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Electron-Positron Plasma Drop Formed by Ultra-Intense Laser Pulses
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We study the initial properties, and positron annihilation within a small electron-positron plasma
drop formed by intense laser pulse energy. Such QED cascade generated plasma is in general far
below the chemical (particle yield) equilibrium. We find that the available electrons and positrons
equilibrate kinetically, yet despite relatively high particle density the electron-positron annihilation
is very slow suggesting a rather long lifespan of the plasma drop.

PACS numbers: 12.20.Ds,52.27.Ep,52.59.-f

I. INTRODUCTION

Conversion of the high intensity laser pulse energy into
a dense gas of e+, e− electron-positron pairs is a topic
of current theoretical and, soon, experimental interest.
A QED cascade mechanism producing a rapid conver-
sion of laser pulse energy into pairs was demonstrated
in [1] for pulse intensity on the order of 1024 W/cm2.
Considering the known reaction cross sections [2], sub-
sequent to the electromagnetic cascade process discussed
in Ref. [1], photons escape the small plasma drop, while
as we show here, the electromagnetic scattering thermal-
izes the momentum distribution of this relatively dense
electron-positron phase. We thus find a drop of ‘ther-
mal’ momentum equilibrated, but ‘chemical’ yield non-
equilibrated electron-positron plasma with size as small
as a few µm and an energy content up to a kJ. Such
plasma will expand, and loose energy by positron anni-
hilation. We obtain here the rates of energy, and particle
loss by annihilation.
The corresponding initial local energy density is pro-

vided by the laser field. We assume the formation of
the plasma drop at rest in the lab frame e.g. invoking
symmetric laser pulse collisions triggering QED cascades.
The experimental pulse intensity parameter, defining
plasma drop properties, is [3]

a0 =
eE0λ

m
, (1)

where e is the electron charge, E0 is the laser field
strength in the focus, λ is the wavelength, and m is
the electron (positron) mass. The discussion of physi-
cal properties, that we present, corresponds to a0 ≃ 4000
This value will be within the range of the next genera-
tion ultra intense pulsed lasers. For a plasma drop radius
R = 3 µm, 2R = 3λ the corresponding total plasma drop
energy is O(0.3) kJ.
In the present context of plasma cooling we extended

results of Ref. [2] to the lower density and lower tempera-
ture domain. Important theoretical refinement discussed
here for the first time in context of laser generated low
density e−e+-plasma is the consideration of the plasmon
screening depending on plasma temperature and density.
We also extend our earlier considerations to the nonrel-
ativistic regime T ≤ m as required in the study of the

plasma expansion and freeze-out process.
In experimental conditions we consider here, all pho-

tons produced will escape from the small drop of low
density plasma of electrons and positrons without much
if any scattering. However, even far from chemical equi-
librium density of particle pair yield, it is possible for the
produced electrons and positrons to equilibrate thermally
by means of Møller and Bhabha scattering

e± + e± ↔ e± + e±, (2)

e± + e∓ ↔ e± + e∓, (3)

forming an electron-positron plasma drop: when the drop
size R exceeds the scattering length Lee

R > Lee, (4)

multiple scattering processes can occur allowing kinetic
‘thermal’ equilibration. We therefore study positron an-
nihilation loss processes assuming the Fermi-Boltzmann
energy distribution of available particles. We solve ki-
netic population equations and evaluate the fraction
of particles in plasma which can annihilate during the
plasma lifespan.
There are two paths to positron annihilation, the direct

in-flight pair annihilation,

e± + e∓ → γ + γ (5)

and in flight bound state positronium ps formation

e± + e∓ → γ + Pn Pn → nγ, n = 2, 3 (6)

which is followed ultimately by annihilation. Annihila-
tion life span of positronium for spin 0 is τP2 = 0.12
ns, while for spin 1 τP3 = 140 ns. However, positron-
ium formation cross section only competes with the in-
flight annihilation cross section for temperature below
T ≈ 60 eV [4], and at that point the expansion dilution
will in general slow down considerably these processes.
In section II we present cross sections for Møller and

Bhabha scattering including in the plasmon screening ef-
fects. We compare the resulting pair annihilation cross
section with positronium formation. In section III we
present numerical results for Møller and Bhabha scat-
tering mean free path, and also annihilation relaxation
time. We discuss conditions for plasma drop to be ther-
mally equilibrated. In section IV we evaluate our results
and present conclusions.
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II. e+, e− PLASMA REACTION RATES

A. Scattering rates

1. Particle Density

We consider the case of a small non-opaque expand-
ing electron-positron plasma drop. The drop stays ther-
mally equilibrated by scattering processes. The electron
(positron) multiplicity Ni (i = e+, e−) is thus in ther-
mal (momentum distribution) but not in chemical (yield
distribution) equilibrium.
It has been shown [5] that in order to maximize the

entropy at fixed particle number the appropriate maxi-
mum entropy distribution is the usual Fermi-Dirac fe,ē
distribution accompanied by a phase space occupancy
parameter Υ

fe,ē =
1

Υ−1e(u·p∓ν)/T + 1
. (7)

Υ(t) describes the pair density and is in general a func-
tion of time, and is the same for both, particles and an-
tiparticles. This is in contradistinction to the chemical
potential ν which changes sign, νē = −νe comparing par-
ticles and antiparticles. Chemical potential ν regulates
the abundance difference between particles and antipar-
ticles and thus in general is only weakly dependent on
time. A system with Υ = 1 for all particles is in chemical
equilibrium and we refer to particle density with Υ = 1
as a chemical equilibrium density.
Note that the Lorentz-invariant exponents involve the

scalar product of the particle 4-momentum pµi with the
local 4-vector of velocity uµ, where uµ describes local
collective flow of matter as is expected for unconfined
plasma drop. The thermal properties ν, T,Υ are defined
in the local rest frame. In the absence of local matter
flow the local rest frame is the laboratory frame

uµ =
(

1,~0
)

, pµ = (E, ~p) . (8)

We thus have

fe,ē =
1

Υ−1
e,ēe

E/T + 1
, Υe,ē = Υe±ν/T (9)

The yields of particles are

Ne,ē = ne,ēV = ge,ēV

∫

d3p

(2π)3
fe,ē, (10)

where V = 4πR3/3 is the volume, ge,ē = 2 is the spin de-
generacy. When the e, ē-pair yield is far below chemical
equilibrium that is Υ ≪ 1 the effects of quantum statis-
tics are in general less significant and Boltzmann limit is
often equally precise

fe,ē → Υe,ēe
−E/T . (11)

2. Plasmon mass and screening length

To avoid Coulomb singularity in reaction matrix ele-
ments we introduce the plasmon mass, induced by plasma
screening effect, following the example of gluon dynamics
in quark-gluon plasma [6]. A plasmon mass is [7]

m2
γ = ω2

pl = 8πα

∫

fe+ + fe−

Ee

(

1− p2

3E2
e

)

dp3

(2π)3
. (12)

For non relativistic temperatures T << me, mγ goes
to classical plasma frequency, and a simple limit also
emerges for relativistic temperatures with Υ = 1,

mγ ≈
{

8παne/me T < me,

√
4παT/3 T > me,Υ = 1

(13)

The corresponding screening length, the Debye radius, is

rD =
vT
ωpl

. (14)

and the mean thermal particle velocity vT is

vT =

∫

p

E
fd3p

∫

fd3p
(15)

since fe+ = fe− = f . We show in the figure 1 the elec-
tron (positron) screening length and the mass of plasmon
as a function of T . Plasmon mass is increasing towards
the small temperatures and is asymptotically constant,
similar to the behavior of the plasma density. Screening
length is otherwise decreasing towards the small temper-
atures (inverse proportional to mγ and vT ∝

√
T ) in our

range of temperature.

3. Boltzmann limit

We are interested in experimental conditions in which
the number of pairs produced is large compared to resid-
ual electron density originating in matter. Further we
will deal with conditions (Υe < 1 or/and T ≤ m MeV)
which allow to use the Boltzmann approximation. Then,
we have

ne − nē

ne + nē
→ sinh(ν/T ) ≪ 1. (16)

In what follows we will set ν = 0, and consider elsewhere
the case for very low density degenerate plasma where
chemical potential may become important. We thus have
Υe,ē = Υ. In the relativistic Boltzmann (classical) limit
the plasma density and energy density are

ne =
ΥegeT

3

2π2
x2K2(x), (17)

ǫ = Υe
3geT

4

2π2

(

x2K2(x) +
1

3
x3K1(x)

)

, (18)

where Ki(x) is a Bessel function, x = m/T .
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FIG. 1: Upper panel: electron (positron) screening length
as a function of plasma temperature; Lower panel: mass of
plasmon as a function of T .

4. Electron (positron) scattering rates

In the evaluation of matrix element we use Mandelstam
variables: s, u, and t. In the case of Møller scattering

s = (p1 + p2)
2; u = (p3 − p2)

2; t = (p3 − p1)
2; (19)

and s+ u+ t = m2
1 +m2

2 +m2
3 +m2

4.
The Møller scattering matrix element is [2, 8, 9],

|Me±e± |2 = 26π2α2

{

s2 + u2 + 8m2(t−m2)

2(t−m2
γ)

2
+

s2 + t2 + 8m2(u−m2)

2(u−m2
γ)

2
+

(

s− 2m2
) (

s− 6m2
)

(t−m2
γ)(u −m2

γ)

}

.(20)

In the case of Bhabha scattering we have

s = (p3 − p2)
2; u = (p1 + p2)

2; t = (p3 − p1)
2, (21)

see diagrams in [2]. The matrix element does not change
in terms of variables p1, p2, p3, when in variables s, u, t we
need to cross u and s in Møller scattering matrix element,
see Eq. (20),

|Me±e∓(s, t, u)|2 = |Me±e±(u, t, s)|2 ; (22)

thus we find

|Me±e∓ |2 = 26π2α2

{

s2 + u2 + 8m2(t−m2)

2(t−m2
γ)

2
+

u2 + t2 + 8m2(s−m2)

2(s−m2
γ)

2
+

(

u− 2m2
) (

u− 6m2
)

(t−m2
γ)(s−m2

γ)

}

.(23)

For Møller and Bhabha scattering the cross section
σee(s) can be obtained by averaging the matrix element
over the t variable:

σee(s) =
1

16π(s− 4m2)2

∫ tmax

tmin

dt|Mee|2, (24)

where tmin = −(s − 4m2), tmax = 0 in both cases [2].
Similar evaluations were done for heavy quarks produc-
tion [10].

For Møller and Bhabha cross sections we obtain in plasma, keeping mγ :

σe±e±↔e±e±(s) =
1

16π(s− 4m2)2

∫ 0

−(s−4m2)

dt|Me±e± |2 =
4πα2

(s− 4m2)

(

s2 + 8m2(m2
γ −m2) + (s+m2

γ − 4m2)2
(

s+m2
γ − 4m2

)

m2
γ

+ 1

)

+
8πα2

(s− 4m2)2

(

(s− 2m2)(s− 6m2)

(s− 4m2 + 2m2
γ)

+ s+m2
γ

)

ln
m2

γ

s− 4m2 +m2
γ

; (25)
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σe±e∓↔e±e∓(s) =
1

16π(s− 4m2)2

∫ 0

−(s−4m2)

dt|Me±e∓ |2 =
2πα2

(s− 4m2)
×

[

s2 + 8m2(m2
γ −m2) + (s+m2

γ − 4m2)2
(

s+m2
γ − 4m2

)

m2
γ

+ 1 +
8
(

(s− 4m2)2 +m2(s−m2)
)

3(s−m2
γ)

2
+

3s+ 2m2
γ + 4m2

(s−m2
γ)

+2
(m2

γ + s)2 − 4m4 + (s2 −m4
γ)

(s−m2
γ)

ln
m2

γ

s− 4m2 +m2
γ

]

. (26)

B. e+ ē Annihilation

1. Master equation and annihilation time constant

The master population equation reads

1

V

dNe,ē

dt
= −ΥeΥēWann. (27)

We have made explicit the dependence of evolution of the
particle (pair) multiplicity in thin plasma on the prevail-
ing density showing the factor ΥeΥē.

A simplification form of the Master equation (up to di-
lution by volume expansion, to be considered at another
opportunity) is easily obtained

1

Υe

dΥe

dt
= − 1

τeann

Υē

Υin
ē

, (28)

introducing the annihilation relaxation time τeann [2]

τeann =
dne/dΥe

Υin
e Wann

. (29)

and similar for τ ēann. In our case Υe ≃ Υē and we see
that

Υin
ē

Υē
=

∫ t

0

dt′

τ ēann
(t′) (30)

We can write a similar master equation for the plasma
drop energy loss

1

V

dEtot

dt
= −ΥeΥēW

E
ann, (31)

where Etot is the total energy of plasma drop. The re-
laxation time of energy loss is

τEann =
dǫ/dΥe

Υin
e W

E
ann

, (32)

where ǫ is plasma energy density, Υin
e is initial electron

(positron) phase space occupancy.

2. Annihilation rate in-flight

When electrons collide with positrons they can annihi-
late. We consider here the dominant annihilation process
in flight into two photons. The invariant rate of annihi-
lation per unit of volume and time e + ē → γ + γ is
(3 + 4 → 1 + 2)

Wann =
g2e

2(2π)8

∫

d3pγ1
2Eγ

1

∫

d3pγ2
2Eγ

2

∫

d3pe3
2Ee

3

∫

d3pē4
2E ē

4

×δ4
(

pγ1 + pγ2 − pe3 − pē4
)

∑

spin

∣

∣〈pγ1pγ2 |Mγγ↔eē| pe3pē4〉
∣

∣

2

×eu·(p
e
1+pe

2)/T fe(p
e
3)Υ

−1
e f4(p

ē
4)Υ

−1
ē . (33)

Here 〈pγ1pγ2 |Mγγ↔eē| pe3pē4〉 is the annihilation quantum
matrix element which we will consider in lowest order
in fine structure constant α = e2/4π = 1/137.036; ge
is electron-positron degeneracy, and factor 1/2 is due to
the indistinguishability of the final state photons. We
used this method to describe the electron-positron pair
annihilation in [2], adapting it from work on strangeness
production in quark-gluon plasma [11–14]. In the last
line of Eq.(33) we introduce Υ−1

e Υ−1
ē to compensate the

factor seen in Eq. (27).
The invariant rate Eq. (33) relates to the electron-

positron pair annihilation cross section [15], in Boltz-
mann limit we have

Wann =
g2T

32π4

∫ ∞

4m2

ds
√
s(s− 4m2)σee→γγ(s)K1(

√
s/T ).

(34)
Here the annihilation cross section is [2]

σee→γγ(s) =
2πα2(s2 + 4m2s− 8m4)

s2(s− 4m2)
×

(

ln

√
s+

√
s− 4m2

√
s−

√
s− 4m2

−
(

s+ 4m2
)√

s2 − 4m2s

(s2 + 4m2s− 8m4)

)

.(35)

3. Energy loss

Once in-flight e + ē annihilation occurs, the produced
photons escape the small plasma volume. An analogous
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expression to Eq. (33) describes the energy loss rate due
to pair annihilation

WE
ann =

g2γ
2(2π)8

∫

d3pγ1
2Eγ

1

∫

d3pγ2
2Eγ

2

∫

d3pe3
2Ee

3

∫

d3pe4
2Ee

4

×

×δ4 (pγ1 + pγ2 − pe3 − pe4)
∑

spin

|〈pγ1pγ2 |Mee→γγ | pe3pe4〉|
2

×(Ee
3 + E ē

4)fe(p
e
3)f4(p

e
4)Υ

−2
e eu·(p

γ
1
+pγ

2
)/T , (36)

We now obtain a relation analogous to Eq. (34). Con-
sider the integral [15] leading to Eq. (34)

∫

d4pe−βp·uδ0(p
2 − s) =

2π

β

√
sK1(β

√
s), (37)

where u = (1,~0) in lab frame. Instead, we now need to
use
∫

d4p p · u e−βp·uδ0(p
2 − s) = − ∂

∂β

2π

β

√
sK1(β

√
s).

(38)
We use d[K1(x)/x]/dx = −K2(x)/x to obtain

WE
ann =

g2T

32π4

∫ ∞

sth

dss(s− 4m2)σee→γγ(s)K2(
√
s/T ).

(39)

4. Positronium formation

The cross section for radiative positronium (eē) forma-
tion, e− + e+ ↔ γ + (eē) [16] is

σpos =
212π2ω

3pm2
ξ

(

ξ2

1 + ξ2

)3
e−4ξarccotξ

1− e−2πξ

(

1 +
ω2(1− ξ2)

5p2

)

,

(40)
where ξ = αm/2p and photon energy ω is defined by the
conservation low

ω +
ω2

4m
= p2/m+ α2m/4. (41)

p is electron(positron) momentum in center of mass refer-

ence frame, p =
√
s− 4m2/2. The Eq.(40) is valid while

ξ ≤ 1. This condition is satisfied up to temperature on
the order of 10 eV.
We did not consider in detail the influence of plasma

screening on positronium formation, a topic which in-
vites further work in view of currently available results.
It was found in [17] that the plasma screening and col-
lective effects significantly reduce the radiative recombi-
nation cross section in non ideal plasma. The screening
effect for positronium formation should be similar to re-
sult for free electron radiative recombination with ions in
non ideal classical plasmas. However, in positron - hy-
drogen plasma the Debye screening can result in a large
increase of positronium formation cross section at inci-
dent positron energy 20-100 eV [18].

III. RESULTS FOR LASER FORMED PLASMA

A. Parameters for thermal plasma drop

We assume here that the total energy E of (colliding)
laser pulses converts in the initial volume V to the e+e−-
plasma drop energy. The initial energy density ǫ = E/V
is obtained from Eq.(1), and is characterized by a0 and
λ

ǫ =
1

4π
E2

0 =
1

4π

(a0m

eλ

)2

. (42)

The phase space occupancy of plasma drop is

Υe =
1

4πǫ0(T )

(a0m

eλ

)2

, (43)

where we introduced the chemical equilibrium energy
density ǫ0 = ǫ|Υe=1, Eq.(18). Then the total energy of
plasma, E, is defined by plasma drop radius R for given
parameter a0 and wave length λ. Initial plasma size is
expected to be close to the wavelength . We take the
wavelength R = 3λ/2 for all cases considered below.
In figure 2 we show phase space occupancy Υe from

Eq.(43) (upper panel) and corresponding plasma den-
sity npl (lower panel). The solid (blue) line shows ac-
tual chemical non-equilibrium value. For comparison the
chemical equilibrium results are shown by dashed (green)
line. We note that for T >> 0.06 MeV the fully equi-
librated yield is much greater than what we can make
using near future high intensity laser. However, the den-
sity of particles in plasma which we achieve is very high.
At T << m, when plasma becomes non-relativistic

the energy/particle → mc2 is a constant and does not
depend much on plasma temperature. Hence, the plasma
particle density goes for T → 0 to a constant for a given
fixed energy and plasma drop size,

npl = ne + nē =
ǫ

mc2
. (44)

and temperature can not be determined considering a
given available energy constraint.
In a system where particle (pairs) can be produced but

energy is fixed the entropy density reaches maximum at
Υ = 1. We show the entropy density of electron - positron
plasma,

s =

∫

d3p

2π3
((fe − 1) ln(1− fe)− fe ln(fe)) , (45)

at E = 0.3 kJ and R = 3 µm as a function of temperature
in Fig. 3. As expected the maximum of entropy density
is at the same temperature, T = 0.06 MeV, where phase
space occupancy of electron and positron Υe = 1. How-
ever, the maximum is very flat. Note that there is much
less entropy density when the system is formed at rela-
tively high temperature. This is so since there are fewer
particle pairs and, for a relativistic gas, the entropy per
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FIG. 2: Upper panel: electron (positron) phase space occu-
pancy Υe as a function of T for a0 = 4000 and R = 3 µm
(solid, blue line); Lower panel: plasma density corresponding
to phase space occupancy on upper panel (solid, blue line) and
equilibrium density Υ = 1 (dashed, green line) as a function
of T .

particle is near to S/N ≃ 4. For low density far off
equilibrium systems the expansion of the volume is thus
accompanied by reactions that tend to chemically equi-
librate the system and move it towards chemical equilib-
rium.
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FIG. 3: The entropy density of electron-positron plasma with
a0 = 4000 and R = 3 µm is shown as a function of tempera-
ture.

B. Electron and positron scattering

The formation of electron-positron plasma is further
subject to the opacity condition Eq.(4). To check if
this condition is satisfied we extend our earlier consid-
erations [2] now introducing plasmon mass, Eq.(12) in a
domain of mild relativistic and non relativistic tempera-
tures.
The electron (positron) mean free path follows from

Lee =
ne

Wee
, (46)

where for scattering rate Wee we use equation similar
to Eq.(34) (since final state does not have two identical
bosons the normalization factor is different).

Wee =
g2T

32π4

∫ ∞

4m2

ds
√
s(s− 4m2)σee(s)K1(

√
s/T ), (47)

and

σee = σe+e+↔e−e− + σe−e+↔e+e− . (48)

In figure 4 we show electron (positron) scattering
length Lee, Eq.(46), at a given plasma radius R = 3 µm
and energy 0.3 kJ (a0 = 4000) as a function of plasma
temperature T . Υ varies for every value of T as we see
in figure 2. Since Υe << 1 the scattering length can
be evaluated in Boltzmann limit in practically the en-
tire temperature range of interest, including T > m. We
also show (dashed green line) for comparison the case
Υe = 1, that means that we allow the density to go up
significantly and the small difference we see in figure 4
for high T is due to quantum gas properties.



7

10
−1

10
0

10
−6

10
−5

T [MeV]

L ee
 [µ

m
]

E=0.3 kJ, R=3 µm
ϒ=1

5 10−6 
0.05 

FIG. 4: Electron (positron) scattering length at given plasma
radius and energy as a function of T .

At relativistic temperature T ≃ 1 MeV our present re-
sult is in agreement with scattering rates evaluated with
plasmon mass taken in the limit of ultra relativistic tem-
peratures in [2] with accuracy of few percents.
For constant plasma drop energy scattering length Lee

has maximum at T ≈ m . In whole temperature range
the plasmon mass is small and the first term in Eq. (25)
and Eq. (26) is dominant, resulting in cross section for
electron or positron scattering

σee ∝ m−2
γ ∝ n−1

e . (49)

In the range where condition Eq.(49) is valid the electron
(positron) mean free path does not depend on density or
Υe. When the mean free path is increasing with decreas-
ing density, this is compensated by larger cross section
because of a smaller plasma screening effect or smaller
mγ . For the entire T range, the scattering length scale is
a tiny fraction of the plasma size.
In temperature range T < m the contribution of 4p2 =

s− 4m2 is much smaller than m2 and much larger than
m2

γ the approximate cross sections for Moller and Bhabha
scatterings, Eq. (25) and Eq. (26) are

σe±e±↔e±e±(s) = 2σe±e∓↔e±e±(s) =
64πα2

(s− 4m2)2
m4

m2
γ

.

(50)
One can also consider Rutherford-type differential

cross section for Møler scattering is [9]

dσ

d cos θ
=

πα2m2

4p4
cosec4θ/2. (51)

We checked integrating Eq.(51) numerically that our
Eq.(50) corresponds to total cross section from integrated
Eq.(51) with cutoff angle θmin = mγ/m.
We found from the results presented in Fig. 4 that

condition 4 is satisfied for all temperature range consid-
ered. We conclude that electron positron plasma drop
can stay thermally equilibrated at relatively low densi-
ties when or Υ << 1 and/or temperature T << m: the
electron positron mean free path decreases when tem-
perature decreases below electron mass because of factor
s − 4m2 = 4p2 in denominator of cross section Eq. (50).
At a temperature higher than m the other terms begin
to contribute in cross sections Eq. (25) and Eq. (26). The
electron positron mean free path decreases again.
The cross section, Eq (50), is valid in temperature

range

Tcr =
2παne

m2
< T < m, (52)

The reader should keep in mind that the present consid-
erations do not automatically apply to the case of a de-
generate electron-positron gas (high density or/and low
temperature), where we should extend the investigation
of collective plasmon dynamics in order to obtain a valid
estimate of the electron positron scattering cross section.

C. Annihilation

1. Plasmons

While screening and plasma oscillations impact the
scattering processes, this is not the case for our domain
in regard to the annihilation process. There are several
processes to consider:

1. The electron (positron) thermal mass correction,
which is on the order of magnitude ofmγ . However,
mγ << me and this correction is small.

2. Plasmon ↔ e+e−, when the reaction threshold is
exceeded, mγ > 2me [6]. This can only happen at
ultra relativistic temperatures. In the case consid-
ered here with constant plasma energy, m2

γ ∝ T−1

see figure 1, the threshold condition cannot be sat-
isfied.

3. The hard photons from annihilation (k ≈ m) can
also rescatter on plasmons. The condition when
screening has noticeable effect on photon propaga-
tion is [19]

krD ≤ 1, (53)

where k is photon wave number and rD is Debye
radius Eq.(14). This condition is equivalent to con-
dition T < Tcr, Eq.(52). We do not consider here
such low temperature plasma.
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FIG. 5: Time constant for particle annihilation (thick lines)
and energy loss (thin lines) at a0 = 4000, E = 0.3 kJ (solid
blue lines) and a0 = 8000, E = 1.2 kJ (dashed green lines) as
a function of plasma drop temperature.

2. Annihilation lifespan

We determine using the perturbative QED reaction
rate the annihilation rate of plasma under conditions
considered in previous subsections. We assume that the
plasma drop formation lifespan is on the order of magni-
tude of laser pulse duration, 10 fs and this is the stage at
which the density of pairs and thus annihilation should
have the largest rate, however this is not the case since as
T increases, pair density drops given the constant initial
total energy, and thus the annihilation relaxation time
increases.
In figure 5 we show relaxation times τ for particle num-

ber annihilation τann (thick lines) and energy loss τEann
(thin lines) for plasma at a0 = 4000, E = 0.3 kJ (solid,
blue lines) and a0 = 8000, E = 1.2 kJ (green, dashed,
lines) as a function of temperature. The values of τ are
indeed largest for initial highest temperatures and there
is a shallow minimum at T ≈ 0.065 MeV. At T < 0.065
MeV the pair density is approximately constant but par-
ticle temperature decrease results to increase of annihi-
lation relaxation time. The fastest annihilation occurs
here because we have at this low temperature the high-
est mobility of particles at high density.
We recognize that the fraction of annihilations is very

small initially, we obtain from Eq.(27)

Nann/N0 ≈ Υ2
eWann

t

n0
≈ t

τann
. (54)

Another way to look at the conditions of annihilation is
to note that relaxation time is inversely proportional to

Υe. Then from Eq.(42) we have

τann ∝ λ2

a20
, (55)

which explains the dependence on a0 we see in figure 5.
We see in figure 5 that the energy loss relaxation time

τEann becomes very close to τann for T < m. This is
because the energy of plasma drop changes mostly be-
cause of pair mas disappearance and resulting plasma
mass decrease. At T > 2m, energy loss relaxation time
is as expected above annihilation relaxation time. This
happens since there is preference for slower particles to
annihilate and thus on average in thermal bath the par-
ticles or higher energy remain and annihilation leads to
a slight increase of ambient plasma temperature.
Our result seen in figure 5 implies that the annihilation

process even at highest initial density is a relatively slow
compared to other dynamical effects controlling plasma
drop: the plasma drop must live t >> τann to have most
positrons in plasma annihilated. This time is much longer
than pulse duration, 10 fs, indeed it is on the scale of nano
seconds. There is furthermore the kinetic expansion lead-
ing to further dilution of the plasma – when plasma drop
expands with time the density decreases and the anni-
hilation relaxation becomes even longer. Most if practi-
cally not all annihilation events, 3 10−4 − 10−5 originate
in the most dense plasma stage during laser pulse and
reliable prediction of total annihilation yield require de-
tailed control of the kinetic processes in the initial state
of the plasma as well as precise understanding of the
plasma drop expansion dynamics which further reduces
annihilation rate ultimately leading to a cloud of stream-
ing electron and positrons.

3. Inflight annihilation compared to positronium formation

In Fig. 6 we compare the nonrelativistic limit of the an-
nihilation in flight cross section (dashed) to the cross sec-
tion for radiative positronium (eē) formation (solid, blue)
as a function of electron(positron) kinetic energy in the
center of mass frame Ekin = (s− 4m2)/8m. The cross
sections intersect at Ekin ≈ 150 eV. This corresponds to
cross-over temperature obtained in [4], Te ≃ 60 eV. Thus
the direct annihilation dominates down to this low tem-
perature, and our prior results apply for T > Te. For
T < Te we have significant positronium formation only if
we reach this condition without much of expansion which
is not part of our present study.

IV. CONCLUSIONS

The key result of this study is that high intensity QED
cascading leads to an electron-positron drop which does
not annihilate but thermally equilibrate. In this plasma
drop electron - positron pairs are thermalized by Møller
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FIG. 6: Radiative positronium formation (solid line) and di-
rect annihilation cross sections (dashed) as a functions of elec-
tron(positron) kinetic energy in the two particle center of mo-
mentum frame.

Eq.(2) and Bhabha Eq.(3) scattering, and annihilate very
slowly, see figure (5).
We find that in Boltzmann limit the electron and

positron scattering length nearly does not depend on
plasma density at given temperature range due to collec-
tive plasmon effects. The cross section decrease at lower
density is compensated by plasmon charge screening in
the less dense plasma. As the result electron positron
plasma can be thermally equilibrated at density and tem-
perature range considered, far below chemical equilib-
rium of pair yield, Υ = 1. The plasma drop size allows
very many scattering process, we did not find any re-

striction on minimum plasma drop energy and/or maxi-
mum drop size considering opaqueness condition Eq.(4)
for electron (positron) scattering.
We calculated as an example the annihilation relax-

ation time for an internal plasma drop energy 0.3 – 1.2
kJ and radius 3 µm. Due to relatively low density the
annihilation relaxation time is much longer than pulse
duration, which is ≈ 10 fs. We obtained that ’in flight’
annihilation is fastest at T = 0.065 MeV, yet still rela-
tively slow. The radiative positronium production pro-
cess exceeds the ’in flight’ annihilation at much lower
temperature, 60 eV, leading perhaps to the formation of
positronium in late stages of the drop. If such low tem-
perature is reached without drastic expansion dilution,
very many positronium can be formed and positronium
formation prolongs the lifespan of positrons, though the
nature of the plasma drop is now different.

The experimental conditions will determine at what
temperature and importantly for the following argument,
rapidity, relative to the laboratory frame of reference the
electron-positron drop will be formed [20, 21]. Multi-
pulse arrangements can be easily obtained resulting in
the plasma drop being formed at high rapidity. The
greater the rapidity, the greater will be the effect of time
dilation that prolongs the life span of the plasma drop
as seen in the laboratory. We recognized in this work
the relative stability against annihilation evaluated in
the intrinsic rest frame of the drop. Therefore it ap-
pears possible to create using high density lasers a quasi-
stable matter-antimatter plasma drop capable to travel
macroscopic distances before dissipating into a low den-
sity cloud of particles.
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