of the blocking transforms.
While the data are consistent with a fixed point, they are
not sufficiently precise to distinguish slow running from a
fixed point. This level of precision is nonetheless similar
to that found in the Schrödinger functional studies.



3

We have also performed α optimization with volume
matching, as described in [25], in order to demonstrate
the effect of this alternative. This consists of matching
84 to 44 lattices with two and one blocking steps respec-
tively to obtain sb = ∆β8,4, as well as matching 164 to
84 lattices with three and two blocking steps respectively
to obtain sb = ∆β16,8. Then the blocking parameter α
is optimized such that ∆β8,4 = ∆β16,8. The purpose of
this is to cancel finite volume corrections. Here we only
present the modification that occurs when this approach
is applied to the HYP blocking scheme, since our main
interest is to see by how much this changes the picture.
(We found that for ORIG blocking, the α that is obtained
is above the stability bound, α > 0.75, for all the β we
have studied. Hence this type of blocking fails with this
method of optimization for these sizes of lattices.) The
results are shown in Fig. 2. It can be seen that this al-
ternative method gives sb < 0 for all but one value of β.
Contrasting with Fig. 1, we see that there is a stronger
signal for sb < 0, but no region at which the discrete
beta function clearly changes sign. It is unclear why one
particular value of β has sb > 0. One important point
is that the error bars in Fig. 2 are similar to those in
Fig. 1. Since the size of the error bars is determined by
the mismatch in β′ between different observables, what
we see is that this alternative α optimization does not
improve the matching. I.e., it does not reduce scaling
violations, which is not surprising, since it was only de-
signed to reduce finite size effects. We also remark that
the single step of blocking that is performed on the 44

lattice is most likely insufficient to fall on the RT. For
this reason, larger volumes will eventually be needed in
order to obtain reliable results from this “volume match-
ing” method. Thus the results shown here should only be
taken as illustrative of the size of change that can result
from this alternative α optimization.

IV. ANOMALOUS MASS DIMENSION
RESULTS

Here we assume that an IRFP exists and attempt to
extract what would in that case be a scheme independent
quantity: the anomalous mass dimension at the FP of the
RG flow. At an IRFP the gauge coupling is irrelevant,
leaving the mass as the only relevant operator. We could
therefore match the mass at arbitrary couplings, as long
as we have sufficient RG steps for the gauge coupling to
flow to its FP value. In practice we only have a small
number of RG steps, and because the beta function is
small, the coupling flows slowly towards its FP value.
Nevertheless we begin by setting β′ = β and assume that
the FP behavior will be approximated after the RG steps
that we are able to take. Next we consider the impact of
choosing β′ 6= β (i.e., within the uncertainty in sb), and
will find that this leads to a large systematic error for the
anomalous mass dimension.

We generated ∼ 3000 configurations on 164 and 84
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FIG. 2. Discrete beta function with volume matching α op-
timization, where different lattices are use in the comparison
(164 to 84 versus 84 to 44).

lattices, for a range of masses m and m′ respectively, at
each β. This allows for two versions of determining m′

on the coarse lattice such that there is matching. In one
case, matching is performed after blocking 3 and 2 times
on the 164 and 84 lattices respectively. In the second case,
matching is performed after blocking 2 and 1 times on the
164 and 84 lattices respectively. We optimize the blocking
parameter α such that these two versions of matching
agree on the matching m′.

Because the bare mass is additively renormalised we
convert the bare masses to partially conserved axial cur-
rent (PCAC) masses. We measure the PCAC mass, am,
as a function of bare mass, am0, for each β on the 164

lattices. We then use this to convert the bare masses on
both 84 and 164 lattices to PCAC masses, as the mea-
sured PCAC masses on the 84 lattices suffer from finite
volume effects. Our previous result [26] for the anoma-
lous mass dimension used PCAC masses measured on
the 84 lattices and hence contained a large finite volume
effect, which has been removed in the present work.

The anomalous mass dimension appears in the RG
equation for the mass

d(am)

d ln |µ|
= −ymam = −(1 + γ)am. (4.1)

where µ is the renormalisation scale. At an IRFP the
anomalous mass dimension is a constant, so the expres-
sion can be integrated to give

a′m′

am
= 2γ+1 (4.2)

for a pair of matching masses (am, a′m′), from which a
value for γ can be extracted.
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We used four values of β, β = 2.15, 2.25, 2.35, 2.50.
The matching PCAC mass pairs using the HYP block-
ing tranform are shown in Fig. 3. We also repeated the
matching using ORIG and HYP2 blocking, with simi-
lar results. Different β values predict consistent values
for the anomalous mass dimension, as shown in Fig. 3,
which uses all the beta values and masses in the range
0.02 < am < 0.16.
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FIG. 3. HYP blocking, matching in mass using all β′ = β
values in the mass range 0.02 < am < 0.16.

A combined fit to all β′ = β results gives γ =
−0.03(13). However, we next must consider the effect of
taking β′ 6= β, since we expect some flow in the couplings
under the RG transformations. For a given (β, am) there
should be a unique matching set of couplings (β′, a′m′).
However, all of our observables are small Wilson loops,
and as such are strongly correlated and have a very sim-
ilar dependence on β′ and a′m′. This means that we can
in fact find a “matching” a′m′ for a range of values of β′,
which, given that we do not know the correct value of β′

to use, significantly increases the error on our determi-
nation of γ. As an example, the matching mass pairs for
β = 2.25 and various values of β′ are shown in Fig. 4.

In Sec. III, while we find that sb = β−β′ is compatible
with zero, corresponding to setting β = β′, the error bars
are relatively large, enclosing the region −0.08 . β−β′ .
0.16. From Fig. 4 we see that for β = 2.25 this region is
approximately bounded by β′ = 2.15 and β′ = 2.35, and
encloses a large range of values for the anomalous mass
dimension, −0.6 . γ . 0.6. This range is representative
of the errors in the anomalous mass dimension due to the
uncertainty in the correct value of β′, and is the domi-
nant source of systematic uncertainty in our results. In
our conclusion, we identify steps that should be taken to
reduce these uncertainties.
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FIG. 4. Mass matching pairs at β = 2.25 for a range of β′.
Varying β′ can lead to very different results for γ. The dotted
horizontal and vertical lines show mL,m′L′ = 1.

V. STABILITY MATRIX METHOD

The two-lattice matching technique used in this work
was first used to investigate quenched QCD [28–30], and
more recently QCD with many flavours of fermions [20,
21]; it allows for a determination of the flow of the
most relevant coupling in a system. The original MCRG
method [22] in principle allows the extraction of all crit-
ical exponents of a system, both relevant and irrelevant.

A. Method

Consider a hamiltonian that can be written as a sum
of couplings Ki and observables (operators) Si, H =∑
iKiSi, and an RG transform Rs of scale s such that

H(n+1) = RsH
(n) =

∑
i

K
(n+1)
i S

(n+1)
i , (5.1)

where S
(n+1)
i is the same observable as S

(n)
i , only mea-

sured on the lattice blocked n + 1 rather than n times.
The fixed point of the RG transform is defined by the
condition H∗ = RsH

∗ =
∑
iK
∗
i S
∗
i , and near this point

the flow in the couplings can be expanded linearly to give

K
(n+1)
i −K∗i =

∑
j

T ∗ij(K
(n)
j −K∗j ), (5.2)

where

T ∗ij =
∂K

(n+1)
i

∂K
(n)
j

∣∣∣∣∣
H∗

. (5.3)

The chain rule gives

∂〈S(n)
i 〉

∂K
(n−1)
j

=
∑
k

∂K
(n)
k

∂K
(n−1)
j

∂〈S(n)
i 〉

∂K
(n)
k

=
∑
k

Tkj
∂〈S(n)

i 〉
∂K

(n)
k

(5.4)
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from which Tkj can be constructed using the identities

∂〈S(n)
i 〉

∂K
(n−1)
j

= 〈S(n)
i S

(n−1)
j 〉 − 〈S(n)

i 〉〈S
(n−1)
j 〉 ≡ A(n)

ij (5.5)

∂〈S(n)
i 〉

∂K
(n)
j

= 〈S(n)
i S

(n)
j 〉 − 〈S

(n)
i 〉〈S

(n)
j 〉 ≡ B

(n)
ij (5.6)

The eigenvalues of the stability matrix T ∗ij give the
critical exponents of the system [31], e.g. ν = ln s/ lnλh,
where λh is the largest eigenvalue, and so in the case of
MWTC ym = 1/ν = lnλh/ ln s. From a single simula-
tion close to the critical point, correlation functions of
blocked observables are measured to construct the ma-
trix Tij , from which ym and other exponents can be de-

termined. The formulae for A
(n)
ij and B

(n)
ij require the

computation of disconnected contributions, which gener-
ically lead to large statistical errors. However, since we
are only extracting the largest eigenvalue in our analysis
below, these errors are under control, as can be seen in
our figures that follow.

If we are sufficiently close to a fixed point, then the
largest eigenvalue of T should stay constant as the num-
ber of blocking steps is varied, and also as the number of
observables used to construct T is varied. This method
requires a larger lattice and higher statistics than the
two-lattice method, but potentially allows more informa-
tion to be extracted, in addition to being a useful consis-
tency check of the two-lattice method results.

B. Pure SU(2) Gauge Results

In this case the stability matrix approach is used to
study behavior in the vicinity of the ultraviolet fixed
point, β → ∞. One does not expect any relevant cou-
plings, and so the largest eigenvalue will correspond the
gauge coupling, with critical exponent of approximately
zero. Hence the eigenvalue that we expect to extract is
unity.

We have seven blocked observables and four blocking
steps on the 324 lattices that we have simulated in this
case. This means that we can vary the number of observ-
ables, and hence the size of the stability matrix T , from 1
to 7. We can calculate T after 1/2, 2/3 and 3/4 blocking
steps, for any choice of our blocking parameter α. Unlike
in the two-lattice method there is no cancellation of finite
size effects, so these are likely to be large.

Using more than four observables (i.e. including 8-link
loops) tends to give a complex largest eigenvalue of T,
so we only use 1 to 4 observables to construct T. Fig. 5
shows the largest eigenvalue after 1/2, 2/3 and 3/4 block-
ing steps, as a function of α using ORIG blocking, on
a 324 lattice at β = 3.0. At each blocking step T is
constructed using 1 to 4 observables, and the spread of
eigenvalues for the same blocking level is used as a mea-
sure of the systematic uncertainty. This is combined with
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FIG. 5. The largest eigenvalue of the stability matrix T as a
function of α, after 1/2 (solid, red on-line), 2/3 (dashed, green
on-line) and 3/4 (dotted, blue on-line) ORIG blocking steps
on a 324 pure gauge lattice at β = 3.0. Error bars indicate
combined systematic and statistical uncertainties.

the statistical uncertainty, obtained from 100 bootstrap
replicas, to give the overall uncertainty represented by
the error bars.

In general the results seem sensible: the variation with
α is reduced as the number of blocking steps is increased.
For small α, the eigenvalues are independent of the num-
ber of blocking steps, within the spread of eigenvalues
that one obtains by varying the number of observables.
The eigenvalues are consistent with a marginal eigenvalue
of 1, corresponding to the expected logarithmic flow of
the coupling in “pure-glue” Yang-Mills.

C. MWTC Results

Here the mass is a relevant direction and will control
the largest eigenvalue of the stability matrix. Since this is
all we extract, our measurements will give an indication
of ym = lnλh/ ln 2. For MWTC we have 164 lattices,
so we are able to construct T after 1/2 and 2/3 block-
ing steps; again, finite size effects are likely to be large.
Fig. 6 shows the largest eigenvalue of T after 1/2 and
2/3 ORIG blocking steps for β = 2.25, am ' 0.2. Be-
tween 1 and 7 observables are used to construct T, and
the spread of the largest eigenvalue at a given blocking
level is small, showing little dependence on the number
of observables used. Again, this systematic uncertainty
has been combined with statistical errors (computed with
100 bootstrap replicas) to give the error bars shown in
the figure. On the other hand there is a large difference
between the two blocking steps, which suggests that we
are not close to a fixed point. Larger lattices and more
blocking steps are required. Incidentally, this gives an
indication that more blocking steps will be required for
the two-lattice method as well.
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This is representative of the situtation for all of our
runs: the picture is qualitatively the same for virtually
all of our values of β and m, and for all three RG blocking
transforms.

VI. CONCLUSION

We find a small anomalous mass dimension and at most
a slow running of the coupling. Our results are in fact
consistent with the existence of an IRFP. There are large
uncertainties in our results, which we interpret as being
due to scaling violations.

While the MCRG method is potentially a promising
technique for studying theories with an IRFP, our analy-

sis indicates that it is currently limited by several sources
of systematic error. Perhaps the single largest factor con-
tributing to this error is the relatively small lattices that
have been used in this study; this limits the number of
blocking steps that can be taken. Because we seem to be
far from the RT, and the putative IRFP as well, extrac-
tion of an exponent like γ is problematic.

Adding more matching observables, in particular
fermionic ones such as meson correlation functions, will
give a more stringent set of constraints on matching
(β′,m′) and (β,m). Improved actions and observables
would help to reduce scaling violations and hence sys-
tematic errors in matching. We are currently pursuing
these improvements to the present analysis.

A final issue that should be mentioned is that it is
possible to be in the wrong basin of attraction. If the bare
coupling is too strong, the physics may be determined by
an ultraviolet fixed point other than the Gaussian one.
There is no simple criterion for deciding whether one is
in the wrong basin of attraction. Scaling violations are
certainly not an indicator, since they will also vanish in
the vicinity of another ultraviolet fixed point, where there
is an alternative continuum limit defined. Modifying the
lattice action may help, but a careful study of the flow
of couplings needs to be performed in order to reliably
address this potential problem. Regardless of whether it
is useful for phenomenology, MWTC is a good testing
ground for approaches that propose to investigate this
crucial issue.
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