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According to Noether’s theorem, each symmetry of the dynamics comes with an associated con-
servation law. Despite the importance of relativity symmetries—i.e. invariances under Galileo or
Lorentz boosts—their associated conservation laws are never emphasized. Here we clarify the physi-
cal interpretation of such conservation laws: there exists a collective coordinate—the center-of-mass
position—that undergoes uniform motion. This does not happen for theories that do not obey a
relativity principle. As an application, we derive the Noether currents and charges associated with
an internal galilean invariance π(x) → π(x)+ bµx

µ—a symmetry recently postulated in the context
of so-called galileon theories.

PACS numbers:

Introduction. For any Lagrangian system, Noether’s the-
orem guarantees the existence of a conserved quantity
(or ‘charge’) for each symmetry enjoyed by the dynamics.
Standard examples include energy, momentum, and an-
gular momentum, as the conserved charges corresponding
to time translations, spacial translations, and rotations,
respectively. In field theory we are also accustomed to
having internal symmetries acting on the field variables,
with associated conserved charges, like e.g. the electric
charge. Relativity—be it of the Galileo type or of the
Lorentz one—is also a crucial symmetry, in Newtonian
theories as well as in ‘relativistic’ ones. Yet its associated
conservation law is very rarely mentioned, and somewhat
mysterious (see e.g. [11]). It is the purpose of the present
letter to clarify the physical meaning of such a conserva-
tion law. We will see that it amounts to the statement
that the system’s center of mass moves at constant speed.
This is simply not true for systems that do not obey a
relativity principle. As an application of our results, we
will derive the conservation laws associated with the in-

ternal galilean invariance π(x) → π(x)+ bµx
µ enjoyed by

the so-called galileon field theories [1].

Noether theorem for boost invariance. Consider a system
whose dynamics are invariant under Galilean boosts,

~x → ~x+ ~v0 t . (1)

We will discuss the analogous case of Lorentz invariance
below. The position ~x can be a dynamical degree of free-
dom, like for a non-relativistic mechanical system made
up of point particles and parameterized by their posi-
tions, or an integration variable, that is an argument
for fields in a field theory. Typically systems that are
galilean invariant are also translationally invariant—for
instance this is guaranteed if the system is galilean invari-
ant and time-translationally invariant—so that we also
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have a symmetry

~x → ~x+ ~x0 . (2)

Now we apply the standard derivation of the Noether
theorem. Let us start with the symmetry (2). Because
of it, the variation of the action under an infinitesimal
weakly time-dependent translation with parameter ~x0(t)

must start at order ~̇x0:

δS ≃
∫

dt ~̇x0 · ~P . (3)

On a solution to the equations of motion the action is sta-

tionary, which implies the conservation of ~P . As is well

known, the charge ~P associated with spatial translations
is the total momentum of the system.
Now, the fact that the system is also invariant under

(1) implies that, in fact, δS in (3) should start at order

~̈x0,

δS ≃ −
∫

dt ~̈x0 · ~Ξ (4)

(the minus sign upfront is for notational convenience).

This is equivalent to saying that ~P in (3) is itself a total
time derivative,

~P = ~̇Ξ , (5)

which combined with the conservation of ~P , implies that

on all solutions ~Ξ is a linear function of time:

~Ξ(t) = ~Ξ0 + ~P t . (6)

~Ξ(t) is nothing but the center of mass position ~Xcm times
the total mass of the system. Eq. (6) is the global con-
servation law associated with Galilean invariance. To ex-
plicitly check this, let’s perform a galilean transformation
(1) with mildly time-dependent ~v0(t). We have

δS ≃
∫

dt ~̇v0 · ~Q , (7)
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implying conservation of the quantity ~Q on a solution.

We can express ~Q in terms of ~P and ~Ξ, by noticing that
the time-dependent Galilean transformation we are per-
forming can also be viewed as a time dependent transla-
tion with parameter ~x0(t) = ~v0(t)t. From (4) and (5) we
have

δS ≃
∫

dt
(

~̇v0t+ ~v0
)

· ~̇Ξ (8)

which compared with (7) yields

~Q = ~P t− ~Ξ . (9)

The conservation of ~Q is thus equivalent to eq. (6), with
~Ξ0 = − ~Q. Therefore, we see that the conservation law
associated with Galilean invariance is more conveniently
rephrased as the statement that there is a quantity—the
center of mass position—that evolves linearly in time.
This is in addition to, and not a consequence of, the

conservation of the total momentum. Of course if ~P is
conserved, we can always say that ~P t evolves linearly

in time. But eq. (6), with ~Ξ defined in (4), is a much

stronger statement. It says that there is a quantity ~Ξ(t)
that is a local functional of the dynamical variables, with

no explicit time dependence, that happens to evolve lin-
early in time. It is as strong as an ordinary conservation
law, whereby a local functional of the dynamical variables
happens to be constant in time. To be completely clear,
by ‘local functional’ we mean, in the point-particle me-
chanical case, a function of the particles’ coordinates and
their time derivatives, all evaluated at the same time, and
in the field theory case, the space integral of a local den-

sity. Indeed, the standard expressions for ~Ξ for Galilean
mechanics is

~Ξmech.(t) =
∑

a

ma~xa(t) (10)

Of course all of the above discussion can be straight-
forwardly generalized to the relativistic case. Indeed for
a Lorentz-invariant field theory the Noether charges as-
sociated with the Lorentz boosts are (see e.g. [11])

J0i = tP i −
∫

d3xT 00xi , (11)

where T µν is the (symmetric) stress-energy tensor. They
are close relatives of the angular momentum, but unlike
it, they are usually glossed over. From the above discus-
sion their physical interpretation is clear: their conserva-
tion implies the existence of a collective coordinate

~Ξ(t) =

∫

d3xT 00(x) ~x ≡ E ~Xcm(t) (12)

that evolves linearly with time. The point is often
made that in special relativity there is a well defined
center-of-mass frame—that where the total momentum

vanishes—but no well defined center-of-mass position—
because, given the relativity of simultaneity, it does not
make sense to add up the position vectors for different
particles at the same time. In (12) we see that there is a
well defined quantity that behaves like a center of mass
position should: it moves at the same constant speed as
the center-of-mass frame, and in the non-relativistic limit
it matches the standard Newtonian definition. Only, it
does not transform as the spacial part of a position four-
vector, but rather as the 0i part of a tensor:

Ξµν ≡
∫

d3xT 0µ(x)xν . (13)

It should be emphasized that the Noether charges as-
sociated with Galileo or Lorentz boosts do not commute
with the Hamiltonian of the system—or in the classi-
cal case, they have non-vanishing Poisson brackets with
it. The reason is that they are conserved—because of
Noether’s theorem—yet they depend explicitly on time.
As a result, the energy eigenstates of the system do not
carry definite charge under boosts. This is partially the
reason why we usually ignore these charges.

Counter-examples. To convince ourselves that the linear

evolution of ~Ξ and the conservation of ~P are really in-
dependent physical laws, we can consider a mechanical
system that is invariant under translations but not un-
der boosts, like for instance one made up of many point-
particles interacting via a two-body potential and with
non-Newtonian (and non-Lorentzian) kinetic energies:

S =

∫

dt
∑

a

ma

(

1
2 ~̇x

2
a +α ~̇x 4

a

)

−
∑

a<b

Vab(|~xa−~xb|) . (14)

The system is invariant under translations, and thus the
total momentum

~P =
∑

a

ma~̇xa

(

1 + 4α ~̇x 2
a

)

(15)

is conserved. Nevertheless, for nonzero α the system is
not invariant under galilean transformations, and as a

consequence ~P is not associated with the time derivative
of a collective coordinate—there is no local combination
of ~xa and ~̇xa that evolves linearly in time. The conser-

vation of ~P does not imply that the system as a whole

moves at constant speed. It only does for Galilean (or
Lorentz-) invariant theories.
As an other example, consider a free scalar field φ living

in a background Friedmann-Robertson-Walker (FRW)
universe. The (flat) FRW metric,

ds2 = −dt2 + a2(t) d~x 2 , (16)

is invariant under spacial translations, but does not
feature any boost invariance: there is a preferred set
of observers—the ‘comoving’ ones—and relative motion
with respect to them is physical and measurable. As a
consequence, there must exist a global three-dimensional
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momentum that is conserved but that cannot be writ-
ten as the time derivative of a collective center-of-mass
coordinate. From the action,

S =

∫

d4x
√−g

[

− 1
2 g

µν ∂µφ∂νφ− 1
2m

2φ2
]

, (17)

it is straightforward to derive via Noether’s theorem the
currents associated with spacial translations. They are

Jµ(i) ≡ a5(t)T µi , (18)

where i labels the translation’s direction, and T µν is φ’s
stress-energy tensor:

T µν = ∂µφ∂νφ+ gµνL . (19)

These currents are conserved in the ordinary sense,

∂µJ
µ(i) = 0 , (20)

as a result of the covariant conservation of the stress-
energy tensor,

∇µT
µν = 0 . (21)

Therefore, there is a conserved total ‘momentum’

P i ≡
∫

d3xJ0(i) = −
∫

d3xa3(t) φ̇∂iφ ,
d

dt
P i = 0 ,

(22)
which takes the same form as it has in Minkwoski space,
apart from the extra a3(t) factor, but which now, pre-
cisely because of that factor, cannot be rewritten as the
time-derivative of a center of mass position. That is, mo-
mentum conservation here does not imply uniform mo-
tion. The same derivation applied to a free falling point-
particle in a flat FRW spacetime yields

~p = am
a~v√

1− a2 v2
, (23)

—where vi ≡ dxi/dt is the velocity in comoving
coordinates—as the conserved momentum. In the non-
relativistic limit, the conservation of ~p implies the red-
shifting of the physical velocity

~vph ≡ a~v ∼ 1/a (24)

which is usually attributed to ‘Hubble friction’. Here we
see that there is a conserved momentum, yet its conser-
vation looks nothing like uniform motion. As we argued,
this is a consequence of the lack of boost invariance.

Application to galileons. As an application of these re-
sults we now consider galileon theories [1], which have
attracted some interest recently. Such theories have a
number of novel field-theoretical properties, at the clas-
sical level as well as at the quantum-mechanical one
[1–6], which make them potentially relevant for IR-
modifications of gravity [1], for consistent violations of

the null energy condition within QFT [7], and for alter-
natives to slow-roll inflation [8–10]. In their simplest in-
carnation [1], they correspond to an effective field theory
for a Goldstone boson π that is invariant under internal
Galilean transformations

π(x) → π(x) + bµx
µ . (25)

(Several generalizations of the minimal galileon have been
proposed, and some of them will be briefly touched upon
in the following.) On top of this, the theory also enjoys
a more conventional shift invariance

π(x) → π(x) + c . (26)

The latter yields a standard Noether current jµ, which
we get by performing a weakly x-dependent infinitesimal
shift:

δS ≃
∫

d4x∂µc j
µ . (27)

However, because of the symmetry (25), this variation
should in fact start at second order in derivatives of c(x):

δS ≃ −
∫

d4x∂µ∂νc ξ
µν , (28)

so that the current jµ is a total divergence:

jν = ∂µξ
µν . (29)

(From now on, without loss of generality, we take ξµν to
be symmetric.) The global charge associated with jµ is
of course

Q =

∫

d3x j0 . (30)

Now, the π equation of motion is equivalent to the con-
servation of jµ,

∂µj
µ = ∂µ∂νξ

µν = 0 (31)

which implies that the spacial integral of ξ00 evolves lin-
early in time—it is the analogue of our center-of-mass
coordinate above:

∂2
0

∫

d3x ξ00 = −2∂0

∫

d3x∂iξ
0i −

∫

d3x∂i∂jξ
ij = 0(32)

Moreover, its time-derivative is the shift Noether charge
Q—the analogue of the total momentum:

∂0

∫

d3x ξ00 =

∫

d3x
(

∂µξ
0µ − ∂iξ

0i
)

=

∫

d3x j0 (33)

In conclusion, there is a local functional of the fields

Ξ(t) ≡
∫

d3x ξ00(x) (34)

that on all solutions happens to evolve linearly in time,

Ξ(t) = Ξ0 +Q t . (35)
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Like in our original example, this statement can be seen
as a consequence of the internal galilean invariance (25),
but there is more. After all, our galilean symmetry has
four parameters, and here we discovered just one global
conservation law. There should be four locally conserved
currents, and four associated global charges. To iden-
tify them, we run Noether’s theorem with a weakly x-
dependent galilean shift (25), with parameter bµ(x). The
variation of the action starts at order ∂b:

δS ≃
∫

d4x∂µbα J µ (α) ; (36)

α labels the symmetry, and to avoid confusion for the mo-
ment we use a different notation than for Lorentz indices.
We have four conserved currents J µ (α), which we can
relate to jµ and ξµν using the same trick as above. We
think of our x-dependent galilean transformation as an
x-dependent shift (26), with parameter c(x) = bµ(x)x

µ.
By equating (36) with (28) we thus get

J µ (α) = ξµα − xαjµ . (37)

These are the four Noether currents associated with the
symmetry (25). They are conserved on the eom,

∂µJ µ (α) = ∂µξ
µα − ∂µ

(

xαjµ
)

= −xα∂µj
µ , (38)

because jµ is. The associated global charges are

Qα =

∫

d3x ξ0α − xαj0 , (39)

or more explicitly:

Q0 =

∫

d3x ξ00 − tQ = Ξ(t)− tQ (40)

Qi =

∫

d3x
(

ξ0i − xij0
)

(41)

The conservation of Q0 is equivalent to the linear evo-
lution of Ξ(t) we discovered above. The conservation of
~Q is a more traditional conservation law, in that it does
not involve an explicit time dependence. Notice that the

second piece in ~Q is the total charge dipole of the system.
In summary, we have five locally conserved currents

jµ and J µ (α), and five corresponding global charges Q
and Qα. As an almost trivial example, we can consider
the simplest system with internal galilean invariance—
the free massless scalar:

S = −
∫

d4x 1
2 (∂π)

2 (42)

The various local quantities we have defined above are

jµ = −∂µπ , ξµν = −ηµν π , (43)

J µ (α) = −ηµα π + xα∂µπ , (44)

which yield the conserved charges

Q =
∫

d3x π̇ (45)

Q0 =
∫

d3xπ − tQ (46)

~Q = −
∫

d3x π̇~x (47)

The first is just the usual charge associated with shift
invariance. The third is the total dipole moment of that
charge. The fact that it is conserved is here a trivial con-
sequence of the equation of motion (like all conservation
laws, to some extent), but it is nonetheless a non-trivial
statement (unheard of, at least). And so is the conser-
vation of Q0, which implies that the space integral of π
grows linearly in time.

Derivation of the Currents. We can now derive explicit
expressions for the currents we have defined, in the case
of a generic galileon Lagrangian. The Lagrangian is a
function of first and second derivatives of π,

L = L(∂π, ∂∂π) , (48)

with suitable Lorentz contractions to ensure galilean in-
variance [1]. The shift current jµ is readily determined,
by noticing that under an infinitesimal shift (26) with
x-dependent parameter c(x), we have

δS =

∫

d4x
∂L

∂(∂µπ)
∂µc+

∂L
∂(∂µ∂νπ)

∂µ∂νc (49)

which compared with (27) yields

jµ =
∂L

∂(∂µπ)
− ∂ν

∂L
∂(∂µ∂νπ)

. (50)

To compute the currents associated with galilean shifts,
eq. (37), we need first to determine ξµν , which is de-
fined simply as a symmetric tensor with divergence jµ—
eq. (29). The second piece in (50) is manifestly the di-
vergence of a symmetric tensor. To rewrite the first piece
also as a total divergence requires more work. The rea-
son is that the Lagrangian is not invariant under galilean
shifts (25)—only the action is. That is, the Lagrangian
is invariant only up to a total derivative, which means
that the variation of the action under an infinitesimal x-
dependent shift is not manifestly of the form (28). To
proceed, we need the explicit expression for the galilean
invariants. At (n+ 1)-st order in π we have [1]

Ln+1 = T µ1ν1µ2ν2...µnνn ∂µ1
π∂ν1π ∂µ2

∂ν2π . . . ∂µn
∂νnπ
(51)

where T is a tensor whose explicit form we will not need.
Suffice it to say that it is symmetric under exchanging
any two (µν) pairs, and antisymmetric under exchanging
any two like indices (e.g., of the ν type) belonging to
different (µν) pairs. The latter symmetry ensures that
the derivative of Ln+1 w.r.t. ∂π is a total divergence:

∂Ln+1

∂(∂µπ)
= ∂ν2 T

µνµ2ν2...µnνn ∂νπ ∂µ2
π . . . ∂µn

∂νnπ +

∂µ2
T νµµ2ν2...µnνn ∂νπ ∂ν2π . . . ∂µn

∂νnπ (52)

as predicted. We can simplify this expression, by relat-
ing it to the derivative of Ln+1 w.r.t. ∂∂π. By swapping
ν with ν2 in the first term’s T and with µ2 in the sec-
ond term’s T , and by using the symmetry of T under
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exchanging whole (µν) pairs, we get

∂Ln+1

∂(∂µπ)
= − 2

(n− 1)
∂ν

∂Ln+1

∂(∂µ∂νπ)
. (53)

Plugging this into eq (50) we thus get the full n-th order
contributions to ξµν :

ξµνn+1 = −n+ 1

n− 1

∂Ln+1

∂(∂µ∂νπ)
. (54)

Notice however that this formula only holds when the
galilean invariants Ln+1 are written as in eq. (51), with T
obeying the aforementioned symmetry properties. This
is not the case for all the invariants explicitly displayed in
ref. [1], where an integration by parts was performed on
L3 to rewrite it in a more compact form, thus effectively
reshuffling its dependence on ∂π with that on ∂∂π. The
‘canonical’ form for all the invariants relevant in 4D can
be found instead in ref. [12] [16]. With this qualification
in mind, the currents associated with internal galilean
invariance therefore are

J µ (α)
n+1 =

(

xα∂ν − n+1
n−1δ

α
ν

) ∂Ln+1

∂(∂µ∂νπ)
− xα ∂Ln+1

∂(∂µπ)
. (55)

This formula cannot be applied to the lowest-order invari-
ants, L1 = π and L2 = − 1

2 (∂π)
2—in deriving it we have

been assuming that Ln+1 depends non-trivially both on
∂π and on ∂∂π, and that it does not depend on π. For
L2, we already gave the relevant expressions in (43, 44).
The situation in trickier for L1. By applying Noether’s
theorem to it and using the identities 1 = 1

4∂µx
µ and

xµ = 1
2∂

µx2, we discover that its contributions to the
shift current and to the galilean ones are

jµ1 = − 1
4x

µ, J µ (α)
1 = − 1

2η
µαx2 . (56)

The global charges (30, 40, 41) thus acquire extra pieces
explicitly proportional to t and to t2. However, in the
presence of the tadpole L1 = π any solution will have
non-trivial boundary conditions at spacial infinity. Like
in the case of spontaneous symmetry breaking, this will
generically yield divergent global charges, thus making
their conservation useless. On the other hand the lo-
cal current conservation will still be perfectly valid. For
certain particularly symmetric solution, like the deSit-
ter ones discussed in [1], the dynamics of perturbations
about such asymptotically non-trivial solutions will still
be described by a galileon theory, this time without the
tadpole of course. In such a case the global charges
we derived can be used directly for the perturbations—
provided one uses the perturbations’ Lagrangian in our
formuale.

Generalizations. The generalization of our results to
multi-galileon theories [12–14] should be straightforward.
Perhaps more interesting is the generalization to the
so called IR-completions of the galileon, i.e. to theo-
ries that reduce to the galileon in some appropriate

limit—typically at small distances and at small field
values—and that away from that limit are invariant un-
der a different symmetry group [1]. So far two pos-
sibilities have been proposed—promoting the galileon
symmetry group (spacetime Poincaré plus internal shifts
plus internal galilean transformations) to the conformal
group SO(4, 2) or to the five-dimensional Poincaré group
ISO(4, 1) [1, 15]. The generalization of our results to
the latter case should be straightforward—as was gen-
eralizing the analogous statements we have for ordinary

Galilean invariance to the Lorentz-invariant case. The
reason is that in all these cases the transformation is lin-
ear in the relevant coordinates. As clear from our deriva-
tion, this is the crucial ingredient for our results. For
instance, it never really mattered whether our symme-
tries acted linearly or non-linearly on the dynamical vari-
ables (point particle positions or fields)—the existence
of a local functional that grows linearly in time follows
purely from the existence of a symmetry that is linear
in time. The conformal group case is more complicated.
There, the π shift and galilean transformations get pro-
moted to non-linearly realized dilations and special con-
formal transformations [1] [17]. At the infinitesimal level,
the former are still linear in xµ, thus yielding conserva-
tion laws similar to those we discussed here. On the
other hand, infinitesimal special conformal transforma-
tions are quadratic in xµ. Among the associated conser-
vation laws, there will be one implying the existence of a
local functional that grows quadratically with time.

Summary and Acknowledgements. The invariance of a
theory under ordinary Galileo or Lorentz boosts implies
the existence of a center of mass that moves at constant
speed. This generalized conservation law is not a direct
consequence of momentum conservation—precisely like
invariance under boosts is not a direct consequence of
invariance under spacial translations—and is generically
violated in theories with no boost-invariance. When gen-
eralized to the galileon case, this implies four new conser-
vation laws—which we derived explicitly—one of which
is naturally interpreted as the existence of a local func-
tional of the field and its derivatives that evolves linearly
in time.
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comments on the manuscript. This work is supported by
the DOE (DE-FG02-92-ER40699) and by NASA ATP
(09-ATP09-0049).
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