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ABSTRACT

Employing our previous framework to treat non-perturbative effects self-

consistently, including duality violations, we update the determination of the

strong coupling, αs, using a modified version of the 1998 OPAL data, updated

to reflect current values of exclusive mode hadronic τ decay branching fractions.

Our best nf = 3 values from the updated OPAL data are αs(m
2
τ ) = 0.325±0.018

and αs(m
2
τ ) = 0.347 ± 0.025 in fixed-order and contour-improved perturbation

theory, respectively.

† Permanent address: Department of Physics, Universitat Autònoma de Barcelona, E-08193 Bellaterra,

Barcelona, Spain
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To account for non-perturbative effects, non-linear, multi-parameter fits are

necessary. We have, therefore, investigated the posterior probability distribution

of the model parameters underlying our fits in more detail. We find that OPAL

data alone provide only weak constraints on some of the parameters needed

to model duality violations, especially in the case of fits involving axial vector

channel data, making additional prior assumptions on the expected size of these

parameters necessary at present. We provide evidence that this situation could

be greatly improved if hadronic spectral functions based on the high-statistics

BaBar and Belle data were to be made available.
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I. INTRODUCTION

In a previous article [1], henceforth referred to as P1, we developed a new framework

for the determination of the strong coupling, αs(m
2
τ ), from non-strange vector (V ) and

axial-vector (A) hadronic τ -decay data. The new framework starts from the usual finite-

energy sum-rule (FESR) analysis, but improves this approach in two ways with regard to

the small, but quantitatively significant non-perturbative corrections present in the theoret-

ical representation of the FESR spectral integrals below the τ mass. First, contributions

from higher orders in the operator product expansion (OPE) are taken into account self-

consistently. Second, in view of the fact that duality violations (DVs) are clearly present in

the experimental spectral distributions, we use an explicit parametrization of violations of

quark-hadron duality in our fits. As explained in detail in P1, these two improvements are

intricately connected: estimates of the non-perturbative contribution to the sum rules with

controlled errors cannot be obtained without taking both of these effects into account.

Our framework was tested in P1 by applying it to data from the OPAL collaboration [2].

We showed that fits to the data using this new framework are indeed feasible in practice.

The resulting value for αs acquires larger errors than seen in previous extractions of αs

from hadronic τ decays. The most important reason for this is that, in order to take DVs

into account, our fits necessarily contain more parameters, while we are limited to presently

available data.

More recent data are in principle available. First, there are the ALEPH data [3], up-

dated in 2005/08 [4, 5]. Presently, use of the 2005/08 ALEPH data is questionable because

correlations due to unfolding were inadvertently omitted in the 2005/08 ALEPH update

and hence from the publicly available covariance matrices [6]. Alternatively, more precise

spectral functions can in principle be extracted from BaBar or Belle data. This would be

very interesting, because one expects such spectral functions to have significantly smaller

errors in the energy region near the τ mass important for the extraction of αs. We will argue

in this article that it should be possible to determine the non-perturbative contributions to

the sum rules, and thus αs, with much smaller errors were such data to become available.

It is nevertheless possible to make some progress with the OPAL data beyond the results

presented in P1. The reason is that in Ref. [2] the normalizations of the exclusive τ decay

modes, as well as the values of a number of physical constants (such as the τ mass, the
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electronic branching fraction Be, etc.) were taken from the 1998 Particle Data Group (PDG)

tables. More precise values for these branching fractions and constants are now available

from Refs. [7, 8], and, using these, it is thus possible to, at least partially, update the OPAL

spectral functions. Carrying out this update, and refitting the resulting modified weighted

spectral integrals using the methods developed and tested in P1 is the primary aim of the

present article.

We have also investigated the probability distribution of the model parameters that un-

derlies the various fits to the OPAL data in much more detail, using a Markov-chain Monte

Carlo (McMC) code in order to map out the a posteriori distribution. This is useful since

the fits we perform are non-linear in the parameters, so that not much is known a priori

about the shape of the probability distribution. This exploration helps with understanding

various potential instabilities in the fits (as already detected in P1), as we will discuss in

detail below.

As in P1, we carry out the analysis using both fixed-order perturbation theory (FOPT)

and contour-improved perturbation theory (CIPT) [9].1 In both cases, we find that the

central values for αs increase compared to the values found in P1, though the two sets of

values are consistent within errors. The errors themselves stay approximately the same,

which is no surprise, because they are primarily determined by the errors on the OPAL

spectral data.

In Sec. II we briefly review the essentials of the theory needed to understand the para-

metrization used in our fits to the OPAL data. In Sec. III we explain in detail how we used

recent results from the Heavy Flavor Averaging Group (HFAG) [7] to update the OPAL

spectral functions. Some details are relegated to an appendix. Then, in Sec. IV we discuss

what can be learned from the posterior probability distribution obtained with the McMC

code. We present the results of our fits in Sec. V and summarize them in Sec. VI. In Sec. VII,

we argue that the reduction of errors on the spectral functions expected from the BaBar or

Belle data are likely to be of significant help in reducing the non-perturbative uncertainties.

Section VIII contains our conclusions.

1 For recent investigations of these two resummation schemes, see Refs. [10–14].
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II. THEORETICAL PARAMETRIZATION

We start with a very brief review of the theory underlying our fits, referring the reader

to P1 for more details. Our fits are based on FESRs of the form [15, 16]

I
(w)
V/A(s0) ≡

∫ s0

0

ds

s0
w(s) ρ

(1+0)
V/A (s) = − 1

2πi

∮
|s|=s0

ds

s0
w(s) Π

(1+0)
V/A (s) , (2.1)

where the weight w(s) is a polynomial in s, and Π
(1+0)
V/A (s) with s = q2 = −Q2 is defined by

i

∫
d4x eiqx 〈0|T

{
Jµ(x)J†ν(0)

}
|0〉 =

(
qµqν − q2gµν

)
Π(1+0)(s) + q2gµνΠ

(0)(s) . (2.2)

Here Jµ is one of the non-strange V or A currents uγµd or uγµγ5d, and the superscripts (0)

and (1) label spin.

The spectral functions ρ
(1+0)
V/A are taken from OPAL [2], and the integral on the left-hand

side of Eq. (2.1) is then approximated by a sum over bins, with s0 ∈ [smin, smax], which is

our fitting interval. These data do not contain the pion pole, which needs to be added by

hand. Other (pseudo-)scalar contributions are numerically negligible, being suppressed by

two powers of the light quark masses,2

ρ
(0)
V (s) = O[(mu −md)

2] , (2.3)

ρ
(0)
A (s) = 2f 2

π

(
δ(s−m2

π)− δ(s)
)

+O[(mu +md)
2] .

In our fits, we will use the value fπ = 92.21± 0.14 MeV [8]. The right-hand side of Eq. (2.1)

provides the connection to theory, and is parametrized in terms of the strong coupling

αs(m
2
τ ), the OPE condensates, and a parametrization of the DV part of Π

(1+0)
V/A (s). We write

(for both V and A)

Π(1+0)(s) = Π
(1+0)
pert (s) + Π

(1+0)
OPE (s) + Π

(1+0)
DV (s) , (2.4)

with the subscripts “pert,” “OPE,” and “DV” denoting the perturbative, OPE (of dimension

larger than zero), and DV contributions to Π(1+0)(s).

The perturbative part of the right-hand side of Eq. (2.1) can, by partial integration, be

2 The second δ-function in ρ
(0)
A (s) comes from the kinematical singularity in Eq. (2.2). However, the

combination ρ(1+0) is free from kinematical singularities.
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written in terms of the perturbative Adler function

D
(1+0)
pert (s) = −s

dΠ
(1+0)
pert (s)

ds
(2.5)

=
1

4π2

∞∑
n=0

ans (µ2)
n+1∑
k=1

kcnk

(
log
−s
µ2

)k−1
,

where as(µ
2) ≡ αs(µ

2)/π. Since D(s) is independent of µ, we can choose (for instance)

µ2 = s0 in Eq. (2.1), which corresponds to the FOPT scheme, or µ2 = −s, which corresponds

to the CIPT scheme [9]. We will use values for the coefficients cn1 calculated in Ref. [17] up

to order n = 3 and in Ref. [18] up to order n = 4; for c51 we use the estimate c51 = 283±283

of Ref. [10]. The values of cnk for k > 1 follow from the cn1 using a renormalization-group

analysis based on the fact that the Adler function is independent of µ [19].

The (higher-dimension) OPE contribution can be expressed in terms of the OPE coeffi-

cients CD=2k as

Π
(1+0)
OPE (s) =

∞∑
k=1

C2k(s)

(−s)k
. (2.6)

In our fits we will set C2 = 0 (it is purely perturbative and suppressed by two powers of the

light quark masses),3 and we will treat C4, C6 and C8 as constant, neglecting logarithmic

s dependence; we will have no need for the coefficients CD>8. To leading order in αs, and

ignoring tiny isospin-breaking effects and perturbative light-quark mass contributions, C4 is

the same in the V and A channels; this is not the case for C6 and C8. For a more detailed

discussion, including references, see P1.

Finally, the DV contribution to the right-hand side of Eq. (2.1) can be expressed in terms

of the DV part of the spectral function

ρDV(s) =
1

π
Im Π

(1+0)
DV (s) , (2.7)

as [22]

Dw(s0) = − 1

2πi

∮
|s|=s0

ds

s0
w(s) Π

(1+0)
DV (s) = −

∫ ∞
s0

ds

s0
w(s) ρDV(s) . (2.8)

In a slight variation on Ref. [22], we parametrize ρDV
V/A as

ρDV
V/A(s) = exp

(
−δV/A − γV/As

)
sin
(
αV/A + βV/As

)
. (2.9)

3 For a alternative view of the D = 2 contribution in this context, see Refs. [20, 21].
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This adds four new parameters per channel, in addition to αs and the OPE coefficients,

to the fits to Eq. (2.1). The interval [smin, smax] has to be chosen such that the expres-

sions (2.5), (2.6) and (2.8) with (2.9) provide an accurate representation of the right-hand

side of Eq. (2.1) over the whole interval. The ansatz (2.9) was developed in Refs. [23, 24],

based on the earlier ideas of Ref. [25].4

In Eq. (2.9), we have traded the parameters κV/A of P1 for the parameters δV/A; they are

related (for both V and A) by

κ = e−δ . (2.10)

The reason for making this change is that the fit errors on δ are much more symmetric

than those on κ. The (strong) correlations between κ and γ in each channel correspond to

correlations between δ and γ which are much closer to linear.

In this article, as in P1, we will employ the weights

ŵ0(x) = 1 , (2.11)

ŵ2(x) = 1− x2 ,

ŵ3(x) = (1− x)2(1 + 2x) ,

x ≡ s/s0 .

The weight ŵ3 corresponds to the (spin-1) kinematic weight that appears in the hadronic

branching ratio Rτ . Note that

R
(1+0)
V+A,ud(s0) = 12π2SEW |Vud|2I(ŵ3)

V+A(s0) (2.12)

is, for s0 = m2
τ , equal to the (1+0) contribution to the ratio of the non-strange hadronic decay

width and the electronic decay width of the τ . In the following, we will find it convenient to

distinguish between I
(w)
ex (s0), denoting the left-hand side, and I

(w)
th (s0), denoting the right-

hand side of Eq. (2.1).

If we choose C4, C6,V/A and C8,V/A constant, it follows that none of these coefficients

contribute to I
(ŵ0)
th , only C6,V/A contribute to I

(ŵ2)
th , and both C6,V/A and C8,V/A contribute

to I
(ŵ3)
th .5 Since we will not use weights of degree larger than 3, there is no need to consider

the OPE coefficients CD with D > 8.

4 The parametrization of DVs is also discussed in Ref. [26].
5 We have checked the influence of higher-order αs corrections to the D = 4 contributions in the OPE.

Numerically, the differences are tiny, and can safely be neglected. For more discussion, see P1.
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Weights w(x) which are functions of the dimensionless variable x = s/s0 are chosen in

order to facilitate the separation of OPE contributions to I
(w)
th (s0) having different D = 2k

which, with this choice, scale as 1/sk0. While non-perturbative contributions are small at

the scales of typical τ -decay analyses, at the level of precision claimed in recent αs determi-

nations they are definitely not negligible. For example, almost the entire difference between

the results of Refs. [5] and [27] are due to differences in the fitted non-perturbative contribu-

tions. As discussed in detail in Ref. [27] and P1, taking advantage of the s0-dependence of

the moments I
(w)
ex (s0) is crucial for properly constraining such higher-D contributions. For

further discussion of the selection of the particular set of weights chosen above we refer the

reader to P1.

III. THE OPAL DATA UPDATE

The 1998 OPAL inclusive ρV and ρA distributions were constructed as sums over exclu-

sive mode distributions. In this process, the distributions of the three main hadronic modes

in each channel (π−π0, π−3π0 and π−π+π−π0 for the V channel and π−2π0, π−π+π− and

π−π+π−2π0 for the A channel) were explicitly measured, while the small residual contribu-

tions associated with other modes were typically Monte Carlo generated using TAUOLA 2.4

[2]. The normalizations of the exclusive modes (residual or not) were, however, not mea-

sured by OPAL, but rather fixed by the 1998 PDG values for the exclusive-mode branching

fractions. Significant improvements to these branching fractions have been made since 1998.

Since the distributions for the main exclusive modes noted above are publicly available,

it is possible to update the dominant contributions to the inclusive V and A distributions by

simply rescaling these contributions with the ratio of the new and old branching fractions for

these exclusive modes. Unfortunately, this is not the case for the residual mode contributions

since the individual Monte-Carlo-generated residual exclusive-mode distributions are not

publicly available. The distribution for the sum of residual modes in each channel is, however,

reconstructable from the publicly accessible inclusive and exclusive mode distributions. This

distribution may then be updated in an averaged sense by computing the new and old

versions of the sum of residual-mode branching fractions and rescaling the old combined

residual-mode distribution by the ratio of these results. Since different exclusive modes have

different s-dependent distributions, this average updating of the residual distributions is not

8



perfect. Fortunately, however, the residual modes do not play a major role in the spectral

functions in the kinematically accessible region (accounting, for example, for only 2.6% of the

inclusive branching fraction in the V channel and only 1.7% in the A channel). The average

rescaling required for the combined V -channel residual branching fraction turns out to be

small (reducing the OPAL combined residual-mode branching fraction sum by only 1.7%). In

contrast, the HFAG version of the A-channel combined residual branching fraction is 1.394

times the corresponding OPAL value, making the average residual-distribution rescaling

procedure much safer for the V channel than it is for the A channel.

We perform the updates of both exclusive mode distributions and the combined residual

mode distributions using branching fractions from a recent unitarity-constrained HFAG fit.6

The particular fit we employ is that incorporating Standard Model expectations based on

πµ2 and Kµ2 data for B[τ → πντ ] and B[τ → Kντ ] in addition to the results for these

branching fractions measured directly in τ decays [7].7

It is important to note that the conventions for quoting the various exclusive branch-

ing fractions are not identical for OPAL and HFAG. HFAG quotes ωπ−, ωπ−π0 and ηπ−π0

branching fractions corresponding to all ω and η decay modes, and excludes ω and η substate

contributions in quoting branching fractions for all other modes. In contrast, for OPAL, (i)

the quoted π−π+π−, π−π+π−π0 and π−π+π−2π0 branching fractions include, respectively,

ωπ−, ωπ− and ωπ−π0, and ωπ−π0 and ηπ−π0 components, and (ii) the ωπ− and ωπ−π0

branching fractions are quoted excluding ω → 3π contributions. With these conventions,

the tabulated OPAL exclusive branching fractions and distributions include small “‘wrong-

current contaminations” associated with isospin-breaking ω → π+π− and η → π+π−π0

decays. Explicitly, ω → π+π− decays cause the V -current-induced ωπ− mode to populate

the nominally A-current π−π+π0 distribution and the A-current-induced ωπ−π0 mode to

populate the nominally V -current π−π+π−π0 distribution, while η → π+π−π0 decays cause

the V -current-induced ηπ−π0 mode to populate the nominally A-current π−π+π−2π0 dis-

tribution. In forming the inclusive V and A spectra, OPAL corrects for this contamination

by including an appropriate negatively weighted version of the relevant non-ω → 3π and

non-η → 3π ωπ−, ωπ−π0 and ηπ−π0 distributions in the wrong-current inclusive distribution

6 The updated OPAL data are available on request.
7 We refer to http://www.slac.stanford.edu/xorg/hfag/tau/hfag-data/tau/2009/TauFit Mar2011

/BB PiKUniv/ConstrainedFit.pdf for details.
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sum. The negative weights employed by OPAL were determined using the 1998 PDG values

for the branching fractions of the relevant η and ω decay modes.

In order to perform the rescaling of the OPAL exclusive-mode distributions, the relevant

updated wrong-current contaminations must be added to the HFAG exclusive branching

fractions. The HFAG-updated ωπ− (excluding ω → 3π), ωπ−π0 (excluding ω → 3π), and

ηπ−π0 (excluding η → 3π) branching fractions, and updated negative-weight, wrong-current

contamination corrections must, analogously, be incorporated in the updated version of the

combined residual mode branching fractions in both channels. These updates are performed

using the HFAG exclusive branching fractions, together with 2010 PDG results for the

relevant η and ω branching fractions. Numerical details may be found in the Appendix.

OPAL has also tabulated the covariance matrices for the three main exclusive modes in

each channel, as well as the V V , V A and AA covariances for the inclusive V and A distri-

butions. The absence of information on the covariances among the different exclusive mode

distributions limits our ability to update the inclusive V V , V A and AA covariances. Updates

for improvements in factors such as Be and Vud which enter when converting the differential

branching fraction distributions, dBV/A(s)/ds, to the corresponding spectral functions, can,

however, be performed. Details on carrying out this procedure may also be found in the

Appendix.

IV. THE POSTERIOR PROBABILITY DISTRIBUTION

The fit functions used in the sum rules (2.1) are non-linear in αs(m
2
τ ) and the DV param-

eters. It is therefore not obvious what the posterior probability distribution of the model

parameters looks like, even if we assume the data errors to follow a (multivariate) gaussian

distribution.

In order to study this distribution, we have used an McMC code, Hrothgar [28], in order

to generate the conditional probability distribution, which we take to be proportional to

exp[−χ2(~p)/2], given the data, where ~p represents the array of fit parameters. With the

data fixed, these parameters are varied stochastically, and a Metropolis-Hastings accept-

reject step is used to generate a statistical picture of the probability distribution. In this

section, we will describe our findings in more detail for the case of a fit to the FESR with

weight ŵ0, first in the V channel.
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FIG. 1: αs(m
2
τ ) versus χ2; V channel, with smin = 1.5 GeV2 (200,000 points).

The McMC code generates points in the 5-dimensional space spanned by the five pa-

rameters αs(m
2
τ ), δV , γV , αV and βV , and also computes the value of χ2 at each of the

generated points. These points are distributed following exp[−χ2(~p)/2], with χ2(~p) evalu-

ated on the (updated) OPAL data (including the full covariance matrix) and the values of

the parameters ~p at these points.

The probability distribution thus obtained can be projected onto two-dimensional planes.

In Fig. 1, we show χ2 as a function of αs(m
2
τ ), choosing smin = 1.5 GeV2, using FOPT for

the perturbative part.8 Since for each αs(m
2
τ ) points with many different values for the other

four parameters are generated stochastically, the distribution appears as the cloud shown in

the figure.9

Figure 1 shows a bi-modal distribution, with one local minimum near αs(m
2
τ ) = 0.28,

and a global minimum near αs(m
2
τ ) = 0.32, with a difference in the locally minimal values

8 The distribution for CIPT looks essentially the same, except that the projections shown in Figs. 1 and 2,

left panel, are shifted to the right by an amount ∼ 0.02.
9 If a new point is rejected by the accept-reject step, the old point is retained. Therefore each point in the

plot may represent multiple points in the ensemble.
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FIG. 2: Two-dimensional contour plots showing αs(m
2
τ ) versus δV and γV versus δV . Left panel:

projection onto αs(m
2
τ ) − δV plane. Right panel: projection onto γV − δV plane. V channel,

smin = 1.5 GeV2. Blue (darker) areas and green (lighter) areas contain 68%, respectively, 95% of

the distribution.

of χ2 equal to about 1.6. As a consequence, a standard χ2 minimization, which estimates

the parameter covariance matrix from the hessian at the (global) minimum,10 will miss the

other local minimum entirely.

The origin of the problem appears to be the fact that δV is not well constrained by the

data. This can be seen in Fig. 2, which shows the projections onto the αs(m
2
τ ) − δ and

γ − δ planes, in this case as contour plots showing the regions containing 68% (blue) and

95% (green) of the distribution. The right panel shows a very strong correlation between

the two parameters, δV and γV , which together control the “strength” of the DV part of the

spectral functions in the low-s part of our fitting windows, cf. Eq. (2.9). Clearly, external

input is required to narrow down which part of the distribution is most likely to correspond

to physics. This will be discussed in Sec. V.

Figure 3 shows analogous results for a V and A channel combined (V&A) fit, again for

smin = 1.5 GeV2, again using FOPT. In this case, there are 9 fit parameters, and the figure

shows a projection of the 10-dimensional space spanned by the 9 parameters and χ2. The

four panels show a fit of the V&A FESR with moment ŵ0, similar to the V channel fit shown

in Fig. 1. In the upper left panel we used the full set of s0 values corresponding to the right

end-points of all bins starting from smin = 1.504 GeV2, whereas the other three panels show

10 Or from the minimum value of χ2 plus one.
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FIG. 3: χ2 versus αs(m
2
τ ), thinning out the integrated data by factors 1 (upper left), 2 (upper

right), 3 (lower left) and 4 (lower right); V and A channel combined, with smin = 1.5 GeV2

(200,000 points).

fits in which the s0 values employed have been thinned out by a “thinning factor” n, chosen

equal to 2, 3 and 4, respectively, in the upper right, lower left and lower right panels.11

Contour plots for the combinations αs(m
2
τ ) − δV and γV − δV look very similar to those

shown for the V case in Fig. 2.

Again, as in Fig. 1, there appear to be two local minima, one centered around αs(m
2
τ ) =

0.315, and one centered around αs(m
2
τ ) = 0.28. However, in this case the two minima are

much closer to being degenerate than in the V -channel fit. For n = 4 it is difficult to discern

two separate minima; the two minima appear to merge.

Similar behavior as a function of the thinning factor is observed in fits to only the V

channel as well, but the two minima are always more clearly separated, as in Fig. 1. This

11 If the thinning factor is equal to n, we use every n-th value of I
(ŵ0)
ex (s0) in the fit, see also P1. We

emphasize that all data are used: only integrated data are thinned out.
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may explain why the V&A combined fits in P1 were found to be less stable than V channel

fits. Figure 3 may also explain why fits with n = 3 led to more stable results in P1, since for

n = 3 the two minima appear to be somewhat more clearly separated than for other values

of n.12

One should also bear in mind, in assessing the relative reliability of the results of the V

channel and combined V&A channel fits, that the much larger average rescaling of the sum-

of-residual-modes branching fraction in the A channel makes the updating of the spectral

function much less reliable in the A channel than it is in the V channel.

For both the V -only and the V&A fits, we have also studied the behavior of the χ2

distribution as a function of smin. We find that by lowering smin, the minimum at the lower

value of αs(m
2
τ ) “moves up,” i.e., the value of χ2 at that local minimum increases relative

to that at the other minimum.

V. FITS

In this section, we present the results of fits to a range of different moments, obtained

by minimizing various different “fit qualities,” (positive-definite quadratic forms in the dif-

ferences between theory and data). In Sec. V A we discuss fits to the FESR with moment

I(ŵ0), whereas in Sec. V B we will consider simultaneous fits to FESRs with the moments

I(ŵ0,2,3), using the weights of Eq. (2.11).

In the first case, we choose the fit quality to be the standard χ2, already discussed in the

previous section, constructed with the complete (updated) covariance matrix. In the second

case, in which we combine more than one moment, it turns out, as discussed in P1, that

the correlations are too strong to allow for a fit based on the standard χ2 function.13 We

therefore employ a somewhat simpler fit quality Q2. Working with a set of values of s0, {sk0}

in some fitting window, we define

Q2 =
∑
w

∑
si0, s

j
0

(
I(w)ex (si0)− I

(w)
th (si0; ~p)

) (
C(w)

)−1
ij

(
I(w)ex (sj0)− I

(w)
th (sj0; ~p)

)
, (5.1)

12 We have checked that the behavior of the posterior probability distributions with the non-updated data

we used in P1 is very similar to what we find with the updated data.
13 When more than one weight is employed, the correlation matrix for the full set of weighted spectral

integrals, labelled by the weights and s0 values employed, acquires a number of machine-precision zero

eigenvalues.
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with Cw the covariance matrix for moments with fixed weight w and s0 running over the

chosen fit window.14 The fit quality Q2 is thus similar to a standard χ2, but with cross-

correlations between different moments omitted. Treating Q2 as if it were the standard χ2

would thus lead to incorrect errors and covariances for the fit parameters. To take the cross-

correlations properly into account, errors and covariances for Q2-based fits are obtained

using the linear fluctuation analysis described in the Appendix of P1.

In view of (i) the results of Sec. IV and (ii) the fact that the updating scheme is much

more reliable for the V channel than for the A channel OPAL data, we will use the V -channel

fits of Sec. V A to determine our central value for αs(m
2
τ ). The remaining fits are used only

to investigate whether our fit function, which parameterizes DVs using Eq. (2.9), provides

a good description of the data for the moments ŵ2 and ŵ3 as well. The issue of the choice

of weights is discussed in more detail in P1.

As we have seen in Sec. IV, the posterior probability distribution generally has a rather

complicated structure, showing almost always two fairly close but different minima. We

thus need to address the question which minimum is more likely to correspond to a physical

solution. The situation is more complicated in the case of V&A fits, for which the two

minima are essentially degenerate. We will argue that the minimum corresponding to the

larger value of αs(m
2
τ ) is more likely to correspond to the correct physics.

First, there is evidence for this choice from the fits themselves. We note that, in the

V -only case, the minimum of χ2 for the larger value of αs(m
2
τ ) is always the lower one by a

significant amount, cf. Fig. 1. This is confirmed by fits with lower values of smin, for which

this separation becomes more pronounced.

We may also refer to the model study of Ref. [24], which led to the form of the ansatz (2.9)

used to parameterize DVs. It was shown there that the model underlying this ansatz leads

naturally to the following values for the parameters:

δ ∼ − log

(
F 2

Λ2

)
∼ 4 and γ ∼ 1

Nc

1

Λ2
∼ 0.3 GeV−2 , (5.2)

where F ∼ 0.1 GeV is a typical value for a resonance decay constant, and Λ ∼ 1 GeV is a

typical QCD scale. Figure 2 shows that for such values the global χ2 minimum, which occurs

at the larger value of δV , and thus at the larger value of αs(m
2
τ ), is preferred. (We will see

14 The fit quality Q2 corresponds to Q2
block defined in P1.
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smin dof χ2/dof αs δV γV αV βV

1.3 53 0.41 0.338(18) 3.91(62) 0.27(43) 0.53(54) 2.89(29)

1.4 50 0.33 0.326(16) 4.11(63) 0.16(41) -0.29(68) 3.29(35)

1.5 47 0.34 0.323(16) 4.21(62) 0.12(40) -0.48(79) 3.38(40)

1.6 44 0.35 0.325(18) 4.04(86) 0.20(53) -0.37(87) 3.33(44)

1.7 41 0.35 0.323(19) 4.37(99) 0.05(53) -0.48(91) 3.37(44)

1.3 53 0.43 0.360(32) 3.47(64) 0.53(47) 0.57(58) 2.83(32)

1.4 50 0.34 0.349(25) 3.84(65) 0.30(44) -0.31(67) 3.28(35)

1.5 47 0.34 0.345(24) 3.99(64) 0.22(42) -0.54(77) 3.39(40)

1.6 44 0.36 0.347(26) 3.82(90) 0.32(56) -0.45(86) 3.35(44)

1.7 41 0.37 0.344(25) 4.2(1.1) 0.12(57) -0.57(90) 3.40(44)

TABLE 1: Standard χ2 fits to Eq. (2.1) with w(s) = 1, V channel. FOPT results are shown

above the double horizontal line, CIPT results below. Errors are standard χ2 errors; γV and βV in

GeV−2.

below that the estimates of Eq. (5.2) are less well satisfied for the A channel.) Henceforth,

we will refer to the minima at larger values of δV as “physical” minima, and to those at

smaller values of δV as “unphysical.”

A. Fits with ŵ0

In Table 1 we show V channel fits of I
(ŵ0)
th (s0) to I

(ŵ0)
ex (s0) (cf. Eq. (2.1)), for s0 ∈

[smin, smax], with smax = 3.136 GeV2 and varying smin.15 In all the fits contained in this

table, we have used initial parameter estimates which roughly correspond to the physical

minima, i.e., the minima corresponding to larger values of δV found with the McMC code.

There is excellent stability for smin ranging from 1.4 to 1.7 GeV2. In a slight deviation

from P1, we will use the average of the fits with smin = 1.4, 1.5 and 1.6 GeV2 to determine

αs(m
2
τ ). Since the fit is non-linear, one expects the fit errors to be asymmetric. For instance,

15 This value of smax corresponds to the highest bin available in the OPAL data; the bin width is 0.032 GeV2.

In the axial channel the highest bin available corresponds to smax = 3.104 GeV2.

16



for the FOPT fit with smin = 1.5 GeV2 we find

αs(m
2
τ ) = 0.323+0.016

−0.018 , (5.3)

δV = 4.21+0.53
−0.88 ,

γV = 0.12+0.57
−0.33 GeV−2 ,

αV = −0.48+0.75
−0.81 ,

βV = 3.38+0.42
−0.38 GeV−2 .

We note that the error on αs(m
2
τ ) is nearly symmetric, and that the error on δV is much

closer to symmetric than the error on κV = exp(−δV ) in P1. A typical parameter correlation

matrix, that for the FOPT fit with smin = 1.5 GeV2, is shown in Table 2. Results for other

values of smin, or for CIPT fits, show the same pattern.

αs δV γV αV βV

αs 1 0.68 -0.67 0.74 -0.68

δV 0.68 1 -0.99 0.47 -0.44

γV -0.67 -0.99 1 -0.49 0.45

αV 0.74 0.47 -0.49 1 -0.98

βV -0.68 -0.44 0.45 -0.98 1

TABLE 2: Parameter correlation matrix for the FOPT fit with smin = 1.5 GeV2 shown in Table 1.

Recalling our choice to obtain a central value by averaging results for smin = 1.4, 1.5 and

1.6 GeV2, we obtain from these fits for αs at the τ mass the results

αs(m
2
τ ) = 0.325± 0.016± 0.002± 0.007 (FOPT) , (5.4)

αs(m
2
τ ) = 0.347± 0.024± 0.002± 0.005 (CIPT) .

The first error is the smin = 1.5 GeV2 fit error shown in Table 1, the second the variation

of the central values over the smin = 1.4 → 1.6 GeV2 averaging window, and the third the

result of the ±283 variation of c51 about its central value c51 = 283.

Figure 4 shows the ŵ0-FESR fit for smin = 1.5 GeV2 (left panel), and the corresponding

theoretical curves for the spectral function in comparison with the (updated) experimental
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FIG. 4: Left panel: comparison of I
(ŵ0)
ex (s0) and I

(ŵ0)
th (s0) for the smin = 1.5 GeV2 V-channel fits

of Table 1. Right panel: comparison of the theoretical spectral function resulting from this fit with

the experimental results. CIPT fits are shown in red (dashed) and FOPT in blue (solid). The

(much flatter) black curves represent the OPE parts of the fits. The vertical dashed line indicates

the location of smin.

data (right panel). Agreement with data is good in the full fit window s0 ≥ smin = 1.5 GeV2.

The black curves show the OPE parts of the theoretical curves, i.e., the curves obtained by

removing the DV contributions from the blue and red curves. Clearly, DVs are needed to

give a good description of the data for I
(ŵ0)
ex and the spectral function itself. We emphasize

that the right panel of Fig. 4 is not a fit; only the moments I(ŵ0)(s0) were used in the fits

reported in Table 1.

Fits with weight ŵ0 to the combined V and A channels are tabulated in Table 3, where

again initial parameter estimates were chosen close to the physical minima. In view of our

findings of Sec. IV for this case, we chose the thinning factor n equal to 2. We do not

show plots of these fits, or of the corresponding spectral functions, because they look very

similar to those shown in Fig. 4 and the corresponding figures in P1. The CIPT fit with

smin = 1.7 GeV2 appears to correspond to an unphysical solution of the type discussed in

Sec. IV; we did not find a physical solution in this case.

Following the same prescription as for Eq. (5.4), we obtain for αs the values

αs(m
2
τ ) = 0.319± 0.015± 0.007± 0.005 (FOPT) , (5.5)

αs(m
2
τ ) = 0.338± 0.021± 0.010± 0.004 (CIPT)

from the V&A fits. The errors have the same meaning as in Eq. (5.4). The values in Eq. (5.5)
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are in good agreement with those of Eq. (5.4). It should, however, be kept in mind that (i)

the physical and unphysical minima of the χ2 function are close to degenerate for these fits

(cf. Sec. IV) and (ii) the averaged rescaling of the sum-of-residual-modes part of the OPAL

spectral functions is considerably less reliable for the A channel than for the V channel.

B. Fits with ŵ0,2,3

In this section, we report on simultaneous fits to moments with weights ŵ0, ŵ2 and ŵ3,

using the fit quality Q2 of Eq. (5.1). FOPT and CIPT results are shown for the V channel

in Table 4, for the same set of smin values as before. To properly account for the cross-

correlations between moments with different weights, errors and covariances are computed

through the linear-fluctuation analysis of P1. We do not show any plots based on these fits,

as they look very similar to those in P1.

In this case, we have not carried out an investigation along the lines of Sec. IV. The

reason is that we cannot compute a fully correlated posterior probability distribution, and

the interpretation of the probability distribution associated with Q2 would be less clear.

Our only reason for considering these multiple-moment fits is to check that DVs in higher

moments, and in particular the moment with the kinematic weight, can be described by our

ansatz, Eq. (2.9). We find that this is indeed the case.

The fit results, reported in Table 4, are in good agreement with those of Sec. V A. Fol-

lowing the same method as before, we obtain for αs the values

αs(m
2
τ ) = 0.315± 0.014± 0.002± 0.007 (FOPT) , (5.6)

αs(m
2
τ ) = 0.347± 0.030± 0.002± 0.005 (CIPT) ,

where again the errors have the same meaning as in Eq. (5.4). For the CIPT case we see

that adding more moments has not improved the determination and, in fact, has somewhat

increased the total error. In view of this observation, and the fact that the errors in Eqs. (5.6)

and (5.4) were, in any case, produced using different minimizing functions, we stick with

the standard χ2 V -channel fit results of Eq. (5.4) as our central ones.

In Table 5 we show similar results for the V&A analysis. In this case, we found the most

stable results with the thinning factor n = 3, i.e., thinning out the moments I
(ŵ0,2,3)
ex (s0)

by a factor three. Even so, we did not find a physical minimum for the FOPT case with
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smin dof χ2/dof αs δV/A γV/A αV/A βV/A

1.3 49 0.58 0.327(12) 3.71(55) 0.38(39) 0.24(51) 3.00(30)

1.62(86) 1.66(55) 2.48(77) 3.60(46)

1.4 46 0.47 0.325(11) 4.28(44) 0.02(30) -0.54(58) 3.43(31)

1.6(1.0) 1.68(64) 1.8(1.2) 4.00(68)

1.5 43 0.53 0.312(15) 3.90(71) 0.29(46) -1.02(85) 3.64(45)

1.82(72) 1.46(44) -2.5(1.3) 2.91(74)

1.6 40 0.40 0.320(13) 4.23(57) 0.05(35) -0.79(70) 3.55(37)

1.56(94) 1.64(53) 2.8(1.7) 3.47(91)

1.7 37 0.54 0.312(17) 3.7(1.4) 0.42(78) -0.9(1.0) 3.60(51)

0.3(1.8) 2.15(86) -1.7(2.1) 2.5(1.1)

1.3 49 0.61 0.348(18) 3.38(51) 0.58(38) 0.30(54) 2.93(32)

1.95(78) 1.48(50) 2.51(83) 3.61(49)

1.4 46 0.49 0.347(15) 4.03(46) 0.14(32) -0.60(54) 3.44(30)

1.97(82) 1.48(53) 2.0(1.1) 3.93(64)

1.5 43 0.54 0.328(21) 3.69(77) 0.39(51) -1.08(83) 3.66(45)

1.94(71) 1.39(42) -2.4(1.3) 2.90(72)

1.6 42 0.40 0.339(17) 4.09(61) 0.12(38) -0.90(67) 3.59(35)

1.73(94) 1.54(52) 2.9(1.5) 3.42(83)

1.7 37 0.47 0.294(17) -0.9(2.8) 3.3(1.6) 3.1(2.3) 8.2(1.2)

0.8(1.7) 1.76(78) -0.9(1.7) 2.12(87)

TABLE 3: Standard χ2 fits to Eq. (2.1) for w(s) = 1, combined V and A channels. FOPT results

are shown above the double horizontal line, CIPT results below. The first line for each smin gives

the V DV parameters; the second line the A ones. Every second value of s0 in the range above and

starting at smin is included in the fits. Errors are standard χ2 errors; γV/A and βV/A in GeV−2

smin = 1.6 GeV2, as can be seen from the table. The distinction between the physical

minima we found at lower values of smin and the unphysical minima at higher values of smin
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smin dof Q2/dof αs δV γV αV βV 102C6,V 102C8,V

1.3 167 0.42 0.307(13) 2.68(75) 1.10(51) 0.29(80) 2.89(47) -0.51(35) 0.68(66)

1.4 158 0.33 0.313(13) 3.37(69) 0.63(46) -0.69(87) 3.45(49) -0.47(28) 0.79(44)

1.5 149 0.33 0.315(14) 3.74(60) 0.40(39) -0.9(1.0) 3.55(57) -0.45(28) 0.80(45)

1.6 140 0.33 0.317(17) 3.42(76) 0.59(48) -0.7(1.4) 3.48(75) -0.42(39) 0.72(68)

1.7 131 0.33 0.318(19) 4.26(73) 0.14(39) -0.8(1.3) 3.53(68) -0.46(38) 0.86(61)

1.3 167 0.38 0.362(45) 3.55(80) 0.47(57) 0.53(98) 2.85(52) -0.18(51) 0.06(82)

1.4 158 0.30 0.349(30) 3.85(66) 0.30(44) -0.3(1.0) 3.28(55) -0.40(33) 0.53(55)

1.5 149 0.30 0.345(30) 3.97(61) 0.24(40) -0.5(1.3) 3.39(66) -0.46(35) 0.66(61)

1.6 140 0.31 0.347(42) 3.71(71) 0.38(47) -0.4(1.8) 3.33(92) -0.42(55) 0.6(1.0)

1.7 131 0.31 0.344(40) 4.21(74) 0.13(42) -0.6(1.8) 3.40(88) -0.50(50) 0.77(92)

TABLE 4: Fits to Eq. (2.1) with weights ŵ0,2,3, V channel, using fit quality (5.1). FOPT results

are shown above the double horizontal line, CIPT fits below. γV and βV in GeV−2, C6,V in GeV6

and C8,V in GeV8.

is very clear from the values of the DV parameters.16 In particular δV and γV both differ

by a large amount between physical and unphysical solutions, much as shown in the simpler

case displayed in Fig. 2. Averaging only the FOPT fits at smin = 1.4 and 1.5 GeV2, and

averaging as before the CIPT fits at smin = 1.4, 1.5 and 1.6 GeV2, we find for αs(m
2
τ )

αs(m
2
τ ) = 0.311± 0.011± 0.002± 0.007 (FOPT) , (5.7)

αs(m
2
τ ) = 0.337± 0.017± 0.002± 0.005 (CIPT) ,

with errors again as in Eq. (5.4).

VI. SUMMARY OF RESULTS

Through a more detailed statistical study of the data than we carried out in P1, we

showed that our fits of the OPAL data sometimes allow for different local mimina of the χ2

function, cf. Sec. IV. These solutions are most clearly distinguished by the values of the DV

16 The value of χ2 is always smaller at the unphysical minimum in these particular fits.
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smin dof Q2/dof αs δV/A γV/A αV/A βV/A 102C6,V/A 102C8,V/A

1.3 104 0.64 0.309(9) 2.80(74) 1.00(50) -0.25(72) 3.18(43) -0.54(26) 0.82(49)

2.51(43) 1.11(28) 3.03(71) 3.37(41) 0.56(20) -0.58(37)

1.4 98 0.49 0.310(11) 3.33(72) 0.64(48) -1.07(82) 3.66(47) -0.55(23) 0.93(38)

2.26(50) 1.22(32) -2.89(95) 3.17(54) 0.50(29) -0.40(59)

1.5 92 0.48 0.312(11) 3.70(62) 0.40(41) -1.23(95) 3.75(53) -0.52(22) 0.92(36)

2.16(78) 1.28(43) -2.9(1.2) 3.17(68) 0.53(34) -0.45(76)

1.6 86 0.38 0.292(14) -0.8(3.0) 3.2(1.8) -0.9(1.8) 7.0(1.0) -1.14(18) 2.10(32)

1.8(1.1) 1.38(56) -1.7(1.4) 2.55(73) -0.09(62) 0.96(1.7)

1.7 80 0.44 0.312(17) 3.78(89) 0.36(50) -1.1(1.4) 3.69(74) -0.52(37) 0.91(66)

-0.4(2.3) 2.5(1.0) -1.6(3.2) 2.5(1.7) 0.27(78) 0.5(2.4)

1.3 104 0.53 0.346(18) 3.45(58) 0.54(41) 0.02(70) 3.09(40) -0.38(27) 0.43(46)

1.97(69) 1.46(44) 2.33(76) 3.73(44) 0.71(22) -1.02(43)

1.4 98 0.43 0.339(17) 3.75(57) 0.34(39) -0.72(83) 3.49(46) -0.51(22) 0.73(38)

2.03(60) 1.39(39) 2.8(1.0) 3.48(59) 0.59(26) -0.76(55)

1.5 92 0.43 0.337(17) 3.89(53) 0.26(36) -0.95(98) 3.60(53) -0.55(23) 0.82(41)

2.13(78) 1.34(45) 2.8(1.4) 3.47(74) 0.58(31) -0.74(68)

1.6 86 0.44 0.335(23) 3.56(77) 0.45(48) -0.9(1.4) 3.57(73) -0.55(34) 0.79(65)

1.7(1.1) 1.51(58) 3.1(1.8) 3.31(99) 0.50(46) -0.5(1.1)

1.7 80 0.42 0.332(30) 3.79(84) 0.33(47) -1.0(1.7) 3.61(85) -0.58(43) 0.88(84)

-0.3(2.4) 2.14(1.0) -2.1(3.5) 2.7(1.9) 0.30(85) 0.2(2.5)

TABLE 5: Fits to Eq. (2.1) with weights ŵ0,2,3, combined V and A channels, using fit quality (5.1).

FOPT results are shown above the double horizontal line, CIPT fits below. γV/A and βV/A in

GeV−2, C6,V and C6,A in GeV6 and C8,V and C8,A in GeV8. The first line for each smin gives the

V channel DV and OPE parameters; the second line the A channel ones. Every third value of s0

in the range above and starting at smin is included in the fits.
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parameters δV and γV , and in the introduction to Sec. V we argued that the solutions with

large values of δV (of order 4) and small values of γV (of order 0.3) should be considered as

physical, while the other minima, which always have small values of δV (negative, in fact),

and large values of γV (typically of order 3) should not be considered physical.

As in P1, we have used both Weinberg sum rules [31] and the sum rule for the electro-

magnetic pion mass difference [32] to test our fit results. All three sum rules are well satisfied,

at a level of precision similar to that found in P1. We have also confirmed, again as in P1,

that our theoretical description of R
(1+0)
V+A,ud(s0) (Eq. (2.12)) agrees, within errors, with data

for s0 down to below 1.5 GeV2.

A. The value of αs(m
2
τ )

We will choose the values of the strong coupling at the τ mass obtained from the V -

channel fit of I
(ŵ0)
ex as our best values. Our reasoning for doing so is twofold. First, while

the simultaneous fits to multiple moments are in good agreement with this simple fit, no

standard χ2 fit is possible in this case. While we believe that the error estimates based

on linear fluctuation analysis are reasonable, it is less clear how they should be interpreted

than those obtained from a standard χ2 analysis.17 Second, including also the A channel

makes the fits more complicated, because of the larger number of parameters. This effect

is compounded by the much larger, and hence less certainly reliable, approximate rescaling

that must be applied to the residual distribution in the A channel. In addition, we note that

the only feature visible in the A channel is the a1 resonance, and it is not clear whether the

ansatz we use to parameterize the DV part of the spectral function can be expected to apply

to this resonance, even if we assume that the ansatz works well for higher resonances in each

channel. Finally, related to this, we note that the typical values of the DV parameters we

find in the axial channel satisfy the expectation of Eq. (5.2) less well.

We thus find our best values for the strong coupling from Eq. (5.4):

αs(m
2
τ ) = 0.325± 0.018 (MS, nf = 3, FOPT) , (6.1)

αs(m
2
τ ) = 0.347± 0.025 (MS, nf = 3, CIPT) ,

17 Of course, we have found that the posterior probability distribution has a complicated behavior, so that

physical input is required to decide which local minimum is physical, as discussed in detail in Secs. IV

and V.
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where we added the errors in Eq. (5.4) in quadrature.

Running these values up to the Z mass MZ [33] yields18

αs(M
2
Z) = 0.1191± 0.0022 (MS, nf = 5, FOPT) , (6.2)

αs(M
2
Z) = 0.1216± 0.0027 (MS, nf = 5, CIPT) ,

where we symmetrized the resulting slightly asymmetric errors.

B. Non-perturbative results

In P1 we estimated the relative deviation of the values found for the dimension-6 conden-

sates from those given by vacuum-saturation approximation. To this end, these condensates,

parametrized by C6,V/A, are expressed in terms of the quantities ρ1 and ρ5 by

C6,V/A =
32

81
π2as 〈q̄q〉2

2 ρ1 − 9 ρ5

11 ρ1

 . (6.3)

Vacuum saturation values for C6,V/A then correspond to ρ1 = ρ5 = 1. Performing the

analogous analysis for the updated OPAL spectral functions, we find (employing 〈q̄q〉(m2
τ ) =

− (272 MeV)3 [34])

ρ1 = 3.1± 2.0 , ρ5 = 4.4± 1.4 (FOPT) , (6.4)

ρ1 = 3.1± 1.6 , ρ5 = 4.3± 1.3 (CIPT) ,

using as representative values C6,V/A and αs(m
2
τ ) of Table 5 for smin = 1.5 GeV2.19 As in P1,

the values of ρ1 and ρ5 are insensitive to the perturbative resummation scheme. We note

that ρ1 changes sign relative to the central value found in P1, but also that, given the large

uncertainties, there is no inconsistency between our earlier fits and those presented here.

Analyses of the strong coupling from τ decays are sometimes based on the ratio, Rτ
V+A,

of the total inclusive non-strange branching fraction to the electron branching fraction Be

[16],

Rτ
V+A = NcSEW|Vud|2 (1 + δP + δNP ) , (6.5)

18 We evolved αs to the Z mass in the same way as was done in Ref. [10]. Uncertainties in the running,

associated with the use of 4-loop truncated β functions, uncertainties in the charm and bottom masses,

and the choice of the nf = 3 → nf = 4 and nf = 4 → nf = 5 matching thresholds are negligible on the

scale of the quoted errors.
19 We neglect the errors on αs and 〈q̄q〉.
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where δP stands for the perturbative, and δNP stands for the non-perturbative contributions

beyond the parton model. Determining δP , and hence αs, from Rτ
V+A of course requires

input for δNP . In the past, shortcomings in the methods used to obtain this input have

led to a significant underestimate of the corresponding uncertainties. Analyses (such as

those of Refs. [2, 4]) including additional higher-degree-weight FESRs, for example, were

forced to assume that D > 8 contributions could be neglected for all additional FESRs.20

Reference [27] avoided this problem, but, being unable to fit all required D ≤ 8 OPE

parameters using an s0 window within which neglect of integrated DVs was self-consistent,

was forced to rely on external input for the gluon condensate, the renormalon ambiguity of

which makes this external input potentially problematic. As shown in P1 and Ref. [29], it

is not possible to avoid these problems without considering lower s0 and FESRs for which

integrated DVs are not negligible in the full s0-fitting window employed. The framework

presented in P1 and in the present article is the first to allow for a reliable estimate of δNP

from such an analysis, and hence to bring these systematic issues on the theory side under

control. Expressing the D = 6, 8 OPE terms, as well as the DV contributions to δNP , in

terms of δ(6), δ(8) and δDV , respectively, we obtain from our fits with smin = 1.5 GeV2,

δ(6) = ( 0.0± 1.9) · 10−2 , δ(8) = (− 3.7± 7.6) · 10−3 ,

δDV = (− 0.1± 1.0) · 10−3 (FOPT) , (6.6)

δ(6) = (− 0.1± 1.8) · 10−2 , δ(8) = (− 0.6± 7.6) · 10−3 ,

δDV = (− 0.6± 1.4) · 10−3 (CIPT) .

In the case of FOPT, the corresponding correlation matrix is found to be:

δ(6) δ(8) δDV

δ(6) 1 -0.98 0.59

δ(8) -0.98 1 -0.54

δDV 0.59 -0.54 1

TABLE 6: Correlation matrix for the quantities δ(6), δ(8) and δDV of Eq. (6.6) (FOPT).

20 This assumption has since been tested (and found to be poorly satisfied) by comparing the s0-dependence

of the fitted theory side to that of the experimental data side of the various additional FESRs [27].
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While individually for the V and A channels the hierarchy of the non-perturbative terms

is such that dimension-6 is the largest, dimension-8 smaller, and the DV contribution the

smallest, due to strong cancellations in the D = 6 and DV contributions for the sum V +A,

theD = 8 contribution turns out to be dominant. However, in view of the large uncertainties,

it is impossible to conclude that these cancellations will also persist once more precise data

are available.

Combining the OPE contributions as well as the DV term of Eq. (6.6) including correla-

tions, the total non-perturbative contribution to Rτ
V+A turns out to be

δNP = (− 0.4± 1.2) · 10−2 (FOPT) , (6.7)

δNP = (− 0.2± 1.2) · 10−2 (CIPT) .

These estimates, despite having errors larger than those quoted previously in the literature,

must be considered more reliable, as they are the only ones based on an analysis which deals

explicitly with the theoretical systematic issues discussed above.

Care must be taken in drawing conclusions from the results of Eq. (6.6). While the

results do establish that integrated DV contributions to Rτ
V+A are small, it does not follow,

as repeatedly assumed in the literature,21 that DVs can be neglected in the determination

of αs from hadronic τ decay data. The reason is that, even if one restricts attention to only

the quantity Rτ
V+A, one still needs to determine the D = 6 and D = 8 contributions to δNP .

This cannot be done in a controlled manner without including values of s0 significantly lower

than m2
τ and weights for which integrated DV contributions are certainly not negligible (cf.

P1 and Ref. [29]). Many values of δP in the literature have been obtained using values

of δNP taken from analyses with the limitations noted above. In view of the results given

in Eq. (6.7), the errors on such estimates of δP are evidently underestimated, often by a

significant amount. Only improved data will allow these errors to be further reduced.

VII. FUTURE PERSPECTIVES

In this section, we speculate on possible improvements relative to the results presented

in Sec. IV if data with significantly smaller errors were to become available. As mentioned

21 For a recent review, see e.g. Ref. [30].
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FIG. 5: αs(m
2
τ ) versus χ2, covariance matrix reduced by factor 4 (left panel) and factor 9 (right

panel), V channel, with smin = 1.5 GeV2.

before, in principle such data can be extracted from the BaBar and Belle experimental

results, and it is not unlikely that such an analysis would lead to hadronic spectral functions

with errors about 2 or 3 times smaller than those of the OPAL data, especially in the upper

part of the kinematic region, where OPAL statistics are low.

Therefore, in Figs. 5 and 6, we consider how the results shown in Figs. 1 and 2 would

change if we used the same central values for the V spectral function as used in Sec. IV,

but with a covariance matrix scaled by a factor 1/4 or 1/9. We emphasize that this is just

a speculative exercise. For instance, given that the values of the χ2 per degree of freedom

in Table 1 are of order one, fits with these scaled covariance matrices would give rise to fits

yielding the same central values, but with poor values of the χ2 per degree of freedom. This

observation reflects just the fact that the data can, of course, not be improved by rescaling

the covariance matrix, simply because fluctuations in the actual data correspond to the size

of the actual covariance matrix.

However, it is of some interest to see what would happen to the properties of the con-

ditional probability distribution we explored in Sec. IV. The new figures all show that the

unphysical minimum of Fig. 1 disappears as a function of the rescaling factor, while leaving

the physical minimum in place. We interpret this as evidence that better data, i.e., data

with smaller errors, may help resolve the problem that with current data the parameter δV

(and therefore, because of the strong correlations, the parameters γV and αs(m
2
τ )) cannot be

reliably determined without external considerations (cf. Sec. V). Of course, this exercise as-
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FIG. 6: Two-dimensional contour plots showing αs(m
2
τ ) versus δV and γV versus δV . Top: co-

variance matrix reduced by factor 4; bottom: covariance matrix reduced by factor 9. Left panel:

projection onto αs(m
2
τ ) − δV plane; right panel: projection onto γV − δV plane. V channel,

smin = 1.5 GeV2. Blue (darker) areas and green (lighter) areas contain 68%, respectively, 95% of

the distribution.

sumes that better data would be equally well described by our theoretical parameterization

of the spectral-function moments we consider in this article.

VIII. CONCLUSION

In this article, we continued our analysis of hadronic τ decays. The main goal is the

precision determination of the strong coupling at the τ mass, αs(m
2
τ ), with good control not

only over statistical, but also over systematic errors. In our previous article, P1, we presented

a new framework for such an analysis, in which non-perturbative contributions to the non-
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strange vector and axial hadronic τ decays, both from the operator product expansion and

from violations of quark-hadron duality, can be quantitatively estimated. Since complete

spectral functions for these channels are available from experiment, the energy dependence

of these effects can be taken into account. The results of Ref. [27], P1, and the present article

show unambiguously that it is imperative to take this energy dependence into account in

order to arrive at a fully consistent understanding of non-perturbative effects. This requires

the use of a model to parameterize duality violations. We emphasize that a quantitative

approach to duality violations cannot be avoided, simply because they are clearly present

in the spectral-function data. The assumption that duality violations are negligible, while

perhaps reasonable in the past, is no longer acceptable given the current-claimed level of

precision.22

The specific aim of the present article is two-fold. First, the analysis of P1 was based on

the 1998 OPAL spectral-function data. The construction of these spectral functions included

the use of the then available values for the branching fractions for the most important

exclusive modes. Since these branching fractions are now more precisely known, it is possible

to update the central values for the spectral functions as well as the corresponding diagonal

errors.23 This update was carried out in Sec. III, and the results were subsequently used in

our fits to the data.

Our second aim was a more detailed investigation of the quality of the fits that go into

our analysis. Since these are non-linear, multi-parameter fits, they are of considerable com-

plexity. The use of a Markov-chain Monte Carlo program made it possible to investigate the

full posterior probability distribution underlying our most important fits. This allowed us to

delineate the landscape in parameter space in more detail than through simple minimization.

This investigation was carried out in Sec. IV.

Let us summarize what we learned from our new analysis. First, as the reader will note,

our new results for the value of αs(m
2
τ ), contained in Eq. (6.1), are very close to the OPAL

results of Ref. [2], but with somewhat larger errors. Since the two sets of results correspond

to sets of data with different normalizations, the near-equality of central values is, in fact,

purely accidental; as shown in P1, an analysis of the same data as that used by OPAL leads

22 All results reviewed in Ref. [30] claim an error <∼ 0.015 on αs(m
2
τ ).

23 A partial update of the full covariance matrix is also possible, as explained in the Appendix.
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instead to significantly smaller values of αs(m
2
τ ). A related observation applies to the errors.

The errors found in Ref. [2] are smaller simply because systematic effects associated with

the operator product expansion and duality violations were not considered in that analysis.

In our opinion, the same observation applies to essentially all determinations of αs(m
2
τ ) from

hadronic τ decays preceding the framework presented in P1.

Second, while we argued in P1 and here that duality violations cannot be reliably left

out from a quantitative analysis of the spectral functions below the τ mass, it turns out that

the multi-parameter fits thus needed to determine all parameters are at the edge of what

is possible with currently available data. This is demonstrated in Figs. 1, 2 and 3, which

show that the probability distributions underlying our fits may have several minima, which

together span a range of αs values of about 0.27 − 0.34.24 Therefore, physical arguments,

given in Sec. V, are needed in order to narrow down the error on αs(m
2
τ ), and our result (6.1)

is obtained with the help of these arguments.

Given this state of affairs, we believe that it would be very interesting to apply our

analysis to data with much better statistics, which are in principle available from the BaBar

and Belle experiments. If the non-strange spectral functions that can be extracted from

these data would be made available, this would allow us to put our analysis framework to a

much more stringent test. This was demonstrated quantitatively in Sec. VII, where it was

shown that with much reduced statistical errors one may expect to resolve the ambiguities

present in the probability distribution constructed from the OPAL data.

Of course, at present we do not know what the outcome of such an investigation would

look like. Since fit parameter errors scale as the square root of the scale of the data covariance

matrix, a factor of 3 improvement in data errors has the potential to produce individual CIPT

and FOPT fits with errors on αs competitive with those of current lattice determinations.

Such errors would then be significantly smaller than the difference between current CIPT and

FOPT results. Theoretical progress on the reliability of various perturbative resummation

schemes, as embodied in the current discrepancy between CIPT and FOPT, will thus most

likely also be necessary. Whether the outcome of such a BaBar- or Belle-based analysis will

be a more precise determination of the strong coupling near the τ mass, or an indication of

the need to construct more sophisticated representations of non-perturbative effects remains

24 This is for FOPT; for CIPT the range is shifted by about 0.02.
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to be seen. Either way, we believe that much can be learned from an analysis of the already-

existing BaBar and Belle data.
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Appendix A: A partial update of the OPAL spectral functions and covariance ma-

trices

OPAL has made publicly available the spectral functions and covariances for the three

main exclusive modes and inclusive sum over all modes in each of the V and A channels.

The contributions to the spectral functions corresponding to other exclusive modes (which,

with the exception of ωπ−π0, are not measured but constructed using Monte Carlo) are

not available. The covariances between contributions from different modes are similarly

unavailable. This limits the extent to which the OPAL inclusive distributions can be updated

for improvements to the exclusive branching fractions and quantities such as Vud and Be

which enter the conversion between the inclusive differential decay distributions dBV/A/ds

and the spectral functions ρV/A(s).

The procedure for updating ρV/A(s) was discussed already in the text. The ingredients
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needed for this update are the HFAG branching fractions and the following ω and η branching

fractions, taken from the 2010 PDG compilation:

B[ω → 3π] = 0.892± 0.007 , (A1)

B[ω → π+π−] = 0.0153+0.0011
−0.0013 ,

B[η → π+π−π0] = 0.2274± 0.0028 .

The latter are needed to convert from the quoted HFAG 3π, 4π and 5π branching fractions

(corresponding to modes defined such that ω and η substate contributions are absent) to

the analogous branching fractions of those exclusive modes tabulated by OPAL (defined

such that ω and η substate contributions are included). The corrections to be applied to

the HFAG branching fractions in order to accomplish this conversion include, in addition to

those corresponding to the wrong-current contaminations discussed already in the main text,

those corresponding to the contributions of ωπ− to the π−π+π−π0 distribution and ωπ0π0 to

the π−π+π−2π0 distribution produced by the ω → π+π−π0 decay mode. The remainder of

the ωπ− contribution represents a mode contribution to be assigned to the V distribution,

and likewise, the ωπ0π0 contributions, and the ηπ−π0 (excluding η → π+π−π0) contribution,

represent mode contributions to be assigned to the A and residual V distributions in the

OPAL convention, respectively. The remainder of the residual mode contributions consist of

the wrong-current contamination corrections and (i) for the V channel, the K̄K, 6π, K̄Kπ

and K̄Kππ contributions, and (ii) for the A channel, the 3π−2π+, π−4π0, K̄Kπ, K̄Kππ and

a1 (→ π−γ) contributions. We follow OPAL in assuming a fully anti-correlated 50 ± 50%

breakdown of the K̄Kπ distribution into V and A channel contributions, and employ the

same assumption for the very small K̄K2π contributions not listed by OPAL. The HFAG

branching fraction for the similarly small a1 (→ π−γ) mode, also not listed by OPAL, has

also been included in the combined A residual branching fraction sum.

The inaccessibility of cross-correlations between different exclusive modes limits our abil-

ity to update the OPAL covariance matrices. We can, however, perform a partial update to

take into account improvements in the determinations of the constant factors Be, SEW and

Vud appearing in the conversion step

ρV/A(sk) =
dBV/A(sk)/ds

Bk

, (A2)
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where sk is the midpoint of the k-th OPAL bin,

Bk = 12π2SEW |Vud|2Bewτ (yk)/m
2
τ ≡ B wτ (yk)/m

2
τ , (A3)

with yk = sk/m
2
τ and wτ (y) the (1+0) kinematic weight wτ (y) = (1−y)2(1+2y). From this

it follows that the relation between the covariances of the spectral function obtained from

the same dBV/A(s)/ds distribution using new (primed) and old (unprimed) OPAL values for

the constants SEW , Vud, Be and m2
τ , incorporating also, for completeness, in the updated

version, the contributions of the uncertainty on mτ neglected by OPAL, is (ρi runs over all

ρV (si) and ρA(si))

〈δρ′iδρ′j〉 =
BiBj

B′iB
′
j

[
〈δρiδρj〉 + ρiρj

((
δB′

B′

)2

−
(
δB

B

)2
)

(A4)

+

(
δmτ

mτ

)2 ((−2 + 18y2i − 16y3i )(−2 + 18y2j − 16y3j )

wτ (yi)wτ (yj)

)
ρiρj

]
.

For the current values of the physical quantities appearing in these conversions, we will use

SEW = 1.0201(3) , (A5)

|Vud| = 0.97425(22) ,

Be = 0.17827(40) ,

mτ = 1.77677(15) GeV ,

from Refs. [35, 36] and [7] for Be and mτ , respectively. The error on mτ plays no significant

role in our analysis.
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