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Abstract

This paper reports the tenth-order QED contribution to the lepton g−2 from the gauge-invariant

set, called Set III(c), which consists of 390 Feynman vertex diagrams containing an internal fourth-

order light-by-light-scattering subdiagram. The mass-independent contribution of Set III(c) to the

electron g−2 (ae) is 4.9210 (103) in units of (α/π)5. The mass-dependent contributions to ae

from diagrams containing a muon loop is 0.00370 (37) (α/π)5. The tau-lepton loop contribution

is negligible at present. Altogether the contribution of Set III(c) to ae is 4.9247 (104) (α/π)5. We

have also evaluated the contribution of the closed electron loop to the muon g−2 (aµ). The result

is 7.435 (134) (α/π)5. The contribution of the tau-lepton loop to aµ is 0.1999 (28) (α/π)5. The

total contribution of various leptonic loops (electron, muon, and tau-lepton) of Set III(c) to aµ is

12.556 (135) (α/π)5.

PACS numbers: 13.40.Em, 06.20.Jr,12.20.Ds,14.60.Cd
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I. INTRODUCTION

The anomalous magnetic moment ae ≡ (g−2)/2 of the electron has played the central role

in testing the validity of quantum electrodynamics (QED) as well as the Standard Model.

On the experimental side, the latest measurement of ae by the Harvard group has reached

the precision of 0.24× 10−9 [1, 2]:

ae(HV08) = 1 159 652 180.73 (0.28)× 10−12 [0.24ppb] . (1)

The theoretical prediction thus far consists of QED corrections of up to the eighth order

[3–5], direct evaluation of hadronic corrections [6–12], and electroweak corrections scaled

down from their contributions to the muon g−2 [13–15]. To compare the theory with the

measurement (1), we also need the value of the fine structure constant α determined by

a method independent of g− 2 . The best value of such an α available at present is one

obtained from the measurement of h/mRb, the ratio of the Planck constant and the mass

of Rb atom, combined with the very precisely known values of the Rydberg constant and

mRb/me: [16]

α−1(Rb10) = 137.035 999 037 (91) [0.66ppb]. (2)

With this α the theoretical prediction of ae becomes

ae(theory) = 1 159 652 181.13 (0.11)(0.37)(0.02)(0.77)× 10−12, (3)

where the first, second, third, and fourth uncertainties come from the calculated eighth-

order QED term [5], the crude tenth-order estimate [17], the hadronic and electroweak

contributions, and the fine structure constant (2), respectively. The theory (3) is in good

agreement with the experiment (1):

ae(HV08)− ae(theory) = −0.40 (0.88)× 10−12, (4)

proving that QED (Standard Model) is in good shape even at this very high precision.

Eq. (3) shows clearly that the largest source of uncertainty is the fine structure constant

(2). To put it differently, a non-QED α, even the best one available at present, is too

crude to test QED to the extent achieved by the theory and measurement of ae. Thus it
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makes more sense to test QED by an alternate approach, namely, obtain α from theory and

measurement of ae[1]:

α−1(ae08) = 137.035 999 085 (12)(37)(2)(33) [0.37ppb], (5)

where the first, second, third, and fourth uncertainties come from the calculated eighth-order

QED term, the crude tenth-order estimate, the hadronic and electroweak contributions, and

the measurement of ae(HV08), respectively.

Although the uncertainty of α−1(ae08) in (5) is a factor 2 smaller than α−1(Rb10), it is

not a firm factor since it depends on the estimate of the tenth-order term, which is only a

crude guess [17]. For a more stringent test of QED, it is obviously necessary to calculate

the actual value of the tenth-order term. To meet this challenge we launched several years

ago a systematic program to evaluate the complete tenth-order term [18–20].

The 10th-order QED contribution to the anomalous magnetic moment of an electron can

be written as

a(10)e =
(α

π

)5 [

A
(10)
1 + A

(10)
2 (me/mµ) + A

(10)
2 (me/mτ ) + A

(10)
3 (me/mµ, me/mτ )

]

, (6)

where me/mµ = 4.836 331 66 (12) × 10−3 and me/mτ = 2.875 64 (47) × 10−4 [17]. In the

rest of this article the factor
(

α
π

)5
is suppressed for simplicity.

The diagrams contributing to the mass-independent term A
(10)
1 can be classified into

six gauge-invariant sets, further divided into 32 gauge-invariant subsets depending on the

nature of closed lepton loop subdiagrams. Thus far, numerical results of 30 gauge-invariant

subsets, which consist of 5928 vertex diagrams, have been published [3, 21–27], or submitted

for publication [28]. Five of these 30 subsets are also known analytically [29, 30]. They are

in good agreement with our calculations.

In this paper we report the contribution to A
(10)
1 from the gauge-invariant subset called

Set III(c), which consists of 390 vertex diagrams and is represented by 24 self-energy-like

diagrams of Figure 1. A characteristic feature of these diagrams is that they have vertex

and self-energy subdiagrams which contain a light-by-light (l-l) scattering subdiagram. They

can be classified into three types:

1. Sixth-order vertex subdiagrams containing an l-l loop externally as is shown in Fig-

ure 2. Here “external” means that one of the photons is external to the subdiagrams

containing the l-l loop.
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FIG. 1: Tenth-order self-energy-like diagrams in which lepton lines propagate in the magnetic field.

They represent 390 vertex diagrams of Set III(c). Assignment of Feynman parameters z1, z2, . . . , z9

to the lepton lines and za, zb, .., ze to the photon lines is indicated in the figure A1, B1, and C1.

2. Eighth-order vertex subdiagrams containing an l-l loop externally as is shown in Fig-

ure 3. They are obtained by applying a virtual photon correction on the open fermion

line of a sixth-order l-l vertex subdiagram of Figure 2.

3. Eighth-order vertex and self-energy subdiagrams which contain an l-l loop internally.
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FIG. 2: Vertex diagrams of sixth order containing an l-l subdiagram. The diagram 6LL(3) and

6LL(4) are identical with each other because of the time-reversal symmetry. There are six vertex

diagrams of this type, taking into account of two directions in which the closed fermion loop can

take.

This type appears for the first time in the tenth-order perturbation theory of QED.

See Figure 4.

The vertex subdiagrams of type 1 and type 2 do not have their Ward-Takahashi-related

self-energy subdiagrams which vanish identically due to Furry’s theorem. Thus, the gauge-

invariant sums of the vertex renormalization constants of these external l-l subdiagrams also

vanish identically.

For vertex subdiagrams of type 3, the corresponding self-energy subdiagrams do exist

which have an internal l-l diagram. In this case both vertex subdiagram and self-energy

subdiagram have UV divergence due to the sixth-order external l-l vertex subdiagram.

Because of these specific features of an l-l scattering diagram and vertex diagrams con-

taining an external l-l loop, we adopt for the Set III(c) an approach different from the one

used for a diagram without an l-l loop [19, 20]. Our formulation and treatment of UV diver-

gences and IR divergences due to subdiagrams are described in Sec. II. Results of numerical

evaluation will be presented in Sec. III. Sec. IV is devoted to the summary and discussion

of this work. Renormalization of these diagrams is described in Appendix A.

II. FORMULATION

Instead of dealing with the 390 vertex diagrams of Set III(c) individually, we consider

the sum Λν of a set of vertex diagrams that are obtained from a self-energy-like diagram
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FIG. 3: Various diagrams of the eighth order needed for renormalization. 8LLα (α = E,F,G,H, I)

is denoted as LLα in Ref. [31]. A vertex diagram 8LLα(i) (i = 5, 6, 7) is obtained by inserting an

external vertex into a fermion line i of the diagram 8LLα. It is denoted as LLα(i) in Ref. [32].

8LLJ
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FIG. 4: The eighth-order self-energy-like diagrams 8LLJ , 8LLK, and 8LLL, containing a light-

by-light scattering loop internally. Open lepton lines propagate in the weak magnetic field. They

represent 18 vertex diagrams in total. The vertex diagram 8LLJ(1) is a part of the diagram 8LLJ

in which the magnetic vertex is attached only to the fermion line 1 of the self-energy diagram

8LLJ .

Σ(p) of Figure 1 by inserting a magnetic vertex γν in the lepton lines 1, 2, 3, 4, and 5. We

rewrite this Λν as

Λν(p, q) ≃ −qµ
[

∂Λµ(p, q)

∂qν

]

q=0

−
∂Σ(p)

∂pν
. (7)

with the help of the Ward-Takahashi identity, where p−q/2 and p+q/2 are the 4-momenta of

incoming and outgoing lepton lines and (p−q/2)2 = (p+q/2)2 = m2. Each sum corresponds

to one of the 24 self-energy-like diagrams shown in Figure 1. The g−2 term is projected out

from the right-hand side of (7).

A. Construction of Unrenormalized Integrals

Each diagram G of Figure 1 can be expressed by a momentum integral applying the

Feynman-Dyson rule. Introducing Feynman parameters z1, z2, . . . , z9 for the electron prop-
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agators and za, zb, . . . , ze for the photon propagators (see the figures A1, B1, and C1 of

Figure 1), we carry out the momentum integration analytically by means of a home-made

program written in FORM [33]. This leads to an integral of the form

MG = −

(

−1

4

)5

4!

∫

(dz)G

[

1

4

(

E0 + C0

U2V 4
+

E1 + C1

U3V 3
+ · · ·

)

+

(

N0 + Z0

U2V 5
+

N1 + Z1

U3V 4
+ · · ·

)]

,

(8)

where En, Cn, Nn and Zn are functions of Feynman parameters, and “symbolic” building

blocks Ai, Bij, Cij, for i, j = 1, 2, . . . , 9. n is the number of contractions (see [34] for defini-

tions). U is the Jacobian of transformation from the momentum space variables to Feynman

parameters. Ai is the scalar current defined by

Ai = ηi −
1

U

5
∑

j=1

zjBij ,







ηi = 1 for i = 1, 2, 3, 4, 5

ηi = 0 for i = 6, 7, 8, 9
, (9)

and

(dz)G =
∏

i∈G

dzi(1−
∑

i∈G

zi). (10)

Bij is a Feynman-parameter translation of a bilinear form of the diagonalized loop momenta

flowing in the fermion lines i and j and is determined by the topology of a given diagram.

Cij is defined from the first term of Eq. (7) through the operation that inserts an external

vertex into a fermion line of a self-energy diagram. See, for example, Ref. [19] for exact

definitions of Bij and Cij. V is obtained by combining all denominators of propagators into

one with the help of Feynman parameters. It has a form common to all diagrams of Figure 1:

V =

9
∑

i=1

zi(1−Ai)m
2
i +

e
∑

k=a

zkλ
2
k, (11)

where mi and λk are the rest masses of lepton i and photon k, respectively. Of course, mi

is independent of i and λk is 0 independent of k. But it is useful to distinguish different

lepton lines and photon lines in deriving Eq. (8). The form of Ai as a function of Feynman

parameters depends on the structure of individual diagram G of Figure 1.

B. Renormalization

The diagrams of Set III(c) as a whole form a (formal) gauge-invariant set. However,

individual diagrams have UV divergences arising from the light-by-light-scattering (l-l) sub-

diagram as well as vertex subdiagrams or self-energy subdiagrams. All these divergences
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must be regularized in advance. In order to maintain gauge invariance the l-l subdiagram

may be regularized by the Pauli-Villars method or by the dimensional regularization. The

sixth-order vertex renormalization constant associated with the diagram containing an l-l

subdiagram and the eighth-order vertex renormalization constant containing an l-l sub-

diagram are logarithmically divergent, but their sum over all diagrams vanishes due to

Ward-Takahashi identity. Note that the self-energy diagrams associated with these vertex

diagrams do not exist in QED because of the Furry’s theorem.

As is indicated in the figures A1, B1, C1 of Figure 1, we denote open fermion lines as 1, 2,

3, 4, 5, fermion lines forming a closed loop as 6, 7, 8, 9, and photon lines as a, b, c, d, e. We

will identify a subdiagram containing open lepton lines in terms of a subset of (1,2,3,4,5).

For instance, the vertex subdiagram (1,2) of A1 will be denoted by (1,2), and the vertex

subdiagram {2,3,4,5; 6,7,8,9; b,c,d} of A1 will be denoted by (2,3,4,5). An exception is the l-l

subdiagram, which will be denoted as (6,7,8,9). Under this convention the diagram A1 has

five divergent subdiagrams (1, 2), (4, 5), (1, 2, 3, 4), (2, 3, 4, 5), and (6, 7, 8, 9). The fifteen UV

subtraction terms can be constructed from these subdiagrams following the Zimmermann’s

forest formula [35].

Diagrammatically, the second-order vertex subdiagram appears not only in the forests

including the subdiagram (1, 2) but also in the forest (2, 3, 4, 5)(4, 5). In the latter, the

reduced diagram (2, 3) forms a second-order vertex diagram. We will treat renormalization

of this implicit second-order vertex in a manner different from the explicit second-order

vertex. A detailed account will be given in Appendix A.

The UV divergence arising from the explicit second-order vertex (1,2) of the diagram A1

can be subtracted by an integral defined by the K12-operation [34] applied on the integral

MA1. The K12-operation is defined in such a way that the result of the operation factorizes

exactly as

K12MA1 = L
(1,2)UV
2 M

(3,4,5)
8LLJ , (12)

where L
(1,2)UV
2 is the UV-divergent part of the second-order on-shell vertex renormalization

constant L
(1,2)
2 and M

(3,4,5)
8LLJ is the magnetic moment amplitude from the eighth-order self-

energy-like diagram 8LLJ of Figure 4.

UV divergences from the explicit second-order vertex subdiagram are also found in the

diagrams B1, C1, A6, B6, and C6. UV divergences due to the explicit second-order self-

energy-like subdiagram come from the diagrams A5, B5, C5, A8, B8, and C8. The renor-
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malization scheme in which only these second-order divergences appear are handled by the

K -operation and is described in Appendix A.

All other subdiagrams contain an l-l subdiagram, which we treat by the Pauli-Villars

method or by the dimensional regularization. For instance, in the latter method, let Fαi(d) be

one of such integrals defined in d dimension, where αi takes values α = A,B,C; i = 1, 2, ..., 8.

Let Gαi(d) be Fαi(d) in which the l-l subdiagram (of the form Πµνσρ(k1, k2, k3, k4)) is replaced

by the tensor with zero external momenta, namely, Πµνσρ(0, 0, 0, 0). Let us rewrite Fαi(d)

symbolically as

[Fαi(d)−Gαi(d)] +Gαi(d), (13)

where by “symbolically” we mean that subtraction is performed on the integrand before the

integration is carried out. Now we can safely take the limit d → 4 for the term [Fαi(d) −

Gαi(d)] since its integrand does not cause UV divergence. Of course, the second term Gαi(d)

is singular for d → 4. However, gauge invariance guarantees that the sum of Gαi(d) over all

diagrams of Figure 1 vanishes for any value of dimension d:

C
∑

α=A

8
∑

i=1

ηiGαi(d) = 0, (14)

where ηi = 2 for i = 4, 7, 8, and ηi = 4 for i = 1, 2, 3, 5, 6. Thus, in the end, we have to

compute only

lim
d→4

[Fαi(d)−Gαi(d)]. (15)

Of course the same result is obtained by the Pauli-Villars method. To avoid crowded nota-

tions let us use Fαi(4) instead of Eq. (15) in the following.

Each self-energy-like diagram of Figure 1 represents the sum of five vertex diagrams.

Diagrams obtained by reversing the momentum flow within the l-l loop are not shown but

they give the same integrals as the original ones. Another factor 2 must be included for

diagrams that are not symmetric under time-reversal. Thus, integrals for diagrams such as

A1 actually represent 2 × 2 × 5 vertex diagrams. The g−2 contribution from the sum of

all diagrams of Set III(c), after the renormalization described in Appendix A is carried out,

can thus be written as

A
(10)
1 [Set III(c)(l1l2)] =

C
∑

α=A

8
∑

i=1

ηi∆M
(l1l2)
αi − 3∆LB2∆M

(l1l2)
8JKL, (16)
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where ∆M
(l1l2)
αi is the finite ampitude of the diagram αi, α = A,B,C, and i = 1, 2, · · · , 8

defined in Appendix A. The superscripts l1 refers to the open lepton line and l2 refers to the

closed lepton line. ηi = 2 for i = 4, 7, 8, and ηi = 4 for i = 1, 2, 3, 5, 6. ∆LB2 and ∆M
(l1 l2)
8JKL

are defined in Appendix A.

III. NUMERICAL RESULTS

Evaluation of integral ∆M
(l1l2)
αi is carried out by the adaptive-iterative Monte-Carlo in-

tegration routine VEGAS [36]. The results for the case (l1l2) = (ee) are listed in Table I.

From this table and Table II listing the residual renormalization terms we obtain

A
(10)
1 [Set III(c)(ee)] = 4.9210 (103). (17)

The contribution of the muon loop to ae can be calculated from the data listed in Table

III and Table II:

A
(10)
2 [Set III(c)(em)] = 0.00370 (37). (18)

The contribution of the tau-lepton loop to ae is within the uncertainty of (17). Thus the

total QED contribution to a
(10)
e is essentially the sum of (17) and (18):

a(10)e [Set III(c)] = 4.9247 (104)
(α

π

)5

. (19)

FORTRAN programs for ae can be readily adapted to the evaluation of aµ. The results

of evaluation of the contribution of the electron loop to the muon g−2 are listed in Table

IV. From this table and Table II we obtain

A
(10)
2 [Set III(c)(me)] = 7.435 (134). (20)

The contribution of the tau-lepton loop to aµ is calculated from the data listed in Table V

and Table II:

A
(10)
2 [Set III(c)(mt)] = 0.1999 (28). (21)

The total QED contribution to a
(10)
µ is the sum of (17), (20), and (21):

a(10)µ [Set III(c)] = 12.556 (135)
(α

π

)5

. (22)
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TABLE I: Contributions of diagrams of Set III(c) to ae for (l1l2) = (ee) obtained by VEGAS

at RICC. The superscript (ee) is suppressed for simplicity. The multiplicity nF is the number

of vertex diagrams represented by the integral and is incorporated in the numerical value. All

integrals are evaluated initially with 108 sampling points per iteration, iterated 50 times, followed

by 109 points, iterated several times.

Integral nF Value (Error)
including nF

Sampling per
iteration

No. of
iterations

∆MA1 20 −4.255 92 (253) 1× 108, 1× 109 50, 400

∆MA2 20 4.938 78 (244) 1× 108, 1× 109 50, 300

∆MA3 20 −1.546 88 (246) 1× 108, 1× 109 50, 345

∆MA4 10 −0.323 88 (127) 1× 108, 1× 109 50, 30

∆MA5 20 6.320 29 (153) 1× 108, 1× 109 50, 60

∆MA6 20 −5.660 33 (218) 1× 108, 1× 109 50, 300

∆MA7 10 2.284 61 (173) 1× 108, 1× 109 50, 65

∆MA8 10 1.362 06 (129) 1× 108, 1× 109 50, 20

∆MB1 20 5.693 53 (293) 1× 108, 1× 109 50, 412

∆MB2 20 −7.018 17 (273) 1× 108, 1× 109 50, 302

∆MB3 20 3.735 46 (260) 1× 108, 1× 109 50, 342

∆MB4 10 −0.052 76 (122) 1× 108, 1× 109 50, 30

∆MB5 20 −4.739 40 (166) 1× 108, 1× 109 50, 60

∆MB6 20 3.061 01 (212) 1× 108, 1× 109 50, 300

∆MB7 10 0.351 39 (168) 1× 108, 1× 109 50, 65

∆MB8 10 −0.793 52 (136) 1× 108, 1× 109 50, 20

∆MC1 20 0.377 40 (279) 1× 108, 1× 109 50, 417

∆MC2 20 3.054 41 (241) 1× 108, 1× 109 50, 300

∆MC3 20 −1.329 04 (260) 1× 108, 1× 109 50, 338

∆MC4 10 0.435 88 (131) 1× 108, 1× 109 50, 30

∆MC5 20 −3.729 22 (159) 1× 108, 1× 109 50, 60

∆MC6 20 4.273 41 (258) 1× 108, 1× 109 50, 300

∆MC7 10 −2.233 00 (159) 1× 108, 1× 109 50, 65

∆MC8 10 −1.514 28 (142) 1× 108, 1× 109 50, 20

IV. DISCUSSION

All programs of diagrams of the Set III(c) were written in two independent ways, in order

to detect possible programming error. No such error was found.

The value of A
(10)
2 [Set III(c)(me)] given in (20) is not much larger than that of

A
(10)
1 [Set III(c)(ee)] given in (17). This is somewhat unexpected since, as is seen from Table

IV, individual integrals contributing to A
(10)
2 [Set III(c)(me)] are an order of magnitude larger

than those given in Table I. Presumably, the modest value of (20) is a consequence of strong

cancellation among contributing integrals.
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TABLE II: Auxiliary integrals for Set III(c). Some integrals are known exactly. Other integrals

are obtained by the integration routine VEGAS. The superscript (l1 l2) indicates that the open

and closed fermion lines consist of fermions l1 and l2, respectively. The letters e, m, and t stand

for electron, muon, and tau-lepton, respectively.

Integral Value (error) Integral Value (error)

M2 0.5 ∆LB2 0.75

∆M
(ee)
8JKL −0.990 72 (11) ∆M

(me)
8JKL −4.432 43 (59)

∆M
(em)
8JKL −0.000 177 8 (13) ∆M

(mt)
8JKL −0.015 87 (5)
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Appendix A: Renormalization of diagrams of Set III(c)

Diagrams of Set III(c), shown in Figure 1, contain an l-l subdiagram internally. Thus we

find it convenient to pursue a renormalization scheme somewhat different from all other Sets

contributing to the tenth-order g−2. As is indicated by figures A1, B1, C1 of Figure 1, we

denote open fermion lines as 1, 2, 3, 4, 5, closed fermion lines as 6, 7, 8, 9, and photon lines

as a, b, c, d, e. We will identify a subdiagram containing open lepton lines in terms of their

line numbers. For instance, the second-order vertex subdiagram {1,2;e} and sixth-order

vertex subdiagram {4,5;6,7,8,9;b,c,d} of A1 will be denoted by the superscript (1,2) and

12



TABLE III: Contributions of diagrams of Set III(c) to ae for (l1l2) = (em) obtained by VEGAS

at RICC. The superscript (em) is suppressed for simplicity. The multiplicity nF is the number

of vertex diagrams represented by the integral and is incorporated in the numerical value. All

integrals are evaluated with 107 sampling points per iteration, iterated 50 times, and subsequently

evaluated with 108 sampling points per iteration, iterated 50 times.

Integral nF Value (Error)
including nF

Sampling per
iteration

No. of
iterations

∆MA1 20 −0.016 78 (15) 1× 107, 1× 108 50, 50

∆MA2 20 −0.004 71 (8) 1× 107, 1× 108 50, 50

∆MA3 20 0.000 99 (6) 1× 107, 1× 108 50, 50

∆MA4 10 −0.003 93 (1) 1× 107, 1× 108 50, 50

∆MA5 20 0.007 01 (1) 1× 107, 1× 108 50, 50

∆MA6 20 −0.023 43 (12) 1× 107, 1× 108 50, 50

∆MA7 10 −0.001 00 (2) 1× 107, 1× 108 50, 50

∆MA8 10 0.001 97 (1) 1× 107, 1× 108 50, 50

∆MB1 20 0.007 61 (15) 1× 107, 1× 108 50, 50

∆MB2 20 0.000 37 (8) 1× 107, 1× 108 50, 50

∆MB3 20 0.000 46 (4) 1× 107, 1× 108 50, 50

∆MB4 10 0.003 05 (1) 1× 107, 1× 108 50, 50

∆MB5 20 0.010 68 (1) 1× 107, 1× 108 50, 50

∆MB6 20 0.015 17 (11) 1× 107, 1× 108 50, 50

∆MB7 10 0.002 24 (2) 1× 107, 1× 108 50, 50

∆MB8 10 −0.013 72 (1) 1× 107, 1× 108 50, 50

∆MC1 20 0.010 57 (12) 1× 107, 1× 108 50, 50

∆MC2 20 0.004 88 (5) 1× 107, 1× 108 50, 50

∆MC3 20 0.000 87 (4) 1× 107, 1× 108 50, 50

∆MC4 10 0.000 84 (1) 1× 107, 1× 108 50, 50

∆MC5 20 −0.018 16 (1) 1× 107, 1× 108 50, 50

∆MC6 20 0.009 57 (10) 1× 107, 1× 108 50, 50

∆MC7 10 0.000 93 (2) 1× 107, 1× 108 50, 50

∆MC8 10 0.011 40 (1) 1× 107, 1× 108 50, 50

(4,5), respectively. An exception is the l-l subdiagram, which will be denoted as (6,7,8,9).

Of course this is just for the sake of keeping track of where a particular subdiagram is

located. The superscript will be removed when it is no longer needed.

1. A1, B1, C1

Let us begin with the g−2 amplitudeMA1. Noting that, out of 15 forests of the diagram A1

mentioned in Sec. II B, 8 are hidden in our convention leading to Eq. (15), the renormalized
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TABLE IV: Contributions of diagrams of Set III(c) to aµ for (l1l2) = (me) obtained by VEGAS

at RICC. The superscript (me) is suppressed for simplicity. The multiplicity nF is the number

of vertex diagrams represented by the integral and is incorporated in the numerical value. All

integrals are evaluated initially with 108 sampling points per iteration, iterated 50 times, followed

by 109 points, iterated several times.

Integral nF Value (Error)
including nF

Sampling per
iteration

No. of
iterations

∆MA1 20 −18.722 (37) 1× 108, 1× 109 50, 376

∆MA2 20 40.155 (26) 1× 108, 1× 109 50, 300

∆MA3 20 −3.780 (36) 1× 108, 1× 109 50, 366

∆MA4 10 −18.309 (11) 1× 108, 1× 109 50, 30

∆MA5 20 9.416 (14) 1× 108, 1× 109 50, 80

∆MA6 20 −37.911 (30) 1× 108, 1× 109 50, 301

∆MA7 10 19.431 (16) 1× 108, 1× 109 50, 85

∆MA8 10 10.371 (7) 1× 108, 1× 109 50, 70

∆MB1 20 54.402 (38) 1× 108, 1× 109 50, 471

∆MB2 20 −73.374 (29) 1× 108, 1× 109 50, 300

∆MB3 20 29.954 (38) 1× 108, 1× 109 50, 382

∆MB4 10 2.578 (13) 1× 108, 1× 109 50, 30

∆MB5 20 −49.408 (20) 1× 108, 1× 109 50, 80

∆MB6 20 −1.509 (33) 1× 108, 1× 109 50, 301

∆MB7 10 9.521 (20) 1× 108, 1× 109 50, 85

∆MB8 10 29.116 (9) 1× 108, 1× 109 50, 70

∆MC1 20 −31.212 (37) 1× 108, 1× 109 50, 497

∆MC2 20 36.233 (32) 1× 108, 1× 109 50, 300

∆MC3 20 −25.285 (37) 1× 108, 1× 109 50, 409

∆MC4 10 15.428 (16) 1× 108, 1× 109 50, 30

∆MC5 20 28.857 (22) 1× 108, 1× 109 50, 80

∆MC6 20 43.793 (38) 1× 108, 1× 109 50, 310

∆MC7 10 −27.637 (17) 1× 108, 1× 109 50, 85

∆MC8 10 −44.647 (11) 1× 108, 1× 109 50, 75

amplitude aA1 can be written as

aA1 = MA1 − L
(1,2)
2 M

(3,4,5)
8LLJ − L

(4,5)
6LL(5)M

(1,2,3)
4a − L

(1,2,3,4)
8LLF (7)M

(5)
2 − L

(2,3,4,5)
8LLJ(1)M

(1)
2

+ L
(1,2)
2 L

(4,5)
6LL(5)M

(3)
2 + L

(1,2)
2 L

(3,4)
6LL(5)M

(5)
2 + L

(2,3)
2 L

(4,5)
6LL(5)M

(1)
2 . (A1)

As was discussed in Sec. II, all terms of (A1) containing an l-l subdiagram are to be under-

stood as shorthands for the regularized quantity defined by Eq. (15). In other words, the

UV divergence arising from the l-l subdiagram has been removed by the procedure described

in Sec. II so that it can be treated as a UV-finite quantity. M8LLJ is the proper magnetic

moment amplitude of the eighth-order diagram 8LLJ of Figure 4. See [31, 32] for its precise
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TABLE V: Contributions of diagrams of Set III(c) to aµ for (l1l2) = (mt) obtained by VEGAS

at RICC. The superscript (mt) is suppressed for simplicity. The multiplicity nF is the number

of vertex diagrams represented by the integral and is incorporated in the numerical value. Most

integrals are evaluated initially with 108 sampling points per iteration, iterated 50 times, followed

by 109 points, iterated several times. ∆MA4, ∆MB4, ∆MC4, and ∆MC8 are evaluated with 108

sampling points per iteration and iterated 50 times.

Integral nF Value (Error)
including nF

Sampling per
iteration

No. of
iterations

∆MA1 20 −0.423 43 (111) 1× 108, 1× 109 50, 40

∆MA2 20 −0.001 66 (64) 1× 108, 1× 109 50, 30

∆MA3 20 0.033 30 (59) 1× 108, 1× 109 50, 30

∆MA4 10 −0.102 91 (13) 1× 108 50

∆MA5 20 0.327 57 (14) 1× 108, 1× 109 50, 15

∆MA6 20 −0.600 58 (75) 1× 108, 1× 109 50, 40

∆MA7 10 0.011 26 (30) 1× 108, 1× 109 50, 15

∆MA8 10 0.065 01 (9) 1× 108, 1× 109 50, 15

∆MB1 20 0.246 29 (111) 1× 108, 1× 109 50, 40

∆MB2 20 −0.104 08 (64) 1× 108, 1× 109 50, 30

∆MB3 20 0.052 89 (49) 1× 108, 1× 109 50, 30

∆MB4 10 0.076 46 (11) 1× 108 50

∆MB5 20 0.114 81 (13) 1× 108, 1× 109 50, 15

∆MB6 20 0.397 59 (67) 1× 108, 1× 109 50, 40

∆MB7 10 0.043 30 (25) 1× 108, 1× 109 50, 15

∆MB8 10 −0.298 83 (9) 1× 108, 1× 109 50, 15

∆MC1 20 0.251 61 (108) 1× 108, 1× 109 50, 40

∆MC2 20 0.137 58 (51) 1× 108, 1× 109 50, 30

∆MC3 20 −0.052 89 (51) 1× 108, 1× 109 50, 30

∆MC4 10 0.026 64 (10) 1× 108 50

∆MC5 20 −0.476 30 (12) 1× 108, 1× 109 50, 15

∆MC6 20 0.268 81 (65) 1× 108, 1× 109 50, 40

∆MC7 10 −0.038 53 (25) 1× 108, 1× 109 50, 15

∆MC8 10 0.213 27 (14) 1× 108 50

definition. L2 is the vertex renormalization constant of the second order. L6LL(5) is the

renormalization constant associated with the sixth-order vertex diagram 6LL(5) shown in

Figure 2. L8LLF (7) and L8LLJ(1) are the eighth-order vertex renormalization constants associ-

ated with the self-energy-like diagrams 8LLF of Figure 3 and 8LLJ of Figure 4, respectively.

In the amplitude MA1, the K -operation is applied only on the explicit second-order vertex

subdiagram (1,2). For other terms the full bodies of the vertex renormalization constants of

the sixth- and eighth-orders are used and subtracted. These vertex renormalization constants

are extracted from a vertex diagram Γν(p, q), where (p− q/2)2 = (p+ q/2)2 = m2, using the
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projection operator

L =
1

4
Tr[(/p+m)pνΓν ]|q=0 . (A2)

The result is combined with the lower-order magnetic moment amplitude using, for in-

stance, the factorization procedure described in Sec. III D of Ref. [19] backwards so that

the combined formula is described by the same set of Feynman parameters as those of the

unrenormalized magnetic moment MA1. Then the UV-finite quantity ∆MA1 can be written

as

∆MA1 = MA1 − L
UV (1,2)
2 M

(3,4,5)
8LLJ − L

(4,5)
6LL(5)M

(1,2,3)
4a − L

(1,2,3,4)
8LLF (7)M

(5)
2 − L

(2,3,4,5)
8LLJ(1)M

(1)
2

+ L
UV (1,2)
2 L

(3,4)
6LL(5)M

(5)
2 + L

UV (1,2)
2 L

(4,5)
6LL(5)M

(3)
2 + L

(2,3)
2 L

(4,5)
6LL(5)M

(1)
2 . (A3)

where L
UV (1,2)
2 is the UV-divergent part of L

(1,2)
2 defined by the K-operation. Note that

L
(3,4)
6LL(5), L

(4,5)
6LL(5), L

(1,2,3,4)
8LLF (7), L

(2,3,4,5)
8LLJ(1), L

(2,3)
2 , and L

(4,5)
6LL(5) are not decomposed into UV-divergent

and UV-finite parts. Note, in particular, that L
(2,3)
2 has an IR-divergent part besides a UV-

divergent part. This is the reason why we normally avoid use of the whole L2 as a subtraction

term and use the LUV
2 defined by the K -operation instead. For the diagram A1, however,

the IR divergences in L
(2,3)
2 and L8LLJ(1) cancel each other. Thus the UV-divergence-free

amplitude ∆MA1 is also IR-divergence-free. The numerical integration code for the Set III(c)

is constructed taking this observation into account.

Substituting (A3) in (A1) we obtain

aA1 = ∆MA1 − LR
2M

(3,4,5)
8LLJ + LR

2 L
(3,4)
6LL(5)M2 + LR

2 L
(4,5)
6LL(5)M2

= ∆MA1 − LR
2∆M8LLJ , (A4)

where LR
2 ≡ L2 − LUV

2 is UV-finite but IR-divergent and ∆M8LLJ = M8LLJ − 2L6LL(5)M2 is

the finite g−2 contribution from the eighth-order diagram 8LLJ [31, 32].

Similar consideration for the diagrams B1 and C1 yields

aB1 = ∆MB1 − LR
2 M

(3,4,5)
8LLL + 2LR

2 L6LL(3)M2

= ∆MB1 − LR
2 ∆M8LLL, (A5)

and

aC1 = ∆MC1 − LR
2M

(3,4,5)
8LLK + 2LR

2 L
(3,4)
6LL(3)M2

= ∆MC1 − LR
2∆M8LLK . (A6)
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From (A4), (A5), and (A6) we obtain

C
∑

α=A

aα1 =

C
∑

α=A

∆Mα1 − LR
2 ∆M8JKL, (A7)

where ∆M8JKL ≡ ∆M8LLJ +∆M8LLK +∆M8LLL [31]. Note that the sum L6LL ≡ L6LL(3) +

L6LL(4) + L6LL(5) = 0 because of the gauge invariance.

2. A2, B2, C2

The diagram A2 has UV-divergent subdiagrams (1, 2, 3, 4), (2, 3, 4, 5) besides the l-l sub-

diagram (6, 7, 8, 9). Thus the renormalized amplitude aA2 can be written as

aA2 = MA2 −M
(1)
2 L

(2,3,4,5)
8LLJ(2) − L

(1,2,3,4)
8LLG(7)M

(5)
2 . (A8)

Diagrams 8LLJ and 8LLG are shown in Figure 3. Since A2 has no UV divergence due to

the second-order subdiagram, we define ∆MA2 by

∆MA2 = MA2 −M
(1)
2 L

(2,3,4,5)
8LLJ(2) − L

(1,2,3,4)
8LLG(7)M

(5)
2 . (A9)

Substituting (A9) in (A8) we obtain

aA2 = ∆MA2. (A10)

Similar equations hold for aB2 and aC2. Thus we have

C
∑

α=A

aα2 =

C
∑

α=A

∆Mα2. (A11)

3. A3, B3, C3

The diagram A3 has five forests after the l-l subdiagrams are treated following the con-

sideration of Sec. II B. Thus the renormalized amplitude aA3 can be written as

aA3 = MA3 −M
(1)
2 L

(2,3,4,5)
8LLJ(3) −M

(5)
2 L

(1,2,3,4)
8LLH(7) −M

(1,4,5)
4a L

(2,3)
6LL(5)

+ M
(1)
2 L

(4,5)
2 L

(2,3)
6LL(5) +M

(5)
2 L

(1,4)
2 L

(2,3)
6LL(5). (A12)

The second-order vertex renormalization constants L
(1,4)
2 and L

(4,5)
2 appear in (A12) as re-

duced diagrams, which we called implicit, and used the full renormalization constant L2 for
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them. Thus we define the finite amplitude by

∆MA3 = MA3 −M
(1)
2 L

(2,3,4,5)
8LLJ(3) −M

(5)
2 L

(1,2,3,4)
8LLH(7) −M

(1,4,5)
4a L

(2,3)
6LL(5)

+ M
(1)
2 L

(4,5)
2 L

(2,3)
6LL(5) +M

(5)
2 L

(1,4)
2 L

(2,3)
6LL(5). (A13)

In other words, we have

aA3 = ∆MA3. (A14)

Similar relation holds for aB3 and aC3. Thus we have

C
∑

α=A

aα3 =

C
∑

α=A

∆Mα3. (A15)

4. A4, B4, C4

The diagram A4 has one self-energy subdiagram (2,3,4) and two vertex subdiagrams (2,3)

and (3,4) as well as the l-l subdiagram (6,7,8,9). Thus the renormalized amplitude aA4 is

given by

aA4 = MA4 −M
(1,2,5)
4b L

(3,4)
6LL(5) −M

(1,4,5)
4b L

(2,3)
6LL(5) −M

(1,5)
2 B

(2,3,4)
8LLJ −M

(1,5)
2∗ δm

(2,3,4)
8LLJ

+ M
(1,5)
2 B

(2)
2 L

(3,4)
6LL(5) +M

(1,5)
2∗ δm

(2)
2 L

(3,4)
6LL(5)

+ M
(1,5)
2 B

(4)
2 L

(2,3)
6LL(5) +M

(1,5)
2∗ δm

(4)
2 L

(2,3)
6LL(5). (A16)

We define the UV-finite amplitude ∆′MA4 by

∆′MA4 = MA4 −M
(1,2,5)
4b L

(3,4)
6LL(5) −M

(1,4,5)
4b L

(2,3)
6LL(5) −M

(1,5)
2 B

(2,3,4)
8LLJ −M

(1,5)
2∗ δm

(2,3,4)
8LLJ

+ M
(1,5)
2 B

(2)
2 L

(3,4)
6LL(5) +M

(1,5)
2∗ δm

(2)
2 L

(3,4)
6LL(5)

+ M
(1,5)
2 B

(4)
2 L

(2,3)
6LL(5) +M

(1,5)
2∗ δm

(4)
2 L

(2,3)
6LL(5), (A17)

where M2∗ is derived from M2 by inserting a two-point vertex in the lepton line. Note that

the renormalization constants B2 and δm2 arising from the self-energy subdiagrams {2;a}

and {4;d} are subtracted as a whole without breaking them up into UV-divergent and UV-

finite parts. This is consistent only if we use the full body of the renormalization constant

B8LLJ . Otherwise, IR-singular part of B8LLJ and two B2’s do not cancel out each other.

Substituting (A17) in (A16), we obtain

aA4 = ∆
′

MA4. (A18)
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The resulting aA4 is UV-finite but IR-divergent. Separating the IR divergence of ∆
′

MA4

from the subdiagram {1,5;e} by the I -operation, we can write

aA4 = ∆MA4 + LR
2 (M

(2,3,4)
8LLJ − 2L6LL(5)M2) = ∆MA4 + LR

2∆M
(2,3,4)
8LLJ . (A19)

Similarly we have

aB4 = ∆MB4 + LR
2 (M

(2,3,4)
8LLL − 2L6LL(3)M2) = ∆MB4 + LR

2 ∆M
(2,3,4)
8LLL , (A20)

and

aC4 = ∆MC4 + LR
2 (M

(2,3,4)
8LLK − 2L6LL(3)M2) = ∆MC4 + LR

2∆M
(2,3,4)
8LLK . (A21)

Adding up these three results we obtain

C
∑

α=A

aα4 =
C
∑

α=A

∆Mα4 + LR
2 ∆M8JKL, (A22)

noting that gauge invariance guarantees the vanishing of the sum L6LL ≡ L6LL(3)+L6LL(4)+

L6LL(5) = 0.

We also developed an alternative method for separating UV-divergence from MA4, in

which a UV-finite amplitude is defined by

∆′′MA4 = MA4 −M
(1,2,5)
4b L

(3,4)
6LL(5) −M

(1,4,5)
4b L

(2,3)
6LL(5) −M

(1,5)
2 B8LLJ (E)(2,3,4) −M

(1,5)
2∗ δm

(2,3,4)
8LLJ

+ M
(1,5)
2 B

(2)
2 (E)L

(3,4)
6LL(5) +M

(1,5)
2∗ δm

(2)
2 L

(3,4)
6LL(5)

+ M
(1,5)
2 B

(4)
2 (E)L

(2,3)
6LL(5) +M

(1,5)
2∗ δm

(4)
2 L

(2,3)
6LL(5), (A23)

where

B8LLJ = B8LLJ (E) +B8LLJ(N),

B2 = B2(E) +B2(N). (A24)

The B(E) term of the wave-function renormalization constant comes from the derivative of

the numerator of the self-energy diagram Σ(p) with respect to the fermion momentum p,

while the B(N) term is the derivative of the denominator function V defined in (11). For

the second-order case, we find B2(E) = BUV
2 and B2(N) = BR

2 . The relationship to the fully

subtracted ∆′MA4 is thus clear and we find

∆′MA4 = ∆′′MA4 −M
(1,5)
2 ∆B

(2,3,4)
8LLJ ,

∆B8LLJ ≡ B8LLJ(N)− 2BR
2 L6LL(5) . (A25)
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The IR subtraction term used for ∆′′MA4 is the same one for ∆′MA4. As a check we evaluated

both integrals numerically. The results are in good agreement within the uncertainty of

VEGAS integration.

5. A5, B5, C5

The diagram A5 has a self-energy subdiagram (2) and two vertex subdiagrams (1,2,3,4)

and (4,5) besides the l-l subdiagram (6,7,8,9). The subdiagram (2) is the second-order self-

energy diagram which contributes to the renormalization constants B2 and δm2. Taking

this into account we can write the renormalized amplitude aA5 as

aA5 = MA5 − L
(4,5)
6LL(5)M

(1,2,3)
4b − L

(1,2,3,4)
8LLI(7)M

(5)
2 −B

(2)
2 M

(1,3,4,5)
8LLJ − δm

(2)
2 M

(1,3,4,5)
8LLJ∗

+ B
(2)
2 L

(1,3,4)
6LL(5)M

(5)
2 + δm

(2)
2 L

(1,3,4)
6LL∗(5)M

(5)
2

+ B
(2)
2 L

(4,5)
6LL(5)M

(1,3)
2 + δm

(2)
2 L

(4,5)
6LL(5)M

(1,3)
2∗ . (A26)

Applying the K2-operation to the self-energy subdiagram (2), we obtain

∆MA5 = MA5 − L
(4,5)
6LL(5)M

(1,2,3)
4b − L

(1,2,3,4)
8LLI(7)M

(5)
2 − B

(2)UV
2 M

(1,3,4,5)
8LLJ − δm

(2)
2 M

(1,3,4,5)
8LLJ∗

+ B
(2)UV
2 L

(1,3,4)
6LL(5)M

(5)
2 + δm

(2)
2 L

(1,3,4)
6LL∗(5)M

(5)
2

+ B
(2)UV
2 L

(4,5)
6LL(5)M

(1,3)
2 + δm

(2)
2 L

(4,5)
6LL(5)M

(1,3)
2∗ . (A27)

Note that the K2-operation yields the whole mass-renormalization constant δm2. Substitut-

ing (A27) in (A26), we obtain

aA5 = ∆MA5 − BR
2 M

(1,3,4,5)
8LLJ +BR

2 L
(1,3,4)
6LL(5)M

(5)
2 +BR

2 L
(4,5)
6LL(5)M

(1,3)
2

= ∆MA5 − BR
2 ∆M8LLJ (A28)

where BR
2 = B2 − BUV

2 . Similar consideration for the diagrams B5 and C5 yields

aB5 = ∆MB5 −BR
2 M

(1,3,4,5)
8LLL +BR

2 L
(1,3,4)
6LL(3)M

(5)
2 +BR

2 L
(4,5)
6LL(3)M

(1,3)
2

= ∆MB5 −BR
2 ∆M8LLL (A29)

aC5 = ∆MC5 − BR
2 M

(1,3,4,5)
8LLK +BR

2 L
(1,3,4)
6LL(3)M

(5)
2 +BR

2 L
(4,5)
6LL(3)M

(1,3)
2

= ∆MC5 − BR
2 ∆M8LLK . (A30)

Adding up these results, we obtain

C
∑

α=A

aα5 =
C
∑

α=A

∆Mα5 − BR
2 ∆M8JKL. (A31)
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6. A6, B6, C6

The diagram A6 has UV-divergent subdiagrams (2, 3), (1, 2, 3, 4), (2, 3, 4, 5), besides

(6, 7, 8, 9), and the corresponding forest structure. Thus the renormalized amplitude aA6

can be written as

aA6 = MA6 − L
(2,3)
2 M

(1,4,5)
8LLJ − L

(1,2,3,4)
8LLE(7)M

(5)
2 − L

(2,3,4,5)
8LLF (7)M

(1)
2

+ L
(2,3)
2 L

(4,5)
6LL(5)M

(1)
2 + L

(2,3)
2 L

(1,4)
6LL(5)M

(5)
2 . (A32)

Applying the K23-operation on MA6, we can define the UV-finite quantity ∆MA6 as

∆MA6 = MA6 − L
UV (2,3)
2 M

(1,4,5)
8LLJ − L

(1,2,3,4)
8LLE(7)M

(5)
2 − L

(2,3,4,5)
8LLF (7)M

(1)
2

+ L
UV (2,3)
2 L

(4,5)
6LL(5)M

(1)
2 + L

UV (2,3)
2 L

(1,4)
6LL(5)M

(5)
2 . (A33)

Substituting (A33) in (A32), we obtain

aA6 = ∆MA6 − LR
2M

(1,4,5)
8LLJ + LR

2 L
(4,5)
6LL(5)M2 + LR

2 L
(1,4)
6LL(5)M2

= ∆MA6 − LR
2∆M8LLJ . (A34)

Similar consideration for the diagrams B6 and C6 yields

aB6 = ∆MB6 − LR
2M

(1,4,5)
8LLL + LR

2 L
(4,5)
6LL(3)M2 + LR

2 L
(1,4)
6LL(3)M2

= ∆MB6 − LR
2∆M8LLL, (A35)

and

aC6 = ∆MC6 − LR
2 M

(1,4,5)
8LLK + LR

2 L
(4,5)
6LL(3)M2 + LR

2 L
(1,4)
6LL(3)M2

= ∆MC6 − LR
2 ∆M8LLK . (A36)

From (A34), (A35), and (A36), we obtain

C
∑

α=A

aα6 =

C
∑

α=A

∆Mα6 − LR
2 ∆M8JKL. (A37)

7. A7, B7, C7

The diagram A7 has two vertex subdiagrams (1,2,3,4) and (2,3,4,5), besides the l-l sub-

diagram (6,7,8,9). Thus the renormalized amplitude aA7 can be written as

aA7 = MA7 − L
(1,2,3,4)
8LLG(7)M

(5)
2 − L

(2,3,4,5)
8LLG(7)M

(1)
2 . (A38)
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We define the UV-finite quantity ∆MA7 by

∆MA7 = MA7 − L
(1,2,3,4)
8LLG(7)M

(5)
2 − L

(2,3,4,5)
8LLG(7)M

(1)
2 , (A39)

where L8LLG(7) is not decomposed into UV-divergent and UV-finite parts. Thus we have

aA7 = ∆MA7. (A40)

Similar relation holds for aB7 and aC7. Thus we have

C
∑

α=A

aα7 =

C
∑

α=A

∆Mα7. (A41)

8. A8, B8, C8

The diagram A8 has a self-energy subdiagram (3) and two vertex subdiagrams (1,2,3,4)

and (2,3,4,5), besides the l-l subdiagram (6,7,8,9). Thus, its renormalization structure is

similar to that of the diagram A5:

aA8 = MA8 − L
(1,2,3,4)
8LLI(7)M

(5)
2 − L

(2,3,4,5)
8LLI(7)M

(1)
2 −B

(3)
2 M

(1,2,4,5)
8LLJ − δm

(3)
2 M

(1,2,4,5)
8LLJ∗

+ B
(3)
2 L

(1,2,4)
6LL(5)M

(5)
2 + δm

(3)
2 L

(1,2,4)
6LL∗(5)M

(5)
2

+ B
(3)
2 L

(2,4,5)
6LL(5)M

(1)
2 + δm

(3)
2 L

(2,4,5)
6LL∗(5)M

(1)
2 . (A42)

Applying the K3-operation to the self-energy subdiagram (3), we obtain

∆MA8 = MA8 − L
(1,2,3,4)
8LLI(7)M

(5)
2 − L

(2,3,4,5)
8LLI(7)M

(1)
2 − B

(3)UV
2 M

(1,2,4,5)
8LLJ − δm

(3)
2 M

(1,2,4,5)
8LLJ∗

+ B
(3)UV
2 L

(1,2,4)
6LL(5)M

(5)
2 + δm

(3)
2 L

(1,2,4)
6LL∗(5)M

(5)
2

+ B
(3)UV
2 L

(2,4,5)
6LL(5)M

(1)
2 + δm

(3)
2 L

(2,4,5)
6LL∗(5)M

(1)
2 . (A43)

Substituting (A43) in (A42), we obtain

aA8 = ∆MA8 − BR
2 M

(1,3,4,5)
8LLJ +BR

2 L
(1,2,4)
6LL(5)∆M

(5)
2 +BR

2 L
(2,4,5)
6LL(5)∆M

(1)
2

= ∆MA8 − BR
2 ∆M

(1,3,4,5)
8LLJ . (A44)

Applying the same consideration to the diagrams B8 and C8, and adding them to (A44),

we obtain
C
∑

α=A

aα8 =
C
∑

α=A

∆Mα8 − BR
2 ∆M8JKL. (A45)
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9. Sum

Taking into account that integrals for diagrams such as A1 actually represent 2 × 2 × 5

vertex diagrams, the sum of all diagrams of Set III(c) can be written as

A
(10)
1 [Set III(c)(l1l2)] =

C
∑

α=A

8
∑

i=1

ηi∆M
(l1l2)
αi − 3∆LB2∆M

(l1l2)
8JKL, (A46)

where l1 refers to the open lepton line and l2 refers to the closed lepton line. ∆LB2 ≡

LR
2 +BR

2 , and ηi = 2 for i = 4, 7, 8, ηi = 4 for i = 1, 2, 3, 5, 6.
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