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Abstract

We study the effect of a magnetic field on the pairing dynamics in two-flavor color supercon-

ducting dense quark matter. The study is performed in the weakly coupled regime of QCD at

asymptotically high density, using the framework of Schwinger-Dyson equation in the improved

rainbow approximation. We show that the superconducting gap function develops a directional

dependence in momentum space. Quasiparticles with momenta perpendicular to the direction of

the magnetic field have the largest gaps, while quasiparticles with momenta parallel to the field

have the smallest gaps. We argue that the directional dependence is a consequence of a long range

interaction in QCD. The quantitative measure of the ellipticity of the gap function is determined

by a dimensionless ratio, proportional to the square of the magnetic field and inversely proportional

to the fourth power of the quark chemical potential. For magnetic fields in stars, B . 1018 G,

the corresponding ratio is estimated to be less than about 10−2, justifying the use of the weak

magnetic field limit in all stellar applications.
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I. INTRODUCTION

Quantum chromodynamics (QCD), the fundamental theory of strong interactions, pre-

dicts that quark matter at sufficiently high densities and sufficiently low temperatures is

a color superconductor [1–5]. (For reviews, see for example Refs. [6, 7].) The property

of asymptotic freedom in QCD ensures that such matter is weakly interacting at asymp-

totically large densities and, therefore, allows a rigorous treatment of the corresponding

nonperturnative dynamics of Cooper pairing [8–15]. The simplest color superconducting

phases correspond to spin-zero pairing. Depending on the number of quark flavors partici-

pating in pairing, one can have two-flavor color superconducting (2SC) phase [4, 5] or color-

flavor-locked (CFL) phase [16]. Many additional complications arise when β-equilibrium

and neutrality of quark matter is enforced [17–20].

Recently, the study of color superconductivity in the presence of magnetic fields attracted

a lot of attention [21–25]. This interest is primarily driven by potential astrophysical ap-

plications, where magnetic fields play an important role. In the case of neutron stars, for

example, the surface magnetic fields can reach up to about B ≃ 1012 G [26]. For magnetars,

the corresponding fields can be still a few orders of magnitude larger, i.e., B ≃ 1014−1015 G,

and perhaps even as high as 1016 G [27]. Furthermore, it is possible that the magnetic field

in the stellar interiors are much higher and reach up to about B ∼ 1018 G [26, 28].

In order to understand the properties of two- and three-flavor color superconducting

phases with spin-zero pairing in a magnetic field, it is important to first recall their electro-

magnetic properties. Despite being color superconductors, these phases can be penetrated

by long-range “rotated” magnetic fields, which are not subject to the Meissner effect [29, 30].

The rotated gauge fields are linear combinations of the vacuum photon and one of the gluons.

While all Cooper pairs are neutral with respect to the corresponding “rotated” electromag-

netism, the individual quark quasiparticles carry well defined charges. It is not surprising,

therefore, that the diquark pairing dynamics is affected by the presence of a magnetic field.

The recent studies revealed many interesting qualitative features of the magnetic 2SC and

CFL phases [21–23]. However, all such studies share a common shortcoming: they are per-

formed in the framework of Nambu-Jona-Lasinio (NJL) models with contact interactions.

In this paper, we extend the analysis of two-flavor color superconductivity in a magnetic

field by taking into account the long-range interaction in quark matter. In particular, we
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perform the study in the framework of the Schwinger-Dyson equation for the gap function in

the weakly coupled regime of QCD at large densities. The long-range interaction is provided

by the one-gluon exchange, in which the dominant screening and Landau damping effects

are included. Our study reveals a qualitatively new feature of the magnetic 2SC phase, a

directional dependence of the gap function, which is a consequence of the nonlocal interaction

in quark matter.

In the weak magnetic field limit, we find that the effect of a nonzero field can be mim-

icked by an effective increase of the strong coupling constant that governs the Cooper pair-

ing dynamics: g2 → g2(1 + ǫ sin2 θBk), where θBk is the angle between the quasiparticle

momentum and the direction of the magnetic field, and the dimensionless quantity ǫ is a

measure of ellipticity of the gap function. The latter is given by the dimensionless ratio

ǫ = 27π(eB)2/(2g2µ̄4), where B is the magnetic field and µ̄ is the quark chemical potential.

As one can easily check, this ratio is much less than 1 even for the strongest possible fields

in stars and, therefore, the use of the weak magnetic field limit is justified for all stellar

applications. For completeness, we extend our analysis to the case of superstrong magnetic

fields and find that the value of the gap increases with the field also in this regime. As

expected on general grounds, the effects of non-locality of the interaction become negligible

in superstrong fields and the directional dependence of the gap disappears. It should be

remarked, however, that our analysis in the case of strong fields is performed with less rigor

because the gluon screening effects in this case are not well known.

The rest of the paper is organized as follows. In Sec. II, we introduce the model and

review how a constant rotated magnetic field enters the Lagrangian density and how the

rotated electric charges of quasiparticles are defined. Explicit expressions for quasiparticle

propagators in sectors with different rotated charges are presented in Sec. III. Then, in

Sec. IV, we derive the gap equation and solve it approximately in the limit of a weak

magnetic field. In the same section, we also obtain an estimate for the gap in the strong

field limit. In Sec. V, we discuss the results and give a brief outlook. Several Appendices at

the end of the paper contain many technical details and derivations used in the main text.
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II. MODEL

As stated in Introduction, the analysis in this study is done in the framework of weakly

interacting two-flavor QCD at large densities. The quadratic part of the corresponding

Lagrangian density of quarks in an external rotated magnetic field is given by

Lem
quarks = ψ̄

(

iγµ∂µ −m+ µ̂γ0 + ẽγµÃµQ̃
)

ψ, (2.1)

where Ãµ is the rotated massless Ũ(1)em gauge field. This field is a linear combination of

the vacuum photon Aµ and the 8th gluon G8
µ: Ãµ = cos θ̃ Aµ − sin θ̃ G8

µ, where cos θ̃ =

g/
√

g2 + e2/3 [29, 30]. (Here we use the standard convention for SU(3)c color generators

in the adjoint representation [30].) The quarks carry flavor and color indices ψia, where

i ∈ (u, d) = (1, 2) is the flavor index and a ∈ (r, g, b) = (1, 2, 3) is the color index. The

multi-component quark spinor field ψ is assumed to have the following explicit form:

ψ =



















ψur

ψug

ψub

ψdr

ψdg

ψdb



















. (2.2)

Here we assume that up and down quarks have the same masses (mu = md = m). In the

2SC phase, the matrix of chemical potentials µ̂ can have a nontrivial color-flavor structure.

When β-equilibrium and neutrality of quark matter is imposed [18], the matrix elements of

µ̂ read

µij,ab = [µ δij − µe(Qf)ij ] δab +
2√
3
µ8δij(T8)ab, (2.3)

where only one out of three parameters (µ, µe and µ8) is truly independent, while the other

two must be adjusted to achieve color and electric neutrality. For subtleties regarding the

color neutrality, see Ref. [31].

The explicit form of the quasiparticle charge operator Q̃, that corresponds to Ũ(1)em

gauge group, is given by Q̃ = Qf ⊗ Ic − If ⊗ ( T8√
3
)c, where Qf = diag(2

3
,−1

3
) is the usual

matrix of electromagnetic charges of quarks in flavor space, and T8 is the 8th generator of

SU(3)c gauge group in the adjoint representation. In units of ẽ = eg/
√

g2 + e2/3, the Q̃

charges of quarks are given in Table I.
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TABLE I: Q̃ charges of quarks measured in units of ẽ = eg/
√

g2 + e2/3.

ur ug ub dr dg db

+1
2 +1

2 1 −1
2 −1

2 0

In order to simplify the explicit form of the quark propagators in the magnetic 2SC

phase, it is convenient to introduce the following set of projectors onto the subspaces of

quasiparticles with different values of rotated-charges [23]:

Ω+ 1
2
= diag(1, 1, 0, 0, 0, 0), (2.4)

Ω+1 = diag(0, 0, 1, 0, 0, 0), (2.5)

Ω− 1
2
= diag(0, 0, 0, 1, 1, 0), (2.6)

Ω0 = diag(0, 0, 0, 0, 0, 1). (2.7)

This is a complete set of projectors, satisfying the following relations:

ΩQ̃ΩQ̃′ = δQ̃Q̃′ΩQ̃, Q̃, Q̃′ = ±1/2,+1, 0. (2.8)

Ω+ 1
2
+ Ω+1 + Ω− 1

2
+ Ω0 = 1. (2.9)

By making use of these projectors, we can decompose the multi-component quark spinor

field into separate pieces, describing groups of quasiparticles with different rotated charges:

ψ = ψ(+ 1
2
) + ψ(+1) + ψ(− 1

2
) + ψ(0), (2.10)

where, by definition,

ψ(+ 1
2
) = Ω+ 1

2
ψ, ψ(+1) = Ω+1ψ, ψ(− 1

2
) = Ω− 1

2
ψ, ψ(0) = Ω0ψ. (2.11)

In the new notation, the quadratic part of the quark Lagrangian density can be rewritten

as follows:

Lem
quarks =

∑

Q̃=±1/2,+1,0

ψ̄(Q̃)(iγ
µ∂µ −m+ µQ̃γ

0 + ẽQ̃γµÃµ)ψ(Q̃). (2.12)

As follows from Eq. (2.3), the chemical potentials µQ̃ for quasiparticles with different Q̃-
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charges, when projected onto the relevant color-flavor subspaces, are given by

µ(+ 1
2
) = µur = µug = µ− 2

3
µe +

1

3
µ8, (2.13)

µ(− 1
2
) = µdr = µdg = µ+

1

3
µe +

1

3
µ8, (2.14)

µ(+1) = µub = µ− 2

3
µe −

2

3
µ8, (2.15)

µ(0) = µdb = µ+
1

3
µe −

2

3
µ8. (2.16)

In this study, in order to simplify the analysis of the gap equation we will eventually neglect

the effects due to nonzero µe and µ8. This is certainly justified in the study of QCD at

asymptotically large densities. On the other hand, if the analysis is to be extrapolated to

moderately large densities, relevant for compact stars, nonvanishing µe and µ8 may become

important [17–20]. One should keep in mind, however, that the study of such a moderate

density quark matter from first principles will be still quantitatively unreliable within the

framework of the Schwinger-Dyson equation because of the strong coupling regime. As for

the main purpose of this study, it aims only at a better understanding of the qualitative role

of long-range forces.

III. QUASIPARTICLE PROPAGATORS

In the 2SC color superconducting phase, only the quasiparticles with the charges Q̃ = ±1
2

participate in Cooper pairing, while the remaining two quasiparticles (with charges Q̃ = 0, 1)

play the role of passive spectators. Therefore, in the rest of the analysis, we will concentrate

exclusively on the two pairs of quasiparticles participating in Cooper pairing and ignore the

others.

As usual in studies of color superconducting phases, it is convenient to introduce the

Nambu-Gorkov spinors,

Ψ̄(Q̃) = (ψ̄(Q̃), ψ̄
C
(−Q̃)

), Ψ(Q̃) =





ψ(Q̃)

ψC
(−Q̃)



 , (3.1)

for quasiparticles with the charges Q̃ = ±1
2
. Here ψC

(Q̃)
= Cψ̄T

(Q̃)
and ψ̄C

(Q̃)
= ψT

(Q̃)
C are

the charge-conjugate spinors, and C = iγ2γ0 is the charge-conjugation matrix satisfying

the relations: C−1γµC = −(γµ)T and C = −CT . In terms of the Nambu-Gorkov spinors,
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Lagrangian density (2.12) takes the form

Lem
quarks =

1

2

∑

Q̃=±1/2

Ψ̄(Q̃)S
−1

(Q̃),0
Ψ(Q̃) +

∑

Q̃=+1,0

ψ̄(Q̃)[G
+

(Q̃),0
]−1ψ(Q̃), (3.2)

where the inverse free propagator S−1

(Q̃),0
for each sector with a fixed value of Q̃-charge has a

block-diagonal form,

S−1

(Q̃),0
= diag

(

[G+

(Q̃),0
]−1, [G−

(Q̃),0
]−1
)

, (3.3)

and the explicit form of the diagonal elements reads

[

G±
(Q̃),0

]−1

= γµ
(

i∂µ + Q̃ẽÃµ

)

± µ(Q̃)γ
0 −m. (3.4)

For quasiparticles participating in Cooper pairing, the full propagators also have nonzero

off-diagonal Nambu-Gorkov components, determined by the color superconducting gap func-

tion, i.e.,

S−1

(Q̃)
=





[G+

(Q̃),0
]−1 ∆−

(Q̃)

∆+

(Q̃)
[G−

(Q̃),0
]−1



 . (3.5)

The color-flavor structures of ∆−
(Q̃)

and ∆+

(Q̃)
are given by

∆−
(+ 1

2
)
= −∆−

(− 1
2
)
=





0 −iγ5∆
iγ5∆ 0



 , (3.6)

∆+
(+ 1

2
)
= −∆+

(− 1
2
)
=





0 iγ5∆∗

−iγ5∆∗ 0



 . (3.7)

Note that the explicit forms of the two relevant Nambu-Gorkov spinors (3.1) read

Ψ(+ 1
2
) =













ψur

ψug

ψC
dr

ψC
dg













, Ψ(− 1
2
) =













ψdr

ψdg

ψC
ur

ψC
ug













. (3.8)

It appears that one can partially diagonalize the inverse full propagators S−1

(Q̃)
by simply

reordering the components of the spinors as follows:

Ψnew
(+ 1

2
)
=













ψur

ψC
dg

ψug

ψC
dr













, Ψnew
(− 1

2
)
=













ψdr

ψC
ug

ψdg

ψC
ur













. (3.9)
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From physics viewpoint, the possibility of such a partial diagonalization reflects the fact that

there are two different types of Cooper pairs: one made of red up and green down quarks

and the other made of green up and red down quarks.

In the new basis, the inverse full propagator S−1

(Q̃)
has the following block-diagonal form:

S−1

(Q̃)
= diag

(

[SX
(Q̃)

]−1, [SY
(Q̃)

]−1
)

, (3.10)

where

[SX
(+ 1

2
)
]−1 =





γµ(i∂µ +
1
2
ẽÃµ) + µurγ

0 −m −iγ5∆
−iγ5∆∗ γµ(i∂µ +

1
2
ẽÃµ)− µdgγ

0 −m



 , (3.11)

[SY
(+ 1

2
)
]−1 =





γµ(i∂µ +
1
2
ẽÃµ) + µugγ

0 −m iγ5∆

iγ5∆∗ γµ(i∂µ +
1
2
ẽÃµ)− µdrγ

0 −m



 , (3.12)

and

[SX
(− 1

2
)
]−1 =





γµ(i∂µ − 1
2
ẽÃµ) + µdrγ

0 −m iγ5∆

iγ5∆∗ γµ(i∂µ − 1
2
ẽÃµ)− µugγ

0 −m



 , (3.13)

[SY
(− 1

2
)
]−1 =





γµ(i∂µ − 1
2
ẽÃµ) + µdgγ

0 −m −iγ5∆
−iγ5∆∗ γµ(i∂µ − 1

2
ẽÃµ)− µurγ

0 −m



 . (3.14)

Using the representation for the inverse quasiparticle propagator in Eq. (3.10), we find the

propagator itself,

S(Q̃) = diag
(

SX
(Q̃)
, SY

(Q̃)

)

. (3.15)

The calculation of the corresponding diagonal blocks SX,Y

(Q̃)
is tedious, but straightforward.

The details of derivation are presented in Appendix A.

IV. GAP EQUATION

In the coordinate space, the gap equation (i.e., the off-diagonal component of the

Schwinger-Dyson equation for the full propagator) reads

[

SX
(Q̃)

]−1

21
(u, u′) = ig2γµ

(

−TA
)T
[

SX
(Q̃)

]

21
(u, u′)γνTBDAB

µν (u, u′), (4.1)

where Dµν(u, u
′) is the gluon propagator, and u ≡ (t, z, r⊥) is a four-vector of space-time

position. We will assume that the gluon propagator is diagonal in adjoint color indices. Note
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that the off-diagonal component of the propagator SY
(Q̃)

satisfies a similar equation. While

Eq. (4.1) describes Cooper pairing of red up and green down quarks, the equation for SY
(Q̃)

describes Cooper pairing of green up and red down quarks.

In this study of Cooper pairing in a magnetized color superconducting phase, it is conve-

nient to start from the coordinate-space representation of the gap equation, see Eq. (4.1), and

then switch to the Landau-level representation. This is in contrast to the usual momentum

space representation, often utilized in the case of vanishing external fields.

In this connection, a short remark is in order regarding the general structure of a quasi-

particle propagator. Because of the interaction of charged quasiparticles with the magnetic

field, their momenta in the two spatial directions perpendicular to the field are not well

defined quantum numbers. This is reflected in the structure of the propagator (as well as its

inverse), which is not a translationally invariant function in coordinate space. Instead, the

quasiparticle propagator has the form of a product of the universal Schwinger phase (which

spoils the translational invariance) and a translationally invariant part [32] (for details, see

Appendix A).

After factoring out the same Schwinger phase on both sides of the gap equation and

projecting the resulting equation onto subspaces of different Landau levels, one obtains an

infinite set of coupled equations, see Eq. (B6) in Appendix B. For both charges Q̃ = ±1/2,

the gap equations are similar. Here we show only the final set of equations for Q̃ = +1/2:

∆mP− +∆m+1P+ = −i2g
2

3

∞
∑

n=0

∫

dω′dk′3

(2π)2

∫

d2q⊥
(2π)2

γµ∆n

[

L(0)
n,m

En
Cn

P− + L(0)
n−1,m

En
Cn

P+

]

× γνDµν(ω − ω′, k3 − k′3; q⊥), (4.2)

where m,n = 0, 1, 2, . . . are Landau level indices, and functions Cn and En are defined in

Appendix A, see Eq. (A19) and (A23), respectively. These functions depend on the param-

eters of the model (e.g., masses and chemical potentials of quarks) as well as on the color

superconducting gap parameters ∆n. Note that the gaps associated with different Landau

levels are not necessarily equal. This fact is emphasized by the Landau level subscript n in

the notation. Here and below, we assume that all gaps ∆n are real functions.
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A. Gluon propagator

In dense quark matter, unlike in vacuum, the gluon exchange interaction is partially

screened. Therefore, when analyzing the Cooper pairing dynamics between quarks, it is very

important to take the relevant screening effects due to nonzero density into consideration

[8]. In the problem at hand, in addition, one should account for the external magnetic field,

which can further modify the screening of the one-gluon interaction through quark loops.

The latter can be quite important in strong magnetic fields [33]. To simplify the analysis in

this study, we will assume that the magnetic field is weak (|eB| ≪ µ2). At the end, we shall

see that this happens to be a very good approximation for most stellar applications.

In the case of a weak external field, the screening of the one-gluon interaction in dense

medium can be described well by the usual hard-dense loop approximation [34–36]. In the

Coulomb gauge, the Lorentz structure of the gluon propagator is given by [37, 38]

Dµν(Q) = −Q
2

q2
δµ0δν0
Q2 − F

−
P T
µν

Q2 −G
, (4.3)

where functions F and G define the spectra of the longitudinal and transverse gluons, re-

spectively. Both functions depend on the energy q0 and the absolute value of the three-

momentum |~q|. By definition, Q = (q0, ~q) is a momentum four-vector. The transverse

Lorentz projector P T
µν is defined as follows:

P T
00 = P T

0i = 0, P T
ij = δij − q̂iq̂j. (4.4)

In the most important regime for Cooper pairing dynamics, q0 ≪ |~q| ≪ mD, the approximate

expressions for these screening functions read [34–36]

F ≃ m2
D, G ≃ π

4
m2

D

q0

|~q| , (4.5)

where m2
D = (gµ/π)2 is the Debye screening mass in two-flavor quark matter. At large den-

sities, the exchange interaction by electric gluon modes is strongly suppressed due to Debye

screening and, to leading order, plays no role. Magnetic gluon modes, on the other hand,

are subject only to a mild dynamical screening (Landau damping) at nonzero frequencies

and play the dominant role in Cooper pairing [8].
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B. Gap equation: weak magnetic field limit

In order to obtain the gap equation in the weak magnetic field limit, we expand the

translationally invariant part of the full fermion propagator in powers of the magnetic field

and keep the leading terms up to second order, (ẽQ̃B̃)2 (for details, see Appendix C and D).

Omitting the technical details, here we present the final form of the gap equation,

∆(ω) = T (0)(ω) + T (1)(ω) + T (2)(ω), (4.6)

where

T (i)(ω) = −i2g
2

3

∫

dω′

2π

∫

d3k′

(2π)3
∆(ω′)γµK(i)(ω′,k′)γνDµν(ω − ω′,k − k′) (4.7)

is the contribution of the ith order in powers of the magnetic field. The explicit form of

the kernels K(i)(ω,k) for the three leading order terms in the gap equation are presented in

Eqs. (C22), (C23) and (C24) in Appendix C.

At zero magnetic field, Eq. (4.6) reduces to the well known gap equation in the 2SC phase

without a magnetic field [8–14]. After switching to the Euclidean space and performing the

traces on both sides of the gap equation, we rederive the following 0th order (i.e., vanishing

magnetic field) equation:

∆(0)(ωE) =
g2

3

∫

dω′
E

(2π)

∫

d3k′

(2π)3
∆(0)(ω′

E)

(ω′
E)

2 + (k′ − µ̄)2 + [∆(0)(ω′
E)]

2

×
[

1

(ωE − ω′
E)

2 + |k − k′|2 +m2
D

+
2|k− k′|

|k − k′|3 + ω3
l

]

, (4.8)

where k = |k|, k′ = |k′|, ωE = iω, ω′
E = iω′ and ω3

l = (π/4)m2
D|ω′

E − ωE|. For simplicity,

here we assumed that m = 0 and that the chemical potentials of all quarks are identical and

equal µ̄.

After performing the integration over k′ and keeping only the leading order contributions

from the dynamically screened magnetic gluon exchange, we arrive at

∆(0)(ωE) =
g2

36π2

∫ ∞

−∞
dω′

E

∆(0)(ω′
E)

√

(ω′
E)

2 + (∆(0))2
ln

Λ

|ω′
E − ωE|

, (4.9)

where Λ = (4µ)3/(πm2
D). The approximate solution to this equation reads [8–14]

∆(0) ≃ Λ exp(− 3π2

√
2g

+ 1). (4.10)
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Using this result as a benchmark, let us proceed to the case of a weak but nonzero magnetic

field.

It is easy to check (and might have been expected from the symmetry arguments) that

the first order term, i.e., T (1)(ω) in Eq. (4.7), which is linear in a magnetic field, vanishes

after the Dirac traces are performed. Thus, the leading correction to the gap equation in a

weak magnetic field comes from the second order term, i.e., T (2)(ω) in Eq. (4.7).

To the same leading order in coupling, which includes only the exchange interaction due

to dynamically screened magnetic gluons, we derive the following explicit form of the gap

equation (for the details of derivation, see Appendix D):

∆(B)(ωE) =
g2

36π2

∫ ∞

−∞
dω′

E∆
(B)(ω′

E)

[

1
√

(ω′
E)

2 + (∆(B))2
ln

Λ

|ω′
E − ωE|

+

+
9ω15

l (ẽQ̃B̃)2 sin2 θBk

4µ̄2
(

ω6
l + [(ω′

E)
2 + (∆(B))2]

3
)3 ln

ωl

|ω′
E − ωE |

]

. (4.11)

The detailed analysis of this equation may not be very easy. However, several of its qualita-

tive properties are obvious right away. First of all, the positive sign of the subleading order

correction, proportional to (ẽQ̃B̃)2, indicates that the gap increases with the magnetic field.

This is in qualitative agreement with the intuitive expectation that the external magnetic

field should enhance the binding energy of Cooper pairs made of quasiparticles with opposite

charges [21–23]. From the fact that this correction to the gap equation is also proportional

to sin2 θBk, where θBk is the angle between the quasiparticle momentum and the magnetic

field, we conclude that the gap function acquires a directional dependence. Moreover, we see

that the largest value of the gap will be for quasiparticles with the momenta perpendicular

to the magnetic field. On the other hand, for quasiparticles with the momenta parallel to

the field, there is no enhancement of the gap at all.

In order to understand the qualitative effect of the subleading term quadratic in magnetic

field, we can perform the following semi-rigorous analysis of Eq. (4.11). To this ends, let

us cut the infrared region of integration off at ω′
E = ∆(B) and substitute ∆(B) = 0 in the

denominators of both terms on the right hand side of the equation. We then arrive at

∆(B) ≃ g2

18π2

(

1 +
54π(ẽQ̃B̃)2

g2µ̄4
sin2 θBk

)

∫ Λ

∆(B)

dω′
E

∆(B)

ω′
E

ln
Λ

ω′
E

. (4.12)

While this approximation cannot be used to get a reliable estimate for the gap, it is very

helpful to understand the qualitative effect of the magnetic field on the pairing dynamics in

12



color superconducting dense quark matter. It shows that the effective coupling constant in

the presence of a magnetic field becomes larger, i.e.,

g2 → g2eff = g2

(

1 +
27π(ẽB̃)2

2g2µ̄4
sin2 θBk

)

, (4.13)

where we substituted Q̃ = ±1
2
. The validity of the weak field approximation requires that

the subleading correction is small compared to the leading result. This translates into the

requirement |ẽB̃|2 . g2µ̄4. As we shall see below, this condition is always satisfied in stellar

applications.

Without rigorously solving the gap equation (4.11), now we can claim that the solution for

the gap function in the magnetic 2SC phase is approximately given by the same expression

as in the absence of the field, but with the coupling constant g replaced by geff , i.e.,

∆(B) ≃ Λ exp(− 3π2

√
2geff

+ 1) ≃ ∆(0)eβBk , (4.14)

where the explicit expression for βBk follows from Eq. (4.13),

βBk =
81π3(ẽB̃)2

4
√
2g3µ̄4

sin2 θBk. (4.15)

This is a nonnegative function, which depends on the angle between the quasiparticle mo-

mentum k and the magnetic field B̃. Is maximum value β
(max)
Bk is obtained θBk = 90◦

The final result in Eq. (4.14) is interesting for several reasons. Most importantly, it shows

that the gap is non-isotropic, taking its largest values when the quasiparticle momenta are

perpendicular to the direction of the magnetic field, and taking its smallest value when the

quasiparticle momenta are along/against the field. We also find that, compared to the case

without the magnetic field, the gap is subject to an increase in all directions of quasiparticle

momenta, except for the directions exactly along or against the magnetic field.

C. Gap equation: strong magnetic field limit

To get a qualitative insight about the pairing dynamics in the case of a strong magnetic

field, ẽB̃ & µ2, it seems sufficient to consider the gap equation in the lowest Landau level

approximation. The choice of a simple approximation for the gluon exchange interaction

is much harder to justify. Here we will use the gluon propagator with the screening effects

at zero magnetic field. Obviously, such an approximation is not very reliable. A naive
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justification for such an approximation is the observation that gluons couple not only to

the charged quasiparticles (with Q̃ = ±1/2 and Q̃ = 1), which are strongly affected by

the magnetic field, but also to neutral quasiparticles (with Q̃ = 0), which are not affected

by the magnetic field at all. If zero density (µ = 0) and strong magnetic field limit in

gauge theories is used as a guide for intuition, one may suggest that those gluons, which

are coupled only to charged quasiparticles, will be subject to an additional Debye screening

with an effective mass meff
D ∝ g

√

|ẽB̃| [33]. The other gluons will be still providing the same

dominant interaction with dynamical screening as in absence of the external field. Then,

the usual hard dense loop approximation may be still qualitatively reasonable. Besides, to

the best of our knowledge, the explicit result for the polarization tensor (screening) in dense

QCD matter (µ 6= 0) in a magnetic field (B 6= 0) is not available in the literature. Thus,

the main purpose of our exercise in this subsection, which is based on the simplest possible

approximation, will be to roughly estimate the color superconducting gap due to long-range

interaction in the regime of a strong external magnetic field.

By making use of the Eq. (4.2), we easily derive the gap equation in the lowest Landau

level approximation,

∆(B)(ωE) =
g2

3

∫

dω′
Edk

′3

(2π)2

∫

d2q⊥
(2π)2

exp

(

−q
2
⊥l

2

2

)

∆(B)(ω′
E)

(ω′
E)

2 + (k′3 − µ)2 + (∆(B))2

× q2⊥
(k′3 − k3)2 + q2⊥

[(k′3 − k3)2 + q2⊥]
1
2

[(k′3 − k3)2 + q2⊥]
3
2 + ω3

l

. (4.16)

Because of the exponential suppression in the integration over the transverse momentum q⊥,

the dominant contribution comes from the region of small momenta, q⊥l . 1. Therefore,

an approximate result can be obtained by simply making a sharp ultraviolet cutoff at q⊥ =
√
2/l and dropping altogether the exponential factor exp(−q2⊥l2/2) in the integrand. After

performing the integration also over the longitudinal momentum k′3, we will arrive at the

following approximate gap equation:

∆(B)(ωE) ≈
g2

72π2

∫ +∞

−∞
dω′

E

∆(B)(ω′
E)

√

(ω′
E)

2 + (∆(B))2
ln

ΛB

|ω′
E − ωE|

, (4.17)

where ΛB = 8
√
2

πm2
Dl3

= 8π
√
2|ẽQ̃B̃|3/2
g2µ̄2 . As we see, this equation has the same structure as

Eq. (4.9), but with a smaller effective coupling and a different expression for ΛB. Making

use of this fact, we can get an approximate solution for the gap in the limit of strong magnetic
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field by properly modifying the result in Eq. (4.10), i.e.,

∆(B) =
4π|ẽB̃|3/2
g2µ̄2

exp(−3π2

g
+ 1). (4.18)

Here we substituted Q̃ = ±1
2
. This result shows that the strong magnetic field strengthens

the diquark pair formation. This is in qualitative agreement with the findings in models

with local interaction [21–23].

In contrast to the result in the weak magnetic field limit, there is no directional depen-

dence in the gap function when the field is strong. This suggests that the corresponding

pairing dynamics is essentially local. While the result may appear surprising at first sight,

this finding in fact agrees with the intuitive picture that the motion of charged particles is

restricted over distances of the order of the magnetic length, l = 1/
√

|ẽQ̃B̃|, in the plane

perpendicular to the magnetic field. When Cooper pairs form, the additional spatial restric-

tion on particles’ motion (partial localization) can strongly enhance the binding energy and

substantially reduce the size of bound states.

V. CONCLUSION

In this paper, we studied the effect of a “rotated” magnetic field on the Cooper pairing

dynamics in the two-flavor color superconducting phase of dense quark matter with long-

range interaction provided by the one-gluon exchange with dynamical screening. Using

the Landau-level representation, we derived a set of gap equations valid for an arbitrary

magnetic filed. These equations show that, in general, the gaps are functions of the Landau

level index n. Therefore, solving the corresponding set of equations may be rather involved

and require the use of sophisticated numerical methods. Instead, here we used analytical

methods to investigate the limiting cases of weak and strong magnetic fields.

In the weak magnetic field limit, the energy separation between the Landau levels is

vanishingly small and there is no reason to expect a strong dependence of the gaps on the

corresponding discrete index n. This justifies the use of an approximation in which the

gaps are the same in all Landau levels near the Fermi surface. Additionally, in this case

the quasiparticle propagator allows a simple expansion in powers of the magnetic field that

greatly simplifies the structure of the resulting gap equation, see Eq. (4.6). We find that the

leading order term, affecting the gap, is quadratic in the magnetic field. The corresponding
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correction to the vanishing magnetic field result for the gap is determined by the value of

parameter β
(max)
Bk = 81π3(ẽB̃)2/(4

√
2g3µ̄4), where B̃ is the magnetic field and µ̄ is the quark

chemical potential, see Eq. (4.14). The numerical value of this parameter appears to be quite

small even for strongest possible magnetic fields in compact stars, B̃ . 1018 G. Indeed, the

corresponding numerical estimate reads

β
(max)
Bk ≈ 1.3× 10−2

(

400 MeV

µ̄

)4
(

B̃

1018 G

)2

. (5.1)

(Here, for the strong coupling constant, we used g =
√
4π, which corresponds to αs = 1.)

The most interesting feature of the pairing dynamics in the presence of a magnetic field

is a directional dependence of the gap function in momentum space. The magnetic field

correction to the gap is proportional to sin2 θBk, where θBk is the angle between the quasi-

particle momentum k and the magnetic field B̃. From physics viewpoint, this means that

quasiparticles with momenta pointing perpendicular to the direction of the magnetic field

have the largest gaps, while quasiparticles with momenta along/against the field have the

smallest gaps. Clearly, such a directional dependence is a qualitative outcome of a long-

range interaction in the model used. This contrasts with the studies based on models with

point-like interactions in Refs. [21–23], where the gaps are always isotropic.

Our analysis in the case of a strong magnetic field is admittedly less rigorous. We use

the lowest Landau level approximation and utilize the simplest approximation for the gluon

exchange interaction without modifying the screening effects due to a nonzero magnetic

field. The resulting estimate for the gap is given in Eq. (4.18). Our result shows that strong

magnetic fields enhance the diquark Cooper pairing and lead to larger color superconducting

gaps. This is in qualitative agreement with the findings in Refs. [21–23], where the models

with short-range interactions were used. We also find that, because of the partial localization

of quasiparticles in a strong magnetic field, the corresponding dynamics is essentially local

and there is no directional dependence of the gap.

To go beyond the two limiting cases, analyzed in this paper, one will need to properly

truncate an infinite set of gap equations and use numerical methods to solve it. In such

an approach, it may be also possible to include the effects of different quark masses and

chemical potentials. The corresponding study, when extrapolated to the regime of realistic

densities, may further extend our understanding of dense quark matter by clarifying (i) pos-

sible directional dependences of the gap function, (ii) the evolution of such a dependence
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between the two limiting cases studied here, and (iii) the effect of β-equilibrium and neu-

trality of quark matter on the gap function in magnetic fields. All of these topics are left

for future investigations.
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Appendix A: Quark propagator

In this appendix we calculate the explicit forms of the full propagators for quasiparticles

with Q̃ = +1
2
charge. (The result can be also easily generalized to quasiparticles with

Q̃ = −1
2
charge.) We present the details of the analysis for 11- and 21-components of the

propagator SX
(+ 1

2
)
.

The starting point of the derivation is the definition of the inverse propagator in

Eq. (3.11). Introducing a shorthand notation for the diagonal and off-diagonal elements

of that propagator, we write

SX
(+ 1

2
)
=





[G+
0 ]

−1 ∆−

∆+ [G−
0 ]

−1





−1

=





G+ Ξ−

Ξ+ G−



 , (A1)

where

G± = [(G±
0 )

−1 −∆∓G∓
0 ∆

±]−1, (A2)

Ξ± = −G∓
0 ∆

±G±. (A3)

The explicit forms of the 11- and 21-components of the propagator read

SX
(+ 1

2
)11

=
(

γµπ
(+ 1

2
)

µ − µdgγ
0 +m

)

[

(

γµπ
(+ 1

2
)

µ + µurγ
0 −m

)

×
(

γµπ
(+ 1

2
)

µ − µdgγ
0 +m

)

−∆2

]−1

, (A4)

SX
(+ 1

2
)21

= −iγ5∆∗
[(

γµπ
(+ 1

2
)

µ + µurγ
0 −m

)(

γµπ
(+ 1

2
)

µ − µdgγ
0 +m

)

−∆2
]−1

, (A5)

17



where, by definition, π
(Q̃)
µ ≡ i∂µ + ẽQ̃Ãµ and the gauge field is Ãµ = (0, 0, xB̃, 0) with the

strength of the external (rotated) magnetic field denoted by B̃.

The inverse of the operator in the square brackets of Eqs. (A4) and (A5), which is the

same for all components of the propagator, can be calculated by employing the usual trick

of “quadrating” the operator. In this case, however, we end up “bi-quadrating” it because

the corresponding operator is already quadratic in energy. For this purpose, let us introduce

the following shorthand notation:

X̂± =
[

(i∂t − δµ)2 − π2
⊥ − iẽQ̃B̃γ1γ2 − (π3)2 −m2 − µ̄2 −∆2

]

± 2γ0µ̄
(

γ⊥ · π⊥ + γ3π3 −m
)

, (A6)

where δµ =
µdg−µur

2
, µ̄ =

µur+µdg

2
, π⊥ = (π1, π2) and γ⊥ = (γ1, γ2). Note that X̂− is the

same operator that appears in the square brackets of Eqs. (A4) and (A5). For simplicity of

notation, we dropped index Q̃ here.

Let us first concentrate on the 11-component of the propagator. It can be rewritten as

follows:

SX
(+ 1

2
)11

=
(

γµπ
(+ 1

2
)

µ − µdgγ
0 +m

)

X̂+
(

X̂−X̂+
)−1

≡
(

Â− γ⊥ · π⊥B̂
)

Ĉ−1. (A7)

The three new operator functions introduced here are defined by

Â =
[

(i∂t)γ
0 − π3γ3 − µdgγ

0 +m
] [

(i∂t − δµ)2 − µ̄2 − 2µ̄(γ3π3 +m)γ0 − (π3)2 −m2 −∆2
]

−
[

(i∂t)γ
0 − π3γ3 + µurγ

0 +m
]

(

π2
⊥ + iẽQ̃B̃γ1γ2

)

, (A8)

B̂ = (i∂t − µdg)
2 − π2

⊥ − iẽQ̃B̃γ1γ2 − (π3)2 −m2 −∆2, (A9)

Ĉ =
[

(i∂t − δµ)2 − π2
⊥ − iẽQ̃B̃γ1γ2 − (π3)2 −m2 + µ̄2 −∆2

]2

− 4µ̄2
[

(i∂t − δµ)2 −∆2
]

. (A10)

In the coordinate space, the corresponding propagator is formally given by

SX
(+ 1

2
)11

(u, u′) = 〈u|
(

Â− γ⊥ · π⊥B̂
)

Ĉ−1|u′〉, (A11)

where u = (t, z, r⊥) and r⊥ = (x, y). It is easy to perform a Fourier transform in time and

z-coordinate,

SX
(+ 1

2
)11

(ω, k3; r⊥, r
′
⊥) =

∫

dt dz eiωt−ik3z S1
(+ 1

2
)11

(u, u′). (A12)
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In essence, this transform results in a simple replacement of i∂t → ω and π3 → k3 in all of

the earlier expressions.

To proceed further, we should find a basis of suitable eigenstates, in which the propagator

has the simplest possible form. To this end, we note that the functions Â, B̂ and Ĉ depend on

the operator π2
⊥+ iẽQ̃B̃γ1γ2. Its eigenvalues are well known: 2n|ẽQ̃B̃|, where n = 0, 1, 2, . . .

is the Landau level index. Note that the integer quantum number n has both the orbital

and spin contributions, i.e., n = k + (1 + s)/2, where k = 0, 1, 2, . . . labels a specific orbital

state, while s = ±1 corresponds to a given (up or down) spin state. The explicit form of

the corresponding eigenstates 〈r⊥|k py s〉 is also well known (e.g., see Ref. [39], where similar

method and notations are used).

Following closely the approach of Ref. [39], we use the complete set of eigenstates to

simplify the expression for the propagator (A12). The final result will have the form

SX
(+ 1

2
)21

(ω, k3; r⊥, r
′
⊥) = eiΦ(r⊥,r′

⊥)S̄X
(+ 1

2
)21

(ω, k3; r⊥ − r′
⊥), (A13)

where Φ(r⊥, r
′
⊥) is the Schwinger phase. In the Landau gauge used, the explicit form of the

phase is

Φ(r⊥, r
′
⊥) = −(x+ x′)(y − y′)

2l2
sign(ẽQ̃B̃), (A14)

where l = 1/
√

|ẽQ̃B̃| is the magnetic length. (Note that this phase is responsible for

breaking the translational invariance of the propagator.) The translationally invariant part

of the propagator is given by

S̄X
(+ 1

2
)11

(ω, k3; r⊥) =
e−ξ/2

2πl2

∞
∑

n=0

{An

Cn
[Ln(ξ)P− + Ln−1(ξ)P+]− i

γ⊥ · r⊥
l2

Bn

Cn
L1
n−1(ξ)

}

,(A15)

where ξ ≡ r2
⊥/(2l

2), Lα
n(ξ) are the generalized Laguerre polynomials (by definition, Ln ≡ L0

n

and Lα
−1 = 0), and

P± =
1

2

(

1± iγ1γ2sign(ẽQ̃B̃)
)

(A16)

are the spin projection operators.

Functions An, Bn and Cn in Eq. (A15) replace the corresponding operators Â, B̂ and Ĉ,

when projected onto the nth Landau level state. Their explicit forms are obtained from Â,
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B̂ and Ĉ by replacing π2
⊥ + iẽQ̃B̃γ1γ2 → 2n|ẽQ̃B̃|, i.e.,

An =
[

ωγ0 − k3γ3 − µdgγ
0 +m

] [

(ω − δµ)2 − µ̄2 − 2µ̄(γ3k3 +m)γ0 − (k3)2 −m2 −∆2
n

]

− 2n|ẽQ̃B̃|
[

ωγ0 − k3γ3 + µurγ
0 +m

]

, (A17)

Bn = (ω − µdg)
2 − 2n|ẽQ̃B̃| − (k3)2 −m2 −∆2

n, (A18)

Cn =
[

(ω − δµ)2 − 2n|ẽQ̃B̃| − (k3)2 −m2 + µ̄2 −∆2
n

]2

− 4µ̄2
[

(ω − δµ)2 −∆2
n

]

. (A19)

Here we consider a general case when the dynamically generated gap function ∆n depends

not only on the energy ω and k3, but also on the Landau level index n. (In operator form,

it means that ∆ depends on π2
⊥ + iẽQ̃B̃γ1γ2.) Therefore, we replaced the operator ∆ with

the corresponding value ∆n that it takes in the nth Landau level state.

At this point, it may be appropriate to note that the zeros of Cn determine the spectrum

of quasiparticles in color superconducting quark matter in a magnetic field, i.e.,

En,±,± = δµ±

√

[
√

2n|ẽQ̃B̃|+ (k3)2 +m2 ± µ̄

]2

+∆2
n. (A20)

Note that all four different sign combinations are possible. The choice of the sign in front of

the chemical potential µ̄ corresponds to the choice of either particle states (allowing small

energies of order ∆n) or antiparticle states (generally having large energies of order µ̄). The

sign in front of the overall square root corresponds to particle/hole type quasiparticles (i.e.,

positive/negative energy states). One should note, however, that an additional complication

in this classification appears in the case of gapless superconducting phases when δµ > ∆n

[18, 19].

Following the same approach, we can derive explicit expressions for all components of

the propagator SX
(+ 1

2
)
. For example, the final expression for the off-diagonal 21-component,

which is used in the gap equation in the main text, reads

SX
(+ 1

2
)21

(ω, k3; r⊥, r
′
⊥) = eiΦ(r⊥,r′

⊥)S̄X
(+ 1

2
)21

(ω, k3; r⊥ − r′
⊥), (A21)

with the translationally invariant part given by

S̄X
(+ 1

2
)21

(ω, k3; r⊥) = −iγ5 e
−ξ/2

2πl2

∞
∑

n=0

∆∗
n

{En
Cn

[Ln(ξ)P−+Ln−1(ξ)P+]− i
γ⊥ · r⊥
l2

2µ̄γ0

Cn
L1
n−1(ξ)

}

.

(A22)

Here we introduced yet another function,

En = (ω − δµ)2 − 2n|ẽQ̃B̃| − (k3)2 −m2 − µ̄2 −∆2
n − 2µ̄(k3γ3 +m)γ0. (A23)
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Before concluding this Appendix, let us add that similar representations can be also derived

for the components of the inverse propagator. As an example, let us present the correspond-

ing result for
[

SX
(+ 1

2
)

]−1

21
(u, u′), which is used in the gap equation. It has the same general

structure as the above expressions for the components of SX
(+ 1

2
)
, i.e.,

[

SX
(+ 1

2
)

]−1

21
(ω, k3; r⊥, r

′
⊥) = eiΦ(r⊥,r′

⊥)
[

SX
(+ 1

2
)

]−1

21
(ω, k3; r⊥ − r′

⊥). (A24)

It is important that the inverse propagator has exactly the same phase as the propagator

itself, see Eqs. (A13) and (A14). The explicit form of its translationally invariant part reads

[

SX
(+ 1

2
)

]−1

21
(ω, k3; r⊥) = −iγ5 e

−ξ/2

2πl2

∞
∑

n=0

∆∗
n [Ln(ξ)P− + Ln−1(ξ)P+] . (A25)

Appendix B: Gap equation

The gap equation (i.e., the off-diagonal component of the Schwinger-Dyson equation for

the full propagator) in the coordinate space reads

[

SX
(Q̃)

]−1

21
(u, u′) = −ig2γµ

(

TA
)T
[

SX
(Q̃)

]

21
(u, u′)γνTBDAB

µν (u− u′), (B1)

where DAB
µν (u, u′) is the gluon propagator, which is assumed to be diagonal in adjoint color

indices (A,B = 1, 2, ..., 8), i.e., DAB
µν (u−u′) = δABDµν(u−u′). By making use of the identity

8
∑

A=1

TA
a′aT

A
b′b =

1

2
δa′bδab′ −

1

6
δaa′δbb′ , (B2)

we derive the following form of the gap equation:

[

SX
(Q̃)

]−1

21
(u, u′) = i

2

3
g2γµ

[

SX
(Q̃)

]

21
(u, u′)γνDµν(u− u′). (B3)

Taking into account that all components of the quasiparticle propagator as well as its inverse

have the same nonzero Schwinger phase, we can derive the equation for the translationally

invariant parts simply by dropping the common phase factor on both side of the gap equation,

[

SX
(+ 1

2
)

]−1

21
(ω, k3; r⊥) = i

2g2

3

∫

dω′dk′3

(2π)2
γµS̄X

(+ 1
2
)21

(ω, k3; r⊥)γ
ν

×
∫

d2q⊥
(2π)2

eiq⊥·r⊥Dµν(ω − ω′, k3 − k′3, q⊥), (B4)

where we additionally performed a Fourier transform in time and z-coordinate on both sides

of the equation, and used a momentum representation for the gluon propagator.
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By making use of the explicit form of the relevant translationally invariant parts of the

propagators in Eqs. (A22) and (A25), we rewrite the last form of the gap equation as follows:

e−ξ/2

2πl2

∞
∑

n=0

∆n[Ln(ξ)P− + Ln−1(ξ)P+] = −i2g
2

3

e−ξ/2

2πl2

∞
∑

n=0

∫

dω′dk′3

(2π)2
γµ

∆n

Cn

×
{

En [Ln(ξ)P− + Ln−1(ξ)P+]− 2µ̄i
γ⊥ · r⊥
l2

γ0L1
n−1(ξ)

}

γν

×
∫

d2q⊥
(2π)2

eiq⊥·r⊥Dµν(ω − ω′, k3 − k′3, q⊥). (B5)

The last equation can now be easily projected onto different orbital eigenstates. This is for-

mally done by multiplying both sides of the equation by e−ξ/2Lm(ξ) (where m = 0, 1, 2, . . .)

and integrating over the perpendicular spatial coordinates r⊥. After performing such pro-

jections, we arrive at the following (infinite) set of gap equations in the Landau-level repre-

sentation:

∆mP− +∆m+1P+ = −i2g
2

3

∞
∑

n=0

∫

dω′dk′3

(2π)2

∫

d2q⊥
(2π)2

γµ
∆nEn
Cn

[

L(0)
n,m

(

q2⊥l
2

2

)

P−

+L(0)
n−1,m

(

q2⊥l
2

2

)

P+

]

γνDµν(ω − ω′, k3 − k′3, q⊥), (B6)

where, by definition,

L(0)
n,m (x) = (−1)n+me−xLm−n

n (x)Ln−m
m (x) . (B7)

In the derivation, we used the following table integrals (see formulas 7.414 3 and 7.422 2 in

Ref. [40]):

∫ ∞

0

dxe−xxαLα
m(x)L

α
n(x) =

Γ(n + α+ 1)

n!
δnm, (B8)

and

∫ ∞

0

dxx2σ+1e−αx2

Lσ
m(αx

2)Lσ
n(αx

2)J0(xy) =
(−1)m+n

2ασ+1

(m+ σ)!

m!
e−y2/4αLn−m

m+σ

(

y2

4α

)

Lm−n
n

(

y2

4α

)

.

(B9)

Appendix C: Propagator in weak magnetic field limit

In this Appendix, we consider the quasiparticle propagator and the gap equation in the

limit of weak magnetic field.
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We begin by performing a Fourier transform of the translation invariant part of the

propagator,

S̄X
(+ 1

2
)21

(ω, k3,k⊥) =

∫

d2r⊥e
−ik⊥·r⊥S̄X

(+ 1
2
)21

(ω, k3; r⊥)

= −2iγ5e−k2⊥l2
∞
∑

n=0

(−1)n
∆n

Cn

{

En[Ln

(

2k2⊥l
2
)

P− − Ln−1

(

2k2⊥l
2
)

P+]

+4µ̄(γ⊥ · k⊥)γ
0L1

n−1

(

2k2⊥l
2
)

}

. (C1)

In the weak field limit, the difference between the neighboring levels is vanishingly small in

energy and the properties of the corresponding states become almost indistinguishable. In

application to the gap function ∆n, this means that it will become almost independent of

the Landau level index in a wide range of n near the (would be) Fermi surface. (Strictly

speaking, the true Fermi surface is not well defined in a superconductor, but if the gap is

small, ∆ ≪ µ̄, one could map the corresponding phase space onto the phase space in the

free quark matter.)

In order to derive a weak field expression for the propagator, one needs to first perform

the sum over the Landau level index n. A straightforward way of achieving this is to employ

the usual proper-time representation, i.e.,

1

(a + 2n|b|)2 + c2
=

∫ ∞

0

ds

c
sin(sc)e−s(a+2n|b|), (C2)

a+ 2n|b|
(a + 2n|b|)2 + c2

=

∫ ∞

0

ds cos(sc)e−s(a+2n|b|), (C3)

for the two types of structures appearing in the Euclidian propagator, and then use the well

known summation formula for Laguerre polynomials,

∞
∑

n=0

Lα
n(x)z

n = (1− z)−(α+1) exp

(

xz

z − 1

)

. (C4)

Before using these identities, it is convenient to rewrite propagator (C1) in the following

form:

S̄X
(+ 1

2
)21

(iωE , k
3,k⊥) = iγ5∆

[

I1 + 2µ̄(k3γ3 +m+ µ̄γ0)γ0I2 + 2µ̄(γ⊥ · k⊥)γ
0I3
]

, (C5)
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where, by definition, the sums Ii (i = 1, 2, 3) are

I1 = 2e−
k2⊥
|b|

∞
∑

n=0

(−1)nLn

(

2k2⊥
|b|

)(

a+ 2n|b|
(a+ 2n|b|)2 + c2

P− +
a + 2(n+ 1)|b|

[a+ 2(n+ 1)|b|]2 + c2
P+

)

,(C6)

I2 = 2e−
k2⊥
|b|

∞
∑

n=0

(−1)nLn

(

2k2⊥
|b|

)(

1

(a+ 2n|b|)2 + c2
P− +

1

[a+ 2(n+ 1)|b|]2 + c2
P+

)

,(C7)

I3 = 4e
− k2⊥

|b|

∞
∑

n=0

(−1)nL1
n

(

2k2⊥
|b|

)

1

[a+ 2(n+ 1)|b|]2 + c2
. (C8)

Here we used the following notation:

a = (ωE + iδµ)2 + (k3)2 +m2 +∆2 − µ̄2, (C9)

b = ẽQ̃B̃, (C10)

c = 2µ̄
√

(ωE + iδµ)2 +∆2. (C11)

It is appropriate to mention that the use of the proper-time representations, as given by

Eqs. (C2) and (C3), may not be completely justified in the presence of a nonzero density.

Indeed, when the chemical potential is sufficiently large, the above expression for the param-

eter a may become negative. When this occurs, the proper-time integrals become divergent

and the validity of the derivation seemingly fails. The way around this problem is to assume

that the chemical potential is sufficiently small at all intermediate stages of derivation. In the

end, after magnetic field expansion is done and all proper-time integrations are performed,

one can extend the validity of the propagators to large values of the chemical potential.

With the above remark kept in mind, we use the proper-time representations to rewrite

the expressions for the sums Ii as follows:

I1 = 2e−k2⊥/|b|
∞
∑

n=0

(−1)nLn

(

2k2⊥
|b|

)
∫ ∞

0

ds cos(sc)e−s(a+2n|b|) (P− + e−2|b|sP+

)

, (C12)

I2 = 2e−k2⊥/|b|
∞
∑

n=0

(−1)nLn

(

2k2⊥
|b|

)∫ ∞

0

ds

c
sin(sc)e−s(a+2n|b|) (P− + e−2|b|sP+

)

, (C13)

I3 = 4e−k2⊥/|b|
∞
∑

n=0

(−1)nL1
n

(

2k2⊥
|b|

)
∫ ∞

0

ds

c
sin(sc)e−s(a+2n|b|+2|b|). (C14)
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Then, after using the summation formula (C4), we derive

I1 =

∫ ∞

0

ds cos(sc)e−sa−(k2⊥/b) tanh(sb)
[

1− iγ1γ2 tanh(sb)
]

, (C15)

I2 =

∫ ∞

0

ds

c
sin(sc)e−sa−(k2⊥/b) tanh(sb)

[

1− iγ1γ2 tanh(sb)
]

, (C16)

I3 =

∫ ∞

0

ds

c
sin(sc)e−sa−(k2⊥/b) tanh(sb) 1

cosh2(sb)
. (C17)

Finally, expanding the integrands in powers of the magnetic field b and integrating over the

proper time, we obtain

I1 ≃
∫ ∞

0

ds cos(sc)e−s(a+k2⊥)

(

1− iγ1γ2sb+
s3

3
k2⊥b

2 +O(b3)

)

=
a+ k2⊥

(a + k2⊥)
2 + c2

− iγ1γ2
(a+ k2⊥)

2 − c2

[(a+ k2⊥)
2 + c2]2

b+
2[(a+ k2⊥)

4 − 6(a+ k2⊥)
2c2 + c4]k2⊥

[(a+ k2⊥)
2 + c2]4

b2 +O(b3), (C18)

I2 ≃
∫ ∞

0

ds

c
sin(sc)e−s(a+k2⊥)

(

1− iγ1γ2sb+
s3

3
k2⊥b

2 +O(b3)

)

=
1

(a + k2⊥)
2 + c2

− iγ1γ2
2(a+ k2⊥)

[(a+ k2⊥)
2 + c2]2

b+
8(a+ k2⊥)[(a+ k2⊥)

2 − c2]k2⊥
[(a+ k2⊥)

2 + c2]4
b2 +O(b3), (C19)

I3 ≃
∫ ∞

0

ds

c
sin(sc)e−s(a+k2⊥)

(

1− s2b2 +
s3

3
k2⊥b

2 +O(b3)

)

=
1

(a+ k2⊥)
2 + c2

− 2[3(a+ k2⊥)
2 − c2]

[(a+ k2⊥)
2 + c2]3

b2 +
8(a+ k2⊥)[(a+ k2⊥)

2 − c2]k2⊥
[(a+ k2⊥)

2 + c2]4
b2 +O(b3). (C20)

Now, combining the same order terms in powers of the magnetic field, we rewrite propagator

(C5) as follows:

S̄X
(+ 1

2
)21

(iωE , k
3,k⊥) = iγ5∆

[

K(0) +K(1) +K(2)
]

, (C21)

where

K(0) =
a+k + a−k + 4µ̄(γ · k +m)γ0

2a+k a
−
k

, (C22)

K(1) = −iγ1γ2 (a
+
k )

2 + (a−k )
2 − 4µ̄2(a+k + a−k ) + 8µ̄ak(k

3γ3 +m)γ0

2(a+k a
−
k )

2
b, (C23)

K(2) =
a+k (a

+
k − 4µ̄2)3 + a−k (a

−
k − 4µ̄2)3 + 4µ̄2a+k a

−
k

[

16µ̄2 − 3(a+k + a−k )
]

(a+k a
−
k )

4
k2⊥b

2

− 4µ̄(γ⊥ · k⊥)γ
04a

2
k − a+k a

−
k

(a+k a
−
k )

3
b2 + 16µ̄ak(γ · k +m)γ0

2a2k − a+k a
−
k

(a+k a
−
k )

4
k2⊥b

2. (C24)

Note the shorthand notation used,

γ · k ≡ γ⊥ · k⊥ + k3γ3, (C25)

a±k ≡ (ωE + iδµ)2 + (Ek ± µ̄)2 +∆2, (C26)

ak ≡ a+ k2⊥ = (ωE + iδµ)2 + k2 +m2 +∆2 − µ̄2, (C27)
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as well as Ek ≡
√
k2 +m2 and k2 ≡ k2⊥ + (k3)2.

Appendix D: Gap equation in weak magnetic field limit

To leading order (i.e., the limit of vanishing magnetic field), the gap equation reads

∆(0)(ωE) =
g2

6

∫

dω′
E

2π

∫

d3k′

(2π)3
∆(0)(ω′

E)tr
[

γµK(0)(ω′,k′)γν
]

Dµν(ω − ω′,k − k′). (D1)

Here we assumed that the gap is an explicit function of the energy, but not of the momentum.

The result for the trace in the integrand is given by

tr
[

γµK(0)(ω′,k′)γν
]

= 2gµν
a+k′ + a−k′

a+k′a
−
k′

+ . . . , (D2)

where the ellipsis stands for antisymmetric terms, which do not affect the form of the gap

equation. Indeed, when contracted with the gluon propagator, which is symmetric in Lorentz

indices, all antisymmetric terms will vanish.

At asymptotic densities, we can also neglect all corrections due to nonzero m and δµ. By

taking into account that the main contribution to the momentum integral on the right hand

side of the gap equation comes from the vicinity of the Fermi surface (k′ ≃ kF =
√

µ̄2 −m2),

we can make the following approximation for the trace:

tr
[

γµK(0)(ω′,k′)γν
]

≃ 2gµν

a−k′
. (D3)

Note that, in the vicinity of the Fermi surface, one has

a−k′ = (ω′
E)

2 + ξ2k′ +∆2 ≪ µ̄2, (D4)

a+k′ = 4µ̄2 + 4µ̄ξk′ + a−k′ ≃ 4µ̄(µ̄+ ξk′), (D5)

where ξk′ ≡ Ek′ − µ ≃ k′ − kF .

The resulting equation coincides with the known form of the gap equation in the case of

zero magnetic field studied in Refs. [8–14]. In our notation, the corresponding solution for

the gap function reads

|∆(0)| ≃ Λ exp(− 3π2

√
2g

+ 1), (D6)

where Λ = (4µ)3/(πm2
D).
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In order to find the correction to the gap function due to nonzero magnetic field, let us

include the approximate kernel up to second order in the magnetic field. After taking traces

on the both sides of the equation, we obtain

∆(B)(ωE) =
g2

6

∫

dω′
E

2π

∫

d3k′

(2π)3
∆(B)(ω′

E)tr
[

γµK(0)(ω′,k′)γν
]

Dµν(ω − ω′,k − k′)

+
g2

6

∫

dω′
E

2π

∫

d3k′

(2π)3
∆(B)(ω′

E)tr
[

γµK(2)(ω′,k′)γν
]

Dµν(ω − ω′,k − k′).(D7)

In addition to the result in Eq. (D2), this equation also contains the trace of the second

order correction to the kernel. The corresponding approximate expression in the vicinity of

the Fermi surface reads

tr
[

γµK(2)(ω′,k′)γν
]

≃ gµν
Nk′(k

′
⊥)

2

2µ̄4(a−k′)
4
(ẽQ̃B̃)2 + . . . , (D8)

where Nk′ ≃ 4µ̄ξk′(2ξ
2
k′−a−k′)−24ξ4k′+16a−k′ξ

2
k′−(a−k′)

2 and the ellipsis denotes antisymmetric

terms. Let us point that the only directional dependence of this trace comes through the

overall factor (k′⊥)
2 ≡ (k′)2(1−cos2 θBk′), where θBk′ denotes the angle between the direction

of the magnetic B and the momentum k′. (Strictly speaking, in a self-consistent analysis,

the gap function on the right hand side will also have a directional dependence and will

affect the angular integration. The corresponding effects are expected to be very small and

will be neglected in the simplified analysis here.) The integrand on the right hand side of

Eq. (D7) has an additional directional dependence in the gluon propagator, see Eq. (4.3),

which is a function of the polar angle θ ≡ θkk′ (i.e., the polar angular coordinate of vector

k′ measured from the direction of the external vector k). With this convention for angular

coordinates, it is convenient to use the following relation:

cos θBk′ = sin θ sin θBk cos(φ− φBk) + cos θ cos θBk, (D9)

in order to rewrite the expression for (k′⊥)
2 in terms of the angular integration variables θ

(polar angle) and φ (azimuthal angle). Now we can easily perform the angular integration on

the right hand side of the gap equation. The results for the two types of angular integrations,
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namely with the electric and magnetic part of the gluon propagator, read

Ael =

∫

(1− cos2 θBk′) sin θ dθdφ

M2 − 2k′k cos θ
=

π

8(k′)3k3

[

2k′kM2 [1 + 3 cos(2θBk)]

+
1

2

(

4(k′)2k2 [3 + cos(2θBk)]−M4 [1 + 3 cos(2θBk)]
)

ln
M2 + 2k′k

M2 − 2k′k

]

, (D10)

Amag =

∫

(1− cos2 θBk′) sin θ dθdφ
2 [(k′)2 + k2 − 2k′k cos θ]

1/2

[(k′)2 + k2 − 2k′k cos θ]3/2 + ω3
l

=
2π

3k′k

[

1 + cos2 θBk +

(

(k′)2 + k2

2k′k

)2
(

1− 3 cos2 θBk

)

]

ln
(k′ + k)3 + ω3

l

|k′ − k|3 + ω3
l

+
πω2

l

2(k′k)3
(

1− 3 cos2 θBk

)

[

ω2
l

∫ xmax

xmin

x6dx

x3 + 1
− 2

[

(k′)2 + k2
]

∫ xmax

xmin

x4dx

x3 + 1

]

,(D11)

where M2 = (ω′
E − ωE)

2 + (k′)2 + k2 + m2
D. In order to simplify the calculation of Amag,

it is convenient to change the integration variable θ to the new dimensionless variable x =

(1/ωl)
√

(k′)2 + k2 − 2k′k cos θ. Note that sin θdθ = ω2
l xdx/(k

′k) and the new range of

integration is from xmin = |k′ − k|/ωl to xmax = (k′ + k)/ωl.

In the vicinity of the Fermi surface, the approximate results for this integrals read

Ael ≃ π sin2 θBk

µ̄2
ln

(2µ̄)2

(ω′
E − ωE)2 + (k′ − k)2 +m2

D

+ . . . , (D12)

Amag ≃ 4π sin2 θBk

3µ̄2
ln

(2µ̄)3

|k′ − k|3 + ω3
l

+ . . . , (D13)

where the ellipses denote the subleading terms.

By making use of the above intermediate results, we arrive at the following form of the

gap equation,

∆(B)(ωE) =
2g2

9

∫ ∞

−∞

dω′
E

(2π)

∫

dξk′

(2π)2
∆(B)(ω′

E)

a−k′
ln

(2µ̄)3

|k′ − k|3 + ω3
l

×
(

1 +

[

−24ξ4k′ + 16a−k′ξ
2
k′ − (a−k′)

2
]

(ẽQ̃B̃)2

(2µ̄)2(a−k′)
3

sin2 θBk

)

. (D14)

Recall that ω3
l = (π/4)m2

D|ω′
E − ωE|. Integrating over the momentum, we arrive at

∆(B)(ωE) =
g2

36π2

∫ ∞

−∞
dω′

E∆
(B)(ω′

E)

[

1
√

(ω′
E)

2 + (∆(B))2
ln

Λ

|ω′
E − ωE|

+

+
9ω15

l (ẽQ̃B̃)2 sin2 θBk

4µ̄2
(

ω6
l + [(ω′

E)
2 + (∆(B))2]

3
)3 ln

ωl

|ω′
E − ωE |

]

. (D15)
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To get a rough estimate, let us take an infrared cutoff in the energy integration at ω′
IR ≃ ∆(B)

and drop the dependence on ∆(B) in the denominator of the integrand. Then, we have

∆(B) ≃ g2

18π2

∫ Λ

∆(B)

dω′
E

∆(B)

|ω′
E|

(

1 +
54(ẽQ̃B̃)2 sin2 θBk

πµ̄2m2
D

)

ln
Λ

|ω′
E|
. (D16)

This means that the magnetic field correction is equivalent to an effective increase of the

coupling constant, i.e.,

g2 → g2eff = g2

(

1 +
54π(ẽQ̃B̃)2

g2µ̄4
sin2 θBk

)

, (D17)

where we used the definition of the Debye mass m2
D = (gµ̄/π)2.
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