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We recalculate the color-Coulomb potential to one-loopegrdnder the assumption that the effect of the
Gribov horizon is to make i) the transverse gluon propadets singular; and ii) the color-Coulomb potential
more singular, than their perturbative behavior in the lmementum limit. As a first guess, the effect of the
Gribov horizon is mimicked by introducing a transverse motam-dependent gluon mass term, leading to a
propagator of the Gribov form, with the prescription that thass parameter should be adjusted to the unique
value where the infrared behavior of the Coulomb potensi@nhanced. We find that this procedure leads to a
Coulomb potential rising asymptotically as a linear terntdified by a logarithm.
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I. INTRODUCTION ample numerical evidence of this behavior [618].
This article is an an attempt to derive the long-range color

One of the early ideas regarding the confinement problerﬁOUIOmb potential analytlcally_m Qou_lomp gauge. There
was that the confining force might come from one-gluon ex- ave been a greatmany efforts in this direction over the_a(ear
change [1-3]. The suggestion was that a dressed gluon pro ?j}tigalzz)\'/z;aiaﬁrt'ghI'Sété S?ﬁee?els\?vere\:c\il.l [1‘](-)?::1251(]);0:?;“;1 le
agator, possibly combined with dressed quark-gluon \&stic gauges. P

and arranged in ladder diagrams, would lead to a linear pane'IOOp perturbative calculation, modified minimally tyr.c

tential. Of course, the notion that the confining force can betam features associated with the Gribov horizon.
entirely explained by ladder diagrams built from one-gluon
exchange must nowadays be considered a little naive. There
are many (related) problems with such a proposal, in particu
lar (i) the existence of a long-range color dipole field arun
static sources; (ii) long-range van der Waals forces which . . .
would then have to exist among hadrons; (iii) group represen | N€ potential energy of two static quarks in color represen-
tation dependence (Casimir scaling) rather than N-ality defationr is given in terms of the logarithm of a Wilson loop
pendence of the asymptotic string tension; and (iv) the ap@round arectanguldx T contour
sence of color-electric flux tubes, not to mention the absenc 1
of string-like properties of such flux tubes, which have been Vi (R) = —fim T logW (R T) , 1)
convincingly seen in numerical simulations (cf. ref. [4]dan o
references therein). Nevertheless, ifaiere possible to re- whereW; (R, T) is the vacuum expectation value of the Wil-
liably calculate the long-range behavior of, say, the color son loop. Let the side of length be oriented in the time
Coulomb potential, then this information might be useful asdirection. For the purposes of the present article, thercolo
an input into more sophisticated pictures, such as the gluorCoulomb potential is defined by counting only the one-gluon
chain model [5], where the problems just mentioned can bexchange contribution to Iy, and this is
alleviated. Furthermore, the simple fact is that the instan
neous color-Coulomb potentiés linearly confining. There is _ G d’k _ _ kR

VC(R) - N (27_[)39 ND44(k7k4 - O)(l € ) ) (2)

II. GLUON PROPAGATORSAND THE GRIBOV
HORIZON

* Permanent address: Physics and Astronomy Dept., San &tanState 11t can be proven that the instantaneous color Coulomb fatésactually
University, San Francisco, CA 94132, USA an upper bound to the static quark potential [9], so evenowitthumeri-
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whereDZ‘E(k) = 6abD44(k) is the 44-component of the gluon simulations, which find local minima of
propagator in Coulomb gaug€; is the quadratic Casimir 3
in representatiom, andN is the number of colors. ThB- — z z TrUk(x)] - (7)
independent part of this expression is the self-energyritmnt X K=1
tion, which we will return to. It was shown by Zwanziger [22]
thatg?Da4(K) is a renormalization group invariant, and there-
fore does not depend, e.g. in the context of dimensional re
ularization, on the arbitrary scale Vc(R) is the static quark
potential which would be obtained if we approximate the log-
arithm of a timelike Wilson loop expectation value by the one
dressed-gluon exchange term; cf. [23-25]. Other treatsnen
focus exclusively on the instantaneous paiDgf, obtained in
theks — oo limit, but in this article we will include also non-
instantaneous contributions to the potential, and thiddea
settingky = 0.

Let us define the renormalization-group invariant

It is the fact that the gauge-fixed configurations are localmi
ima, rather than just stationary points, which ensuresahat
géigenvalues of the Fadeev-Popov operator are positive. One
can even go a little further. Since the lattice Monte Carlw-pr
cedure willnevergenerate more than one configuration per
auge orbit in the course of a finite simulation, an additiona
estriction to one configuration per orbit is, in some sesse,
perfluous?

The limitation to the Gribov region has two expected conse-
guences. The first, which is true in both Landau and Coulomb
gauge, is that the Gribov horizon will impose a cutoff on the
magnitude of quantum fluctuations of the transverse gluon

— 12 field. This is easy to check in special cases. For example, one
V(k) = —g"NDag(k ke = 0) . 3) can construct a a/attice—regularr;ed) plane wave of sorrgzifix

and the answer (at largk]) is tice Faddeev-Popov operator. As the amplitude is increased
the lowest non-trivial eigenvalui) decreases, and eventually
1 g?(u)N becomes negative. Configurations with amplitudes such that
V() =——> (4) Ao < 0 are to be excluded from the functional integration.

2 2 11 K
kK 1+g (’J)NW IOgF Gribov [29] suggested that the restriction to the Gribov re-
gion would result (in Landau gauge) in a gluon propagator of

Applying the one-loop result

the form
1 Kk, k 1
PUN= © R e e T
752 109 77— ke + 1z
AQCD

and this propagator clearly vanisheskdt— 0. Zwanziger

we obtain [31] derived this form by adding to the action a term which
V(k) = 1 1 (©) was intended to implement the restriction to the Gr@bov re-
K1 log K’ gion. Gracey [18] has calculated the resulting static quark

48 " N potential to one loop, in Landau gauge, which results from

L . ) the Zwanziger action. This potential turns out to be non-
which is indeed independent, to this one-loop order, of th‘?:onfining. g P
scalep introduced in dlme_n5|onal reg“'?‘“za“on- _ . Lattice simulations, however, have rather decisively show
However, the perturbative expansion is based on an |mpI|C|E32_34] that the Landau gauge gluon propagator has a finite

assumption that, apart from the gauge-fixing conditioninthe 4 _zer0 limit ak? — 0, as is the case for a massive propaga-
tegration over gauge fields is unrestricted; there is nofGuto {5, j o

for example, in the amplitude of gauge field configurations
contributing to the functional integral. But we have known ab (1) _ sab -~ Kuky 1

; gial. X D (k) = 0% duv 5 5 . 9)
for many years that this assumption is wrong. In the lattice k k2 +mP

form_ula;ﬂgnamr?artur:]ular, Itis knovr\]/n ::haé(;f all %auge udep Of course this form cannot be exactly right either; the gluon
are 'nC? € ’ht ent gllsum_o;]/eq_th.e a ee\;]- O%OV eter"%'ropagator cannot have a physical pole and must somewhere
nants of each copy will vanish. This means that the expectgj;;|ie positivity. Various more complicated forms for the

tion value of any gauge-invariantobservable would takéhent o o0 hropagator, which agree with (9) at low momenta, have
nonsensical value/0, as was first pointed out by Neuberger been put forward, e.g. [35], [36]

[28]. In the continuum it is also believed, since the seminal

work of Gribov [29], that the functional integral should be

restricted to a single gauge copy per gauge orbit, as in the

proposed restriction to the fundamental modular regiomadyv 2 Of course, if one is interested in a particular selection afige copies,
cated by Zwanziger [22]. It seems difficult to implement such Such as the fundamental modular region, or the “B-gauge], [@n it

a restriction in practice. At a minimum we can ask that the 'sstar:]ed‘;zs:lg’o:ﬁht;?fform away from the gauge copies gedebt the
functional integral be limited to the Gribov region, in whic s gecenty, zZwanziger has suggested a reason why the origiopbsal in
the lowest eigenvalue of the Faddeev-Popov operator is posi ref. [31] might have failed, c.f. ref. [37]. Dudal et al. [3Bhve proposed
tive semi-definite, and in fact this is achieved automaltjday} a modification of the original Zwanziger action, to bring tesult more in

the gauge-fixing algorithms employed in lattice Monte-Gar|  line with the lattice results.
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The corresponding situation in Coulomb gauge is not samear-zero eigenvalues, as compared to the spectral defisity
clear, at present. For the transverse gluon propagatoual eq —J2, and a numerical study of configurations generated by

times, the Gribov-Zwanziger proposal is that lattice Monte Carlo bears this out [46]Thus, another effect
" 1 of restricting configurations to the Gribov region shoulcipe

DA (k) = %0 ( & — kkiy 1 (10)  enhancement of the color-Coulomb potential in the infrared

] ] 2 > m ’ . . . . .

k* /2. /K2 + = assuming (as in the free theory) that the infrared behasior i

associated with the low-lying eigenmodes of the F-P operato
and numerical calculations by the Tiibingen group [38] seem Thus we are led to explore the consequences of the follow-
to support this proposal. However, other recent calculatio ing two assumptions: first, that the restriction to the Gvibo
by Nakagawa et al. [39] on time-asymmetric lattices, whileregion can be approximately implemented, as in (12), by the
supporting a vanishing gluon propagatorkdt— 0, suggest simple addition of a momentum-dependent mass term, and,
a slower approach to zero than the Gribov-Zwanziger formsecond, that the value of the mass parameter must be such that
Nakagawa et al. conclude that larger lattices will be needethe infrared behavior of the Coulomb potential is enhanced
to settle the precise power falloff &s— 0. In the absence of beyond the usual/l(2 behavio® The way in which this
decisive lattice data on this point, we will here investegdite ~ could happen is illustrated by the following over-simplifie
consequences of the Gribov-Zwanziger form (10) and alsoscenario: The mass term will regularize the infrared behav-
for the purpose of contrast, a simple massive transverge proior of loop integrals, and one might hope (ignoring inte-

agator grations over Feynman parameters and so on) that the main
Kk 1 effect is something like the replacement of (ktyA2?) by
D2°(k) = 62 <dj - —2‘) . (11)  log((K*+n?)/A?) in eq. (6). Then, just by tuning1 = A,
k* ) K4 mP the color-Coulomb potential at low momentum becomes
Either form is obtained by the naive replacement, in the-inte 1
gration over transverse gauge fields, VK) ~ ———F5—+
. Klog (<5:4°)
/ DA = N2
G
(15)

4
oA exp| - [ ks GMEGOR (O (k) . | |
(2m) much as in the old Richardson proposal [1]. We will now see
(12)  how close we can come to realizing this scenario.

where

20 | m*/K? Gribov propagator I1l. ONE-LOOP INTEGRALSIN FIRST-ORDER
M (k)_{ m?  massive propagator (13) FORMALISM

and where the subscrifiton the left functional integral refers  he Coulomb potential is directly related to the 44 compo-
to the restriction to the Gribov region, witl§*"" the renormal-  ant of the gluon propagator. If we denoted{,,, the one-
ized transverse gauge field. The replacement s closeletkla particle irreducible contribution to the Coulomb gaugeogiu

to Zwanziger's suggestion [31], formulated in Landau gaugepropagator, and noting thei; = 0 fori # 4, then the 44 com-
that the restriction to the Gribov region could be implereent ,,nent can be expanded, as usual, in a geometric series

by adding an additional term to the action, and this addition
includes a mass term wit?(k) = m*/k2. 1 1 1\2

The second expected effect of the restriction to the Gribov ~ Paa(k) = 15 (1+ Maglk) 1z + <|_|44(k)?> + )
region is special to Coulomb gauge. Coulomb gauge is a phys- 1 1

ical gauge, and it has a Hamiltonian containing a non-local =S (16)
operator k? 1— g?Nr(k)
1 2 1 14 whereg?NIM (k) = Ma4(k) /k?. We would then like to calculate
—0-D (=0%) _0-D’ (14) M(k, ks = 0) to one loop, with the restriction to the Gribov re-

gion approximated by adding a mass term to the gauge-fixed
ction. Even at the one loop level, the loop integrals are-com
licated and non-covariant, and some are difficult to evalua

involving two factors of the inverse Faddeev-Popov operato
which is responsible for the Coulomb potential. Evaluate
for a configuration directly on the Gribov horizon, where the
lowest F-P eigenvalue is zero, this quantity is singular. As
Zwanziger has pointed out [22], we may expect that most con-
figurations in the Gribov region are quite close to the hori-, Itis interesting that removal of center vortices removés émhancement,
zon, for essentially the same reason that most of the volume 5,4 pyshes a typical configuration away from horizon.

of a sphere, in a large number of dimensions, is concentrateéThe prescription here is similar to that in ref. [41], wherdimensionful
in the near vicinity of the surface. But configurations close parameter in the gluon propagator was adjusted to the prpoisit where
to the Gribov horizon ought to have an enhanced density of negative Faddeev-Popov eigenvalues disappear.



by standard formulas. It turns out to be much simpler to carrywhere

out the calculation in the first-order formulation, whiclois

ten used when dealing with Yang-Mills theory quantized in

Coulomb gauge (see in particular [22, 42—44]). P&(X) = —g fabCAlef(X)EiC’" (x) (20)
The starting point for the first-order formalism is the Eu-

clidean partition function for Yang-Mills theory fixed to

Coulomb gauge andB? = %sijk Fjk is constructed from the transverAeield.
z(3) = / DA,S[0 - Al def. 7] The non-local kernel, providing the Coulombic part of the
e Coulomb-gauge Hamiltonian, is

1 .
xexp{—/d4x(ZFﬁv+|gJ“Au)} . (A7)

try 12\ —1780
where.# = —[1-D is the Faddeev-Popov operator, and the Khoy,t,AT) = [/// (=094 }x,v ’ (21)
color indices on the gauge field and field strength tensor are
not written out explicitly, but are left implicit. One thentro-
duces ark; field via the identity. Then

eXp|:—} /d4xF02i] :f/V/DEi epr.(iEiFOi _}Eiz)] . )
B i 18 5% Daa(x—y) = - [ zi aéibz]
(18) 9%Z 532(x)038(y) | 1o

The E field is split into a transverse and longitudinal piece = (K®(x,y, A" (x4)))3(Xa — Ya)
Ei = E' — d¢, and then one integrates out tiAg field, A ac . .
which generates a delta-function enforcing the Gauss Law - </d K*(X, 21, A" (x4))P*(21,Xa)
constraint. This is followed by integration over tigefield,
which eliminates both t_he Faddeev—Popovdeterminantaend th % /d322Kbd(y, 227Atr(y4))pd(22’y4)> )
Gauss Law delta function. The details of how this goes can be
found, e.g., in ref. [43], and the result is (22)
Z[J] =

" " " . R 1 .
/G DA}r/DEitrEXp[/dllx('Ei"A}r—E(Eitr2+Bi2)—'gJiA}r) The contribution to one loop is obtained by expanding

K2(x,y, A" (x4)) up to second order in the coupling. Since

1 /dtd3xd3y(pc+ 9d)xeK[X, Y, t, A"] (pc + gJ4)y,t] 7 the producipp inside the integrals oveg, ; is already sec-
2 ond order, we can sé&t to its zeroth-order value in the inte-

(19) grand. Theresultis
|

5%°Daa(x—y)

= 5% [(—LDZ)XJJ“ Bnga"dfdfb/d3zld3zz (_imz)m (AF(21)A] (22))0(0)z, (_imz) (9))z, (_%2)2”] (X4 —Ya)

+(A%(21, %) E] (227Y4)>0<A?(22,Y4)Eid(21,x4)>o} (_imz> : (23)
Yy

In ordinary perturbation theory, the zeroth-order propagawith the usual properties
tors are determined by simply removing the restriction ® th
Gribov region in the integral oveX'. Introducing polariza-
tion vectors

2
atr _ A a
AT = A;g' ()A°(kA) (24) ke (k) =0 , ke (k) =", (25)



and
Ty = 3 e (e ()
A
5 -1 (26)
so that
/ DA (k) = / DAY (K, 7) | 27)

and
3 _i/ d'p  Tij(p) Tij(P—K)
272 (2m* p2+M2(K) (p—k)2+ M2(K)
x[p*+M?(p) — pj]
1 1 dPp wp—wpkT(P)Ti(P—K)
2K / (2m)% wp + wp_« Wp—k - (39
with
wp=\/PP+M2(p) . (34)

one can easily derive the zeroth-order momentum-space prop

agators in first-order formalism

(AR K)o = 570, (k) 5 84(k 4 K)

2
(EPED (K)o = 57T, (K) g 5%(k+K)
EF Ao = 8T (k) 4o (k+K) . (28)

k2

Our task is to evaluate suitably regularized version effor
the two choices of?(k) shown in eq. (13).

IV. DIMENSIONAL REGULARIZATION, MASSIVE
PROPAGATOR

As a first step, we will compute the Coulomb potential to

Taking eq. (23) to momentum space and inserting the propane loop using the massive transverse gluon propagatorshow

gators above, one finds for(k)
L[ (4% Ti(p)
~ {5 | i

- d*p Tij(p) Tii(P—K)
_/ (27.[)4 Jpz (Jp_k)z [Pz—p4(p4—k4)]} ’
(29)

M(k)

as originally obtained in ref. [43], see also [44]. The intdg
can be evaluated under dimensional regularization, and t

standard result for the one-loop momentum space Coulom

potential is obtained.

in eq. (11). We do not believe this propagator is correct in
Coulomb gauge even at low momenta. In contrast to Lan-
dau gauge, existing lattice simulations indicate an etjosds
propagator which falls to zero kf = 0, as already mentioned.
The massive propagator is mainly useful as an illustration o
how the potential can be enhanced by appropriately tuniag th
mass parameter, and also serves as a contrast to the résults o
tained in the next section. Technically, the massive prafiag
is simpler than the Gribov propagator case, in that standiard
mensional regularization can be applied without any difficu

the relevant loop integrals.

We now apply dimensional regularization, taking into ac-
count the fact thadj = 3—2¢. Then

Now suppose that instead of simply removing the restric-

tion to the Gribov horizon in the integration ova¥, we try

to mimic its effect by insertion of a mass term, as in eq. (12).

The effect on the zeroth-order propagators is readily obti

(BA) )0 = 5T () g 0k
2 2
(EMED K)o = 8T (Mo T k)
(EX IR (K))o = 87T () i 84K+ K) - (0

The (unregulated) expression fid(k), in thek, = 0 case we
consider here, then becomes

nk)=J—Jp, (31)
where
J = ﬁ/ d*p Tij(P)
k> J (2m* (p?2+M2(K))(p—k)?
_ 3kkj 1 d®p Tij (P)
3¢ | ek @D

3 2—-2 1
n(k)=5(11—lz)——2’3(|3a+|3b—|4)+P15,
(35)
where
Il — IJZE ' dzwlp 1
(22« (p? + me)L/2(p— k)2’
1, — Ki 25/ d®p Pip;
k° (2m)2 p2(p?+nP)Y/2(p— k)2’
|3 ZHZE d2wp rnz
° (2m)2 (P2 +m2)((p—K)Z+ mP) ’
| b:IJZE . d2wp p2
3 (2m)2 (p2+m2)((p— k)2 +mP) ’
| :IJZE dpr pzzl
! (2m)2 (p2+m2)((p— k)2 +mP) ’
o e [ 4P p?+mP — p
° (2m)2 (P2 +m2)((p— k)2 + mP) ’
p?k? — (p-k)?
“TRp-KZ (36)



andw = % — &, w=2—¢. Integralsl; throughl, are diver-
gent,ls turns out to be finite. Before carrying out the usMs
subtractions, it is important to note that one is only alldie
make the subtractions which are made#t= 0. In particular,

6

one cannot subtract terms proportionaftt because there is
no counterterm which would generate such a subtraction.

The integrals can all be evaluated by the standard methods,
and the results for the divergentintegrals are

1 /1 L[ k?x(1 - x) + mPx
Il_w(g—y+log4rr)—w'/dxx Iog(T ,

1 /1 1 /1 ~1/2
=5 <E —y+ Iog4n> - W/o dxdx 6(1—x1—X2)x; " log

k2X2(1 —X2) + m2X1
uz

-1/2 2
X T X3

k2
+—/d dx O(1—xq — ,
g2 | % (1=x X2)k2x2(1—XZ)+rT12x1
e 1 : A
|3a: W{(g_y+|og4n) —/XmOg(F)} s
1,1 K A 3 1 (1 1\ (K

3 1 A
"riw/dXAmg(F) s

11 /1 k? 11 7 A
4= -3 anp? (E —-y+ 1+Iog4n) <€ + mz> + > @n)? / dxAlog (F) . (37)
|
In these expressions we have defined usual way. The end result is that
n(k,u) =
3 1) k2X(1 —x) + mPx
3 _1/2
+m/dx1dx29(1—xl—x2)xl /
A=KX(1—x)+ne. (38) <k2x2(1— X2) + mle>
x log 2
. -1/2,2
3 X, X
——kz/dxd 0(1—x1—x L2
1612 1de(1—x —x) k2% (1 — %) 4 mPxg
1 A 1 1
All x-integrations run from 0 to 1, an@(x) is the Heaviside d theref
theta function. andneretore
1 1
V(K) = —g?(U)NDgg = — 5 ——————— . (40)
k QZ(N)N - I'I(k, “)

At this point we should take note of a source of possible

trouble. In the first place, some of the integrals have preduc |nserting the one-loop expression fg#( ), one finds that the

m?/e terms, which cannot be subtracted away. Even finitejimensional regularization scajecancels out exactly, leav-
terms proportional tor? would be catastrophic to our pro- ing the result

gram, because these would tend to make the color Coulomb

potential less, rather than more, divergent in the infrared (k) = 1
Somewhat remarkably, when the above integrals are inserted k2r|(k, Nis) ’
into (35), we find that there is a complete cancellation of

the dangerous terms proportionalrt8, while the remaining Now we consider the infrared Iimikz/m2 < 1, starting
terms proportional to As — y+log4m can be subtracted in the with the integrals. Although this integral looks superficially

(41)



divergent, it is clear, after an integration oygrwhich gives at low momenta,

/d3p sl sk = V(k):_iz i 1/2 .
S FeRE R oo 5 (5) - b
VPP — /(=K )
P>+ (p— (42) (47)

2+ P+ k)2+ m2
\/p Vip- We have suggested that should be set to the unique value
that in fact the integral is finite. Although it is still conmipl ~which would enhance the infrared behavior of the Coulomb
cated, it is not hard to show that the low-momentum limit, uppotential. This value is

to O(k?/m?), is rather simple:
(k2/m?) p m— e21/22/\m, (48)
2
i| = Lk_ ) (43)  leading to the final result at low momentum:
I2° " 3602 P P N
4
It is also simple to evaluate the low-momentum limit of the V(k) = 321/22 |k'\|/|§’ : (49)

single integrations ovet.
Since the term proportional tk|® is dominant at low mo-
dx x-1/2] kZX(l—X) + mPx menta, this results in an asymptotic potential rising |ldbar
/ XX 9 /\f/TS mically with quark separation.

2
—>L—1k—+2log rr212 -4,

3m? MS V. CUTOFF REGULATOR, GRIBOV PROPAGATOR
. 2
/dx X(1—2x)log <M> The result found in the previous section would be a little
A disappointing, if the transverse gluon propagator aciuredd
1K 1 2 the massive form witivi?(k) = m?. Tuning the mass parame-
602 6 log N ter to the unique value which enhances the Coulomb potential
MS does take us to a potential which rises faster tham fut the

(44) rise is still only logarithmic at large color charge sepianat
We will now investigate what happens in the (possibly) more

If this were all there were, then it would be possible to cteoos realistic case where the transverse gluon propagator takes
m O Ay So as to cancel the constant terms, leaving only ahe Gribov form.
term proportional tok?/m?. This would lead to an overall We again havél(k) = Ji(k) — Jz(k), whereJ; » are given
1/k* dependence for the color Coulomb potential, and therein egs. (32-34), but this time with the choib®(p) = m*/p?.
fore to a linear potential. However, the integkaleads to the  Itis awkward to evaluaté,, in particular, by dimensional reg-
two expressions involving integration over two Feynman pa-ularization; one would end up with a complicated multiple
rameters, and these turn out to spoil the desired result. Thiategral over very many Feynman parameters. Since we are
double integrals can be evaluated analytically at lywith  only interested in the smak? behavior of these integrals, we
the help of the Mellin-Barnes transform and converse maphave found it convenient to follow a different strategy, dxhs
ping theorem [45, 46]. The details are reserved for Appendixon a simple momentum cutoff gp| = A

A. The result, up t@(k?/n?), is We are aware that a momentum-cutoff regulator is danger-
ous in gauge theories, and is likely to violate Ward idegsiti
g _1/2 k2x2(1— X2) + méx, and introduce spurious divergences, but these problenhs wil
/dxldee(l_Xl_XZ)xl log A2 not arise in our present one-loop calculation. This does not
' MS mean that the momentum cutoff procedure is necessarily con-

4 m 32 B[ K 1/2 8 K2 sistent at higher loops, but that property is not crucial¢o u
=3 |09AT I <m?> ~1emzc (4 What we are really after is to use the momentum cutoff re-
MS sult to figure out what the one-loop result fétk) would be
in the MS scheme, without actually evaluating the integrals
via dimensional regularization. This strategy required the
x. 1242 momentum cutoff and dimensional regularization results ca
kz/dxldxze(l—xl—xz) 5 L 2 be matched exactly at one loop, by an appropriate choice of
k™2 (1—x2) +mPx couplingg? in the cutoff regularization. That matching will
32 (Kk\Y? 32K be postponed to the next section.
=— (—) ———. (46) From this point on, since we will mainly be carrying out
8 \m 15m? integration in three dimensions, we will denote

and

Note the appearance of terms proportionalkio Therefore, k=1kl , p=1p|. (50)



Of course the first equality is true everkiflenotes the modu-

lus of the 4-momentum, since we only consider the case where

kg =0.
Begin withJ;, which, with a momentum cutoff, can be writ-
ten as
' 1—u?
h(k) = 24n2/ ppz/ ,/p4 e P2+ k2 — 2pku’
(51)
and make the split
1 1 mP—pt+nt
—_— =+ s , (52)
Vpr+mt M 2 /prnd
so that
3
Ji(k) = é(‘]lA‘FJlB) (53)
where
1—u?
Jia = W/ pp3/ db p2+k2—2pku) ’
] / o / —pr+mt
B 4 M/t
1—u?
* p24k2 —2pku’ (54

IntegralJya can be evaluated analytically, with the result up to

O(k?/m?) (and discarding terms @(1/A?))

kY _

For the integrall;g we first expand in powers &f the term

1—u?
p2 4+ k2 — 2pku
1—u2 2k(W—-u) K (—4u*+5u2-1
= 2u_ (3 )+ ( 7 )+O(k3)a
p p p

(56)

and find, again up ta(k?/n?) and discarding terms of
O(1/A?),

2

_ 1 210 N 2 2N\

(57)

Adding togethed;s andJ;g, we then have
1 k2 k2
1= 3002 {”ﬁ ('Ogﬁ

/\2
+75 <Iog =~ +log 2> } .

Both J;4 andJig are quadratically divergent, but this is only
an artifact of splittingd; into two pieces. These quadratic di-
vergences cancel exactly in the sum, as they must, sinck the
integral is only logarithmically divergent in the cutdft

We employ a similar strategy to evaluakgk) at low mo-

menta. Definind?, = /p* + M, the integrand in (33) is

|p—K| [P—K[Rp— pRy «
Rpk [P—K[Rp+ PRy«

(L1 1w
k2 2p2+kZ—2pku/
Let Fo(p,k,u) be the same expression wiy, R, both re-
placed bym?

Fo(p,k,u) =

k2
—log 2) — 46@

(58)

Fi(p,k,u) =

(59)

Ip—K Ip—k|—p < 1

11 1-v
m  |p—k/+p\k® 2p2+k2—2pku/
(60)

Then we writed, = Jya + Jog Where

i [ doe [ auR(pk).

JZA(k) = 47.[2 0

1 /A 1

(k) = 5 [ dpF [ duFu(pkw) - Fo(pku)

™ Jo -1
(61)

The first integral can be done analytically, and again kegpin
terms toO(k? /m?) and droppingd(1/A?),

N2 k?(105logk — 345l0g2+ 83)
16m2m2 7200r2m2 '

oa(k) =
(62)
To evaluatel,g, we expand the integrand in a power series

in k. Then the integration ovgrandu can be carried out, with
the result
7 K N? 127 K2
—— =0+ 55—
9602 m2 < 2m2 72002 mP
1 A2 PN 2\ 5
“lem@ne dg@ e T2
CombiningJoa andJzg
k2
J
2T e

Jog =

(63)

(5501995 + 3o
960r2 T M2 24072
_|_i |Og &2 _ i
4812 m  72m2
As with J;, the quadratically divergent terms s andJog
necessarily cancel in the sum, since dp@ntegral is only log-

arithmically divergent im\.
Substituting the results fak andJ, into (31), we now have,

up to Qk?),

53log2
960r2

(64)



k2 [ 41 K 73 log2 11 . 2A> 5
Nk =2 (9607'[2 190 ~ 2002 192712) 82 92 T 7 (65)
and therefore
-1
1] 1 k2 41 k2 73 log2 11 2N? 5
VK =—5| 2N~ e \ ga02 09 e 5+ 5 )~ 282°9 = ~ 755
k2| g2N  m? \ 960rr m 4002 ' 192 4877 m 72
(66)
|
VI. CONNECTING THE REGULATORS Then
Now that we have computed(k) to one loop with a mo- N //\ R(p,k.m)
mentum cutoff, the task is to figure out what the result would
have to be in thSscheme, because we would like to express = /\ N / [dp/R(p,k,0)
our resultin terms of a physical scale suci\gg. The key is i
to show that it is possible to choogé= g?(A) in the cutoff / [dp{R(p,k,m) — R(p,k,0)}
expression, such that an exact matchinlyl®is possible.
1
Denote / [dp/R(p.k,0)
~ (N
Nk = [ [dpRP.km . (67) - [@p{Rp.m) ~R(P.kO)}
1
where[dp| denotes the multiple integration measure, and of gMS(u) MS[ PIR(p,k,m) . (72)
course the integral is logarithmically divergent. What we
would like to calculate is The conclusion is that if we can findgt(A)N which satis-
fies the matching condition (71) a¥ = 0, then the cutoff-
2 B regulated calculation will give us the desired result inh®
RV (k)] 5%;7N | JdpRpkm. (68) efneeates
As before,
where the integral is dimensionally regulated, and the lusua 1 1
MS subtractions are carried out. What we actually compute, V(k) = Tk L (31— ) (73)
however, is N
1 i Starting with dimensional regularization and takimg = 0,
——— — [ [dplR(p,k,m) , 69 we have forJ;
2N~ AR kM) (69) 2
1 k
J 12—— +log4m—log—;) + 28— 24log2
where the integral is regulated with a momentum cutoff, and 17 2872 ( ( yriog g “2) g )
the dependence of the coupling on the cutoff is not yet speci- (74)

fied. This expression can be rewritten slightly as
while for J,, definingn = 3 — 2¢,

1 / 2
— [ [dpIR(p.,k,0) pE rodp @@k
2 [ p ) / p
PN I 2= | @t g @+ oy
- [WB{Rpkm -RPKO}.  (70) 1 p2e— (p-K)? e
T K72 =)
where the second integration is finite, and needs no regulat . . -
Now suppose it is possible to choog&A)N such that, as The s_eco_nd tzigr,n( IE) the squared parenthes!s contamln_g the
A — 0 combination ppz(p7£>2 leads to a convergent integral which
can be done directly at= 3 with the result
)
————— [ [dp|R(p,k,0
g2(AN A APR(P:K0) = (16—24log2) . (76)

482

1 "
— o~ | apR(PkO).  (72) | . -
gM_S(u)N MS For the first term containing the unity, it is better to go bk



D = 4— 2¢ dimensions using the identity
® 2 2

/ dpu P"— Py
(P ) (PR By

_ Wp — Wp—k
Wp—k(Wp + Wp—k)

(77)

One then obtains

1 1 k¥ 5
2872 ((E—V+Iog4n)—logm+§) . (78)
Adding the two contributions, we find
1 1 k> 53

X = 182 < (E —y-+log4m— Iogm) + 3 24Iogz> ,
(79)

and, altogether

1 1 k> 31
h—J= T <11( —y+log4m—log 2) 3> .

(80)
When we compute the potentigl(k) with a renormalized
coupling gZM_S(u) in the MS scheme, then the terms propor-

tional to% — y+log4rm can be dropped.
Next we turn to the cutoff regulator. In thig® = 0 case
1-u?
81
2/ p2+k2 2pku) (81)
1
T <12 Iog 12 +8> (82)

whereA\ is the momentum cutoff in this integral. Fay, the
answer in cutoff regularization is

\]2:1/ d3p Wp — Wp_k {1_}p2k2_(p.k)2]
k2. (2m)* wp k(wp+ wp k) 2 p*(p—k)?
481 5 (Iog 2 + 14— 22I092) (83)
Consequently, the final result is
1 2
Jh—I= YT (11Iog 2 -6+ 22IogZ) (84)

10

means equating the denominators of (73), which is just the
matching condition (71):

1 1 N?
3 (/\)N T <11Iogk2 —6+22Iogz>
1 u? L
_m YT (11Iog 2 ) . (85)
Thereforeg?(A)N defined by
11 1 p? 49
FAN gf,,—s(ll)N_Afg”Z <11Iogﬁ+§—22logz) ,
(86)

in terms of theMS running couplinggZ.(1), is the cou-

pling to be used to convert the momentum cutoff resuM®
Defining Ay by the equation

1 11 H
log 55— 87)
2 2 )
one finds that
1 1 A2 49
m = 182 (11I09/\TMS -3 +22 IogZ) (88)

is the choice ofy?(A\) required to convert our result from cut-
off regularization to théS scheme.

A useful check of this method for converting cutoff
regularization to théS scheme is to go back to the massive
propagator case in section IV, recalculake and J, with
the cutoff regulator, and insert those values plus (88) into
(73). When this is done, we find that our result agrees
precisely with the result already obtained using dimeradion
regularization an®S subtraction, shown in eq. (47).

VIl. THE COULOMB POTENTIAL, FINAL RESULT

Now we equate the Coulomb potentials computed with mo- Inserting (88) into (66), we see that cancels out, and the

mentum cutoff and dimensional regularizatiomét= 0. This

(%

=)+ i

2?59
2
/\M_S 33

1
K2

11

VW ="z | 78

potential, in terms of the physical scallgs, is

As in the case of the massive transverse propagator, we nok@

setn? to the unique value at which power behavior of the

Coulomb potential is enhanced in the infrared. This leads us

-1
1 K o o I092+ 219
2872 P e~ 4 T35
(89)
I
= i/\ %6 ~ 1.73 N\, (90)

v M
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and therefore, fok? < m? 0.08f

48rPn? 7 008

vl = K (4l1oqm _ log2 . 219’ (°1) < i

(T) OgF—T‘i‘ﬁ) i 0.047

T [

wherem is given in (90). We have finally ended up with a 0.02

potential which behaves, in the infrared, a4/k* modified i

by a logarithm. 0.00L

One often hears that-al/k* potential in momentum space

corresponds, upon Fourier transformation, to a linearly in K

creasing potential in position space. Strictly speakihi, is

untrue; the Fourier transform ef1/k* is actually minusinfin- - FG. 1. Numerical calculation of (K2V (k)L (solid line) compared
ity, due to the very singular behavior ofk* ask — 0. Butthis  to the infrared limit (upper dashed line) derived here, draistan-
is precisely why it is important to include the quark-antigu  dard one-loop perturbative result (lower dot-dash lindje Faxis is
self-energies, as we have done in eq. (2). The Coulomb selfn units of Ags.

energies of quarks and antiquarks are also infinite, andghis

not only the usual UV divergence which can be regulated with, 30
e.g., a lattice cutoff. The Coulomb self-energies of quarks

and antiquarks have, in addition, an infrared divergencd, a 20f
a short-distance or high-momentum or lattice cutoff wilt no

make this type of self-energy finite. In fact, this is already 10}
a reason why isolated quarks and antiquarks, or a non-single &
quark-antiquark pair, are infinitely massive, and cannptap 0
as asymptotic states. But for a color singlet quark-antiqua

pair, the infrared infinities of the self-energy and intei@t —10y
terms precisely cancel, leaving only UV divergent contribu

tions to the self-energies, and a finite interaction termisTh —200 T, 4 s s 10

cancellation has been noted previously in ref. [47], in @mn
tion with the instantaneous Coulomb interaction, wheresig w
shown more generally that the cancellation of infinitiesxds e
act for any global color singlet combination of static qusark
and antiquarks.

FIG. 2. PotentiaV (R) vs. R, obtained from a Fourier transform to
position space of the numerical solution Y6(k). The resultincludes
the self-energy, which is both ultraviolet and infrarededlgent. The

The color Coulomb potential is infrared divergence is cancelled, for a color singlet, bpmespond-
- 4Bk ing term in the interaction, as explained in the text. To laguthe

Ve(R) = _& / —5V(K)(1- eik-R) (92)  ultraviolet divergence we have made an arbitrary subwacsuch

NJ (2m) thatV (R) passes through zero Bt= 1. V(R) is in units, andR in

. . . . inverse units, of\y;s.
and, using the smak-approximation (91) t& (k), the Fourier

transform to position space gives us asymptotically

Rose Cr (1207 m2 UV divergence is regulated by the lattice spacing, and in the
=N < 21 1o 2) R.  (93) ordinary one-loop perturbative calculation of the Coulquob
g(8.12mR/3) X ) .
tential, the static quark self-energy is dropped altogethe
This transform is carried out in Appendix B. However, the our case it is simplest to get rid of the UV self-energy diver-
smallkapproximationis only valid at large distances, Re> gence by making an arbitrary subtraction, such that the po-
1/m, in which case the integral is sensitive mainly to the smalltential vanishes aR = 1 (in units of inverse/\yg); i.e. we
k behavior ofV (k). An expression fo¥ (k) valid at allk will computeV (R) —V(1). The result is shown in Fig. 2.
agree with (91) at smak, and the usual perturbative result (6) It is interesting to compare our result with lattice data at
at largek. We do not have an analytical expressionVdk) largeN. Of course one cannot directly compare string ten-
valid at allk, butitis not hard to computé(k) numerically,by  sions, because of the logarithmic modification of the linear
evaluating); andJ; in egs. (32-33) numerically. Theresult for term. The best one can do is to compare the slopé (&)
(—k?V(k))~1 in cutoff regularization is shown in Fig. 1, and in Fig. 2, multiplied by the larged Casimir factoiCr /N = 3,
it interpolates nicely between our analytical result atlbrka  with the lattice result for the asymptotic string tensiaxtrap-
and the perturbative result for largetn? = 0. olated to largeN. In order to make this comparison, we need
The next step is to Fourier transform our result Y&(k) the expression for the lattice asymptotic string tensiamits
to a potential in position space, i.e. eq. (92). Using the nuef Ays. This has been derived in ref. [48] (see also [49]),
merical result fotV (k) at all momentum, of course the UV which finds that\ys/+/0 = 0.503(2)(40) atN — o, where
divergence of the self-energy will appear. On the lattidge th the uncertainties refer to statistical error, and an esénoa

\e(R)
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the systematic error from all sources. Therefore the steang  and the gluon chain, and for this purpose the validity of the p
sion at largeN, derived from lattice Monte Carlo simulations, tential in an intermediate range of distances may be suificie
iso= 3.95/\f/ls. SinceVe(R) = %V(R) doesn'treally have an We leave this case for future investigation.

asymptotic string tension, the comparison watldepends on

where we choose compute the slope of ¥aéR). At, e.g.,

R=1.0 /\%, where a confining potential seems to have taken ACKNOWLEDGMENTS

over from I/R behavior, we find

dVe JG and MG acknowledge support by the U.S. Department

Ocoul = (—) ~ 2.56/\%. (94)  of Energy under Grant No. DE-FG03-92ER40711. SP is
R=1/Mas dR IRt/ supported by FPA2008-01430, FPA2011-25948, SGR2005-
00916, the Spanish Consolider-Ingenio 2010 Program CPAN

as compared to the asymptotic string tensiooef 3.95\2. .. (CSD2007-00042) and by the Programa de Movilidad
PR2010-0284. APS acknowledges support by the U.S. De-

partment of Energy under Grant No. DE-FG02-87ER40365.
VIIl. CONCLUSIONS

In this article we have explored the idea that, in Coulomb  Appendix A: Application of the Mellin-Barnestransform
gauge, restriction to the Gribov region can be approximated
by a momentum-dependent mass term in the action. Within The Mellin-Barnes transforr
the Gribov region, the bulk of configurations should lie nearg. g by
the horizon, and configurations near the horizon are exgecte
to strengthen the long-range behavior of the color Coulomb 00 .
potential. If the mass term should have this same effect, by M(f.s) = ./o dx lf(x) ) (A1)
suppressing (on average) configurations outside the Gribov
horizon, then the mass parameter should be adjusted to ti&#d the corresponding inverse transformation is
unigue value at which the Coulomb potential is enhanced in 1
the infrared. F(x) = == / ds X SM(f,9) . (A2)

We have tested this idea at the one-loop level, by a per- 2m Jr
turbative calculation of the non-instantaneous color Gould
potential derived frong?Da4(K, ks = 0). For a momentum-
independent mass term, the finding is that the infrared beha
ior is confining, but only marginally; the potential risegio
arithmically with quark-antiquark separation. Howeve f
a momentum-dependent mass term leading to the propagator M(f,s) = Ik
suggested by Gribov, the result is quite different: we find a S pZ( (s+ p)K
confining potential rising as linear modified by a logarithm, '

and our potential is expressed in terms of the usual g6gte  be a “singular expansion” (denoteck® of M(f,s) on the
This reSUlt, like most of its kind, must be interpreted with left-hand side of the fundamental Strip_ A Singu|ar expansi
caution. In the first place, we have no idea how accurate oyg obtained by keeping all the singular terms in the Laurent
one-loop result may be. The best check would be to carry oWeries around each pole bf(f,s), in this case restricted to
the calculation further, to two loops, but this is a formitiab poles on the left-hand side of the fundamental strip. Then th

task in Coulomb gauge. In the second place, we cannot be suggnverse Mapping Theorem tells us that asymptotically, as
of the validity of the Gribov propagator in Coulomb gauge. Aty . o,

present the lattice Monte Carlo evidence is suggestive tiut n

decisive on this point [38, 39], and we hope that our work will (—1)k1 D ko1

help to motivate further lattice investigations of thisuesFi- FO) ~ % (k—1)! Fpix”log™x. (A4)
nally, because of the logarithmic modification, the potanti P

found here is certainly not an upper bound on the static quarl proof of the converse mapping theorem is given in [45], and
potential. However, the upper bound derived by Zwanzige%\ppncaﬁonto Feynman diagrams is found in [46].

[9] only applies to the instantaneous Coulomb potentitthea The strategy is to put the integrals in egs. (45), (46) in the
than the full one-gluon exchange potential. It would berinte 5., (A2), make a singular expansion b(f,s), and apply

esting to derive the instantaneous potential at one loopgal  he converse mapping theorm. For this purpose, we will need
the lines we have followed here. Such a potential would be ofe Mellin-Barnes representation [50]

particular interest for variational calculations of boustdtes

(f,s) of afunctionf, is de-

The first integral is typically well-defined in a region

the “fundamental strip”) of the comples-plane, with
in < RE(S) < smax and the contour is a line parallel to the

imaginary axis inside the fundamental strip. Now let

(A3)

1
= - = [dsAS T T A5
2m/r s (A5)

1 F(s;r(v—s
(L+AVY r(v)

6 o _ . o 2\A2 e .
For finiteN, Oeou atR = 1//Ays would be 256(1 —1/N*)AG. The fundamental strip is in the regionORg(s) < v.
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Beginning with the integral (46), we apply the above iden-find

tity with v = 1 B
ity with v |/7f’|0 ﬁ_32+i ,d k_2 s
o1 2 ~3%92_ "9 "o P
: — X — Xp)X
I:kz/dxldxz% /s /Ar(-9
' T SinTs (1+ 291 (3 —9)
X% ds<kxzn(]:2LX—Xz)> sinZT"S)' (A6) _ 4y ﬁ—32+i .ds @y
! 392 "9 "om e
Interchanging orders of integration, the integrals oxex; « /4 B 8/15
can be carried out exactly, with the result s+3 s+1 7

4 w32 R/KR\? 8K
T 2mm? sin(7s) (25— 1)r(-—) ' MS

(A7)

(A12)

This completes the low? evaluation of the integrals in (45),
: : . . (46).
Now making a singular expansion, and applying the converse
mapping theorem, we have

Appendix B: Transform to position space

In order to determine the asymptotic form of the one-loop

2 , 2\ S
1K ds(k> [3712/8 32 64

= —5 — ——t e+
2mi m? Jr m? S— % 1% 10%s+1) potential agk — o, we will need to transform the momentum-
32 /KR\E 3212 space expression at smélleq. (91), to position space. Ab-
— > <_) == (A8) sorbinga constant 3 71002+ 52 219 into the logarithmy/ (k) can
8 \n¥ 15m? be written
V(K = 960rnY 1
The integral in (45) is handled in a similar way. First write 41 K4log 812m
960r°n?
g 21 —
I"= /dxldxze(l— X1 — X2)X; T V(K . (B1)
nex K2%(1 - o) This is expected to yield a positive linear potential, madul
x log [ ! (1 Zmz 2 >] , (A9) logarithms, plus an infinite constant which is removed by the
Afs X1 self-energy term, as discussed earlier.

Before proceeding, we should stress again that (B1) is only
valid at smallk? < n?. The excuse for taking the Fourier
transform anyway is that the larg@behavior we are inter-
ested in is dominated by smdtl behavior, so the error at
largek should only affect terms which are subleadingRn
Note in particular that there is an unphysical Landau pole
in (B1) on the real axis, at a comparatively high momentum
k=8.12m = 14/Ays. This pole is certainly not present in the
result we have obtained numerically (k) at all momenta,

and use the identity

/s
sin(rs) ’

log(1+A) = % /r dsAS (A10)

where the fundamental strip is in the regied < Re(s) < 0

Then which is displayed in Fig. 1. The Fourier transform of (B1)
will nonetheless require a prescription (e.g. principdug
1% 12 113 for dealing with the unphysical pole, but the choice of pre-
/ dx / dxg Xy log N +logx scription, as we will see, only introduces an ambiguity ib-su
MS leading terms at large.

-1d I dyy 1 f k2% (1 — X2) -s /s In the following we will switch to unitsn=8.12m=1, so
+/ / /X 27 Jr mx, sins~ that
(Al1) 1
v (k) = Klogke (B2)

Again interchanging orders of integration, carrying o@itr  The inverse log has a cut on the negative axis and a Lan-
tegrations ovexy, X, and making a singular expansion, we dau pole ak? = 1. The discontinuity across the cut is easily
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evaluated, and the/logk? factor can be expressed through a Change variables— z = sR,

Cauchy integral

1 e p(s 1 1
logk? _/0 d stk k-1 with p(s) = log?s+ 12
(B3)

In order to perform the Fourier transform, the IR singularit

of the 1/k* term is regularized by writing

— lim

u—0 |(2(|(2 + U ) (84)

1
k4

whose Fourier transform leads to an additional constafit (in
nite in theu — 0 limit), which is removed by the self-energy

term. This removal amounts to subtractv) fromV(R).

In the following we consider the dispersive (first term in the

r.h.s. of (B3)) and Landau pole contributions separately

V(R =7(0)

7(R) =
= [Vb(R) = Vo (0)] +

Ve(R)=Ve(0)],  (BS)

where

Vb(R) —Vb(0)
d3k

— Vo (k)

%k kR 1 1 1
[ -1 k2(k2 + p2) [Iogkz k- 1] ’
(B6)

. d
= lim /
u—0

(2P

and

Ve(R —vp<0>

1 1
“Ueermie-1
(B7)

_ dk [ KR 1/1 1 1
_LITO/(ZH)3/() d(9e™ 15 (F_ku;ﬂ) K1s
Ak e KR 1
i [t
L(tr o111 11 1
sk? sk?+s pZ-sk®4+pu2 p2—sk?+s
—iim [ ) S S VE
_L|Ln0/() dSp(S)u2{4rrR[s[1 e Ve
L[e*R“ _ eRfﬂ _(R— 0)}

1—e RS 2]

(B8)

p()li +2m

Vb(R) —Vb(0)
R dz 1 1-eVvZ 2
= _—/ + 2 I
8mJo zlog? % + m? z VZ
(B9)

Next, the term in the bracket is approximated by
1-e vz 2 L2
vZ  Z+3’

which has the same limit in for both— 0 andz — o, limits.
Therefore in the integral

1+2

(B10)

/ dz 1 1+21—e*ﬁ_£ V2
Jo ZIog + 12 z vz o /Z+3
(B11)

one can take th® — oo limit since the resulting integral is
convergent. This gives a contribution©fR/ log®R), which,
as will be shown below, is subleading in tRe- o limit, since
the leading behavior i©(R/logR).
In the R — o limit, the leading behavior can therefore be
VZ

/ +

which after a few more manipulations can be written as
Vb(R) - Vb (0)

dz 1
z Iog

Vo(R) —Vp(0) ~ . (B12)

VZ
L +m2\Z+3

VZ

_E/ dz 1
8 z Iog
__E/ az

8o z |ng (z(
dz

dz
7_5/“_
~ 8m/o

(B13)

The last integral is finite in the limiR — o, again leading to
a term of the order 0O(R/log?R). The remaining integral
is dominated byz = 0 and ¥/(,/z+ 1) can be expanded in
powers of,/z leading to, in the limiR — oo,

Rpg 1
8mjo z Iogz(z(%)z)—i—n2 vZ+1
R

R
o) (m) . (Bl14)

B 8rmlog(R/3)2 +
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We now return to the pole term. For this we need to evaluaté¢husa = 0. For arbitrarya, one finds

Ve(R) ~Vp(0)

d3k 1 - 43
gkR . B15 _ [ 9k kR
/P (2m)3 k2—1 (B15) _/ (27_[)3[6' —1JVe(K)
—lim [ (e R 1) L L
This integral is not well-defined, because there is a pole at p—o0J (2m)3 k2(k2+p2) k2 -1
k = 1 (or, in g_eneral unitsk = 8.12m) on the positive real R 2q 1— (cosR+ asinR) R
axis. The leadin@ dependence, however, does notdependon = 8 1- R 2 =7 = §T+ 0o(1) .

how the pole is circumvented. This is because, in the neigh-
borhood of the polek is finite, while the leadindR behavior (B17)
is determined by the behavior of the integrand inkhe 0 | e limit of R — %, (B17) reduces t&/8m which cancels

limit. To iIIus?rate this point_, we consider a prescr_iptitFPi' . the corresponding term in dispersive part, cf. (B13). Sdlfina
for how to skip the pole which excludes from the integrationy, leading behavior in the largelimit is given by
range the interval + be <k <1+ a¢,

-~ R—o0 R R
7R = 8n|og(R/3)2+o(Iong)’ (B18)

or asymptotically, restoring constants and factorsof

/' (d3k gkr_ 1 cos(R) + asin(R) .
Jp

2m3 . K-1 4TR (B16)

. A . V(R) ~ 120 L R (B19)
wherea =log(a/b) parametrizes the ambiguity. For instance, 41 log(8.12mR/3)2
for the principal-value prescription we have tleat b, and
[1] J. L. Richardson, Phys.Le®82, 272 (1979). [20] C. S. Fischer, J. PhysG32, R253 (2006) [arXiv:hep-
[2] S. Mandelstam, Phys.ReD20, 3223 (1979). ph/0605173].
[3] U. Bar-Gadda, Nucl.Phy®163, 312 (1980). [21] R. Alkofer, C. S. Fischer, F. J. Llanes-Estrada, and ¢hvien-
[4] A. Athenodorou, B. Bringoltz, and M. Teper, JHHEB, 042 zer, Annals Phys324, 106 (2009) [arXiv:0804.3042].
(2011) [arXiv:1103.5854]. [22] D. Zwanziger, Nucl. Phy€3518, 237 (1998).
[5] J. Greensite and C. B. Thorn, JHER, 014 (2002) [arXiv:hep- [23] L. Susskind, Coarse Grained Quantum Chromodynamigs, i
ph/0112326]. LesHouchesProceedings, 1976.
[6] J. Greensite and S. Olejnik, Phys.R&®67, 094503 (2003) [24] T. Appelquist, M. Dine, and |. Muzinich, Phys.R&17, 2074
[arXiv:hep-1at/0302018]. (1978).
[7]1 Y. Nakagawa, A. Nakamura, T. Saito, H. Toki, and [25] W. Fischler, Nucl.PhysB129, 157 (1977).
D. Zwanziger, Phys.RewD73, 094504 (2006) [arXiv:hep- [26] A. Duncan, Phys. RedD13, 2866 (1976).
1at/0603010]. [27] T. Appelquist, M. Dine, and I. J. Muzinich, Phys. LeB69,
[8] A. Voigt, E.-M. llgenfritz, M. Muller-Preussker, and AStern- 231 (1977).
beck, Phys.Re\D78, 014501 (2008) [arXiv:0803.2307]. [28] H. Neuberger, Phys. Let8183, 337 (1987).
[9] D. Zwanziger, Phys.Rev.Let@0, 102001 (2003) [arXiv:hep- [29] V. Gribov, Nucl.PhysB139, 1 (1978).
1at/0209105]. [30] A. Maas, Phys.Let8689, 107 (2010) [arXiv:0907.5185].
[10] R. Alkofer, A. Maas, and D. Zwanziger, Few Body Sy, 73 [31] D. Zwanziger, Nucl.PhyB321, 591 (1989).
(2010) [arXiv:0905.4594]. [32] A. Cucchieri and T. Mendes, Pd3CD-TNTO09, 026 (2009)
[11] D. Zwanziger, Phys.Re\D70, 094034 (2004) [arXiv:hep- [arXiv:1001.2584]
ph/031225]. [33] A. Cucchieri and T. Mendes, PoBAT2007, 297 (2007)
[12] A. Cucchieri and D. Zwanziger, Phys.Rev.L&®, 3814 (1997) [arXiv:0710.0412].
[arXiv:hep-th/9607224]. [34] 1. Bogolubsky, E. ligenfritz, M. Muller-Preussker,@&A. Stern-
[13] A. Weber, M. Leder, J. Pawlowski, and H. Reinhardt, beck, Phys.LettB676, 69 (2009) [arXiv:0901.0736].
J.Phys.Conf.Se287, 012023 (2011) [arXiv:1106.3044]. [35] A. Aguilar, D. Binosi, and J. Papavassiliou, Phys.Reg4,
[14] C. Popovici, P. Watson, and H. Reinhardt, Phys.Ra81, 085026 (2011) [arXiv:1107.3968].
105011 (2010) [arXiv:1003.3863]. [36] D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel,
[15] D. Epple, H. Reinhardt, and W. Schleifenbaum, Phys. R&8, and H. Verschelde, Phys.Re\D78, 065047 (2008)
045011 (2007) [arXiv:hep-th/0612241]. [arXiv:0806.4348].
[16] C. Feuchter and H. Reinhardt, Phys.Rev0, 105021 (2004) [37] D. Zwanziger, (2011), arXiv:1103.1137.
[arXiv:hep-th/0408236]. [38] G. Burgio, M. Quandt, and H. Reinhardt, Phys.Rev.L#i2,
[17] A. P. Szczepaniak and E. S. Swanson, Phys.B6%, 025012 032002 (2009) [arXiv:0807.3291].
(2002) [arXiv:hep-ph/0107078]. [39] Y. Nakagawa, A. Nakamura, T. Saito, and H. Toki, Phys.Re
[18] J. Gracey, JHEROO2, 009 (2010) [arXiv:0909.3411]. D83, 114503 (2011) [arXiv:1105.6185].

[19] L. von Smekal, A. Hauck, and R. Alkofer, Ann. Phy§7, 1 [40] J. Greensite, S. Olejnik, and D. Zwanziger, JHEF5, 070
(1998) [arXiv:hep-ph/9707327]. (2005) [arXiv:hep-lat/0407032].



[41] J. Greensite, Phys.Rdy81, 114011 (2010) [arXiv:1001.0784].

[42] F. L. Feinberg, Phys.Rel217, 2659 (1978).

[43] A. Cucchieri and D. Zwanziger, Phys.R&65, 014002 (2001)
[arXiv:hep-th/0008248].

[44] P. Watson and H. Reinhardt, Phys.RBZ6, 125016 (2007)
[arXiv:0709.0140].

[45] P. Flajolet, X. Gourdon, and P. Dumas, Theoretical Cotap
Sciencel44, 3 (1995).

[46] S. Friot, D. Greynat, and E. De Rafael, Phys.LB®%28, 73

16

(2005) [arXiv:hep-ph/0505038].

[47] J. Greensite, S. Olejnik, and D. Zwanziger, Phys.Hz49,
074506 (2004) [arXiv:hep-lat/0401003].

[48] C. Allton, M. Teper, and A. Trivini, JHER807, 021 (2008)
[arXiv:0803.1092].

[49] B. Lucini and G. Moraitis, Phys.LettB668, 226 (2008)
[arXiv:0805.2913].

[50] E. T. Whittaker and G. N. Watson,A Courseof Modern
Analysis, Fourth ed. (Cambridge University Press, 1927),
Reprinted 1990.




