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Abstract
A study of the substructure of jets with transverse momentum greater than 400 GeV/ ¢ produced
in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron
Collider and recorded by the CDF II detector is presented. The distributions of the jet mass,
angularity, and planar flow are measured for the first time in a sample with an integrated luminosity
of 5.95 fb~!. The observed substructure for high mass jets is consistent with predictions from

perturbative quantum chromodynamics.
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The study of high transverse momentum (pr) massive jets produced in proton-antiproton
(pp) interactions provides an important test of perturbative QCD (pQCD) and gives insight
into the parton showering mechanism (see e.g., [1, 2] for recent reviews). Furthermore,
massive boosted jets constitute an important background in searches for various new physics
models [3-6], the Higgs boson [7], and highly boosted top quark production. Particularly
relevant is the case where the decay of a heavy resonance produces high-pr top quarks that
decay hadronically. In all these cases, the hadronic decay products can be detected as a single
jet with a large mass and internal substructure that differs on average from pQCD jets once
the jet pr is greater than 400-500 GeV/c. However, experimental studies of the substructure
of high pr jets at the Tevatron have been limited to jets with pr < 400 GeV/¢ [8, 9]; recently
results with higher pr jets produced at the Large Hadron Collider have been published [10].

Jets produced through QCD processes with large mass are expected to arise predomi-
nantly through a process of single hard gluon emission from a high pr quark or gluon [11].
The probability of this process is given by the jet function, J(m’¢, pr, R), for which a simple

next-to-leading-order (NLO) approximation is

. 4C R-
T p, R) =~ ay(pr) Cas 1og< p) 1)

ijet mJet

where m7* is the jet mass, as(pr) is the strong coupling, C, , = 4/3 and 3 for quark and gluon
jets, respectively, and R is the cone radius used to define the jet [11]. The approximation
holds for m’®* < R-pr. Although uncertainties from higher-order corrections are ~ 30%, it
predicts both the shape of the spectrum and the fraction of jets with masses greater than
about 100 GeV/c?. Two other jet substructure variables insensitive to soft radiation at high

jet mass are angularity and planar flow [12-16]. The angularity is defined as

1

mjet

Z E; sin~26; [1 —cosb; ]’ , (2)

i€jet

T—Q(Rv pT) =

where the sum is over the constituents in the jet cluster, F; is the energy and 6; is the angle
of each constituent relative to the jet axis. It is sensitive to radiation near the edge of the

cone and has a characteristic shape for QCD jets. Planar flow is defined as

AM Ay
Pf=—"-—-"-, 3
where \; o are the eigenvalues of the two-dimensional moment matrix
1 Pik Diy
M=\ g2 4
o= 2B @
i€jet



in which p; 1, is the k™ component of the jet constituent’s transverse energy relative to the jet
axis, ¢.e. in one of the two directions that span the plane perpendicular to the jet direction.
Jets with three or more energetic constituents, such as those arising from a boosted top
quark, are more planar with Pf ~ 1, compared with massive QCD jets where the energy
flow is along the line defined by the two final-state partons and Pf ~ 0. Both of these
variables are perturbatively calculable.

We report in this Letter the first measurement of the jet mass distribution for jets with
pr > 400 GeV/c produced in 1.96 TeV pp collisions at the Fermilab Tevatron Collider
and recorded by the CDF II detector. We also measure for jets with masses greater than
90 GeV/c? their angularity and planar flow distributions. We use the Midpoint cone algo-
rithm [17] to reconstruct jets using the FASTJET program [18] and the anti-k; algorithm [19],
allowing for a direct comparison of cone and recombination algorithms.

The CDF II detector [20] consists of a solenoidal charged particle spectrometer surrounded
by a calorimeter and muon system. Charged particle momenta are measured over |n| < 1.1.
The calorimeter covers the region || < 3.6, with the region |n| < 1.1 segmented into towers
of size An x A¢ = 0.11 x 0.26 [21]. The calorimeter system is used to measure jets and
missing transverse energy (Zr) defined as

Br=- Z Erni, (5)
i
where the sum is over the calorimeter towers with |n| < 3.6 and 7; is a unit vector perpendic-
ular to the beam axis and pointing at the i*" calorimeter tower. We also define Br = |Fr|.
The 4-momentum of a jet is the sum over the calorimeter towers in the jet, where each
calorimeter tower is treated as a massless 4-vector, and the jet mass is obtained from the
resulting 4-vector.

We select events in a sample with 5.95 fb~! integrated luminosity identified with an
inclusive jet trigger requiring at least one jet with transverse energy (E,) > 100 GeV,
with the trigger becoming fully efficient for jets with £, > 140 GeV. Jet candidates are
constructed with a Midpoint cone algorithm with cone radii of R = 0.4 and 0.7 and with
the anti-k; algorithm with a distance parameter R = 0.7. Primary collision vertices are
reconstructed using charged particle information. Events are required to have at least one
high quality primary vertex with |zyx] < 60 cm. Events are also required to be well-

measured by requiring that they satisfy a missing transverse energy significance requirement



of Syypr < 10 GeV1/2, defined as

SMET = L (6>

VB

where the sum is over all calorimeter towers. We calculate for each jet the scalar sum of the
pr of the tracks associated with the jet cluster. Each jet is required to either have more than
5% of its energy registered in the electromagnetic calorimeter or to have its summed track
momentum be at least 5%. This criterion eliminates jet candidates arising from instrumental
backgrounds. Furthermore, we restrict the jet candidates to have 0.1 < |ny| < 0.7, where 7,
is the jet pseudorapidity in the detector frame of reference, to ensure optimal calorimeter
and charged particle tracking coverage. The minimum pseudo rapidity requirement avoids
a region of the calorimeter where the energy response is varying rapidly. We further require
that the leading jet in the event have pr > 400 GeV/c. We observe 2699 events.

The jet 4-momentum is corrected to take into account calorimeter energy response, which
is known to a precision of 3% [22] for central calorimeter jets with pr > 400 GeV/c. We have
determined the uncertainty on calibration of the jet mass measurement by comparing the
momentum flux of charged particles into three concentric regions of the calorimeter around
the jet centroid with the corresponding calorimeter response.

The number of interaction vertices (Nyix) is a measure of the number of multiple inter-
actions (MI), i.e. additional collisions in the same bunch crossing, and averages ~ 3 in
this sample. We make a data-driven correction for MI effects on the jet substructure vari-
ables [23]. To calculate these corrections, we select a subset of events with a back-to-back
dijet topology. We then define cones at right angles to the leading jet in azimuth of the same
size as the jet cluster, and add the calorimeter towers in these cones to the jet 4-vector after
rotation by 90° into the jet cone. The resulting average mass shift upward as a function of
m? is taken as the correction downward due to MI and the energy flow from the underlying
event (UE) of the hard collision. We separately measure the UE correction by using only
events with Ny = 1. We correct the leading jet mass, m/¢!!, for events with Ny > 1 by the
difference between the mass shift in multi-vertex events and the mass shift in single vertex
events. The correction has an approximate 1/m?“*! behaviour and averages ~ 4 GeV/c? for
a jet cone size of R = 0.7. The jet mass correction for a cone size of R = 0.4 is ~ 0.5 GeV/c?,
consistent with the expected R?* scaling [2]. In the following, we focus on results for R = 0.7

Midpoint jets.
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To model the high pr processes, we used a PYTHIA 6.216 calculation [16] of QCD jet
production generated with parton pr > 300 GeV/¢, using the Tune A [24] parameters for the
underlying event and the CTEQ5L parton distribution functions (PDFs), followed by a full
detector simulation. Based on a PYTHIA calculation, we estimate W and Z boson production
to contribute ~ 25 jets with masses between 60 and 100 GeV/c?, which is less than 5% of
the number observed. However, top quark pair production can contribute to the jet mass
region m’“* > 100 GeV/c? where the expected QCD jet rate is much lower. We employ an
approximate next-to-next-to-leading order (NNLO) calculation of the ¢¢ differential cross
section [25] updated with the MSTW 2008 PDFs [26] and a top quark mass of my,, =
173 GeV/c? [27]. This yields a cross section for top quark jets with pr > 400 GeV/c of
4.6 fb. We used the PYTHIA 6.216 generator to create a t ¢ MC sample and applied the same
selection requirements used to define the event sample. The estimated ¢ ¢ contribution to
the data sample, normalized to the NNLO cross section, is 13 4 4 events.

Two-thirds of the ¢ events with a leading high pr jet would produce a recoil jet with
a large jet mass (m?“?) arising from the fully-hadronic decay of the recoil top quark. The
remaining ¢ ¢ events would have a recoil top quark that decays semileptonically, resulting in
large Zr and a recoil jet with lower pr and m’¢2. We reduce these backgrounds by rejecting
events with m7¢? > 100 GeV/c? or by making a more stringent F7 requirement by rejecting
events with Sypr > 4 GeVY2  Approximately 25% (80%) of the t# (QCD) MC events
survive these requirements. We observe 30 jets with m?“® > 140 GeV/c? and expect a tt
contribution of at most three jets.

In order to compare our results with QCD predictions, we correct the m/¢ distributions for
effects of selection and resolution by an unfolding procedure, where we correct bin-by-bin the
observed m7¢*! distribution by the ratio of the QCD PyYTHIA MC m¢*! distribution without
detector effects and the same distribution after measurement and selection effects have been
included. This jet mass unfolding correction was derived for each jet algorithm separately,
and the correction factors vary from 1.6 to 2.0 over the jet mass range > 70 GeV/c?. These
corrections were verified through studies of the data and confirmed with MC calculations.

We summarize briefly our estimates of the systematic uncertainties that affect the sub-
structure observables. The overall jet mass scale at these energies is known to 2 (10) GeV/c?
for jet masses of 60 (120) GeV/c?, based on the jet energy scale uncertainty and the compar-

ison of the calorimeter energy and track momentum measurements within the jet mentioned
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above. We assign an uncertainty on the MI correction of 2 GeV/c?, which is half of the
average correction. We assign a ~ 15% uncertainty on the jet mass unfolding correction
due to modeling of the jet hadronization, the uncertainty arising from the selection, and
MC statistical uncertainties. The hadronization uncertainty is conservatively determined by
comparing the change in the correction when hadronization is turned off in the MC sam-
ples. We estimate the PDF uncertainties on the PYTHIA predictions by reweighting the MC
events using the +1o variations in the 20 eigenvectors describing the uncertainties in the
PDF's [28]; the uncertainties on the jet mass, angularity and planar flow distributions are
10% or less in all cases.

We show in Fig. 1 a comparison of the unfolded m/¢! distribution for a cone size R = 0.7
with the analytic predictions for the jet function. This comparison, made for jet masses above
70 GeV/c?, shows that the analytical prediction for quark jets describes approximately the
shape of the distribution and fraction of jets but tends to over-estimate the rate for jet
masses from 130 to 200 GeV/c?. The better agreement of the quark jet function with data
compared with that of the gluon is consistent with the pQCD prediction that ~ 80% of
these jets arise from quarks [29], though we emphasize that the uncertainties of the pQCD
predictions are large. Furthermore, the data and the PYTHIA distributions are in reasonable
agreement. We also compare in the inset figure the distributions obtained for the Midpoint
and anti-k; algorithms. The anti-k; jets have a similar mass distribution to the Midpoint
jets. The anti-k; algorithm, however, does not produce as large a tail of very massive jets,
presumably due to the lack of an explicit merging mechanism. This difference in algorithm
performance is reproduced by the PYTHIA calculation. We find that 1.4 4+ 0.3% of the
Midpoint jets with py > 400 GeV/c have m?** > 140 GeV/c?. This is the first measurement
of this rate, and allows us to constrain QCD predictions of this fraction, and provide the
first measurement of the rate of backgrounds in a massive jet sample from QCD production
of high pr light quarks and gluons.

A key prediction of the NLO QCD calculation is that the distribution of angularities [12,
13] of high mass jets has relatively sharp kinematical edges, with minimum and maximum
values given by

T~ (2/2)70, T ~ 2 R? )27, (7)
with z = m’®* /py . We show in Fig. 2 the angularity distribution for the leading jet requiring

that m’“*! € (90,120) GeV/c?. The requirement of a relatively narrow m’*! window allows
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FIG. 1. The normalized jet mass distribution for Midpoint jets with pp > 400 GeV/c and || €
(0.1,0.7). The uncertainties shown are statistical (black lines) and systematic (yellow bars). The
theory predictions for the jet function for quarks and gluons are shown as solid curves and have
an estimated uncertainty of ~ 30%. We also show the pPYTHIA MC prediction (red dashed line).

The inset compares Midpoint (full black circles) and anti-k; (open green squares) jets.

us to compare the observed distribution with the shape and kinematic endpoints predicted by
pQCD. The pYTHIA and pQCD predictions are in good agreement with the data for Midpoint
and anti-k; jets, although the small size of the jet sample after applying the mass criterion
limits the statistical precision of the comparison. This further strengthens the interpretation
that these massive jets arise from two-body configurations. The small number of jets below
70 arise from resolution effects. The PDF uncertainties on the PYTHIA predictions are

10%, and are shown in the figure. The results for jets with cone sizes of R = 0.4 are similar.

Figure 3 shows the planar flow distribution for jets where the jet mass is required to be
in the range 130 —210 GeV/c?, relevant for jets arising from top quark decays. Comparisons
with the PYTHIA predictions are also shown for both QCD multi-jet and ¢¢ production.
Although the data are in good agreement with the predictions from QCD, the comparison
is statistically limited because of the small number of observed jets in this jet mass range.
The PDF uncertainties on the PyTHIA QCD predictions are 10%. The results for jets
reconstructed with the Midpoint and anti-k; algorithms are in good agreement with each
other and are consistent with the general expectation based on MC calculations [11]. This
study suggests that with higher statistics it will be possible to use the planar flow variable
to discriminate high pr QCD and top quark jets independent of jet mass.
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FIG. 2. The angularity distribution for Midpoint jets with pp > 400 GeV/c¢ and |n| € (0.1,0.7).
We have applied cuts to reject t # events and required that m’¢*t € (90,120) GeV/c?. We also show
the PYTHIA calculation (red dashed line) and the pQCD kinematic endpoints. The inset compares

the distributions for Midpoint (full black circles) and anti-k; (open green squares) jets.
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FIG. 3. The planar flow distributions for Midpoint jets with pr > 400 GeV/¢ and |n| € (0.1,0.7)
after applying the top rejection cuts and requiring m’¢*! € (130, 210) GeV/c2. We also show the
PYTHIA QCD (red dashed line) and ¢t (blue dotted line) jets, as well as the results from the two
jet algorithms (inset). All distributions have been separately normalized to unity. We expect only

~ 10% of the jets to arise from SM t¢ production.

In summary, we have measured for the first time the mass, angularity and planar flow
distributions for jets with pr > 400 GeV/c¢ using Midpoint and anti-k; jet algorithms. We
find good agreement between PYTHIA Monte Carlo predictions, the NLO QCD jet function
predictions, and the data for the jet mass distribution above 100 GeV/c? for Midpoint
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and anti-k; jets. The Midpoint and anti-k; algorithms have very similar jet substructure
distributions for high mass jets. Our results show that the use of jet mass is an effective
variable for separation of jets produced through QCD and through t# production, with a
jet mass requirement of greater than 140 GeV/c? leaving only 1.4 + 0.3% of the QCD jets.
We have also shown that the high mass jets coming from light quark and gluon production
are consistent with two-body final states from a study of the angularity variable, and that it
may be possible to use the planar flow variable to further reject high mass QCD jets. These
results provide the first experimental evidence that validates the MC calculations employing

jet substructure to search for exotic heavy particles.
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