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Massive Z′-gauge bosons act as excellent harbingers for string compactifications with a low string
scale. In D-brane models they are associated to U(1) gauge symmetries that are either anomalous in
four dimensions or exhibit a hidden higher dimensional anomaly. We discuss the possible signals of
massive Z′-gauge bosons at hadron collider machines (Tevatron, LHC) in a minimal D-brane model
consisting out of four stacks of D-branes. In this construction, there are two massive gauge bosons,
which can be naturally associated with baryon number B and B−L (L being lepton number). Here
baryon number is always anomalous in four dimensions, whereas the presence of a four-dimensional
B − L anomaly depends on the U(1)-charges of the right handed neutrinos. In case B − L is
anomaly free, a mass hierarchy between the two associated Z′-gauge bosons can be explained. In
our phenomenological discussion about the possible discovery of massive Z′-gauge bosons, we take
as a benchmark scenario the dijet plus W signal, recently observed by the CDF Collaboration at
Tevatron. It reveals an excess in the dijet mass range 150 GeV/c2, 4.1σ beyond SM expectations.
We show that in the context of low-mass string theory this excess can be associated with the
production and decay of a leptophobic Z′, a singlet partner of SU(3) gluons coupled primarily to
baryon number. Even if the CDF signal disappears, as indicated by the more recent D0 results,
our analysis can still serve as the basis for future experimental search for massive Z′-gauge bosons
in low string scale models. We provide the relevant cross sections for the production of Z′-gauge
bosons in the TeV region, leading to predictions that are within reach of the present or the next
LHC run.

PACS numbers:

I. INTRODUCTION

Very recently, the CERN Large Hadron Collider (LHC) has fired mankind into a new era in particle physics. The
SU(3)C×SU(2)L×U(1)Y Standard Model (SM) of electroweak and strong interactions was once again severely tested
with a dataset corresponding to an integrated luminosity of ∼ 4.9 fb−1 of pp collisions collected at

√
s = 7 TeV. The

SM agrees remarkable well with LHC7 data, but has rather troubling weaknesses and appears to be a somewhat ad
hoc theory.

∗On leave of absence from CPHT Ecole Polytechnique, F-91128, Palaiseau Cedex.
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It has long been thought that the SM may be a subset of a more fundamental gauge theory. Several models have
been proposed, using the fundamental principle of gauge invariance as guidepost. A common thread in most of these
proposals is the realization of the SM within the context of D-brane TeV-scale string compactifications [1]. Such D-
brane constructions extend the SM with several additional U(1) symmetries [2].1 The basic unit of gauge invariance
for these models is a U(1) field, so that a stack of N identical D-branes eventually generates a U(N) theory with
the associated U(N) gauge group. (For N = 2 the gauge group can be Sp(1) ≡ SU(2) rather than U(2).) Gauge
interactions emerge as excitations of open strings with endpoints attached to the D-branes, whereas gravitational
interactions are described by closed strings that can propagate in all nine spatial dimensions of string theory (these
comprise parallel dimensions extended along the D-branes and transverse large extra dimensions).
In this paper we study the main phenomenological aspects of one particular D-brane model that contains two

additional U(1) symmetries, which can be chosen to be mostly baryon number B and B − L, where L is lepton
number. This choice is very natural from the point of view of the SM. Moreover, with this choice of the two additional
U(1) gauge symmetries, one can obtain a natural mass gap between the light anomalous U(1)B gauge boson Z ′ and
the heavier non-anomalous U(1)B−L gauge boson Z ′′. Our first goal is to survey the basic features of the gauge
theory’s prediction regarding the new mass sector and couplings. These features lead to new phenomena that can be
probed using data from the Tevatron and the LHC. In particular the theory predicts additional gauge bosons that we
will show are accessible at the hadron colliders.
The layout of the paper is as follows. In Sec. II we detail some desirable properties which apply to generic

models with multiple U(1) symmetries. We perform a renormalization group analysis for the running of the gauge
couplings, pointing out that the gauge couplings of the two group factors U(1)a × SU(N)a = U(N)a run differently
towards low energies below the string scale. This observation has some interesting phenomenological consequences.
Having so identified the general properties of the theory, in Sec. III we outline the basic setting of TeV-scale string
compactifications and discuss general aspects of the U(3)C×Sp(1)L×U(1)L×U(1)R intersecting D-brane configuration
that realize the SM by open strings. In Secs. IV and V we discuss the associated phenomenological aspects of
anomalous U(1) gauge bosons related to experimental searches for new physics at the Tevatron and at the LHC.
Finally, in Sec. VI we explore predictions inhereted from properties of the overarching string theory. Concretely,
we study the LHC discovery potential for Regge excitations within the D-brane model discussed in this work. Our
conclusions are collected in Sec. VII.

II. ABELIAN GAUGE COUPLINGS AT LOW ENERGIES

We begin with the covariant derivative for the U(1) fields in the 1, 2, 3, . . . basis in which it is assumed that the
kinetic energy terms containing X i

µ are canonically normalized

Dµ = ∂µ − i
∑

g′iQiX
i
µ . (1)

The relations between the U(1) couplings g′i and any non-abelian counterparts are left open for now. We carry out
an orthogonal transformation of the fields X i

µ =
∑

j Rij Y
j
µ . The covariant derivative becomes

Dµ = ∂µ − i
∑

i

∑

j

g′iQiRij Y
j
µ

= ∂µ − i
∑

j

ḡj Q̄j Y
j
µ , (2)

where for each j

ḡjQ̄j =
∑

i

g′iQiRij . (3)

Next, suppose we are provided with normalization for the hypercharge (taken as j = 1)

QY =
∑

i

ciQi ; (4)

1 See also [3].
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hereafter we omit the bars for simplicity. Rewriting (3) for the hypercharge

gY QY =
∑

i

g′iQiRi1 (5)

and substituting (4) into (5) we obtain

gY
∑

i

Qi ci =
∑

i

g′iRi1Qi. (6)

One can think about the charges Qi,p as vectors with the components labeled by particles p. Assuming that these
vectors are linearly independent, Eq.(6) reduces to

gY ci = g′iRi1 , (7)

or equivalently

Ri1 =
gY ci
g′i

. (8)

Orthogonality of the rotation matrix,
∑

iR2
i1 = 1, implies

g2Y
∑

i

(

ci
g′i

)2

= 1 . (9)

Then, the condition

P ≡ 1

g2Y
−
∑

i

(

ci
g′i

)2

= 0 (10)

encodes the orthogonality of the mixing matrix connecting the fields coupled to the stack charges Q1, Q2, Q3, . . .
and the fields rotated, so that one of them, Y , couples to the hypercharge QY .
A very important point is that the couplings that are running are those of the U(1) fields; hence the β functions

receive contributions from fermions and scalars, but not from gauge bosons. The one loop correction to the various
couplings are

1

αY (Q)
=

1

αY (Ms)
− bY

2π
ln(Q/Ms) , (11)

1

αi(Q)
=

1

αi(Ms)
− bi

2π
ln(Q/Ms) , (12)

where

bi =
2

3

∑

f

Q2
i,f +

1

3

∑

s

Q2
i,s, (13)

with f and s indicating contribution from fermion and scalar loops, respectively.
Let us assume that the charges are orthogonal,

∑

sQi,sQj,s =
∑

f Qi,fQj,f = 0 for i 6= j. Then Eq.(4) implies

∑

s

Q2
Y,s =

∑

i

c2i
∑

s

Q2
i,s (14)

and the same thing for fermions, hence

bY =
∑

i

c2i bi . (15)
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TABLE I: Quantum numbers of chiral fermions and Higgs doublet for U(3)C × Sp(1)L × U(1).

Name Representation Q3 Q1 QY

Ūi (3̄, 1) −1 1 − 2

3

D̄i (3̄, 1) −1 −1 1

3

Li (1, 2) 0 1 − 1

2

Ēi (1, 1) 0 −2 1

Qi (3, 2) 1 0 1

6

H (1, 2) 0 1 − 1

2
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FIG. 1: Pictorial representation of the U(1)C × Sp(1)L × U(1)L × U(1)R D-brane model.

On the other, the RG-induced change of P defined in Eq.(10) reads

∆P = ∆

(

1

αY

)

−
∑

i

c2i ∆

(

1

αi

)

=
1

2π

(

bY −
∑

i

c2i bi

)

ln(Q/Ms) . (16)

Thus, P = 0 stays valid to one loop if the charges are orthogonal. An example of orthogonality is seen in the
U(3)C × Sp(1)L × U(1) D-brane model of [4, 5], for which the various U(1) assignments are given in Table I. In the
3-stack D-brane models of [6], the charges are linearly independent, but not necessarily orthogonal. If the charges are
not orthogonal, the RG equations controlling the running of couplings associated to different charges become coupled.
One-loop corrections generate mixed kinetic terms for U(1) gauge fields [7], greatly complicating the analysis.

Another important element of the RG analysis is that the relation for U(N) unification, g′N = gN/
√
2N, holds only

at Ms because the U(1) couplings (g′1, g
′
2, g

′
3) run differently from the non-abelian SU(3) (g3) and SU(2) (g2).

In this paper we are interested in a minimal 4-stack model U(3)C×Sp(1)L×U(1)L×U(1)R, which has the attractive
property of elevating the two major global symmetries of the SM (baryon number B and lepton number L) to local
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TABLE II: Chiral fermion spectrum of the U(3)C × Sp(1)L × U(1)L × U(1)R D-brane model.

Name Representation Q3 Q1L Q1R QY

Ūi (3̄, 1) −1 0 −1 − 2

3

D̄i (3̄, 1) −1 0 1 1

3

Li (1, 2) 0 1 0 − 1

2

Ēi (1, 1) 0 −1 1 1

Qi (3, 2) 1 0 0 1

6

gauge symmetries. A schematic representation of the D-brane structure (to be discussed in detail in Sec. III) is shown
in Fig. 1. The chiral fermion charges in Table II are not orthogonal as given (Q1L ·Q1R 6= 0,). Orthogonality can be
completed by including a right-handed neutrino with charges Q3 = 0, Q1L = Q1R = ±1, QY = 0. We turn now to
discuss the string origin and the compelling properties of this model.

III. GENERALITIES OF U(3)C × Sp(1)L ×U(1)L ×U(1)R

The generic perturbative spectrum in intersecting D-brane models consists of products of unitary groups U(Ni)
associated to stacks of Ni coincident D-branes and matter in bi-fundamental representations. In the presence of
orientifolds which are necessary for tadpole cancellation, and thus consistency of the theory, open strings become
in general non oriented allowing for orthogonal and symplectic gauge group factors, as well as for symmetric and
antisymmetric matter representations.
The minimal embedding of the SM particle spectrum requires at least three brane stacks [6] leading to three distinct

models of the type U(3)C ×U(2)L×U(1) that were classified in [4, 6]. Only one of them (model C of [4]) has Baryon
number as symmetry that guarantees proton stability (in perturbation theory), and can be used in the framework
of TeV strings. Moreover, since Q2 (associated to the U(1) of U(2)L) does not participate in the hypercharge
combination, U(2)L can be replaced by Sp(1)L leading to a model with one extra U(1), the Baryon number, besides
hypercharge [5]. The quantum numbers of the chiral SM spectrum are given in Table I. Since baryon number is
anomalous, the extra abelian gauge field becomes massive by the Green-Schwarz (GS) mechanism, behaving at low
energies as a Z ′ with a mass in general lower than the string scale by an order of magnitude corresponding to a loop
factor [8]. Given the three SM couplings and the hypercharge combination, this model has no free parameter in the
coupling of Z ′ to the SM fields. Moreover, lepton number is not a symmetry creating a problem with large neutrino
masses through the Weinberg dimension-five operator LLHH suppressed only by the TeV string scale. We therefore
proceed to models with four D-brane stacks.
The SM embedding in four D-brane stacks leads to many more models that have been classified in [9, 10]. In

order to make a phenomenologically interesting choice, we first focus on models where U(2)L can be reduce to Sp(1).
Besides the fact that this reduces the number of extra U(1)’s, one avoids the presence of a problematic Peccei-Quinn
symmetry, associated in general with the U(1) of U(2)L under which Higgs doublets are charged [6]. We then impose
Baryon and Lepton number symmetries that determine completely the model U(3)C × Sp(1)L × U(1)L × U(1)R, as
described in [10] (see subsection 4.2.4). The corresponding fermion quantum numbers are given in Table II, while
the two extra U(1)’s are the Baryon and Lepton number, B and L, respectively; they are given by the following
combinations:

B = Q3/3 ; L = Q1L ; QY =
1

6
Q3 −

1

2
Q1L +

1

2
Q1R ; (17)

or equivalently by the inverse relations:

Q3 = 3B ; Q1L = L ; Q1R = 2QY − (B − L) . (18)

Note that with the ‘canonical’ charges of the right-handed neutrino Q1L = Q1R = −1, the combination B − L
is anomaly free, while for Q1L = Q1R = +1, both B and B − L are anomalous. Actually, both choices guarantee
orthogonality of the charges discussed in the previous section. As mentioned already, anomalous U(1)’s become
massive necessarily due to the Green-Schwarz anomaly cancellation, but non anomalous U(1)’s can also acquire masses
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due to effective six-dimensional anomalies associated for instance to sectors preserving N = 2 supersymmetry [8].2

These two-dimensional ‘bulk’ masses become therefore larger than the localized masses associated to four-dimensional
anomalies, in the large volume limit of the two extra dimensions. Specifically for Dp-branes with (p− 3)-longitudinal
compact dimensions the masses of the anomalous and, respectively, the non-anomalous U(1) gauge bosons have the
following generic scale behavior:

anomalous U(1)a : MZ′ = g′aMs ,

non− anomalous U(1)a : MZ′′ = g′aM
3
s V2 . (19)

Here g′a is the gauge coupling constant associated to the group U(1)a, given by g′a ∝ gs/
√

V‖ where gs is the string
coupling and V‖ is the internal D-brane world-volume along the (p − 3) compact extra dimensions, up to an order
one proportionality constant. Moreover, V2 is the internal two-dimensional volume associated to the effective six-
dimensional anomalies giving mass to the non-anomalous U(1)a.

3 E.g. for the case of D5-branes, whose common
intersection locus is just 4-dimensional Minkowski-space, V‖ = V2 denotes the volume of the longitudinal, two-
dimensional space along the two internal D5-brane directions. Since internal volumes are bigger than one in string
units to have effective field theory description, the masses of non-anomalous U(1)-gauge bosons are generically larger
than the masses of the anomalous gauge bosons. Since we want to identify the light Z ′ gauge boson with baryon
number, which is always anomalous, a hierarchy compared to the second U(1)-gauge boson Z ′′ can arise, if we identify
Z ′′ with the anomaly free combination B−L, and take the internal world-volume V2 a bit larger than the string scale.4

In summary, this model has two free parameters: one coupling and one angle in the two-dimensional space orthogonal
to the hypercharge defining the direction of the corresponding Z ′. Tuning the later, it can become leptophobic, while
the former controls the strength of its interactions to matter. As discussed already, one can distinguish two cases: (i)
when B and L have 4d anomalies, the mass ratio of the two extra gauge bosons (Z ′ and Z ′′) is fixed by the ratio of
their gauge couplings, up to order one coefficients; (ii) when B − L is anomaly free and gets a mass from effective
six-dimensional anomalies, the mass ratio of the leftover anomalous U(1) compared to the non-anomalous U(1) is
suppressed by the two-dimensional volume.
To summarize, we will analyze the phenomenology of two D-brane constructions with three mutually orthognal

U(1) charges, in which the combination B − L is either anomalous or anomaly free. In the next section, we analyze
these situations and study the regions of the parameter space where Z ′ is leptophobic and can accommodate the
recent Tevatron data.

IV. LEPTOPHOBIC Z′ AT THE TEVATRON

Taken at face value, the disparity between CDF [12, 13] and D0 [14] results insinuates a commodious uncertainty
as to whether there is an excess of events in the dijet system invariant mass distribution of the associated production
of a W boson with 2 jets (hereafter Wjj production). The Mjj excess showed up in 4.3 fb−1 of integrated luminosity
collected with the CDF detector as a broad bump between about 120 and 160 GeV [12]. The CDF Collaboration fitted
the excess (hundreds of events in the ℓjj+ 6ET channel) to a Gaussian and estimated its production cross section times
the dijet branching ratio to be 4 pb. This is roughly 300 times the SM Higgs rate σ(pp̄→WH)×BR(H → bb̄). For a
search window of 120− 200 GeV, the excess significance above SM background (including systematics uncertainties)
has been reported to be 3.2σ [12]. Recently, CDF has included an additional 3 fb−1 to their data sample, for a total
of 7.3 fb−1, and the statistical significance has grown to ∼ 4.8σ (∼ 4.1σ including systematics) [13]. More recently,
the D0 Collaboration released an analysis (which closely follows the CDF analysis) of their Wjj data finding “no
evidence for anomalous resonant dijet production” [14]. Using an integrated luminosity of 4.3 fb−1 they set a 95%
CL upper limit of 1.9 pb on a resonant Wjj production cross section.

2 In fact, also the hypercharge gauge boson of U(1)Y can acquire a mass through this mechanism. In order to keep it massless, certain
topological constraints on the compact space have to be met.

3 It should be noted that in spite of the proportionality of the U(1)a masses to the string scale, these are not string excitations but zero
modes. The proportionality to the string scale appears because the mass is generated from anomalies, via an analog of the GS anomaly
cancellations: either 4 dimensional anomalies, in which case the GS term is equivalent to a Stuckelberg mechanism, or from effective
6 dimensional anomalies, in which case the mass term is extended in two more (internal) dimensions. The non-anomalous U(1)a can
also grow a mass through a Higgs mechanism. The advantage of the anomaly mechanism versus an explicit vev of a scalar field is that
the global symmetry survives in perturbation theory, which is a desired property for the Baryon and Lepton number, protecting proton
stability and small neutrino masses.

4 In [11] a different (possibly T-dual) scenario with D7-branes was investigated. In this case the masses of the anomalous and non-
anomalous U(1)’s appear to exhibit a dependence on the entire six-dimensional volume, such that the non-anomalous masses become
lighter than the anomalous ones.
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In a previous work [15] we presented an explanation of the CDF data by identifying the resonance with a Z ′

inherent to D-brane TeV-scale string compactifications [1]. In this section we repeat our analysis but with two highly
significant changes. First, we allow for the experimental uncertainty by focusing on a wide range (1.6 − 6.0 pb) of
the (pre-cut) Wjj resonant production cross section. This interpolates between the CDF and D0 results. Second, we
turn our attention to a different D-brane model which has the attractive property of elevating the two major global
symmetries of the SM (baryon number B and lepton number L) to local gauge symmetries.
Related explanations for the CDF anomaly based on an additional leptophobic Z ′ gauge boson have been offered [16].

Alternative new physics explanations include technicolor, new Higgs sectors, supersymmetry with and without R
parity violation, color octect production, quirk exchange, and more [17]. There are also attempts to explain this
puzzle within the context of the SM [18].
The suppressed coupling to leptons (or more specifically, to electrons and muons) is required to evade the strong

constraints of the Tevatron Z ′ searches in the dilepton mode [19] and LEP-II measurements of e+e− → e+e− above
the Z-pole [20]. In complying with the precision demanded of our phenomenological approach it would be sufficient
to consider a 1% branching fraction to leptons as consistent with the experimental bound. This approximation is
within a factor of a few of model independent published experimental bounds. In addition, the mixing of the Z ′ with
the SM Z boson should be extremely small [21, 22] to be compatible with precision measurements at the Z-pole by
the LEP experiments [23].
All existing dijet-mass searches via direct production at the Tevatron are limited to Mjj > 200 GeV [24] and

therefore cannot constrain the existence of a Z ′ with MZ′ ≃ 150 GeV. The strongest constraint on a light leptophobic
Z ′ comes from the dijet search by the UA2 Collaboration, which has placed a 90% CL upper bound on σ(pp̄ →
Z ′) × BR(Z ′ → jj) in this energy range [25]. A comprehensive model independent analysis incorporating Tevatron
and UA2 data to constrain the Z ′ parameters for predictive purposes at the LHC has been recently presented [26].5

In the U(3)C × Sp(1)L × U(1)L × U(1)R D-brane model the Q3, Q1L, Q1R content of the hypercharge operator is
given by,

QY = c1Q1R + c3Q3 + c4Q1L , (20)

with c1 = 1/2, c3 = 1/6, and c4 = −1/2.
The covariant derivative (1) can be re-written as

Dµ = ∂µ − ig′3 CµQ3 − ig′4 B̃µQ1L − ig′1BµQ1R . (21)

The fields Cµ, B̃µ, Bµ are related to Yµ, Yµ
′ and Yµ

′′ by the rotation matrix,

R =







CθCψ −CφSψ + SφSθCψ SφSψ + CφSθCψ
CθSψ CφCψ + SφSθSψ −SφCψ + CφSθSψ
−Sθ SφCθ CφCθ






, (22)

with Euler angles θ, ψ, and φ. Equation (21) can be rewritten in terms of Yµ, Y
′
µ, and Y

′′
µ as follows

Dµ = ∂µ − iYµ (−Sθg′1Q1R + CθSψg
′
4Q1L + CθCψg

′
3Q3)

− iY ′
µ [CθSφg

′
1Q1R + (CφCψ + SθSφSψ) g

′
4Q1L + (CψSθSφ − CφSψ)g

′
3Q3] (23)

− iY ′′
µ [CθCφg

′
1Q1R + (−CψSφ + CφSθSψ) g

′
4Q1L + (CφCψSθ + SφSψ) g

′
3Q3] .

Now, by demanding that Yµ has the hypercharge QY given in Eq. (20) we fix the first column of the rotation matrix
R







Cµ
B̃µ
Bµ






=







Yµ c3gY /g
′
3 . . .

Yµ c4gY /g
′
4 . . .

Yµ c1gY /g
′
1 . . .






, (24)

and we determine the value of the two associated Euler angles

θ = −arcsin[c1gY /g
′
1] (25)

5 Other phenomenological restrictions on Z′-gauge bosons were recently presented in [27].
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and

ψ = arcsin[c4gY /(g
′
4 Cθ)] . (26)

The couplings g′1 and g′4 are related through the orthogonality condition (10),

(

c4
g′4

)2

=
1

g2Y
−
(

c3
g′3

)2

−
(

c1
g′1

)2

, (27)

with g′3 fixed by the relation g3(Ms) =
√
6 g′3(Ms). In what follows, we take Ms = 5 TeV as a reference point for

running down to 150 GeV the g′3 coupling using (12), that is ignoring mass threshold effects of stringy states. This
yields g′3 = 0.383. We have checked that the running of the g′3 coupling does not change significantly within the LHC
range, i.e., 3 TeV < Ms < 10 TeV.
The phenomenological analysis thus far has been formulated in terms of the mass-diagonal basis set of gauge fields

(Y, Y ′, Y ′′). As a result of the electroweak phase transition, the coupling of this set with the Higgses will induce
mixing, resulting in a new mass-diagonal basis set (Z,Z ′, Z ′′). It will suffice to analyze only the 2× 2 system (Y, Y ′)
to see that the effects of this mixing are totally negligible. We consider simplified zeroth and first order (mass)2

matrices

(M2)(0) =

(

0 0

0 M ′2

)

(M2)(1) =

(

M
2

Z ǫ

ǫ m′2

)

(28)

where M ′ is the mass of the Y ′ gauge field, MZ =
√

(g22v
2 + g2Y v

2)/2 is the usual tree level formula for the mass of
the Z particle in the electroweak theory (before mixing), g2 is the electroweak coupling constant, v is the vacuum

expectation value of the Higgs field, and ǫ,m′2 are of O(M
2

Z).

Standard Rayleigh-Schrodinger perturbation theory then provides the (mass)2 (to second order in M
2

Z) and wave
functions (to first order) of the mass-diagonal eigenfields (Z,Z ′) corresponding to (Y, Y ′).

M2
Z =M

2

Z −
(

ǫ2

M ′2

)

, M2
Z′ =M ′2 +m′2 +

(

ǫ2

M ′2

)

, (29)

and

Z = Y −
( ǫ

M ′2

)

Y ′ , Z ′ = Y ′ +
( ǫ

M ′2

)

Y . (30)

From Eqs. (29) and (30) the shift in the mass of the Z is given by δM2
Z = (ǫ/M ′)2, so that ǫ = M ′

√
2MZδMZ . The

admixture of Y in the mass-diagonal field Z ′ is

θ =
ǫ

M ′2
=
MZ

M ′

√

2δMZ

MZ

≃ 0.004 , (31)

where we have taken δMZ = 0.0021 GeV [28]. Interference effects which are proportional to θ are present in processes
with fermions (e.g. Drell-Yan). However, these vanish at the peak of the resonance. Because of the smallness of
θ, modifications of SM partial decay rates of the Z are negligible. (See e.g. [21], for an analysis of such effects.)
Remaining effects are order θ2 ≃ 1.6×10−5, and therefore all further discussion will be, with negligible error, in terms
of Z ′. By the same token, the admixture of Y ′ in the eigenfield Z is negligible, so that the discussion henceforth will

reflect Z ≃ Y and M
2

Z ≃M2
Z .

The third Euler angle φ and the coupling g′1 are determined by requiring sufficient suppression (. 1%) to leptons,
a (pre-cut) production rate 1.6 . σ(pp̄ → WZ ′) × BR(Z ′ → jj) . 6.0 pb at

√
s = 1.96 TeV, and compatibility with

the 90%CL upper limit reported by the UA2 Collaboration on σ(pp̄→ Z ′)× BR(Z ′ → jj) at
√
s = 630 GeV [25].

The f f̄Z ′ Lagrangian is of the form

L =
1

2

√

g2Y + g22
∑

f

(

ǫfL ψ̄fLγ
µψfL + ǫfR ψ̄fRγ

µψfR

)

Z ′
µ

=
∑

f

(

(gY ′QY ′)fL ψ̄fLγ
µψfL + (gY ′QY ′)fR ψ̄fRγ

µψfR

)

Z ′
µ (32)
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q1

q̄2

Z ′

W

q

q̄

ν

q2

ℓ

FIG. 2: Feynman diagram for qq̄ → WZ′ → νℓjj.

where each ψfL (R)
is a fermion field with the corresponding γµ matrices of the Dirac algebra, and ǫfL,fR = vq ± aq,

with vq and aq the vector and axial couplings respectively. The (pre-cut) Wjj production rate at the Tevatron√
s = 1.96 pb, for arbitrary couplings and MZ′ ≃ 150 GeV, is found to be [26]

σ(pp̄→WZ ′)× BR(Z ′ → jj) ≃
[

0.719
(

ǫ2uL
+ ǫ2dL

)

+ 5.083 ǫuL
ǫdL
]

× Γ(φ, g′1)Z′→qq̄ pb , (33)

where Γ(φ, g′1)Z′→qq̄ is the hadronic branching fraction. The presence of a W in the process shown in Fig. 2 restricts
the contribution of the quarks to be purely left-handed. The dijet production rate at the UA2

√
s = 630 GeV can be

parametrized as follows [26]

σ(pp̄ → Z ′)× BR(Z ′ → jj) ≃ 1
2

[

773(ǫ2uL
+ ǫ2uR

) + 138(ǫ2dL + ǫ2dR)
]

× Γ(φ, g′1)Z′→qq̄ pb . (34)

(Our numerical calculation using CTEQ6 [29] agrees within 5% with the result of [26].) The dilepton production rate
at UA2 energies is given by

σ(pp̄ → Z ′)× BR(Z ′ → ℓℓ̄) ≃ 1
2

[

773(ǫ2uL
+ ǫ2uR

) + 138(ǫ2dL + ǫ2dR)
]

× Γ(φ, g′1)Z′→ℓℓ̄ pb , (35)

where Γ(φ, g′1)Z′→ℓℓ̄ is the leptonic branching fraction. From (23) and (32) we obtain the explicit form of the chiral
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TABLE III: Chiral couplings of Y ′ and Y ′′ gauge bosons for φ = −1.16 and g′1 = 0.27.

Name gY ′QY ′ gY ′′QY ′′

Ūi −0.013 −0.411

D̄i −0.386 −0.251

Li −0.125 −0.125

Ēi −0.061 −0.027

Qi 0.199 0.331

couplings in terms of φ and g′1

ǫuL
= ǫdL =

2
√

g2Y + g22
(CψSθSψ − CφSψ)g

′
3 ,

ǫuR
= − 2

√

g2Y + g22
[CθSφg

′
1 + (CψSθSψ − CφSψ)g

′
3] , (36)

ǫdR =
2

√

g2Y + g22
[CθSφg

′
1 − (CψSθSψ − CφSψ)g

′
3] .

Using (33), (34), (35), and (36) the ratio of branching ratios of electrons to quarks is minimized within the φ − g′1
parameter space, subject to sufficient Wjj production and saturation of the 90%CL upper limit. For a (pre-cut) Wjj
production varying between 1.6 − 6.0 pb, one possible allowed region of the φ − g′1 parameter space is found to be
−1.16 . φ . 2.12 and 0.20 . g′1 . 0.27.

A. Anomalous B −L

Let us first consider a reference point of the φ − g′1 parameter space consistent with the recent D0 limit [14]. For
φ = −1.16 and g′1 = 0.27, corresponding to a suppression ΓZ′→e+e−/ΓZ′→qq̄ ∼ 1%, we obtain σ(pp̄ →WZ ′)×BR(Z ′ →
jj) ≃ 1.6 pb at

√
s = 1.96 TeV. From Eqs. (25) and (26), this also corresponds to θ = −0.722, ψ = −1.37.6 All the

couplings of the Y ′ (or equivalently Z ′) gauge boson are now detemined and contained in Eq. (23). Numerical values
are given in Table III under the heading of gY ′QY ′ .
In Fig. 3 we show a comparison of σ(pp̄→ Z ′)×BR(Z ′ → jj) at

√
s = 630 GeV and the UA2 90% CL upper limit

on the production of a gauge boson decaying into two jets. One can see that for our fiducial values, φ = −1.16 and
g′1 = 0.27, the single Z ′ → jj production cross section saturates the UA2 90% CL upper limit.
The Tevatron rate for the associated production channels [26]

σ(pp̄→ ZZ ′)× BR(Z ′ → jj) ≃ 1
4

[

381.5ǫ2uL
+ 221ǫ2uR

+ 1323ǫ2dL + 44.1ǫ2dR
]

× ΓZ′→qq̄ fb (37)

and

σ(pp̄→ γZ ′)× BR(Z ′ → jj) ≃ 1
2

[

767(ǫ2uL
+ ǫ2uR

) + 72.7(ǫ2dL + ǫ2dR)
]

× ΓZ′→qq̄ fb (38)

is always substantially smaller. (In (37) the SM leptonic branching fractions have been included to ease comparison
with the experiment.) It is straightforward to see that these processes should not yet have been observed at the
Tevatron.
The second strong constraint on the model derives from the mixing of the Z and the Y ′ through their coupling to

the two Higgs doublets H1 and H2. The criteria we adopt here to define the Higgs charges is to make the Yukawa
couplings (Huūq, Hdd̄q, Hdēℓ, Hν ν̄ℓ) invariant under all three U(1)’s. From Table II, ūq has the charges (0, 0,−1)
and d̄q has (0, 0, 1). So the Higgs Hu has Q3 = Q1L = 0, Q1R = 1, QY = 1/2, whereas Hd has opposite charges
Q3 = Q1L = 0, Q1R = −1, QY = −1/2.

6 The UA2 data has a dijet mass resolution ∆Mjj/Mjj ∼ 10% [25]. Therefore, at 150 GeV the dijet mass resolution is about 15 GeV.
This is much larger than the resonance width, which is calculated to be Γ(Z′ → ff̄) ≃ 5 GeV [30].
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FIG. 3: Comparison of the total cross section for the production of pp̄ → Z′ → jj at
√
s = 630 GeV and the UA2 90% CL

upper limit on the production of a gauge boson decaying into two jets [25]. We have taken φ = −1.16 and g′1 = 0.27.

Let us consider first the case in which the right-handed neutrino has the following U(1) charges (0, 1, 1). As
explained before, B −L is then anomalous, and there is no hierarchy among the masses of Z ′ and Z ′′. For simplicity
we can assume that Hu ≡ H1 and Hd = H∗

1 , with 〈H1〉 = (0v1). For the second Higgs field Hν ≡ H2 the charges are

Q3 = 0, Q1L = −2, Q1R = −1, QY = 1/2.7 Here, 〈H2〉 = (0v2), v =
√

v21 + v22 = 174 GeV, and tan δ ≡ v1/v2. The

7 Note that H2 cannot correspond to an elementary open string excitation, since it has Q1L = −2. One possibility is to regard H2 as a
composite scalar field, built from two elementary open string scalars, a SM singlet φ and another Higgs doublet H′

2
, H2 ∼ φH′

2
, with

the following U(1)-charges: φ : (0,−1,−1) and H′

2
: (0,−1, 0). In case H2 is a composite scalar field so that the corresponding Yukawa
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TABLE IV: Chiral couplings of Y ′ and Y ′′ gauge bosons for φ = 2.12 and g′1 = 0.26.

Name gY ′QY ′ gY ′′QY ′′

Ūi 0.088 0.395

D̄i 0.410 0.197

Li 0.116 0.116

Ēi 0.045 0.034

Qi −0.249 −0.296

last two terms in the covariant derivative

Dµ = ∂µ − i
1

√

g22 + g2Y
Zµ(g

2
2T

3 − g2YQY )− igY ′Yµ
′QY ′ − igY ′′Yµ

′′QY ′′ , (39)

are conveniently written as

−ixHi

vi
MZYµ

′ − i
yHi

vi
MZYµ

′′ (40)

for each Higgs Hi, with T
3 = σ3/2, where for the two Higgs doublets

xH1 = 1.9

√

g′1
2 − 0.032 Sφ , (41)

xH2 = −xH1 − 1.9



0.054g′1
2

√

1

(g′1
2 − 0.032)(g′1

2 − 0.033)
Cφ +

0.064 Sφ
√

g′1
2 − 0.032



 , (42)

yH1 = 1.9

√

g′1
2 − 0.032 Cφ , (43)

and

yH2 = −yH1 − 1.9



0.054g′1
2

√

1

(g′1
2 − 0.032)(g′1

2 − 0.033)
Sφ +

0.064 Cφ
√

g′1
2 − 0.032



 . (44)

For our fiducial values of φ and g′1 we obtain xH1 = −0.351, xH2 = 0.822, yH1 = 0.151, and yH2 = −0.556.
The Higgs field kinetic term together with the Green-Schwarz mass terms (− 1

2M
′2Y ′

µY
′µ − 1

2M
′′2Y ′′

µ Y
′′µ, see

Appendix) yield the following mass square matrix







M
2

Z M
2

Z(xH1C
2
δ + xH2S

2
δ ) M

2

Z(yH1C
2
δ + yH2S

2
δ )

M
2

Z(xH1C
2
δ + xH2S

2
δ ) M

2

Z(C
2
δx

2
H1

+ S2
δx

2
H2

) +M ′2 M
2

Z(C
2
δxH1yH1 + S2

δxH2yH2)

M
2

Z(yH1C
2
δ + yH2S

2
δ ) M

2

Z(C
2
δxH1yH1 + S2

δxH2yH2) M
2

Z(y
2
H1
C2
δ + y2H2

S2
δ ) +M ′′2






.

The free parameters are tan δ, MZ′ , and MZ′′ which will be fixed by requiring the shift of the Z mass to lie within
1 standard deviation of the experimental value and MZ′ = 150± 5 GeV. We are also minimizing MZ′′ to ascertain
whether it can be detected at existing colliders. This leads to tan δ = 0.65 and MZ′′ ≃M ′′ ≥ 0.90 TeV.
Next, we scan the parameter space to obtain a larger Wjj production cross section at the Tevatron. For φ = 2.12

and g′1 = 0.26, corresponding to a suppression ΓZ′→e+e−/ΓZ′→qq̄ ∼ 0.6%, θ = −0.76, and ψ = −1.36, one obtains
σ(pp̄ → WZ ′) × BR(Z ′ → jj) = 2.9 pb. The associated gY ′QY ′ and gY ′′QY ′′ couplings are given in Table IV. It is
straightforward to see that for xH1 = 0.303, xH2 = −0.740, yH1 = −0.187, and yH2 = 0.690 the shift of the Z mass
would lie within 1 standard deviation of the experimental value if tan δ ≃ 0.64,MZ′ = 150 GeV, andMZ′′ ≥ 0.92 TeV.

coupling arises from a dimension-5 effective operator, one expects that its vacuum expectation value is somewhat suppressed compared
to the vev of H1, i.e. tan δ ≡ v1/v2 > 1.
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TABLE V: Chiral couplings of Y ′ and Y ′′ gauge bosons for φ = 0.0028 and g′1 = 0.20.

Name gY ′QY ′ gY ′′QY ′′

Ūi −0.368 0.028

D̄i −0.368 0.209

Li 0.143 0.143

Ēi −0.142 −0.262

Qi 0.368 −0.119

B. Non-anomalous B −L

We now turn to discuss the alternative framework where the the U(1) right-handed neutrino charges are Q3 = 0,
Q1L = Q1R = −1, which means that B − L is anomaly free. Therefore this case is somewhat preferred compared
to the previous case, since there can be a natural hierarchy among Z ′ and Z ′′. In fact, as we will show below, the
mixing angle φ is small and therefore Z ′ and Z ′′ become essentially B and B − L, respectively. In such a case, two
‘supersymmetric’ Higgses Hu ≡ Hν and Hd with charges Q3 = Q1L = 0, Q1R = 1, QY = 1/2 and Q3 = Q1L = 0,
Q1R = −1, QY = −1/2 would be sufficient to give masses to all the chiral fermions. Here, 〈Hu〉 = (0vu), 〈Hd〉 = (vd0 ),

v =
√

v2u + v2d = 174 GeV, and tanβ ≡ vu/vd. For this particular selection of U(1) charges xHu
= −xHd

= xH1 and
yHu

= −yHd
= yH1 . Therefore, it is straightforward to see that the corresponding mass square matrix for the Z −Z ′

mixing,







M
2

Z M
2

Z(xHu
C2
β − xHd

S2
β) M

2

Z(yHu
C2
β − yHd

S2
β)

M
2

Z(xHu
C2
β − xHd

S2
β) M

2

Z(C
2
βx

2
Hu

+ S2
βx

2
Hd

) +M ′2 M
2

Z(C
2
βxHu

yHu
+ S2

βxHd
yHd

)

M
2

Z(yHu
C2
β − yHd

S2
β) M

2

Z(C
2
βxHu

yHu
+ S2

βxHd
yHd

) M
2

Z(y
2
Hu
C2
β + y2Hd

S2
β) +M ′′2






,

does not impose any constraint on the tanβ parameter. We then use the two degrees of freedom of the model (g′1, φ)
to demand the shift of the Z mass to lie within 1 standard deviation of the experimental value and leptophobia.
Taking MZ′ = 150 GeV, with g′1 = 0.20, φ = 0.0028, and MZ′′ = 5 TeV, we find that ΓZ′′→e+e−/ΓZ′′→qq̄ ≃ 1%.
Recall that for this particular U(1) charge selection of the right-handed neutrino the combination B−L is anomaly

free. Therefore, the mass ratio of the anomalous and the non-anomalous U(1) can be ascribed to a suppression
induced by the large two-dimensional volume. The gY ′QY ′ and gY ′′QY ′′ couplings to the chiral fields are fixed and
given in Table V. The Z ′ couplings to quarks leads to a large (pre-cut) Wjj production (≃ 6 pb) at the Tevatron,
and at

√
s = 630 GeV, a direct (pre-cut) Z ′ → jj production (≃ 700 pb) in the region excluded by UA2 data.

However, it is worthwhile to point out that the UA2 Collaboration performed their analysis in the early days of QCD
jet studies. Their upper bound depends crucially on the quality of the Monte Carlo and detector simulation which
are primitive by today’s standard. They also use events with two exclusive jets, where jets were constructed using
an infrared unsafe jet algorithm [31]. In view of the considerable uncertainties associated with the UA2 analysis we
remain skeptical of drawing negative conclusions. Instead we argue that our supersymmetric D-brane construct could
provide an explanation of the CDF anomaly if acceptance and pseudorapidity cuts reduce the Wjj production rate
by about 35% and the UA2 90% CL bound is taken as an order-of-magnitude limit [32].
The U(1) vector bosons couple to currents

JY = 1.8× 10−1 Q1R + 5.9× 10−2 Q3 − 1.8× 10−1 Q1L

JY ′ = 2.5× 10−4 Q1R + 3.7× 10−1 Q3 + 1.4× 10−1 Q1L (45)

JY ′′ = 9.0× 10−2 Q1R − 1.2× 10−1 Q3 + 3.5× 10−1 Q1L .

Using Eq. (18), we rewrite JY ′ and JY ′′ as

JY ′ = 2.5× 10−4 Q1R + 1.11 B + 1.4× 10−1L

JY ′′ = 9.0× 10−2 Q1R − 2.5× 10−3 (B + L)− 3.55× 10−1 (B − L) . (46)
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Since Tr [Q1RB] = Tr [Q1RL] = 0, the decay widths are given by

ΓY ′ = ΓY ′→Q1R + ΓY ′→B + ΓY ′→L

∝ (2.5× 10−4)2 Tr
[

Q2
1R

]

+ (1.11)2 Tr
[

B2
]

+ (1.4× 10−1)2 Tr
[

L2
]

= 8× (2.5× 10−4)2 +
4

3
× (1.11)2 + 4× (1.4× 10−1)2

= 5× 10−7 + 1.64 + 7.84× 10−2 , (47)

ΓY ′′ = ΓY ′′→Q1R + ΓY ′→B+L + ΓY ′→B−L

∝ (9.0× 10−2)2 Tr[Q2
1R] + (2.5× 10−3)2Tr

[

(B + L)2
]

+ (3.55× 10−1)2Tr
[

(B − L)2
]

= 6.48× 10−2 + 3.33× 10−5 + 6.7× 10−1 . (48)

Thus, the corresponding branching fractions are

BR Y ′ → Q1R : BR Y ′ → B : BR Y ′ → L

2.9× 10−7 : 0.95 : 0.046
(49)

and

BR Y ′′ → Q1R : BR Y ′′ → B + L : BR Y ′′ → B − L

0.09 : 4.5× 10−5 : 0.91 .
(50)

Of course, since the quiver construction has each particle straddling two adjacent branes, there can be considerable
variation in decay channels particle by particle. The dominance of B for the Y ′ decay channel and B − L for the Y ′′

decay channel is valid after averaging over decay channels.8 It is important to note that a 100% coupling of the Y ′

and Y ′′ to B and B−L, respectively, is possible only if the U(1) gauge coupling constants are equal, see Appendix B.

V. LEPTOPHOBIC Z′ AT THE LHC

Since the CDF signal is in dispute, it is of interest to study the predictions of the model for energies not obtainable
at the Tevatron, but within the range of the LHC. To illustrate the LHC phenomenology of our D-brane construct,
we consider the model in which the U(1) right-handed neutrino has charges Q3 = 0, Q1L = Q1R = −1, i.e., B − L is
non-anomalous.
The ATLAS Collaboration has searched for narrow resonances in the invariant mass spectrum of dimuon and

dielectron final states in event samples corresponding to an integrated luminosity of 1.21 fb−1 and 1.08 fb−1, re-
spectively [34]. The spectra are consistent with SM expectations and thus upper limits on the cross section times
branching fraction for Z ′ into lepton pairs have been set.
Using a data set with an integrated luminosity of 1 fb−1, the CMS Collaboration has searched for narrow resonances

in the dijet invariant mass spectrum [35]. For MZ′ ≃ 1 TeV, the CMS experiment has excluded production rates
σ(pp)× BR(Z ′ → jj)×A > 1 pb at the 95%CL. Each event in the search is required to have its two highest-pT jets

with (pseudorapidity) |ηj | < 2.5 and the leading jet must satisfy pj1t > 150 GeV, with |∆ηjj | < 1.3. The acceptance
A of selection requirements is reported to be ≈ 0.6.
To compare our predictions with LHC experimental searches in dilepton and dijets it is sufficient to consider the

production cross section in the narrow Z ′ width approximation,

σ̂(qq̄ → Z ′) = K
2π

3

GF M
2
Z√

2

[

v2q(φ, g
′
1) + a2q(φ, g

′
1)
]

δ
(

ŝ−M2
Z′

)

, (51)

where GF is the Fermi coupling constant and the K-factor represents the enhancement from higher order QCD
processes estimated to be K ≃ 1.3 [36]. After folding σ̂ with the CTEQ6 parton distribution functions [29], we

8 An analogue is in the SM. The Z couples to a current JZ ∝ T3 − tan2 θW
Y
2
, where Q = T3 −

Y
2
. In this case,

∑
(Y
2
)2 = 17

6
and

Tr[T 2

3
] = 2; we have BR Z → T3 : BR Z →

Y
2

= 2 : 17

6
tan4 θW = 2 : 0.25 = 8 : 1. However, this certainly does not hold particle by

particle; e.g., for the neutrino electron doublet: ΓZ→ν ∝ (1 + tan2 θW )2 ∼ 1.7, whereas ΓZ→e ∝ (1 − tan2 θW )2 ∼ 0.5.
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FIG. 4: Comparison of the (pre-cut) total cross section for the production of pp → Z′ → jj (left) and pp → Z′ → ℓℓ (right)
with the 95% CL upper limits on the production of a gauge boson decaying into two jets (left) and two leptons (right), as
reported by the CMS (corrected by acceptance) [35] and ATLAS [34] collaborations, respectively. We have taken φ = 0.0028,
g′1 = 0.20. For isotropic decays (independently of the resonance), the acceptance for the CMS detector has been reporetd to
be A ≈ 0.6 [35]. The predicted Z′ production rates for

√
s = 7 TeV and MZ′ ≃ 3 TeV saturate the current limits.

determine (at the parton level) the resonant production cross section. In Fig. 4 we compare the predicted σ(pp̄ →
Z ′) × BR(Z ′ → jj) (left panel) and σ(pp̄ → Z ′) × BR(Z ′ → ℓℓ) (right panel) production rates with 95% CL upper
limits recently reported by the CMS [35] and ATLAS [34] collaborations. Selection cuts will probably reduced event
rates by factors of 20%. Keeping this in mind, we conclude that the 2012 LHC7 run will probeMZ′ ∼ 3 TeV, whereas
future runs from LHC14 will provide a generous discovery potential of up to about MZ′ ∼ 8 TeV.

VI. REGGE EXCITATIONS

In TeV-scale gravity scenarios where the SM is realized on the world-volume of D-branes the presence of fundamental
strings can also be unearthed by searching for the effects of their vibrations. The particles that appear as the quanta
of oscillating string modes are called Regge excitations and have squared masses quantized in units of Ms = 1/

√
α′,

where α′ is the Regge slope parameter [37]. The leading contributions of Regge recurrences to certain processes
at hadron colliders are universal. This is because the full-fledged string amplitudes which describe 2 → 2 parton
scattering subprocesses involving four gauge bosons as well as those with two gauge bosons and two chiral matter
fields are (to leading order in string coupling, but all orders in α′) independent of the D-brane configuration, the
geometry of the extra dimensions, and whether supersymmetry is broken or not. Therefore, the s-channel pole terms
of the average square amplitudes contributing to dijet production can be obtained independent of the details of the
compactification scheme [38]. For phenomenological purposes, the poles need to be softened to a Breit-Wigner form
by obtaining and utilizing the corrcet total widths of the resonances [39]. After this is done, it is feasible to compute
genuine string corrections to dijet signals at the LHC [40].9 The CMS Collaboration has searched for such narrow
resonances in their dijet mass spectrum [43]. After operating for only few months, with merely 2.9 inverse picobarns
of integrated luminosity, the LHC CMS experiment has ruled out Ms < 2.5 TeV. The LHC7 has recently delivered

9 Phenomenological studies of Regge excitations and associated collider signatures, based on simple toy model embedding parts of the
SM into string theory, have been carried out in [41]. The discovery potential of string resonances via top quark pair production in the
context of cannonical D-brane constructions has been recently established [42].
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FIG. 5: Signal-to-noise ratio of pp → dijet and pp → γ + jet, for
√
s = 14 TeV, L = 100 fb−1, and κ2 ≃ 0.02. The approximate

equality of the background due to misidentified π0’s and the QCD background, across a range of large pγT as implemented in [45],
is maintained as an approximate equality over a range of γ-jet invariant masses with the rapidity cuts imposed (|yj

max| < 1.0
and |yγ

max| < 2.4). Details of the signal and background calculations have been given elsewhere [40].

an integrated luminosity in excess of 1 fb−1. This extends considerably the search territory for new physics in events
containing dijets. The new data exclude string resonances with Ms < 4 TeV [35]. In fact, as shown in Fig. 5, the
LHC has the capacity of discovering strongly interacting resonances via dijet final states in practically all range up to
1
2

√
sLHC. Of particular interest here, for the U(3)C×Sp(1)L×U(1)L×U(1)R D-brane model, the anomaly cancelation

fixes the projection of the hypercharge into the color stack at the string scale: κ = c3
√
6gY /g3 [44]. Therefore one

can also cleany extract the leading string corrections to γ + jet signals at the LHC [45].10 The precise predictions for
the branching fraction of two different topologies (dijet and γ+ jet) can be used as a powerful discriminator of low
mass string excitations from other beyond SM scenarios.

10 E.g., the tree level amplitude for gluon fusion into γ+ jet, M(gg → γg) = cos θW M(gg → Y g) = κ cos θW M(gg → Cg), has a unique
free parameter that is the string scale Ms. Here, θW is the weak angle and C is the extra U(1) boson tied to the color stack. For details
see [45].
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VII. CONCLUSIONS

We have shown that a Z ′ that can explain the CDF Wjj excess and is in full agreement with existing limits on Z ′

couplings to quarks and leptons can materialize in the context of D-brane TeV-scale string compactifications. The
existence of additional, largely leptophopic, Z’s with anomalous masses somewhat less than the string scale, is generic
to the D-brane models discussed in some detail in this paper. Thus, even if the CDF anomaly does not survive
additional scrutiny, there may exist such Z’s with masses & 1 TeV, whose discovery is out of reach of Tevatron, but
open to such at LHC. In that case the analysis presented here can be directly applied to the higher energy realm,
with a view toward identifying the precise makeup of the various abelian sectors, and pursuing with strong confidence
a signal at LHC for the Regge excitations of the string. We have long imagined strings to be minuscule objects which
could only be experimentally observed in the far-distant future. It is conceivable that this future has already arrived.
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Appendix A: Properties of the Anomalous Mass Sector

Outside of the Higgs couplings, the relevant parts of the Lagrangian are the gauge couplings generated by the U(1)
covariant derivatives acting on the matter fields, and the (mass)2 matrix of the anomalous sector

L = QT g X + 1
2X

T
M

2X , (A1)

where Xi are the three U(1) gauge fields in the D-brane basis (Bµ, Cµ, B̃µ), g is a diagonal coupling matrix (g′1, g
′
3, g

′
4),

and Q are the 3 charge matrices.
As in Sec. II, perform a rotation X = RY and require that one of the Y ’s (say Yµ) couple to hypercharge. We then

obtain the constraint on the first column of R given in Eq. (8). However, there is now an additional constraint: the
field Yµ is an eigenstate of M2 with zero eigenvalue. Under the R rotation, the mass term becomes

1
2X

T
M

2X = 1
2Y

T
M2 Y , (A2)

with M2 = RT
M

2 R. We know that at least Yµ is an eigenstate with eigenvalue 0. We also know that Poincare
invariance requires the complete diagonalization of the mass matrix in order to deal with observables. However,
further similarity transformations will undo the coupling of the zero eigenstate to hypercharge. There seems no way
of eventually fulfilling all these conditions except to require that the same R which rotates to couple Yµ to hypercharge
simultaneously diagonalizes M2 so that

M2 = diag(0,M ′2,M ′′2) . (A3)

This implies that the original M2 in the D-brane basis is given by

M
2 = R diag(0,M ′2,M ′′2)RT , (A4)

which results in the following baroque matrix:

M
2 =







a b c

b d e

c e f






, (A5)
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where

a = M ′2(CψSθSφ − CφSψ)
2 +M ′′2(CφCψSθ + SφSψ)

2 ,

b = (M ′2 −M ′′2)CφC2ψSθSφ + C2
φCψ(−M ′2 +M ′′2S2

θ )Sψ + Cψ(−M ′′2 +M ′2S2
θ )S

2
φSψ ,

c = Cθ[M
′′2C2

φCψSθ +M ′2CψSθS
2
φ − (M ′2 −M ′′2)CφSφSψ] ,

d = M ′′2(CψSφ − CφSθSψ)
2 +M ′2(CφCψ + SθSφSψ)

2 ,

e = Cθ[(M
′2 −M ′′2)CφCψSφ +M ′′2C2

φSθSψ +M ′2SθS
2
φSψ] ,

f = C2
θ (M

′′2C2
φ +M ′2S2

φ) . (A6)

Appendix B: B and B −L couplings on the rotated basis

For given a set of U(1) fields with orthogonal charges in the 1, 2, 3, . . . basis, an obvious question is whether each
of the fields on the rotated basis couples to a single charge Q̄i. Let

L = XT g Q , (B1)

be the Lagrangian in the 1, 2, 3, . . . basis, with X i
µ and Qi vectors and g a diagonal matrix in N -dimensional ’flavor’

space. Now rotate to new orthogonal basis (Q̄) for Q

Q = O Q̄ ; (B2)

(B1) becomes

L = XT gO Q̄ . (B3)

As it stands, each X i
µ does not couple to a unique charge Q̄i; hence we rotate X ,

X = R Ȳ , (B4)

to obtain

L = Ȳ T RT gO Q̄ . (B5)

We wish to see if, for given R and g, we can find an O so that

RT gO = ḡ (diagonal) . (B6)

This allows each Ȳ iµ to couple to a unique charge Q̄i with strength ḡi. To see the problem with this, we rewrite (B6)
in terms of components

(RT )ij gj Ojk = ḡi δik ; (B7)

for i 6= k, (B7) leads to

(RT )ij gj Ojk = 0 . (B8)

In general, in Eq. (B8) there are N(N − 1) equations, but only N(N − 1)/2 independent Rij generators in SO(N);
therefore the system is overdetermined. Of course, if g = g1, the equation becomes

RT O = 1, (B9)

and so O = R.
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[arXiv:0808.0497]; L. A. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger and T. R. Taylor, Nucl. Phys. B
821, 181 (2009) [arXiv:0904.3547].

[41] S. Cullen, M. Perelstein and M. E. Peskin, Phys. Rev. D 62, 055012 (2000) [arXiv:hep-ph/0001166]; I. Antoniadis, K. Be-
nakli and A. Laugier, JHEP 0105 (2001) 044 [arXiv:hep-th/0011281]; P. Burikham, T. Han, F. Hussain and D. W. McKay,
Phys. Rev. D 69, 095001 (2004) [arXiv:hep-ph/0309132]; P. Burikham, T. Figy and T. Han, Phys. Rev. D 71, 016005
(2005) [Erratum-ibid. D 71, 019905 (2005)] [arXiv:hep-ph/0411094]; K. Cheung and Y. F. Liu, Phys. Rev. D 72, 015010
(2005) [arXiv:hep-ph/0505241]; P. Meade and L. Randall, JHEP 0805, 003 (2008) [arXiv:0708.3017 [hep-ph]].

[42] Z. Dong, T. Han, M. x. Huang and G. Shiu, JHEP 1009, 048 (2010) [arXiv:1004.5441 [hep-ph]].
[43] V. Khachatryan et al. [CMS Collaboration], Phys. Rev. Lett. 105, 211801 (2010) [Phys. Rev. 106, 029902 (2011)]

[arXiv:1010.0203 [hep-ex]].
[44] L. A. Anchordoqui, W. Z. Feng, H. Goldberg, X. Huang and T. R. Taylor, Phys. Rev. D 83, 106006 (2011) [arXiv:1012.3466

[hep-ph]].
[45] L. A. Anchordoqui, H. Goldberg, S. Nawata and T. R. Taylor, Phys. Rev. Lett. 100, 171603 (2008) [arXiv:0712.0386];

L. A. Anchordoqui, H. Goldberg, S. Nawata and T. R. Taylor, Phys. Rev. D 78, 016005 (2008) [arXiv:0804.2013].


