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Abstract

In this Letter we discuss a few issues concerning the magnetic susceptibility of the quark conden-

sate and the Son-Yamamoto (SY) anomaly matching equation. It is shown that the SY relation in

the IR implies a nontrivial interplay between the kinetic and WZW terms in the chiral Lagrangian.

It is also demonstrated that in a holographic framework an external magnetic field triggers mixing

between scalar and tensor fields. Accounting for this, one may calculate the magnetic susceptibility

of the quark condensate to all orders in the magnetic field.
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I. INTRODUCTION

The magnetic susceptibility χ, introduced in [1] in the sum rules framework, is an inter-

esting characteristic of the vacuum response to an external magnetic field in the confinement

phase. It measures the induced tensor current in the QCD vacuum. The expression

χv = − Nc

4π2f 2
π

(1)

has been obtained analytically in [2] using the OPE and pion dominance for the 〈V V A〉 cor-
relator of two vector currents and one axial current in the kinematics where two virtualities

of the external legs are large while one vector current represents the constant external field

strength. Surprisingly it differs from the sum rule fit by a factor of 3 which implies that

some qualitative essential effect responsible for the disagreement has been overlooked yet.

The several phenomenological estimates yield the low value of the susceptibility while the

large Nc consideration [3] fits the Vainshtein relation (1).

Hence it is natural to look for alternative derivations of χ to identify the missed ingre-

dients. The problem was discussed in the holographic hard wall model involving the 5D

Yang-Mills and Chern-Simons (CS) terms. The Lagrangian corresponds to the gauge theory

on the flavor branes extended along the radial coordinate in the AdS space. It turns out

that in this model the Vainshtein relation (1) is not exact, however it is fulfilled with good

accuracy [4]. Moreover it was shown in [4] that the whole answer follows from the CS term

which implies that we are dealing with a sort of “anomalous” phenomena.

Other more refined holographic models have been considered by Son and Yamamoto (SY)

in [5]. They derived a new relation between two-point and three-point correlators which

yields nontrivial matching conditions for the low-energy QCD parameters of the mesons.

The SY relation is assumed to be valid at any momentum transfer, for instance, Vainshtein

expression (1) follows from the SY relation at large virtualities if one assumes that operator

product expansion of QCD is applicable. This ‘if’ is important because the SY model does

not support OPE per se: dependence on momentum transfer is exponential and does not

contain power terms required by OPE. Different aspects of the SY relation were discussed

in [6–8].

The situation looks a little bit puzzling since there is no field theory derivation of the SY

relation yet. The expression for χ in terms of pion decay coupling suggests that it can be

2



obtained purely in terms of the chiral Lagrangian together with the SY relation. With the

holographic experience it could be expected that the Wess-Zumino-Witten (WZW) term in

the chiral Lagrangian related to the CS term in 5D should be responsible for the nontrivial

answer.

In this note motivated by the comments above we consider the additional arguments

concerning the derivation of χ. Since the holographic model of QCD is nothing but the

extended chiral Lagrangian it is natural to look more carefully at the place of the SY

relation in the ChPT per se. The small Q2 region is the most comfortable to be analyzed in

ChPT hence we shall look at the first terms in small Q2 expansion. The relation between

the ChPT parameters at the tree level has been discussed in [6] and we extend it to the one

loop level focusing at the chiral logs. It will be shown that the SY relation holds true for

the log terms.

A simple argument involving the calculation of the quark determinant in the tensor

source background implies that the nonvanishing magnetic susceptibility corresponds to the

peculiar additional mixed term in the Lagrangian. In the improved holographic model for

QCD [9–11] the tensor source in D = 4 theory is promoted into the tensor field in D = 5. We

shall analyze the improved model in a magnetic field focusing at the scalar-tensor mixing.

It turned out that in the improved model the magnetic susceptibility can be obtained to

all orders in the magnetic field. In a small field the magnetization grows linearly with the

field, in accordance with its generally established properties, while in a large field it does

not depend on the magnetic field.

The paper is organized as follows. In Section 2 we consider the SY relation in ChPT and

show the matching of the chiral logs in this relation. Some general comments concerning the

SY relation are also presented. In Section 3 we consider the improved holographic model for

QCD with the tensor field and demonstrate how the scalar-tensor mixing in the magnetic

field yields the magnetic susceptibility. Some discussion concerning the proper degrees of

freedom can be found in the last Section.
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II. SY RELATION WITHIN THE CHIRAL LAGRANGIAN

A. SY relation and chiral logs

Let us analyze the SY relations in the framework of ChPT. The SY relation has been

obtained holographically and is based on the simple D = 5 action on the worldvolume of

probe flavor branes involving Yang-Mills and Chern-Simons terms for the flavor gauge group.

Taking into account that correlators of the vector and axial currents are two independent

solutions to the second order differential operator in the radial coordinate z in AdS space

their Wronskian is z-independent. This argument works when the CS term is neglected. On

the other hand CS term itself yields the nontrivial 〈V A〉 correlator in the magnetic field

which is proportional to the same Wronskian. Hence in a weak magnetic field the following

relation holds [5]

wT (Q
2) =

NC

Q2
− NC

f 2
π

[

ΠA(Q
2)−ΠV (Q

2)
]

(2)

where wT is defined via the two-point correlator in the external weak electromagnetic field

with the constant field strength Fαβ

〈VµAν〉F̃ =
1

4π2

[

wT (q
2)(−q2F̃µν + qνq

σF̃µσ − qµq
σF̃νσ) + wL(q

2) qνq
σF̃µσ

]

, (3)

V,A are the vector, q̄ Vγµq, and axial, q̄Aγµγ5q, currents, F̃ denotes the dual field strength,

F̃γδ = 1

2
ǫγδαβF

αβ, and ΠA , ΠV are the corresponding two-point correlators. The relation

holds for all values of Q2 = −q2.

The definitions of the above correlators are

1

2
Tr (QVA) 〈VµAν〉F̃ ≡

∫

d4x eiqx〈T{Vµ(x)Aν(0)}〉F̃ ,

1

2
Tr (VV) ΠV (Q

2)(qµqν − gµνq
2) ≡

∫

d4x eiqx〈T{Vµ(x)Vν(0)}〉0 , (4)

1

2
Tr (AA) ΠA(Q

2)(qµqν − gµνq
2) ≡

∫

d4x eiqx〈T{Aµ(x)Aν(0)}〉0 ,

where flavor dependence on matrices of vector and axial currents, V and A, as well as that

for the electric charge, Q, is factored out.

It is natural to look at the matching of the SY relation with the ChPT since the holog-

raphy provides the ChPT derivation from the “first principles”. The SY relation is derived

from the D = 5 equations of motion hence according the holographic dictionary it should
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correspond to the tree approximation in the ChPT. The condition imposed by the SY at

Q2 = 0 on the parameters of the chiral lagrangian has been found in [6]

L10 = −4π2C22 (5)

where L10 corresponds to the even term in the chiral Lagrangian at the O(p4) order while C22

corresponds to a particular odd term at the O(p6) order. The condition is unexpected since

it relates the odd and even terms in the Lagrangian. Unfortunately this relation between

constants can not be used as the test of the SY relation since C22 is not known with the

high accuracy.

To get some test of the SY relation let us focus at the terms in the correlators involving

the chiral logs. Some comments are required before the looking at log terms. Naively such

terms are subleading in 1/Nc hence in the holographic approach these should be considered

as corrections to the equations of motion. On the other hand the log terms are considered

as the renormalization of the constants in the chiral Lagrangian hence one should assume

that the relation (5) valid at the tree level holds upon the renormalization. Therefore it is

natural to look at the matching of the chiral logs.

At the right hand side of Eq. (2) the chiral log follows from the pion loop in the correlator

of the vector currents

Πchir
V (Q2 → 0) = c logQ2 , c = − 1

48π2
. (6)

There are no logs in the correlator of the axial currents. On the other hand the chiral log

in the 〈V V A〉 correlator can be traced from the particular term in the WZW term in the

chiral Lagrangian responsible for the decay γ∗ → 3π,

S3π
WZW = − Nc

24π2

∫

TrA
(

dU−1U
)3 → − iNc

24π2f 3
π

∫

d4xTr F̃ γδπ ∂γπ ∂δπ . (7)

Converting two pions from this vertex to the vector current and associating the remaining

pion with the axial current we get the logQ2 contribution to wT ,

wchir
T = c1 logQ

2 , c1 =
Nc

f 2
π

c , (8)

which is consistent with the SY relation.

Let us emphasize that there is no freedom in the terms in the chiral lagrangian involved

into the chiral logs, hence the matching is exact although at the subleading order in 1/Nc.
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Note that similarly to the tree-level case, the SY relation implies an unexpected relation

between the coefficient in front of the even kinetic term at the O(p2) order and of an odd

WZW term at the O(p4) order in the chiral Lagrangian.

B. The mixed term in the chiral Lagrangian

Let us argue that nonvanishing magnetic susceptibility implies a peculiar term in the

effective Lagrangian. To this aim we introduce a source term for the quark tensor current

into the QCD Lagrangian

δL1 = Bµν q̄ B σµνq ≡ iB̃µν q̄ Bσµνγ5q (9)

where Bµν is an external source field whose possible interpretation shall be discussed below

and B is a diagonal flavor matrix. Accounting for the chiral features of the quark operator in

Eq. (9) it simple to determine the corresponding term in the chiral Lagrangian in the linear

approximation in the Bµν field,

δLWZW = −1

2
χ 〈q̄q〉BµνF

µν Tr (U + U †)BQ , (10)

where χ is the magnetic susceptibility, 〈q̄q〉 is the quark condensate and U = exp(2iπata/fπ)

is the mesonic matrix (fπ = 92MeV). This can be viewed as a definition of the magnetic

susceptibility. Note that this term to some extent can be considered as the shift of the

effective quark mass in the external fields. In the next Section we shall see that this term

promoted into the holographic D = 5 action provides an important scalar-tensor mixing.

It it worth making a few comments concerning the implications of this effective WZW-like

term in the chiral Lagrangian. First, the vacuum tensor current proportional to the chiral

condensate in the magnetic field can be attributed to the stringy degrees of freedom if we

identify the tensor source in (10) as NS or Ramond two-form fields. With such identification

the flow of the F1 or D1 strings in the vacuum occurs in the magnetic field. On the other

hands the mesons are identified holographically as the F1 strings connecting the flavor branes

hence such “stringy” current corresponds in fact to a kind of mesonic vacuum current.

Secondly, there is an anomalous electromagnetic current proportional to the condensate

in the external tensor field. Indeed we defined the current

〈Jν〉B =
δSWZW

δAν

(11)
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which gets contributions from the sources of the tensor field or from the varying pion field.

〈Jν〉B =
1

2
χ 〈q̄q〉 ∂µ

[

Bµν Tr (U + U †)BQ
]

. (12)

For the varying pion case the anomalous current is the analogue of the Goldstone-Wilczek

current. For the varying tensor field an interesting possibility emerges. Using the relation

between the massive vector and tensor in four dimensions we could get the nonvanishing

electromagnetic current if the vector meson gets condensed. There are some indications

of such a condensation in the magnetic field both in the effective theory [12] and in the

holographic framework [13]. Hence one could speculate about the nonperturbative current

proportional to the product of quark and vector meson condensates.

Finally, if we expand the anomalous term in the pion field we could get the anomalous

interaction of pions with the tensor current in the magnetic field. For instance, the matrix

element

〈0|q̄σµνq|π0π0〉 = 1

3f 2
π

χ 〈q̄q〉Fµν . (13)

C. On the derivation of the SY relation

The SY relation has been obtained in a slightly tricky way, hence it would be nice to get

it more regularly as a kind of a Ward identity. Here we restrict ourselves by two generic

remarks. Since the key observation in the derivation in [5] was the z-invariance of the

Wronskian of the vector and axial currents it is reasonable to look at the radial variable z

in the Hamiltonian framework. That is, following [14] we assume that it is considered as a

time variable for the RG Hamiltonian evolution in the D = 5 gauge theory.

In the Hamiltonian framework of the gauge theories there are two natural equations

involving the dependence on the boundary values of the dynamical variables. These are the

gauge constraint or Gauss law and the Hamiltonian constraint or a kind of the Hamilton-

Jacobi (HJ) equation. We are in a peculiar situation with the Hamiltonian constraint since

the metric depends on the radial coordinate and is therefore “time-dependent”.

First consider the Gauss law constraint with respect to the flavor gauge group SUL(NF )×
SUR(NF ) on the flavor branes. In the Hamiltonian approach the Gauss law reflect the gauge

invariance with respect to the flavor gauge group and can be identified with the generator

of the z-independent gauge transformations. Since there are D = 5 CS terms for the left
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and right gauge flavor fields the canonical momenta get modified

ΠL = EL + ALFL , ΠR = ER − ALFL , (14)

while the canonical momenta for the scalar field are standard. Using the Hamiltonian relation

Π =
δS

δx
, (15)

where S is the action, and the standard holographic relation for the D = 4 currents Jµ =

δS
δA

one immediately recognizes that the Gauss law constraint in the bulk theory precisely

produces the anomaly equation for the axial current at the boundary including the mass

term. The fact that the Gauss law is valid at any time in D = 5 theory gets translated into

the claim that the axial anomaly is seen at all scales in the boundary D = 4 theory. Note

that in the conventional gauge theory the Gauss law is complemented by the gauge A0 = 0.

In the current situation the similar equation reads as Az = 0; however, one should not forget

that the pion field can be identified with the holonomy of the radial component of the flavor

gauge group.

In the holographic setting the HJ equation for the bulk metric has been identified as

the RG equation in the boundary theory in [14]. Here we have to consider a similar HJ

equation for the gauge fields and scalars. Taking into account the shift of the canonical

momenta and forgetting for a moment the metric one obtains for the left gauge part of the

total Hamiltonian
( δS

δA
− AF

)2

+ F 2
ij (16)

and similarly for the contribution of the right gauge field and scalars. The HJ-type equations

are quite convenient for the derivation of Ward identities in the boundary theory since it

involves the desired variational derivatives. It is important that the HJ-like equations due

to the change of the canonical momenta involve the terms with the different number of the

variational derivatives. Hence potentially one could hope that the additional variational

derivatives of the HJ equation upon taking into account the Gauss law constraint would

yield the SY relation. We did not succeed along this way of reasoning, however we plan

to discuss the complete set of the Ward identities induced from the bulk theory elsewhere.

In particular we plan to elaborate the constraints emerged from the dynamics of the higher

rank fields induced by the color branes in the brane approach. Note that some examples of
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the derivation of the boundary Ward identities from the bulk HJ equation can be found in

[15].

There is also some analogy with the N = 1/2 SUSY YM case which can be considered

as N = 1 SYM theory in the self-dual constant graviphoton background C1. The following

term gets induced in the graviphoton field

δL = dC1 ∧ F λ̄λ (17)

which is analogous to the anomalous term in QCD we have discussed. The analogy with

QCD becomes even more close when we remind that the gluino condensate is developed in

N = 1/2 SUSY YM like the chiral condensate in QCD. Moreover in the N = 1/2 theory

one can consider the Ward identities reflecting the single unbroken SUSY [16]. This Ward

identity amounts to a particular degeneration in the spectral densities in the J = 1± channels

[17]. Since the spectral densities follow from the two-point correlators these Ward identities

can be considered as some analogue of the SY relation in QCD without the anomalous

three-point correlator.

III. A HOLOGRAPHIC MODEL WITH THE TENSOR FIELD

In this Section we shall consider the scalar-tensor mixing in the improved holographic

model of QCD which involves the tensor field [9–11]. It is a 5-dimensional gauge theory

embedded in a pure AdS geometry with an infrared hard-wall boundary:

ds2 =
ℓ2

z2
(

−dz2 + ηµνdx
µdxν

)

, 0 ≤ z ≤ zm , (18)

where ηµν is mostly negative: η = diag(+ − −−), and ℓ is the AdS5 radius and shall be

omitted henceforward (thus rescaling the coupling constants). This model contains three

types of fields: a complex scalarX , two gauge fields Lµ and Rµ, and a complex antisymmetric

tensor Bµν . They are put into correspondence with the following operators of QCD:

q̄R f̄ q
f
L ↔ Xf

f̄
, q̄R ḡγµq

f̄
R ↔ Rf̄

µ ḡ ,

q̄R f̄ σµνq
f
L ↔ Bf

µν f̄
, q̄Lgγµq

f
L ↔ Lf

µ g , (19)

where σµν = i
2
[γµ, γν ]; f, f̄ are the flavor indices of QCD with respect to the (global)

U(Nf )L×U(Nf )R symmetry which becomes the gauge group of the five-dimensional theory.
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Accordingly, the fields X and Bµν are bifundamentals, whereas Lµ and Rµ are adjoint with

respect to U(Nf )L and U(Nf )R. These properties allow us to properly introduce covariant

derivatives: DX = dX − iLX + iXR, H = DB = dB − iL ∧ B + iB ∧ R.

The action proposed in [11] is:

S =

∫

d5x
√
−g Tr

{

− 1

4g25

(

F 2
L + F 2

R

)

+ g2X
(

|DX|2 −m2
X |X|2

)

+
λ

2

(

X+FLB +BFRX
+ + c.c.

)

− 2gB

(

i

6

ǫMNPQR

√−g

(

BMNH
+

PQR − B+

MNHPQR

)

+mB|B|2
)}

. (20)

This action is a modification of a simpler hard-wall action [18] which takes into account the

tensor field. The interaction term XFB on the AdS boundary is reduced to the term (10)

of the chiral Lagrangian which we have discussed in the previous Section.

The constants have been fixed in previous works by comparing various correlators at

large Euclidean Q2 with OPE in QCD [11, 18–20]. The masses are fixed by requiring that

the scaling properties of the fields match those of the corresponding operators in the UV:

m2
X = −3, mB = 2. Note that due to a non-canonical form of the kinetic term of the tensor

field its physical mass is actually 1 in units of ℓ−1. In this case the vacuum solution for X is

X(z) =
1

2

(

mz +
1

g2X
〈q̄q〉 z3

)

× 1Nf×Nf
. (21)

From now on we shall only consider the Abelian degrees of freedom, as the flavor structure

of the 5D fields is trivial, since the condensates, both scalar and tensor, as well as the

electromagnetic field, are diagonal in the flavor space. Hence, the equations of motion for

each individual flavor qf are the same as for the singlet component with a substitution

FMN
L,R → efF

MN
L,R , where ef is the electromagnetic charge of qf . Furthermore, we shall be

working in an ansatz where the axial field (LM − RM )/
√
2 is zero, which is consistent with

the equations of motion. This choice is motivated by the fact that we are considering a setup

with no sources and with a zero vacuum expectation value of the axial current. The same

argument can be made from the point of view of the chiral perturbation theory. Moreover,

introduction of a nonzero axial field would nontrivially influence the dynamics of the phase

of the scalar field, i.e. the pion. We are left with only the vector field VM = (LM +RM)/
√
2.

In this case the covariant derivatives become ordinary. Let us also split the scalar and tensor

fields into real and imaginary parts: X =
X+ + iX−

2
; BMN =

(B+ + iB−)MN√
2

. These new
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fields are dual to the following operators in QCD:

q̄q ↔ X+ ,
1√
2
q̄σµνq ↔ B+µν ,

iq̄γ5q ↔ X− ,
i√
2
q̄γ5σµνq ↔ B−µν ,

q̄γµq ↔ Vµ . (22)

We have noted that Bµν is bifundamental with respect to U(Nf )L×U(Nf )R which guarantees

its being complex-valued, its real and imaginary parts corresponding to the tensor and

pseudotensor operators (22). These operators happen to be related to each other in 4D,

q̄σµνγ5q =
i

2
ǫµνλρq̄σ

λρq, that fact is reflected in Eq. (9). From the holographic point of view,

this condition is ensured by the fact that the kinetic term for Bµν (20) is of the first order in

derivatives, which leads to its complex self-duality [10, 11]. Thus, as we shall see, the “double

counting” of the degrees of freedom that arises after we have introduced a complex tensor

field is compensated by constraints imposed on half of them, see Eqs. (27). One may wonder

whether it is possible to avoid this redundancy by dealing with a real-valued tensor field

from the beginning; however, while this is not impossible, amending the model in this way

while preserving holographic field-operator correspondence rules and general self-consistency

appears to be quite cumbersome.

Let us now rewrite the action (20) in terms of those fields:

S =

∫

d5x
√−g Tr

{

− 1

4g25
F 2
V +

gB
3

ǫMNPQR

√−g

(

B−MNH+PQR −B+MNH−PQR

)

+
∑

+,−

[

− gBmBB±MNB
±MN+

g2X
4

(

∂MX±∂
MX± −m2

XX
2
±
)

+
λ

2
X± (FV )MN BMN

±

]

}

.(23)

A. Equations of motion

The action (23) yields the following first-order equations of motion for the tensor field:

±zǫµνλρH±zλρ + 2Bµν
∓ =

λ

4gB
X∓F

µν
V ,

±z

3
ǫµλρσH±λρσ + 2Bµz

∓ =
λ

4gB
X∓F

µz
V , (24)

where the indices are contracted with a flat metric diag(+−−−−). They may be rewritten

as second-order equations in which the real and imaginary components are disentangled and
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(FV )µν is assumed to be z-independent (which is a self-consistent solution in the case of a

constant uniform magnetic field). Along with the equation on X we have:

z∂z

(

zHzαβ
±

)

+Bαβ
± + z2∂µH

µαβ
± =

λ

8gB

[

X±F
αβ
V ± z∂zX∓F̃

αβ
V

]

,

z2∂λH
λµz
± +Bµz

± = ± λ

2gB
z∂λ

(

X∓F̃
µλ
V

)

,

∂z

(

1

z3
∂zX±

)

+
3

z5
X± − 1

z3
∂µ∂

µX± = − λ

g2X

1

z
(FV )µνB

µν
± . (25)

Directing the third axis along the magnetic field so that (FV )12 = (F̃V )03 = B we get the

following equations on (B±)12 and X±:
(

∂2
z +

1

z
∂z −

1

z2
− ∂µ∂

µ

)

(B±)12 = − λ

8gB

1

z2
X± (FV )12 ,

(

∂2
z −

3

z
∂z +

3

z2
− ∂µ∂

µ

)

X± = −2λ

g2X
z2 (FV )12 (B±)12 . (26)

From Eqs. (25) it follows that we will also have nontrivial (B∓)03, (B∓)0z, and (B∓)3z

components, which may be expressed through (B±)12 with the use of Eqs. (24) (assuming

ǫ0123 = 1):

(B∓)03 = ±z∂z (B±)12 , (B∓)0z = ±z∂3 (B±)12 , (B∓)3z = ±z∂0 (B±)12 . (27)

A most general property of the equations is that the scalar and tensor degrees of freedom

X+, B+12 decouple from the pseudoscalar and pseudotensor X−, B−12, thus forming two

independent sectors, while due to complex self-duality B∓03, B∓0z, B∓3z are admixed to the

first (second) sector of the solution. Those sectors may be treated independently.

B. Solutions and boundary conditions

After we Fourier-transform the equations, solutions of the Eqs. (26, 26) assume the form:

X+ + iX− = z2fX(qz)e
ikx3−iωt;

(B+ + iB−)12 =
gX

4
√
gB

fB(qz)e
ikx3−iωt, (28)

where fX(qz) and fB(qz) are, generally speaking, superpositions of four Bessel functions:

fX(qz) = C1J1

(
√

1 + βqz
)

+ C2J1

(
√

1− βqz
)

+ C3Y1

(
√

1 + βqz
)

+ C4Y1

(
√

1− βqz
)

;

fB(qz) = C1J1

(

√

1 + βqz
)

− C2J1

(

√

1− βqz
)

+ C3Y1

(

√

1 + βqz
)

− C4Y1

(

√

1− βqz
)

,(29)
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where β =
|λ|

2gX
√
gB

|B/q2| and q2 = ω2 − k2 is the Minkowski 4-momentum squared.

J , Y are the Bessel and Neumann functions or their analytical continuations (if we want

to consider greater magnetic fields or solutions with Euclidean momenta). The Neumann

functions in (29) correspond to non-normalizable modes of the AdS5 fields (28) in the UV.

As we are only interested in the mixing between vacuum expectation values without sources,

C3 = C4 = 0. C1 and C2 are determined by the boundary conditions in the IR.

According to (27), there is a constraint that relates (B∓)03 to (B±)12, which means that

in order to construct a self-consistent variation principle for the tensor field one needs to

take into account that half of the tensor degrees of freedom are not independent due to the

tensor field’s complex self-duality. Such variation principle has been proposed in [11], and

it states that in our case

δBS = 2gB

∫

d4x (B+12 +B−03) δ (B12 − B−03) . (30)

Note that according to (27) B+12 and B−03 have equal normalizable modes, thus contributing

equally to the tensor condensate (30). Since the kinetic term of the tensor field is of the first

order in derivatives, the boundary variation term in (30) contains no differentiation with

respect to z. Hence it makes sense to impose on it a Dirichlet boundary condition at z = zm

rather than a Neumann one. From (30) it also follows that a Dirichlet condition has to be

imposed on the sum (B+12 +B−03). Hence,

C1

C2

=
J1

(√
1− β qzm

)

+
√
1− β qzmJ ′

1

(√
1− β qzm

)

J1

(√
1 + β qzm

)

+
√
1 + β qzmJ ′

1

(√
1 + βqzm

) . (31)

There is no infrared boundary condition for X , so the overall value of Ci remains unde-

termined. Nevertheless, we can obtain the ratio of the tensor and scalar condensates (the

scalar one is determined from (21), while the tensor condensate is read off of the variation

of the action with respect to the tensor field (30)):

〈q̄σ12q〉 ∝ 8gB
gX

4
√
gB

lim
z→0

fB(qz)

z
; 〈q̄q〉 ∝ g2X lim

z→0

fX(qz)

z
,

hence

µ(B; q) =
〈q̄σ12q〉
〈q̄q〉 =

2
√
gB

gX
lim
z→0

fB(qz;B)

fX(qz;B)
. (32)

Setting the 4-momentum to zero we are able to obtain the magnetization µ(B) and

the magnetic susceptibility χ(B) =
d

dB
µ(B) for a uniform condensate in terms of Bessel

functions of
√

|λ|
2gX

√
gB

Bz2m. They are presented here on Figs. 1 and 2, respectively.
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FIG. 1. Magnetization µ(B) in terms of
2
√
gB

gX
(solid line) vs its strong field asymptotics (dashed

line). The magnetic field is in units of z−2
m × gX

√
gB

λ

Their main properties are that

lim
B→∞

µ(B) = −2
√
gB

gX
(33)

and

χ(B) = −|λ|
g2X

z2m
4

(

1− 1

96

λ2

g2XgB
B2z4m +O

(

B4z8m
)

)

, B → 0. (34)

Note that the magnetization changes its behavior from one linear in the magnetic field to a

constant at values of the magnetic field of order of B ∼ z−2
m ∼ Λ2

QCD. Its constant asymptotic

is a behavior to be expected. At large magnetic fields the dynamics of the theory become

effectively two-dimensional and the tensor chiral condensate is kinematically reduced to a

scalar one.

If we substitute the values of the constants of the model from [11] we obtain1

µ(∞) = 1/
√
3 , χ(0) = −z2m

72
. (35)

1 Our constants gB and λ are 3 times larger than those in [11] due to the fact that our variation of the

action (30) with respect to the tensor field is, in a similar way, 3 times larger than the variation in [11].

14



10 20 30 40 50 60 70
B

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

Χ

FIG. 2. Magnetic susceptibility of the quark condensate χ(B) in units of z2m × λ
g2
X

Let us recall that zm is fixed by the mass of the ρ-meson [18], zm ∼ 2.4 m−1
ρ , which means

that χ(0) ∼ −0.08 m−2
ρ ∼ −0.13 GeV−2. One may compare that to the results [21],

where the susceptibility has been analyzed from the point of view of sum rules and has

been determined to be χ ∼ −3.15 ± 0.30 GeV−2, while the pion dominance and OPE

for the 〈V V A〉 diagram give [2] χ ∼ −8.9 GeV−2. (Other results include a holographic

computation of the 〈V V A〉 diagram, which led to a value χ ∼ −11.5 GeV−2 [4]; the use of

vector dominance [22] gives χ ∼ −(3.38 ÷ 5.67) GeV−2.) One can see that there is a large

discrepancy between the numerical results that clearly requires more investigation. However

and more importantly, our results reproduce the general properties both of the susceptibility

and of the magnetization – the weak-field expansion of the former and the negative constant

asymptotic of the latter.

As for the particular value of the magnetization, the lattice calculation yields a different

saturation value in a large field [23]: lim
B→∞

µ(B) = −1. It has also been discussed in the NJL

model [24]. In theory, such a value would tell us that both condensates get contributions

only from the LLL (lowest Landau level) in the strong magnetic field. On the other hand a
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different saturation value obtained in this paper implies that the picture is more complicated.

Indeed, as it has been shown by Miransky et al. [25], in some problems the summation of

the infinite number of higher Landau levels is needed to reproduce the correct result. It has

also been argued in [25] that the LLL approximation is reliable only in the kinematic region

when the momenta satisfy the condition q2⊥ ≫ q2‖. In our particular case the problem is

completely static (qi = 0), so this condition is not fulfilled and the careful treatment of the

higher Landau levels is desirable. Another simple argument concerns the derivation of the

magnetization via the Dirac operator spectrum [4, 23]. An analogue of the Casher-Banks

formula implies that the result obtained in [23] is based on the factorization of the product

of two operators under the averaging over the gluon configuration. The lack of factorization

could be the origin of disagreement with the lattice result. Anyway, this point needs further

clarification.

C. Vector current

Let us now consider perturbations of the vector field about the solution FV 12 = B. They

obey the following equations:

∂z

(

1

z
∂zV3

)

− 1

z
∂2
0V3 +

1

z
∂0∂3V0 = 4g25λ

∑

+,−

[

−∂z

(

1

z
X±B±3z

)

− 1

z
∂0 (X±B±03)

]

,

−∂z

(

1

z
∂zV0

)

− 1

z
∂2
3V0 +

1

z
∂0∂3V3 = 4g25λ

∑

+,−

[

−∂z

(

1

z
X±B±0z

)

+
1

z
∂0 (X±B±03)

]

.(36)

One may note that the longitudinal components B±zµ (as well as B±03) become sources for

the vector current and charge density. However, the r.h.s. of the Eqs. (36,36) contains

products of fields from different sectors of the solution. Furthermore, if we consider small

fluctuations, the vector field turns out to be a fluctuation of the second order. There are

obvious similarities with Eq. (12), where π = arg (X+ + iX−).

IV. DISCUSSION

In this paper we have discussed a few issues concerning the magnetic susceptibility of the

quark condensate. We have shown that the SY relation which yields the value of the suscep-

tibility at large Q2 is consistent with the chiral log counting at small Q2. The nonvanishing
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value of the susceptibility implies a specific term in the effective lagrangian and we have

analyzed the role of this term in the holographic approach. It turns out that it provides the

magnetization at any value of the magnetic field. Surprisingly the saturation value in the

strong magnetic field is small and disagrees with the lattice simulation. This disagreement

deserves additional studies.

A satisfactory explanation of the SY relation is still absent. It implies a peculiar relation

between the kinetic and topological terms. Such relation is natural from the brane viewpoint

and one could expect a kind of Ward identity to stand behind it. We have not found the

symmetry which would provide such a Ward identity, however more efforts could be made

in this direction and we plan to return to this point elsewhere.

Which vacuum excitations are responsible for the magnetic susceptibility? This question

can be rephrased as one concerning the localization of the quarks involved into the composite

operator on some vacuum defects excited by the external magnetic field. The answer po-

tentially depends on the interpretation of the background Cµν field. There could be several

interpretations. If it is the two-form field in NS or RR sectors it would mean that the F1 or

D1 degrees of freedom are under the carpet. The variant with NS Bµν field has some trouble

since in this case we are dealing with noncommutative field theory and the field enters other

terms in the Lagrangian. Hence it is unclear if it would be possible to separate the desired

term in the effective action in a clear-cut way. If we choose the RR two-form field C2 the

product C2 ∧ F follows from the CS term immediately, however the proportionality to the

chiral condensate needs an explanation.

Finally let us comment on the possible interpretation of the tensor source as the curvature

of the graviphoton one-form RR field C1: C = dC1. The degrees of freedom naturally charged

with respect to the graviphoton field are the D0 branes, hence one could question how D0

particles or instantons are captured by the magnetic field. The potential object which could

be relevant is the dyonic instanton, that is, a blown up instanton with a string attached to

it. Upon the blow up it behaves as a magnetic dipole with a topological charge.
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