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Abstract

We show that the differences between correlators of the critical O(N) vector

model in three dimensions and those of the free theory are precisely accounted

for by the change of boundary condition on the bulk scalar of the dual higher spin

gauge theory in AdS4. Thus, the conjectured duality between Vasiliev’s theory

and the critical O(N) model follows, order by order in 1/N , from the duality

with free field theory on the boundary.



1 Introduction

One of the simplest nontrivial examples of the AdS/CFT correspondence [1] is the

conjectured duality [2, 3] between Vasiliev’s higher spin gauge theory in AdS4 [4] and

O(N) vector models. At the classical level, Vasiliev’s system gives a set of nonlinear

equations of motion for an infinite set of gauge fields of spins s = 2, 4, 6, . . . and a

scalar field with m2 = −2/R2
AdS.

1 The mass is precisely in the window which allows

a choice of two different boundary conditions on the bulk scalar field ϕ, such that the

dual operator has classical dimension ∆ = 1 or ∆ = 2. The bulk theory with ∆ = 1

boundary condition is conjectured to be dual to the free theory of N massless scalars

φi in three dimensions, restricted to the O(N) singlet sector, whereas the bulk theory

with ∆ = 2 boundary condition is conjectured to be dual to the critical O(N) vector

model, which may be described by the critical point of the SN−1 non-linear σ-model

with Lagrangian

L =
N

2

[

(∂µφi)
2 + α̃

(

φiφi −
1

g

)

]

. (1.1)

Here α̃ is a Lagrange multiplier field, and the critical point is achieved by sending

g → ∞. A systematic 1/N expansion of the critical O(N) model has been studied in

[18, 19]. Alternatively, the critical theory may be defined as the IR fixed point of a

relevant (φiφi)
2 deformation of the free theory.

In principle, the bulk Vasiliev’s theory is computable perturbatively, which corre-

sponds to the 1/N expansion of the dual O(N) vector model. The first such perturba-

tive computation was carried out in [11, 12], and highly nontrivial agreement of three

point functions between the bulk and boundary theories have been found at leading

order in 1/N , for both ∆ = 1 and ∆ = 2 boundary conditions (see [5, 6, 7, 8] for earlier

works, and [13, 14] for some new perspectives).

Eventually, one would like to compute all the n-point functions from the bulk

theory, and have a perturbative proof of the duality. While the agreement between

Vasiliev’s system with ∆ = 1 boundary condition and the free O(N) theory may

not be surprising, given that the free theory is our only known example of CFTs in

dimension greater than two with exactly conserved higher spin currents, the duality

in the case of ∆ = 2 boundary condition, which breaks higher spin symmetry in the

bulk through loop effects, has been more mysterious (see [15, 17] for earlier work on

this mechanism). This is perhaps also the more interesting case as the dual CFT is an

interacting theory.

1This is the spectrum of the so-called “minimal” bosonic Vasiliev’s theory. It is a consistent

truncation of the more general “non-minimal” system, which also includes all odd spins. The dual of

the non-minimal theory is expected to be a U(N) vector model, restricted to the U(N) singlet sector.
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In this paper, we will address the duality in the case of ∆ = 2 boundary condition.

Thanks to a simple factorization identity involving the bulk scalar propagators for the

two different boundary conditions, we will give a perturbative argument that the differ-

ence between correlators in the ∆ = 2 and ∆ = 1 theories as computed from the bulk

theory precisely accounts for the difference between those corresponding correlators in

the critical O(N) vector model and the free theory. The duality in the ∆ = 2 case,

to all order in 1/N , then follows from the duality in the ∆ = 1 case where the higher

spin symmetry is preserved. This also clarifies and confirms the breaking of higher

spin symmetry through loops of bulk scalars, which gives a finite mass renormalization

of the bulk higher spin fields through its mixing with two-particle states involving a

higher spin field and a scalar [15]. In some sense our arguments are an extension of the

Legendre transform relating the two boundary conditions [9, 10] to all order in 1/N .

We now begin with the simple examples of tree level three and four point functions,

which illustrates our argument, and then discuss the general n point functions and loop

corrections.

Note added:2 Upon completion of this paper, we were informed that the results of

section 4 and the key observation of the factorization of the difference between ∆ = 1

and ∆ = 2 bulk scalar propagators in momentum space have already appeared in [16].

2 Three-point functions with a scalar operator

The “single-trace” primary operators in the critical O(N) vector model are the currents

J (s), s = 2, 4, . . . of dimension ∆ = s + 1 +O
(

1
N

)

, and the scalar Lagrange multiplier

field α with ∆ = 2 + O
(

1
N

)

.3 Let J
(s)
µ1···µs

be the spin-s current. By definition it is

symmetric and traceless in (µ1, · · · , µs), though not conserved for s > 2 at finite N . It

can be expressed in terms of the fundamental scalar fields φi as

J (s)(x, ε) ≡ J (s)
µ1···µs

(x)εµ1 · · · εµs = φif(ε ·
←−
∂ , ε · −→∂ )φi (2.1)

where εµ is an arbitrary null polarization vector, and the function f(u, v) is given by

f(u, v) = eu−v cos(2
√
uv). (2.2)

The precise form of f(u, v) will not be needed in what follows. Note that (2.1),(2.2) is

the free field expression for the higher spin currents [11], which also holds in the critical

O(N) theory. This is because J (s) has classical dimension ∆ = s + 1 and cannot mix

2We thank L. Rastelli for pointing this out to us.
3Here and later on, α will be normalized by a canonical normalization on its two-point function,

which differs from that of α̃ in (1.1).
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with multi-trace operators (which have ∆ − s ≥ 2) or operators that involve α (the

scalar operator of classical dimension 2), and so (2.1) is the correct expression for

the spin s primary operator in the critical theory. In particular, it guarantees that

〈J (s) α〉 = 0.

Now consider the three point function 〈α(x1)J(x2)J
′(x3)〉, where J and J ′ are two

higher spin operators. At leading order in 1/N , in momentum space, this is given by

the corresponding three point function 〈O(p)J(q)J ′(−p− q)〉 in the free O(N) theory

(here O = φiφi is the ∆ = 1 scalar operator), multiplied by the propagator for α,

Dα(p) = 〈α(p)α(−p)〉 = −|p|. (2.3)

In the bulk, α is dual to the scalar field ϕ with boundary to bulk propagator

K∆(x; ~x0) =
Γ(∆)

π
3

2Γ(∆− 3
2
)

[

z

(~x− ~x0)2 + z2

]∆

(2.4)

with ∆ = 2. Its Fourier transform in ~x is

K∆=2(p, z) =

∫

d3x ei~p·~xK∆=2(x; ~x0) = ze−|p|z. (2.5)

Similarly, the momentum space boundary to bulk propagator for the scalar in the

∆ = 1 case is
K∆=1(p, z) = −

z

|p|e
−|p|z, (2.6)

and so

K∆=2(p, z) = −|p|K∆=1(p, z). (2.7)

Therefore, if we are to replace an external ∆ = 1 scalar line of the Witten diagram by

a ∆ = 2 scalar line, the resulting boundary correlator in momentum space is multiplied

by a factor of −|p| where p is the momentum of the corresponding boundary scalar

operator. This is precisely the correct relation between the correlators in the critical

and free O(N) vector models.

The bulk Witten diagrams and the boundary Feyman diagrams for this three point

function are illustrated in the figures below (see [18, 11] for detailed discussions of the

1/N expansion of the critical O(N) model.)
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Bulk tree level three-point function with ∆ = 2 and ∆ = 1 boundary conditions.

The corresponding computation in the critical and free O(N) vector models.

This agreement also indicates how higher spin symmetry is broken by the ∆ = 2

boundary condition. While 〈OJJ ′〉 clearly obeys the Ward identity due to the con-

servation of currents J and J ′, 〈αJJ ′〉 generally violates such Ward identity even at

leading order in 1/N , when J and J ′ have different spins. This is because of the mixing

of the divergence of the current with a double trace operator, (here J (s) is normalized

such that its two point function does not scale with N)

∂µJ (s)
µµ1···µs−1

(x) ∼ 1√
N

∑

n+m+s′=s−1

∂nα(x) ∂mJ (s′)(x) (2.8)

which may be derived by applying the classical equation of motion from the critical

O(N) model Lagrangian.4 An explicit example is discussed in more detail in the

appendix.

In the bulk computation, naively, the boundary-to-bulk propagator is divergence

free with respect to the boundary source, and one might have expected that all corre-

lators are also divergence free which would contradict (2.8). What must happen is that

the divergence on the boundary-to-bulk propagator gives a contact term on the bound-

ary, and the resulting divergence of the three point function reduces to the product of

two point functions. This is illustrated in the following diagram.

4Such mixing between the divergence of the current and double trace operators was first pointed

out to us by Shiraz Minwalla, and is explored in detail in [22].

4



3 Four-point functions in the critical O(N) model

The four point function

〈J (s1)(x1, ε1)J
(s2)(x2, ε2)J

(s3)(x3, ε3)J
(s4)(x4, ε4)〉 (3.1)

can be calculated in 1/N expansion, as explained in [18]. We will focus on the difference

between this four point function and the corresponding four-point function of conserved

currents in the free O(N) vector theory. At leading order in 1/N , we have

∆〈J (s1)J (s2)J (s3)J (s4)〉 ≡ 〈J (s1)J (s2)J (s3)J (s4)〉critical − 〈J (s1)J (s2)J (s3)J (s4)〉free

=

∫

d3yd3z〈J (s1)J (s2)α(y)〉D−1
α (y, z)〈α(z)J (s3)J (s4)〉+ (2↔ 3) + (2↔ 4)

(3.2)

where D−1
α (y, z) is the inverse propagator for the Lagrangian multiplier field α in po-

sition space, obtained from integrating out φi at one-loop. The RHS are expressed in

terms of three point functions in the critical O(N) model. In momentum space, we

have (still suppressing the polarization vectors)

∆〈J (s1)(p1)J
(s2)(p2)J

(s3)(p3)J
(s4)(p4)〉

∣

∣

p1+p2+p3+p4=0

= − 1

|p1 + p2|
〈J (s1)(p1)J

(s2)(p2)α(−p1 − p2)〉〈α(p1 + p2)J
(s3)(p3)J

(s4)(p4)〉+ (2↔ 3) + (2↔ 4)

(3.3)

In the next section, we will see that this structure arises naturally in the bulk higher

spin gauge theory.

Diagrams that contribute at leading order in 1/N to the four-point function.

4 Four-point functions from higher spin gauge the-

ory in AdS4

Vasiliev’s minimal bosonic higher spin gauge theory in AdS4 with the “standard” ∆ = 1

boundary condition on the bulk scalar ϕ is believed to be dual to the free O(N) vector
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theory, whereas the same bulk theory with ∆ = 2 boundary condition on ϕ is expected

to be dual to the critical O(N) model. In perturbation theory, the boundary condition

affects correlation functions only through a modification of the bulk scalar propagator

[20, 21],5

G∆(x, x
′) =

1

4π2

ξ∆

1− ξ2
, ξ =

1

cosh d(x, x′)
, (4.1)

where d(x, x′) is the geodesic distance between x and x′, and ∆ = 1 or 2 is the dimension

of the dual scalar operator. In Poincaré coordinates (~x, z), where the AdS4 metric is

written as

ds2 =
dz2 + d~x2

z2
, (4.2)

we have

ξ =
2zz′

(~x− ~x′)2 + z2 + z′2
. (4.3)

The nonlinear bulk equation of motion for the scalar takes the form

(�−m2)ϕ(x) = J (x). (4.4)

where J (x) = J (2)(x) + J (3)(x) + · · · is quadratic and higher order in bulk fields of

all spins. The difference between the boundary four-point function of the ∆ = 1 and

∆ = 2 boundary condition,

∆〈J (s1)J (s2)J (s3)J (s4)〉, (4.5)

receives the contribution from a scalar intermediate channel only, and can be computed

as

∆〈J (s1)(~x1, ε1)J
(s2)(~x2, ε2)J

(s3)(~x3, ε3)J
(s4)(~x4, ε4)〉

=

∫

d4x
√

g(x)

∫

d4x′
√

g(x′)
[

G∆=2(x, x
′)−G∆=1(x, x

′)
]

× J (s1,s2)(x|~x1, ε1, ~x2, ε2)J (s3,s4)(x′|~x3, ε3, ~x4, ε4) + (2↔ 3) + (2↔ 4).

(4.6)

Here J (s1,s2)(x|~x1, ε1, ~x2, ε2) for instance is defined as the variation of the quadratic part

J (2)(x) of J (x), evaluated on the solution of the linearized bulk higher spin equations

of motion, and varied with respect to the boundary sources for the spin si field at xi

with polarization vector εi, i = 1, 2. In particular,
∫

d4x
√
gK∆(x; ~x0)J (s1,s2)(x|~x1, ε1, ~x2, ε2) (4.7)

where K∆(x; ~x0) is the boundary to bulk propagator for the scalar ϕ, gives the tree

level three point function

〈O∆(x0)J
(s1)(x1, ε1)J

(s2)(x2, ε2)〉free. (4.8)

5For general mass m the bulk scalar propagator is written in terms of the confluent hypergeometric

function. In the special case of m2 = −2/R2, the expression reduces to elementary functions.
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We will now Fourier transform the correlators to their momentum space expressions,

and write G∆(p; z, z
′) the bulk scalar propagator after Fourier transforming ~x, ~x′ (but

not z, z′), and similarly K∆(p; z) the Fourier transformed boundary to bulk propaga-

tor. The structure (3.3) will hold if the following factorization property holds for the

difference of the bulk propagator of two different boundary conditions,

G∆=2(p; z, z
′)−G∆=1(p; z, z

′) = − 1

|p|K∆=2(p; z)K∆=2(p; z
′) (4.9)

Using

G∆=2(x, x
′)−G∆=1(x, x

′) = − 1

2π2

zz′

(~x− ~x′)2 + (z + z′)2
,

G∆=2(p; z, z
′)−G∆=1(p; z, z

′) = −zz
′

|p| e
−|p|(z+z′),

(4.10)

and

K∆=2(x; ~x0) =
1

π2

[

z

(~x− ~x0)2 + z2

]2

,

K∆=2(p; z) = ze−|p|z,

(4.11)

(4.9) is easily verified. This shows that the four point function computed from the

bulk theory with ∆ = 2 boundary condition indeed knows the intermediate α channel

contribution of the critical O(N) vector model. Note that our derivation here does not

rely on the details of interactions in Vasiliev’s theory, but only the structure of bulk

scalar propagators. The structure we find here is somewhat reminiscent of [23].

“Cutting” the bulk four-point function by means of the identity (4.9).
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5 A general argument for n point functions

To begin with, consider an n-point function of higher spin currents in the critical O(N)

model, without any scalar operator, written in momentum space as

〈J1(p1) · · ·Jn(pn)〉. (5.1)

Denote by G be a bulk ℓ-loop Witten graph, and by 〈G〉∆=2 its contribution to the

n-point boundary correlator with ∆ = 2 boundary condition. Let I be the index set

labelling all internal scalar lines in G. For each subset I ′ ⊂ I, Let GI′({k(1)
i , k

(2)
i }i∈I′)

be the Witten graph obtained by cutting open all scalar lines in I ′, and replace each

cut scalar line, say the one labelled by i ∈ I ′, with a pair of external scalar lines with

∆ = 1 boundary condition and momenta k
(1)
i , k

(2)
i .

Cutting procedure: the difference between ∆ = 2 and ∆ = 1 bulk propagators

is replaced by the product of two propagators to the boundary.

Now using

G∆=2(q; z, z
′)−G∆=1(q; z, z

′) = −|q|K∆=1(q, z)K∆=1(−q, z′), (5.2)

we can write

〈G〉∆=2 =
∑

I′⊂I

∫

∏

i∈I′

d3qi (−|qi|)
〈

GI′({k(1)
i = qi, k

(2)
i = −qi}i∈I′)

〉

∆=1
. (5.3)

where on the RHS, 〈GI′〉∆=1 is evaluated as a Witten diagram with ∆ = 1 bound-

ary condition (all internal scalar lines are replaced by G∆=1 as well). In writing the

above, a delta function imposing momentum conservation is included in each con-

nected correlation function, and the integration over qi may involve nontrivial loop

integrals after the delta functions are integrated out. The key observation here is that

the 1/N diagrammatic expansion of the critical O(N) model admits a decomposition

into diagrams for Wick contractions of currents in the free theory, sewed together by

α-propagators in essentially the same way. If we assume that the duality holds with

∆ = 1 boundary condition, namely the sum of all Witten diagrams 〈G〉∆=1 with ex-

ternal legs J1(p1), · · · , Jn(pn) produces the correct n-point function of the free O(N)
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theory, then the n-point functions of higher spin currents of the critical O(N) model

is precisely reproduced by summing over 〈G〉∆=2, by virtue of (5.3).

The four-point function discussed in the previous sections is a special case of this

construction. This cutting procedure works for loop diagrams as well, and relates the

difference between loops of ∆ = 2 and ∆ = 1 scalar propagators to diagrams in which

the loop is cut open and replaced by two external scalar lines. Note that G∆=2−G∆=1

is free of short distance singularity, and we have assumed that the UV divergences

cancel among loop diagrams in Vasiliev theory with ∆ = 1 boundary condition, due

to higher spin symmetry, which is necessary for the vanishing of 1/N corrections to

correlators in the free O(N) theory. It is also straightforward to generalize the above

construction to include the case where a number of scalar operators α are inserted into

the correlation function.

Let us illustrate this further with the example of bulk one-loop correction to the two-

point function 〈JJ〉 of a higher spin current J . The bulk one-loop diagrams involving

at least a scalar propagator give different contributions in the case of ∆ = 2 boundary

condition as opposed to ∆ = 1 boundary condition. These diagrams are listed below.

Here we have assumed some appropriate gauge fixing and ghost contributions, which

do not affect our argument in relating the ∆ = 1 and ∆ = 2 correlators. We have

omitted tadpole diagrams so far, which are a priori included in the cutting argument

above. Nonetheless, the tadpole diagrams should vanish by themselves, for the follow-

ing reason. While the tadpoles for higher spin fields clearly vanish by symmetry, the

tadpole for the bulk scalar in the ∆ = 1 theory must also vanish provided that the

equation of motion is not renormalized, due to higher spin gauge symmetry. Changing

from ∆ = 1 to ∆ = 2 boundary condition does not shift the tadpole for the bulk scalar;

this is related to the vanishing of α tadpole in the critical O(N) model, which amounts

to tuning to criticality.6

6Note however that the bulk diagrams, after cutting, are not in one-to-one correspondence with

Feynman diagrams for the 1/N expansion of the critical O(N) model by cutting α-propagators.

Rather, it is the sum of all bulk diagrams at a given order, with the same external lines and ∆ = 1

internal scalar propagators, that agrees with the sum of appropriate diagrams of free Wick contractions

in the boundary theory.
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The following is an example of cutting one internal scalar line, from which we obtain

a four-point tree diagram with two J ’s and two scalar operators on the boundary. The

remaining, uncut, internal propagator involves either the scalar or higher spin fields.

When the other internal propagator is also a scalar line, it was a ∆ = 2 propagator

to begin with. In reducing it to a ∆ = 1 propagator, one obtains an additional

contribution that is represented by cutting this scalar line as well. The result is a

product of two three point functions in this case.

In the critical O(N) model, the diagrams that give rise to the first 1/N correction

to the two point function 〈JJ〉 are listed below. The contributions from graphs (a), (b)

altogether is reproduced by cutting one internal scalar line of the bulk one-loop dia-

grams, as explained above. (c) is reproduced by the bulk contribution from cutting

two internal scalar lines.

Our argument also implies, in particular, that the 1/N contributions to the anoma-

lous dimensions of the higher spin currents in the critical O(N) model, which can be

computed through the loop corrections to the two-point functions, are indeed correctly

produced by the bulk loop computation, assuming that the duality with free O(N)

theory holds in the case of ∆ = 1 boundary condition.
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6 Concluding remarks

The equations of motion of the (parity invariant) Vasiliev system in AdS4 [4] are highly

constrained by higher spin gauge symmetries and is conceivably not renormalized with

∆ = 1 boundary condition.7 Assuming that the bulk tree level diagrams reproduces

the correct n point functions of the free O(N) theory, and that all loop corrections

cancel with ∆ = 1 boundary condition, our argument then shows that the theory with

∆ = 2 boundary condition has a (UV finite) perturbative expansion, which order by

order matches the 1/N expansion of the critical O(N) vector model (where the loops

are built using α propagators).

While the higher spin symmetry is broken by the ∆ = 2 boundary condition, this

breaking is controlled by the bulk coupling constant (or 1/N), and the anomalous

dimensions of the boundary higher spin currents are suppressed by 1/N . Ultimately,

one would be interested in bulk theories in which the masses of the higher spin fields

can be lifted while keeping the gravity coupling weak. Though it is unclear how to

do this within Vasiliev’s framework, which may require coupling the higher spin gauge

fields to matter fields in some way, we may suspect that a UV finite higher spin gauge

theory could be a useful starting point to understand quantum gravity theories with a

standard semi-classical gravity limit.
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A An example of higher spin symmetry breaking

in the three point function

We have seen that the three point functions of the scalar operator and two higher

spin currents, 〈J (0)J (s)J (s′)〉, at leading order in 1/N in the free O(N) and critical

O(N) vector models, are related simply by multiplying the propagator Dα(p) of α field

in momentum space. From the bulk, this was seen as due to the difference in the

scalar boundary-to-bulk propagators. When s and s′ are different spins, say s > s′, we

have argued that the three point function 〈αJ (s)J (s′)〉 is not conserved with respect

to J (s) at leading order in 1/N , in the critical theory. One may be puzzled as to why

〈α ∂ · J (s)J (s′)〉 is nonzero whereas 〈O ∂ · J (s)J (s′)〉 vanishes in the free theory, since

the two are simply related by a factor Dα(p) in momentum space. This is because the

latter is in fact a contact term, and when transformed into momentum space is analytic

at zero momenta.

In the O(N) vector model there are only even spin currents, and the first nontrivial

example of a three point function that exhibits higher spin symmetry breaking at

leading order in 1/N would involve spins 4, 2, and 0. For simplicity, we will consider

below the U(N) version of the vector model, and the example of three point function

involving currents of spins s = 3, s′ = 1, and the scalar operator.

The tensor structure of 〈J (0)J (3)J (1)〉 is uniquely fixed by conformal symmetry

up to normalization, as explained in [24]. It is useful though to directly compute

〈J (0)(−p1 − p2)J
(3)(p1, ε1)J

(1)(p2, ε2)〉 in momentum space. WIthout loss of generality,

the polarization vectors ε1, ε2 are assumed to be null here. The result is
∫

d3q
ε2 · (2q + p2) f3(ε1 · q, ε1 · (p1 − q))

q2(q − p1)2(q + p2)2
(A.1)

in the free theory, and the same expression multiplied by −|p1 + p2| in the critical

theory. Here f3 is the spin 3 part of the generating function f(u, v) defined in section

2; f3(u, v) =
1
6
(u− v)(u2 − 14uv + v2).

Now taking the divergence on the spin 3 current J (3)(p1), one obtains

1

2

∫

d3q ε2 · (2q + p2)

[

h(ε1 · q, ε1 · (p1 − q))

(q − p1)2(q + p2)2
− h(ε1 · (p1 − q), ε1 · q)

q2(q + p2)2

]

(A.2)

in the case of the free theory, where h(u, v) ≡ u2 − 10uv + 5v2, and the same result

multiplied by −|p1 + p2| in the critical theory. The integral of (A.2) is the sum of two

terms. The first term is analytic at p1 = 0 or p2 = 0, when |p1 + p2| is nonzero; the

second term is analytic at p1 = 0 or p1 + p2 = 0, when |p1| is nonzero. Consequently,

both give contact terms when Fourier transformed into position space.
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If we multiply (A.2) by −|p1+p2|, however, as in the critical theory, then we obtain

a non-analytic term

|p1 + p2|
2

∫

d3q ε2 · (2q + p2)
h(ε1 · (p1 − q), ε1 · q)

q2(q + p2)2
(A.3)

which factorizes into the product of two point functions 〈α(p1 + p2)α(−p1 − p2)〉 and
〈J (1)(p2, ε1)J

(1)(−p2, ε2)〉, with an additional momentum factor.
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