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Lattice four-fermion models containingN flavors of staggered fermions, that are invariant underZ2 andU(1)
chiral symmetries, are known to suffer from sign problems when formulated using the auxiliary field approach.
Although these problems have been ignored in previous studies, they can be severe. Here we show that the sign
problems disappear when the models are formulated in the fermion bag approach, allowing us to solve them
rigorously for the first time.
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I. INTRODUCTION

Four-fermion field theories are interesting in both con-
densed matter and particle physics. The well known Hub-
bard model and its variants are often used in studying cuprate
superconductors [1], antiferromagnets [2] and more recently
graphene [3]. Low energy nuclear physics is also studied with
four-fermion couplings in the effective field theory framework
[4, 5]. In the context of more fundamental theories like QCD,
four-fermion field theories offer a simpler setting to study phe-
nomena like fermion mass generation and chiral symmetry
breaking [6]. It has been suggested recently that quantum crit-
ical phenomena in graphene can be studied with four-fermion
field theories [7, 8]. Despite the wide interest, strongly cou-
pled four-fermion field theories remain poorly understood as
compared to their bosonic counterparts due to computational
difficulties.

The only available method to compute quantities in a
strongly interacting field theory with no small parameter is
the Monte Carlo (MC) method. Due to the quantum nature
of a fermion there are no natural fermion configurations with
positive weights that can be used for important sampling. In
two space-time dimensions fermions can often be bosonized
and models can we written in terms of world line configura-
tions with positive weights. This fact can be used to design
powerful MC methods [9–11]. In higher dimensions, the tra-
ditional MC approach is to integrate the fermions out in fa-
vor of a determinant of a large fermion matrix. Whenever
this determinant is positive a non-local probability distribu-
tion emerges, which can be used to construct a MC method.
The most popular is the Hybrid Monte Carlo (HMC) method
[12, 13] which has continued to evolve in many ways since
its discovery [14]. Unfortunately, small eigenvalues of the
fermion matrix which naturally arise in the presence of mass-
less fermions can cause singularities in the HMC approach.
This makes it difficult to study quantum critical phenomena
containing massless fermions. While other determinantal MC
methods do not encounter such problems, they scale poorly
with system size [15]. In cases where the determinant of the
fermion matrix is not positive, the original theory is said to
suffer from a sign problem and the traditional approach is not
useful. The repulsive Hubbard model away from half filling

is a classic example where progress has been limited due to
sign problems. Other relativistic four-fermion field theories
like the Gross-Neveu (GN) models and Nambu-Jona-Lasinio
(NJL) models are also known to suffer from sign problems in
three or more space-time dimensions [16].

Recently a new approach called the fermion bag approach
was proposed to solve some four-fermion field theories [17–
19]. It is an extension of the meron cluster idea proposed some
time ago [20]. The idea behind the fermion bag is to identify
fermion degrees of freedom that cause sign problems and col-
lect them in a bag and sum only over them. This is in con-
trast to traditional approaches where all fermion degrees of
freedom in the entire thermodynamic volume are summed to
solve the sign problem. When the fermion bag contains only
a small fraction of all the degrees of freedom and the summa-
tion can be performed quickly, the fermion bag approach can
be used to design powerful MC methods. Sometimes, the bag
splits into many disconnected pieces further simplifying the
calculation. The fermion bag approach has three main advan-
tages: (a) Due to a duality, fermion bag sizes are small both at
weak and strong couplings, (b) Singularities in the massless
limit can be tackled without a problem, (c) Some sign prob-
lems that haunt traditional approaches are naturally solved.
While the first two advantages have been demonstrated, the
third advantage is not so clear from previous work. Here we
show how solutions to some unsolved sign problems in four-
fermion models also emerge naturally in the fermion bag ap-
proach.

It is useful to clarify some confusions that may arise about
what we mean by a sign problem and thus a solution to the
sign problem. If one can write the partition of a quantum sta-
tistical mechanics system as a sum over configurations whose
Boltzmann weights are all positive and if the cost of computa-
tion of the Boltzmann weights only scales as a polynomial in
system size, then we say the model does not suffer from a sign
problem. However, as already stated above, in fermionic sys-
tems there are no natural configurations where the Boltzmann
weights are positive. The conventional method is to use the
auxiliary field approach to expand the partition function as a
sum of bosonic configurations where the fermion determinant
is taken as part of the Boltzmann weight. If this weight can
be negative one often says the model suffers from a sign prob-
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lem. However, if an alternate approach can be found where
the sign problem disappears, one can of course say the prob-
lem never suffered from a sign problem to begin with. On the
other hand, if this alternate approach was not known earlier,
the new approach can be considered as a solution to the sign
problem present in the other method. This is what we mean
when we say “solutions to unsolved sign problems”. It must
be noted that all sign problems are problems in exactly this
sense. Once a solution is found there is no longer a problem.
It is of course likely that some problems may remain unsolved
[21].

We consider lattice GN models containing N flavors of
massless staggered fermions with either a Z2 or a U(1) chiral
symmetry [16]. While we work in three space-time dimen-
sions, our results can easily be extended to higher dimensions.
Although in three dimensions the symmetries we refer to are a
part of a flavor symmetry, they are often loosely called chiral
symmetries in the literature. The Z2 models with odd N and
all the U(1) models are known to suffer from a sign problem
when formulated in the traditional auxiliary field approach.
Here we show that the sign problems disappear in the fermion
bag approach. Our paper is organized as follows. In section
2 we review the auxiliary field approach to lattice GN models
with both Z2 and U(1) chiral symmetries and discuss how the
sign problems arise. In section 3 we discuss the severity of
the sign problems. In section 4 we discuss the fermion bag
approach and show that sign problems do not arise. Section 5
contains our conclusions.

II. AUXILIARY FIELD APPROACH

Lattice GN models are formulated in the auxiliary field ap-
proach through the action

SGN =
∑
x,y,i

χi(x)(D[φ̄])x,yχi(y) + SAF (1)

where χi(x), χi(x) denote the Grassmann valued fermion
fields of flavor i = 1, 2.., N at the lattice site x. The ex-
plicit form of the auxiliary field action SAF depends on the
GN model and will be discussed below. The matrix D[φ̄] is
defined by (

D[φ̄]
)
xy

= Dxy + δxy φ̄(x), (2)

where φ̄(x) is a function of the auxiliary fields as defined be-
low and Dx,y is the free staggered fermion matrix [22–24],

Dx,y = mδx,y +
∑

α=1,2,3

ηx,α
2

[δx+α,y − δx,y+α] . (3)

Since we work in three dimensions, α labels the three di-
rections, ηx,α = e(iπζa·x), ζ1 = (0, 0, 0), ζ2 = (1, 0, 0),
ζ3 = (1, 1, 0) are the staggered fermion phase factors and m
is the bare fermion mass. We assume anti-periodic boundary
conditions in all directions and denote the lattice volume by
V = L3.

Following [16], we define the auxiliary fields on dual sites
x̃. The model with a Z2 chiral symmetry is defined through a
single real auxiliary field σ(x̃), such that

SAF [σ] =
N

2g2

∑
x̃

σ2(x̃), (4a)

φ̄(x) =
1

8

∑
〈x̃,x〉

σ(x̃) (4b)

while the model with a U(1) chiral symmetry requires two
real auxiliary fields σ(x̃) and π(x̃), such that

SAF [σ, π] =
N

4g2

∑
x̃

(
σ2(x̃) + π2(x̃)

)
, (5a)

φ̄(x) =
1

8

∑
〈x̃,x〉

(
σ(x̃) + iε(x)π(x̃)

)
, (5b)

where ε(x) is the parity of a lattice site (1 on even sites and
−1 on odd sites). In the above expressions, the set of nearest
dual sites x̃ surrounding the fixed lattice site x is denoted as
〈x̃, x〉 (see Fig. 1). In this work we only consider these two
classes of models.
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FIG. 1. Nearest neighbor lattice sites (open circles) of a fixed dual
site (filled circle) x̃ is represented by [x, x̃] (see left figure), while the
nearest neighbor dual sites of a fixed lattice site is denoted by 〈x̃, x〉
(see right figure).

It is easy to verify that SGN is invariant under U(N)
flavor transformations. When m = 0, additional chi-
ral symmetries emerge. The Z2 model is invariant under
χi(x) → ε(x)χi(x), χi(x) → −χi(x)ε(x), σ(x̃) →
−σ(x̃) while the U(1) model is invariant under the additional
U(1) chiral symmetry χi(x) → eiε(x)θ/2χi(x), χi(x) →
χi(x)eiε(x)θ/2, σ(x̃) → σ(x̃) cos θ + π(x̃) sin θ, π(x̃) →
π(x̃) cos θ−σ(x̃) sin θ. The models contain a quantum critical
point (QCP) separating a chirally symmetric phase (at small
couplings) from a phase where the chiral symmetry is spon-
taneously broken (at large couplings). The symmetries that
govern the QCP needs proper analysis due to fermion dou-
bling. Without such an analysis it is difficult to establish the
continuum field theory that emerges at the critical point [19].

In the traditional MC approach, one integrates over the
Grassmann fields and writes the partition function of the GN
models as

ZZ2
=

∫
[Dσ] e−SAF [σ]

{
DetD([φ̄])

}N
, (6a)

ZU(1) =

∫
[DσDπ] e−SAF [σ,π]

{
DetD([φ̄])

}N
, (6b)



3

In order to design a MC method the determinant terms in the
above expressions have to be real and positive. In the Z2

model since φ̄ is real, the matrix elements of D[φ̄] are real.
Hence, the determinant is real but not necessarily positive. In
the case of the U(1) model, φ̄ is complex and so the matrix
elements of D[φ̄] and its determinant can be complex. Hence,
the Z2 model as formulated in Eq. (6a) suffers from a sign
problem for all odd values of N , while the U(1) model as for-
mulated through Eq. (6b) suffers from a sign problem for all
values of N .

III. SEVERITY OF THE SIGN PROBLEM

Earlier calculations in the Z2 and U(1) GN models have
all been performed in the auxiliary field approach [25–27].
The essential focus has been to understand the quantum phase
transition and compute the critical exponents. These calcula-
tions have circumvented the sign problem by studying even
N in the Z2 case or by introducing conjugate fermions with
an opposite chiral charge in the U(1). Inclusion of conjugate
fermions changes the partition function from Eq. (6b) to

ZcU(1) =

∫
[Dσ][Dπ] e−SAF

∣∣∣∣∣DetD([φ])

∣∣∣∣∣
2N

, (7)

and changes the flavor symmetries to U(N)×U(N) while the
chiral symmetry remains unchanged.

The N = 1 model with Z2 chiral symmetry was also
studied in the auxiliary field approach using the HMC al-
gorithm [28]. Strangely, in this study the sign of the de-
terminant was never discussed and seems to have been ig-
nored. Since the results of the quantum critical behavior were
in quantitatively agreement with large N results (improved
with Padé-approximations), it may have been assumed that
the sign problem was mild. If this is indeed true then sta-
tistically, positive sign configurations should dominate over
negative sign configurations. The Z2 model studied in [28]
is slightly different from the model studied here. The auxil-
iary fields σ(x) also live on the main lattice site and the field
φ̄ appearing in the Dirac operator D[φ̄] of Eq. (2), is defined
as φ̄(x) = 1

6

∑
〈z,x〉 σ(z), where now 〈z, x〉 refers to the six

nearest neighbor sites z for a given site x. In order to study
the sign problem, we generated several Gaussian random aux-
iliary field configurations according to the distribution

P (σ(x)) = exp

(
−
∑
x

{
σ2(x)− 1

2
log(π)

})
(8)

and computed Det(D[φ̄]) for each of these configurations. We
then separated the configurations into those with a positive de-
terminant and those with a negative determinant. In Fig. 2 we
plot the distribution of configurations with positive and nega-
tive determinants as a function of log |Det(D[φ̄])| for 63 and
123 lattices. As can be seen, the distribution of configura-
tions with positive and negative weights are almost identical
suggesting a severe sign problem rather than a mild one! Al-
though we are not performing important sampling, our results
clearly show that the sign problem must be studied carefully.

An important question to study is whether the HMC algo-
rithm is getting trapped in the sector of configurations with
positive weights (or negative weights). Note that, in the Z2

models the only way to move from a positive weight sector
to the negative weight sector is to pass through configurations
which have almost zero weight assuming the step size in the
HMC algorithm is small. Perhaps the suppression of the tun-
neling between the two sectors leads to long auto-correlation
times or even lack of ergodicity. This argument also applies
to Z2 models with even N [29].

IV. FERMION BAG APPROACH

We will now show that the sign problems in both the Z2

and the U(1) models discussed in section II, disappear in the
fermion bag approach. The proof relies on the fact that any ki-
point correlation function involving the ith flavor of staggered
fermions defined through

Ci(xi1 , ..., xiki ) =

∫
[dχidχi]e

−
∑
x,y χi(x) Dxy χi(y)

χi(xi1)χi(xi1) ... χi(xiki )χi(xiki ) (9)

is positive semi-definite. This is due to the special properties
of the free staggered fermion matrix. Indeed, using the ideas
developed in the fermion bag approach [19], we can write

Ci(xi1 , .., xiki ) = Det(D) Det(G[{x}i]) = Det(W [{x}i])
(10)

where G[{x}i] is the ki × ki matrix of propagators between
the ki sites in the set {x}i ≡ xip , p = 1, .., ki whose ma-
trix elements are Gxp,xq = D−1xp,xq and the matrix W [{x}i]
is a (V − ki) × (V − ki) matrix identical to the matrix D
except that the sites in the set {x}i are dropped from the ma-
trix. All the determinants appearing in Eq.(10) can be shown
to be positive (or zero). The simplest way to see this is to
consider the matrix W . Since it is exactly the same as the
staggered fermion matrix with some sites removed, its eigen-
values come in complex conjugate pairs of the form m ± iλ.
Unpaired eigenvalues are alwaysm and they too come in pairs
when the lattice is bipartite. When m = 0 then the determi-
nant can be exactly zero. Thus, Ci(xi1 , .., xiki ) ≥ 0. We will
use this property to prove the absence of a sign problem in the
fermion bag approach.

Instead of integrating out the fermion fields let us integrate
out the auxiliary fields first and construct the appropriate four
fermion action for the models. Let us first consider the Z2

model. Each integral over the auxiliary field σ(x̃) on the dual
site x̃ gives,

Ix̃ =

∫
dσ(x̃) e−SAF−

σ(x̃)
8 (

∑
i,[x,x̃] χi(x)χi(x)) = N e−SI(x̃),

(11)
where N =

√
2πg2/N and

SI(x̃) = − g2

128N

[ ∑
i,[x,x̃]

χi(x)χi(x)
]2
, (12)
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FIG. 2. Distributions of positive (left graphs) and negative (right graphs) weight configurations as a function of log |Det(D[φ̄])|. One million
configurations and 5000 configurations were generated at 63 and 123 lattices respectively. The distribution of positive configurations is almost
identical to the one with negative configurations suggesting a severe sign problem.

is the effective four-fermion interaction term at each dual
site x̃. The symbol [x, x̃] denotes the set of all lattice sites
surrounding the dual site x̃ (see Fig. 1) . Thus, each in-
tegral generates many four-fermion couplings of the form
χi(x)χi(x)χj(y)χj(y) where i and j are arbitrary flavor in-
dices and x and y are corners of the cube surrounding the dual
site x̃. We can classify the possible couplings into four types
based on the bonds 〈xy〉 connecting the corners x and y. If
the two corners are the same we refer to it as a site-bond or a
S-bond. If the two corners are the two neighboring sites we
get a L-bond (or a link-bond). Similarly, if the two corners are
across a face diagonal or a body diagonal, we call the bonds
F -bond and B-bond respectively. These four bond types are
illustrated Fig. 3.

FIG. 3. An illustration of the four types of four-fermion couplings
(or bonds) generated through the auxiliary field integration. From
left to right we have a S, L, F and B bond respectively.

Integration over all the auxiliary field variables yields
the four-fermion interaction term of the action SZ2,int =∑
x̃ SI(x̃). Collecting the terms in each of the four types of

four fermion couplings separately we see that

SZ2,int = USBS + ULBL + UFBF + UBBB (13)

where US/4 = UL/4 = UF /2 = UB = g2/(64N) and

Bbond =
∑

i,j,〈xy〉∈bond

χi(x)χi(x)χj(y)χj(y). (14)

Based on the above results, the partition function of the Z2

model can be rewritten as

ZZ2 =

∫ ∏
i

[dχidχi] e−SZ2 . (15)

where SZ2
= S0 + SZ2,int is the equivalent four-fermion

action of the model. Here S0 =
∑
x,y,i χi(x)Dx,yχi(y) is the

free fermion action.
In the fermion bag approach, each four-fermion coupling is

represented as a bond and expanded in powers of the cou-
pling. For example the four-fermion coupling of the type

χi(xp)χi(xp)χj(xq)χj(xq) can be denoted by the bond vari-
able bij(xp, xq) = 0, 1, such that if it is 0 then no bond is
assumed to exist between the sites xp and xq , otherwise the
specific four-fermion coupling is inserted in the partition func-
tion. Due to the Grassmann nature of the couplings higher
powers of the couplings do not exist. More details can be
found in [17]. Thus, in the fermion bag formulation, the parti-
tion function can be written as a sum over these bond config-
urations [b], such that

ZZ2 =
∑
[b]

UnSS UnLL UnFF UnBB

∫ ∏
i

[dχidχi] e−S0

×
∏
i

χi(xi1)χi(xi2)...χi(xiki )χi(xiki )

=
∑
[b]

UnSS UnLL UnFF UnBB

{∏
i

Ci(xi1 , .., xiki )
}

(16)

where nS , nL, nF and nB are the total number of bonds of
each type and the correlation functionCi(xi1 , .., xiki ) was de-
fined in Eq.(9). A given bond configuration [b] uniquely de-
termines the ki sites xi1 ....xiki (ordered in a consistent way).
Since we argued above that Ci(xi1 , .., xiki ) ≥ 0 there is no
sign problem in this expansion of the partition function for all
non-negative values of US ,UL,UF , UB , any positive integer
N and real mass m.

In the case of the U(1) model, we need to integrate over
both the auxiliary fields σ(x̃), π(x̃) on every dual site. It is
straightforward to verify that

Ix̃ =

∫
[dσ(x̃)dπ(x̃)] e−SAF−

σ(x̃)
8 (

∑
i,[x̃,x] χi(x)χi(x))

× e−i
π(x̃)

8 (
∑
i,[x̃,x] ε(x)χi(x)χi(x)) = N e−SI(x̃) (17)

where N = (4πg2/N) and

SI(x̃) =
g2

64N

{[ ∑
i,[x,x̃]

χi(x)χi(x)
]2

−
[ ∑
i,[x,x̃]

ε(x)χi(x)χi(x)
]2}

, (18)

Interestingly, the four-fermion couplings of the type S and F
get canceled between the two terms in the above equation. On
the other hand couplings of the type L and B survive so that
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the four-fermion action for the U(1) model turns out to be

SU(1) = S0 + ULBL + UBBB (19)

with UL/4 = UB = g2/(16N). Thus, the only difference
between the Z2 and U(1) models is that the couplings US =
UF = 0 in the U(1) model. Indeed these couplings break the
U(1) symmetry to a Z2 symmetry as can be easily verified.
Since we already proved that the sign problem in theZ2 model
was absent for all non-negative values of US , UL, UF , UB
and N in the fermion bag formulation, the same is true for the
U(1) model as well.

V. CONCLUSIONS

The fermion bag approach provides an alternative approach
to fermion field theories where solutions to new sign prob-
lems emerge naturally. Here we have demonstrated that some
sign problems in the auxiliary field formulation of GN mod-
els, especially with Z2 and U(1) chiral symmetries, disappear
in the fermion bag approach. While we have not shown here,
we can solve sign problems in some lattice field theories con-
taining both dynamical boson and fermion fields with similar
chiral symmetries. In these more complex models, the so-
lutions emerge when bosons are formulated in the world-line
approach and the fermions are formulated in the bag approach.
Such an approach to quantum field theories was proposed in
[30].

Sign problems in other fermion models with more complex
symmetries are also solvable in the fermion bag approach.
However, in many interesting cases the Boltzmann weight of a
fermion bag, although non-negative, turns out to be a fermio-
nant instead of a determinant [31]. Since the computation of
the fermionant can be exponentially hard, the fermion bag ap-
proach loses its practical appeal in such cases. Still, we be-
lieve that there are many other interesting models where the
weight of the fermion bag continues to be positive and com-
putable with polynomial effort.
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