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Abstract

A Hamiltonian formulation of Yang-Mills-Chern-Simons theories with 0 ≤ N ≤ 4
supersymmetry in terms of gauge-invariant variables is presented, generalizing earlier
work on nonsupersymmetric gauge theories. Special attention is paid to the volume
measure of integration (over the gauge orbit space of the fields) which occurs in the
inner product for the wave functions and arguments relating it to the renormalization
of the Chern-Simons level number and to mass-gaps in the spectrum of the Hamil-
tonians are presented. The expression for the integration measure is consistent with
the absence of mass gap for theories with extended supersymmetry (in the absence
of additional matter hypermultiplets and/or Chern-Simons couplings), while for the
minimally supersymmetric case, there is a mass-gap, the scale of which is set by a
renormalized level number, in agreement with indications from existing literature.
The realization of the supersymmetry algebra and the Hamiltonian in terms of the
gauge invariant variables is also presented.



1 Introduction and Summary

In this paper we present a reformulation ofN = 1, 2 and 4 supersymmetric Yang-Mills
theories (with and without Chern-Simons couplings) in three spacetime dimensions
in terms of gauge-invariant variables, following the Hamiltonian approach in [1]. As
part of this reformulation, we compute the volume measure on the physical gauge-
invariant configuration space C of the theories under consideration and study the
interplay between dynamical mass-generation and supersymmetry in D = 2 + 1.

Studies of gauge theories in three dimensions, especially their nonperturbative
aspects, are motivated by several current issues of both practical as well as concep-
tual importance. For example, it is well known that various equilibrium properties of
the quark gluon plasma (QGP) are expected to be captured by an Euclidean three
dimensional Yang-Mills theory coupled to scalar adjoint matter fields. The nonper-
turbative mass-gap of the three dimensional gauge theory, in this context, sets the
screening length for chromomagnetic fields in the plasma. Thus the QGP provides a
very physically relevant context for gauge dynamics in three dimensions; a detailed
description relating non-perturbaitve effects of the three dimensional theory to physi-
cal observables of the plasma can be found in the rather large literature on the subject;
see, for example [2]. On the more conceptual side, supersymmetric Yang-Mills and
Chern-Simons theories appear at the forefront of several exciting recent developments
pertaining to the gauge-gravity dualities involving M2 and D2 brane theories [3, 4].
For instance, understanding both the flow of the D2 brane theory to a conformal
field theory in the IR and its connection to a holographic description of high Tc su-
perconductivity [5] require tools for probing the nonperturbative behavior of N = 8
SYM.

Keeping these broad motivations in mind it is interesting to note that, in the
case of the purely gluonic theory, it has been possible to do ab-initio strong coupling
computations1 of certain physical quantities using the gauge-invariant Hamiltonian
formalism [1]. For example, systematic computations of the string tension [6], screen-
ing effects [7] and the inclusion of the effects of non-trivial spatial geometries [8] have
been studied within this framework. The Hamiltonian approach, with some varia-
tions, has also been employed to estimate the glueball spectrum in [9]. Further, the
formalism has been extended [10] to the Yang-Mills-Chern-Simons theory [11]. Most
importantly, at least as far as the focus of the present paper is concerned, the origin of
the mass-gap in the purely gluonic theory can be understood in a geometric fashion as
the effect of the volume measure on C, a fact made transparent in terms of manifestly
gauge-invariant variables [1, 12].

On the other hand, a very different set of tools allows one to make considerable
headway into the study of gauge theories in D = 2 + 1, as long as one has su-
persymmetry. For the case of Yang-Mills and Chern-Simons theories with extended

1The wording “strong coupling computations” is meant to indicate a specific expansion scheme,
as explained in detail in the second paper in [6].

2



supersymmetries many powerful statements can be made about their partition func-
tions [13], S-matrices [14, 15], physical spectra [16, 17] and Wilson-loop expectation
values [18]. Obviously, in the case of maximal (N = 8) or near-maximal (N = 6)
supersymmetry one also has a web of gauge-gravity dualities which can be used to
make precise statements about the strong coupling behavior of N = 8 Yang-Mills
and N = 6 Chern-Simons theories[16, 4]. The potent methods that enable these
computations often use manifest supersymmetry in one way or another and are not
readily generalizable to non-supersymmetric theories. A natural question to ask is
if these two approaches, namely, the gauge-invariant Hamiltonian point of view due
to KKN [1], which does not rely on supersymmetry in any way, and the powerful
computational tools that have been so successful in the recent studies of supersym-
metric gauge theories in three dimensions, can be fruitfully combined. In this paper
we take a step towards answering this question. A summary of our main results and
the outline of the organization of the paper are as follows.

Our particular focus in this paper will be on Yang-Mills-Chern-Simons theories
with 0 ≤ N ≤ 4 supersymmetry with particular emphasis on the issue of dynamical
mass-generation in the presence of supersymmetry. We re-express these theories in a
gauge-invariant form in a Hamiltonian framework by extending the KKN formalism to
incorporate supersymmetry. In the process, we also compute the integration measure
for the inner product of the wave functions for these theories. As discussed in the
next section, in many ways, this is the quantity of central interest as far as the
existence of a mass gap is concerned. For the pure glue theory, this measure is given
in terms of a Wess-Zumino-Witten (WZW) functional (24) with a level number equal
to 2 cA, where cA is the quadratic Casimir value for the adjoint representation of the
gauge group (which we shall take as SU(N)) [19, 20]. Ultimately, this level number
determines the mass-gap in the spectrum of the theory [1], the basic argument for
which is also outlined in this section. We also discuss the effect of the Chern-Simons
coupling (when it is present), and its renormalization, on the measure and the mass-
gap. Much of the discussion in this section is based on previous work [1, 10, 20]; it
is intended to serve as a coherent summary of the interrelations among the three key
quantities: the integration measure for the inner product of wave functions (a quantity
defined within a Hamiltonian approach), the mass-gap, and the renormalization of
the Chern-Simons level number (which is carried out in a covariant functional integral
approach).

As is well known, in the absence of supersymmetry, the level number for the Chern-
Simons theory, k, with or without the presence of a Yang-Mills term in the Lagrangian,
does, indeed, undergo a renormalization k → k + cA [21]. (This can be seen from a
Hamiltonian point of view as well, see [22, 20].) For the Yang-Mills-Chern-Simons
system, this contribution can also be computed via Feynman diagrams in one-loop
covariant perturbation theory [21]; the supersymmetric extension, for 1 ≤ N ≤ 4
Yang-Mills-Chern-Simons theories, has been done in [23] Our arguments show how
the coefficient of this shift, cA, is, in fact, directly related to the level number of the
WZW functional (23) occurring in the inner product for the wave functions. This
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nonperturbative origin of this shift also clarifies why the same shift is obtained for
both the Yang-Mills-Chern-Simons system [21, 10] as well as the pure Chern-Simons
theory [22, 20].

In preparation for the study of supersymmetric theories, section 3 is devoted to
a more direct computation of the contribution of Majorana fermions to the measure,
when the fields are recast in gauge-invariant forms. An important point is that
there are different ways to define gauge-invariant variables for the fermions, with
correspondingly different Jacobians and integration measures. The calculation of the
Jacobian is related to a chiral anomaly calculation. The choice of the gauge-invariant
version of the fermions is related to the realization of the supersymmetry algebra;
this is explored in the later sections.

The gauge-invariant reformulation of the supersymmetric theories is taken up from
the next section onwards, with N = 1 in section 4, N ≥ 2 in section 5, linearization
in terms of the gauge-invariant variables in section 6, and some useful formulae col-
lected in an appendix. We construct the supercharges and their algebra, which then
determine the choice of gauge-invariant variables and the fermionic contribution to
the measure. The effect of the fermions is to eliminate the WZW functional for ex-
tended supersymmetry (N ≥ 2), while canceling the gluonic contribution by a factor
of half in the minimal supersymmetric case (N = 1); i.e., k → k+cA−

1
2
cA = k+ 1

2
cA.

The expression for the measure indicates that one cannot have spontaneous mass-
generation in supersymmetric Yang-Mills theories in three spacetime dimensions in
the presence of N ≥ 2 supersymmetry, at least in the absence of additional matter
hypermultiplets and as long as supersymmetry remains unbroken. This statement
pertains to theories that do not have Chern-Simons couplings, the presence of which
make corresponding gauge theories massive by construction. The absence of spon-
taneous mass generation in the k → 0 limit corresponds in our set up to a non-
renormalization of the Chern-Simons level number for non-zero values of k. In the
case of minimal supersymmetry, one cannot consistently define a Yang-Mills theory
without the Chern-Simons terms due to the parity anomaly[24, 25]. In this case,
our results are tantamount to the calculation of the shift of the Chern-Simons level
number - which sets the scale for the massive excitations of the gauge theory - as part
of the computation of the integration measure exactly.

The implications of these results are also consistent with several other indications
obtained in the previous literature. In particular, the massless nature of the physical
spectrum of Yang-Mills theories with N = 2 and 4 supersymmetry is also expected
based on D-brane constructions [26], small volume arguments [27] and (specifically
for the case of N ≥ 4) arguments based on the moduli space of the Coulomb branch
[28].

Not surprisingly, the expressions for the supercharges and the Hamiltonian are
nonlocal in terms of the gauge-invariant variables. Nevertheless, we can verify the
required commutator algebra; the details are presented for the N = 1 theory. There
are also some regularization issues involving expressions like Green’s functions at co-
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incident points; some details of how this can be done in a way compatible with the
measure calculation are also given in the relevant sections. Several useful formu-
lae, including regularized expressions for the Green’s functions, can be found in the
appendix at the end of the paper.

Before proceeding to the detailed analyses, let us remark that there are no natural
obstructions to extending these present methods to theories with higher supersym-
metry and to theories with fundamental matter fields. We intend to explore the
application of the formalism presented in this paper to to D2 and M2 worldvolume
theories and their deformations involving fundamental matter fields elsewhere.

2 The measure of integration on A/G∗

The geometry of the configuration space and the volume of integration for the wave
functions have a crucial bearing on the question of a mass gap in the theory. It is
useful to start with a general discussion of this issue for YM(2+1), the N = 0 theory,
and then generalize from there.

2.1 Yang-Mills theory in 2+1 dimensions

We will start with some notational preliminaries. We will take the group in which the
gauge transformations take values, often called the gauge group, to be SU(N). We will
denote by {ta}, a = 1, 2, · · · , N2−1, a set of linearly independent traceless hermitian
N ×N matrices which form a basis for the Lie algebra of SU(N) in its fundamental
representation. These matrices will be normalized by the condition Tr(tatb) = 1

2
δab

and obey the commutation rules [ta, tb] = ifabctc. The structure constants fabc also
define the adjoint representation of SU(N) via (T a)bc = −ifabc.

The gauge potential which is a vector field in 2+1 dimensions is given by the
matrix Aµ = Aa

µ(−it
a), with the gauge transformation given by

Aµ → Ag
µ = g−1Aµg + g−1∂µg (1)

The Yang-Mills action, apart from terms involving superpartners (to be discussed
later), is given by

S =
1

2

∫
d3x Tr(FµνF

µν) = −
1

4

∫
d3x F a

µνF
aµν (2)

where the field strength tensor is given by Fµν = (−ita)F a
µν = ∂µAν−∂νAµ+[Aµ, Aν ] =

(−ita)(∂µA
a
ν − ∂νA

a
µ + fabcAb

µA
c
ν).

In a Hamiltonian analysis, we can partially fix the freedom of gauge transfor-
mations by setting A0 = 0. With this choice, the fields are A1, A2, the spatial
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components of the gauge potential. The wave functions are then functionals of Ai.
The Hamiltonian is given by

H =

∫
d2x

[
e2Ea

i E
a
i

2
+
BaBa

2e2

]
(3)

where Ea
i and Ba are the electric and magnetic components of the field strength,

respectively, given by

Ea
i = ∂0A

a
i = −i

δ

δAa
i

, Ba =
1

2
ǫij

(
∂iA

a
j − ∂jA

a
i + fabcAb

iA
c
j

)
(4)

The wave functions are functionals of the fields Ai. The choice of A0 = 0 still
allows for gauge transformations by g which are independent of time. This implies a
constraint on the wave functions, which is also the Gauss law or equation of motion
for the A0-component,

(∇iδ
ab + fabcAb

i)E
a
i Ψ = 0 (5)

Since Ea
i is the functional derivative with respect to Aa

i , this is equivalent to requiring
the invariance of the wave functions under gauge transformations g which go to the
identity at spatial infinity. These are the true gauge transformations of the theory.
In fact, it is useful to define

G∗ =
{
Set of all g(~x) : R2 → SU(N) such that g(~x) → 1as |~x| → ∞

}
(6)

This has an action on the space of gauge potentials A as given in (1), where

A =
{
Set of all Lie-algebra-valued vector functions Ai on R

2
}

(7)

The space of physical (or gauge-invariant) configurations is then given by C = A/G∗.
The statement that the wave functions are gauge-invariant, or equivalently, equa-
tion (5), can now be restated as saying that the wave functions are complex-valued
functions (or more generally, sections of a line bundle) on C.

As a first step in relating the volume measure on C to the mass gap, notice that,
using (3) and (4), the expectation value of the Hamiltonian for a state characterized
by the wave function Ψ is

〈H〉 =

∫
dµ(C)

[
e2

2

δΨ∗

δAa
i (x)

δΨ

δAa
i (x)

+
1

2e2
Ba(x)Ba(x)Ψ∗Ψ

]
(8)

where dµ(C) denotes the volume element on C. Notice that the first term in 〈H〉,
arising from the kinetic energy term in (3) can be viewed as the gradient energy
for Ψ taken as a function on C. This suggests that if the gauge-invariant distance
between configurations cannot be made arbitrarily large, then the gradient energy
cannot become arbitrarily small. Such a geometric property of C can thus lead to a
gap in the spectrum of H. An argument for the mass gap along these lines, but at
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a very qualitative level, was advanced by Feynman in 1981 [29]. He suggested that
while there are configurations (points) whose separation in A is arbitrarily large, it is
finite in C, after the equivalence under gauge transformations is taken into account.
This reasoning is indeed on the right track, but the desired property, as stated, does
not hold [30]. We first show this and then see how the essence of the reasoning can
be salvaged once the volume measure for C is taken into account.

The action for the theory can be written as

S =
1

2

∫
dt

∫
d2x

∂Aa
i

∂t

∂Aa
i

∂t
− potential terms (9)

Comparing this with the action for a point particle,

S =
1

2

∫
dt gij

dxi

dt

dxj

dt
− potential terms, (10)

we see that (9) can be interpreted as the action for a point particle moving on an
infinite dimensional space, viz., the space of fields, with metric

ds2A =

∫
d2x δAa

i δA
a
i (11)

The integrated version of this gives the distance s(A,A′) between two gauge potentials
A and A′ as the Euclidean distance,

s2(A,A′) =

∫
d2x (A− A′)a(A− A′)a (12)

This metric is still on the space of the gauge potentials. It may be possible to find a
shorter distance between configurationss by choosing a different but gauge-equivalent
potential for A or A′. Thus, as the metric on the physical configuration space, we
take [30, 31]

s2C(A,A
′) = Infg

∫
d2x (A−A′g)a(A− A′g)a (13)

2.2 The spikes

With the definition (13) of the distance on C, we can now show that there are indeed
configurations for which the separation can be arbitrarily large. It is enough to give
example configurations to prove this point. For this purpose, we may take one of the
configurations as the vacuum, say, A′ = 0. Then

s2C(A, 0) = Infg

∫
d2x (Ai − g−1∂ig)

a(Ai − g−1∂ig)
a (14)

We will also use SU(2)-gauge theory, taking, as our example, the configuration

A = (−it3) in(zz̄)n−1 (zdz̄ − z̄dz)

[1 + (zz̄)n]
(15)
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where z = x1 − ix2, z̄ = x1 + ix2. The minimum distance of the configuration (15)
from A = 0 can then be worked out as follows. We parametrize the group element g
as

g =
1√

1 + f f̄

[
1 f
−f̄ 1

] (
e−iϕ/2 0
0 eiϕ/2

)
(16)

This leads to

s2C(A, 0) = Infg

∫
d2x

[(
A−

i(fdf̄ − f̄df)

1 + f f̄
+ dϕ

)2

+ 4
∂if̄∂if

(1 + f f̄)2

]
(17)

Extremization with respect to ϕ is achieved if we choose A− i(fdf̄ − f̄df)/(1 + f f̄)
to be transverse. The first part of this expression, namely A, is already transverse and
we can choose f such that the second part is also transverse. The function ϕ which
extremizes the first term in (17) is then ϕ = 0. Next we note that the expression for
s2 in (17) consists of two positive integrals. The minimum for the second term on the
right hand side is given by 8πQ[f ], where Q[f ], which is an integer, is the topological
charge of f , given by

Q[f ] =
i

2π

∫
d2x ǫij

∂if̄∂jf

(1 + f f̄)2
(18)

The first term on the right hand side of (17) is minimized, with a minimum value
equal to zero, if we choose f = zn. In this case s2C(A, 0) is 8πn. Any other choice of
f will lead to a larger value, because of the logarithmic divergence of the first term.
Thus we have shown that the distance of the configuration (15) from the configuration
A′ = 0, minimized with respect to g, is given by

s2C(A, 0) = 8πn (19)

This tells us that, for any value of L2, we can find configurations for which their
separation from A = 0 exceeds L. The configuration (15) is an example of these
when n ≥ (L2/8π). The field strength corresponding to (15) is

F = (−it3) (−4n2)
(zz̄)n−1

[1 + (zz̄)n]2
dx1 ∧ dx2 (20)

Notice that F is well-behaved, there is nothing pathological about it.

This concludes our argument that there are configurations, e.g., A = 0 and A given
by (15) with n ≥ (L2/8π), for which the minimal distance between them, calculated
in a gauge-invariant way, or equivalently on C, can be arbitrarily large. These are the
so-called “spikes” on C. Since the set of all physical configurations C is a connected
space, there is obviously a line of configurations connecting, say, A = 0 to the A’s in
(15); more generally, a narrow spike running off from any configuration to infinity.

The spikes vitiate the simple argument for the gap by bounding the gradient
energy in (8). For, a wave function which is like a standing wave along this line
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would have arbitrarily long wavelengths suggesting that the kinetic energy can be
made infinitesimally small. However, this is not an adequate counter-argument for
the gap, since we are in a multidimensional space and the measure of transverse
directions is very important. A classic example of the importance of the transverse
measure is given by the two-dimensional Schrödinger problem

H = −
∇2

2M
+ λ(x2 + x2y2) (21)

Notice that there is one direction, the y-axis (x = 0), along which the potential energy
is zero. So one might expect long wavelength excitations along this direction, leading
to a spectrum with no gap, connecting continuously to zero. But this is evidently
too naive. Such long wavelength excitations also have transverse oscillations, along
the x-direction for which the potential is λ(1 + y2)x2, corresponding to a frequency
ω =

√
λ(1 + y2). The zero-point energy (or ground state energy) for this oscillation is

1
2

√
λ(1 + y2). This additional energy, increasing with |y|, cuts off the wave functions

along the y-axis, vitiating the previous argument for the absence of a gap in the
spectrum. (Of course, in the full solution of the problem, it is not meaningful to
separate the dynamics along x- and y-directions, as we do here. Nevertheless, our
argument captures the essential physics.)

2.3 The volume measure on C

The question of whether the reasoning given for the Schrödinger problem (21) can
hold for the Yang-Mills theory in (2+1) dimensions hinges clearly on the measure for
the transverse directions. This has been calculated before and is given as follows.
The gauge potentials Az = (1

2
(A1 + iA2), Az̄ = (1

2
(A1 − iA2) can be parametrized as

Az = −∂zMM−1, Az̄ =M †−1∂z̄M
† (22)

where M ∈ SL(N,C) is a complex matrix. The hermitian matrix H = M †M is
gauge-invariant; it parametrizes SL(N,C)/SU(N). The volume element for C is
given by

dµ(C) = dµ(H) exp[ 2 cA Swzw(H)] (23)

where Swzw is the Wess-Zumino-Witten action given by

Swzw(H) =
1

2π

∫
Tr(∂H ∂̄H−1) +

i

12π

∫
ǫµναTr(H−1∂µH H−1∂νH H−1∂αH) (24)

In equation (23), dµ(H) is the Haar measure forH and cA is the value of the quadratic
Casimir operator for the adjoint representation; it is equal to N for SU(N). The inner
product for wave functions is given by 〈1|2〉 =

∫
dµ(C) Ψ∗

1Ψ2. The total volume of C
given by

∫
dµ(C) is the partition function for the WZW model on SL(N,C)/SU(N).

It can be taken to be finite, with a suitable regularization. The contrast to be made
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here is between the Abelian theory and the nonabelian one. For the former, since
cA = 0, the exponent in (23) is zero and the integral

∫
dµ(C) diverges for each mode.

For the nonabelian case, the integral is finite for each mode, although one does need
a cutoff on the number of modes for the final result to be finite. The “finiteness” of
dµ(C) suggests that the zero-point energy for the transverse dimensions should work
to generate a mass gap for the theory along the lines of the argument for (21).

The fact that the measure is the key to the mass gap can be further elucidated in
a couple of different ways. At a qualitative level, we can write, using the uncertainty
principle,

〈H〉 =
1

2

[
e2∆E2 +

∆B2

e2

]
=

1

2

[
e2p2

∆B2
+

∆B2

e2

]
(25)

where we consider modes of E, B fields corresponding to a momentum value p.
Ordinarily, to find the low lying modes, we would minimize 〈H〉 with respect to
∆B2 (obtaining ∆B2 ∼ e2p) to find 〈H〉 ∼ p. (This would correspond to the photon
in the Abelian theory.) However, in our case, the measure (23) controls the dispersion
in B because, for low values of p, it becomes a very narrow Gaussian, since

Swzw ≈

[
−
cA
2π

∫
B

1

p2
B + ...

]
(26)

The resulting value of ∆B2 = πp/cA leads to 〈H〉 = (e2cA/2π) +O(p2). We see the
emergence of a mass gap from the properties of the measure.

At a more quantitive level, we can write the Hamiltonian in terms of the current
J = (cA/π)∂H H−1 as H = T + V , with

H = m

[∫

u

Ja(~u)
δ

δJa(~u)
+

∫
Ωab(~u,~v)

δ

δJa(~u)

δ

δJ b(~v)

]
+

π

mcA

∫
∂̄Ja(~x) ∂̄Ja(~x)

(27)
where

Ωab(~u,~v) =
cA
π2

δab
(u− v)2

− i
fabcJ

c(~v)

π(u− v)
(28)

The first term in (27) assigns an energy of m for each power of J . This is the
essence of the mass gap. The existence of this term is closely related to the measure
of integration. This term is needed to make H self-adjoint for square integrable
functions with the measure (23). To bring this out even more explicitly, we note
that we can absorb the factor of exp(2 cA Swzw(H)) from the measure into the wave
function by writing Ψ = exp(−cASwzw(H)) Φ, the latter having the inner product

〈1|2〉 =

∫
dµ(H) Φ∗

1Φ2 (29)

The Hamiltonian acting on the Φ’s is obtained by

H → HΦ = exp(cASwzw(H))H exp(−cASwzw(H)) (30)
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If we use an expansion for H as H = exp(ϕ) ≈ 1+ϕ+ · · · , J = (cA/π)∂ϕ+ · · · , then
we can easily verify that

〈1|2〉 ≈

∫
[dϕ] Φ∗

1(H)Φ2(H)

HΦ ≃
1

2

∫

x

[
−

δ2

δφ2
a(~x)

+ φa(~x)
(
m2 −∇2

)
φa(~x)

]
+ · · · (31)

where φa(~k) =
√
cAkk̄/(2πm) ϕa(~k). This clearly shows the emergence of the mass

term.

2.4 An alternate method for the measure of integration

The arguments given above show the central role of the measure of integration in the
inner product for the question of the mass gap. We will now give an alternate way
of obtaining this measure, which is more easily generalizable to the supersymmetric
case. It will rely on relating the measure to the Chern-Simons theory and the Yang-
Mills-Chern-Simons theory. The basic argument involves a number of different steps.

Step 1:

Consider the calculation of the expectation values of Wilson lines (which are the
observables) in a Chern-Simons theory of level number k. We shall look at this calcu-
lation both in a Hamiltonian formulation and from the point of view of a functional
integral approach. Consider first the Hamiltonian formulation on Σ × R where, for
the ensuing discussion, it is adequate to take the spatial manifold Σ as R2 or the
Riemann sphere R2 ∪ ∞. In the A0 = 0 gauge, the wave functions must obey the
Gauss law condition

δǫΨ(A) =

∫
ǫa

[
k

2π
∂̄A+

∑

r

(−ita)(r)δ
(2)(x− xr)

]
Ψ (32)

where δǫ Ψ denotes the change in Ψ under the infinitesimal gauge transformation
A → A − Dǫ and ta(r) denotes the charge matrix for the r-th Wilson line. We are

using the holomorphic polarization for the wave functions 2. In the absence of any
Wilson lines, this equation tells us that the ground state wave function is given by

Ψ0 = χ0 exp(kSwzw(M)) (33)

The constant χ0 is determined by the normalization integral

|χ0|
2

∫
dµ(H) exp [(k + 2 cA)Swzw(H)] = 1 (34)

2There is a slight change of notation compared to [20]. The present z, z̄ are the z̄ and z of that
paper.

11



In the exponent of the integrand, the term k Swzw(H) arises from the wave function,
and the remainder 2cASwzw(H) is the Jacobian for the conversion from the A’s to H .

Step 2:

If we consider two charges, conjugate to each other, at positions ~x1 and ~x2, the
solution to the Gauss law (32) is

Ψ = χ(z1, z2)M(1)M−1(2)Ψ0 (35)

where χ, which can depend on the coordinates of the charges, is to be determined by
the requirement that Ψ should obey the Schrödinger equation. The Hamiltonian has
the form

H = −i
∑

r

[
˙̄zr

δ

δA(xr)
+ żrA(xr)

]
(36)

The action of H on Ψ produces singular terms via terms like δM(1)/δA(x1). A
regularization of this singularity shows two results:

1. There is a shift of k → κ = k + cA in the expression (36) for H.

2. The Schródinger equation becomes the Knizhnik-Zamolodchikov equation for
the chiral blocks with parameter κ. In other words, χ is a chiral block for the
level k SU(N) WZW theory.

Step 3:

We also know that Ψ in (35) should have a normalization integral independent of
z1, z2. The relevant integral is of the form

I = |χ|2
∫
dµ(H) exp[k̄ Swzw(H)] H(1)H(2)−1 (37)

where we take the integration measure to be of the form dµ(H) exp[k̄Swzw(H)]. We
will leave k̄ for this argument, even though explicit computation will show that it is
k+2 cA, as in (34). Other than |χ|2, I is the correlator 〈H(1)H(2)−1〉 of a hermitian
WZW theory (an SL(N,C)/SU(N) theory) of level number k̄. This correlator must
exactly cancel the zi-dependence of |χ|2 to make the normalization of the state (35)
equal to a constant. This, in turn, implies that 〈H(1)H(2)−1〉 should obey the KZ
equation as in the SU(N) WZW theory, but with κ → −κ. On the other hand, we
also know directly from the path-integral for the hermitian WZW model, that the
correlators of the level k̄ hermitian model are the same as those of the SU(N) WZW
model of level −k̄. The consistency of these statements then requires that

−k̄ + cA = − (k + cA) (38)

identifying k̄ = k + 2 cA. Thus indirectly we identify the measure of integration as
dµ(H) exp [(k + 2 cA)Swzw(H)]. At this stage, we may take k → 0 to get the measure
for gauge fields (with no contribution from the CS action).
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Step 4:

The shift k → κ = k + cA in the Hamiltonian (and hence in the KZ equation
which is the Schrödinger equation for the CS theory) can also be seen, in fact, more
easily seen, in the path-integral approach. We can, in principle, calculate observables
(Wilson lines) by using a quantum effective action Γ. Thus starting from the level k
Chern-Simons action, we first determine the corresponding Γ. It is well know that Γ
has the same form as the Chern-Simons action, but with k → k+cA. All observables,
from this method of calculation, involves a single parameter κ = k + cA. Since the
same observables can also be calculated via the Hamiltonian approach, this tells us
that the regularization of the Hamiltonian must produce the same shift k → k + cA.
Taking this ingredient from the covariant path-integral approach, we can bypass the
regularization procedure and identify the needed shift of k in the Hamiltonian, and
then combining this with the requirement of I being independent of the zi’s, we have
a method of identifying the measure of integration.

The line of reasoning outlined above may be summarized as follows:

1. Identify the shift of k in the effective action of the CS theory via a covariant
path-integral or Feynman diagram calculation.

2. The shifted k from the effective action determines the shifted parameter κ in
the Hamiltonian and hence in the KZ equation for the SU(N) WZW theory.

3. The KZ equation (the Schrödinger equation) determines the zi dependence of
χ in the wave functions.

4. For the normalization to be independent of the zi’s, the H-correlators (calcu-
lated in the SL(N,C)/SU(N) WZW theory of level number k̄) must obey the
KZ equation of the SU(N) WZW theory with parameter −κ.

5. The chiral blocks of the SL(N,C)/SU(N) WZW theory of level number k̄ are
the same as those for the SU(N) theory with level −k̄

6. Putting these together, we find

KZ parameter of SU(N) WZW
theory with level − k̄

}
= −

{
KZ parameter of SU(N) WZW
theory with level k

(39)

This last equation thus identifies the measure of integration. We can take k → 0 at
this stage to obtain the result for the gauge fields alone.

One may now wonder where the Yang-Mills action enters this line of reasoning.
Of course, we are concerned with the measure for the gauge fields, so the action, per
se, does not play an important role. However, the covariant calculations in the CS
theory which initiate this sequence of steps generally require a regulator. The Yang-
Mills action may be taken as a higher derivative regulator for the theory, so that all
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calculations may be thought of as being carried out in the YMCS theory. The direct
calculation of the integration measure in the YMCS also yields k̄ = k+2 cA [10]. The
pure CS limit is obtained by taking the limit of large e2; the shift of k is known to be
independent of e2. The pure Yang-Mills limit is obtained by taking k → 0.

Once the measure is known, the analogue of the mass parameter can be identified
via the reasoning given in subsection 2.3. For the YMCS theory, this would give
(k + 2 cA)(e

2/4π). This value agrees also with the direct calculation obtained by
expressing the Hamiltonian of the YMCS theory in terms of the gauge-invariant
variables H [10].

2.5 Expectations for supersymmetric theories

The line of reasoning in the last subsection can now be applied to the supersymmetric
theory. The calculation of the shift of the level in the N -extended supersymmetric
Yang-Mills-Chern-Simons theory has been done in [23]. (If the addition of the Yang-
Mills term is viewed purely as a higher derivative regulator term, notice that we
do need a supersymmetric Yang-Mills action to obtain a regulator which preserves
supersymmetry.) The result is

k →






k + cA N = 0
k + cA/2 N = 1
k N ≥ 2

(40)

Following equation (39), we then find that the inner product of wave functions for
the supersymmetric YMCS theory should be

〈1|2〉 =

∫
dµ(H) exp[k̄ Swzw(H)] d [Fermions] Ψ∗

1Ψ2 (41)

where

k̄ =





k + 2 cA N = 0
k + cA N = 1
k N ≥ 2

(42)

with the corresponding mass gap k̄ (e2/4π). For the nonsupersymmetric YMCS the-
ory, i.e., for N = 0, this means we expect a mass gap as we have seen before, which
survives to the pure YM limit, when k is taken to zero. For N = 1, we cannot take
k = 0 because of the parity anomaly; k = 1 is the smallest value possible. (In addition
to general anomaly-based arguments, there is also evidence from lattice simulations
for the need for the Chern-Simons term [25].) In this case, we will have a nonzero
value for k̄ and hence a mass gap for the theory, although of a magnitude different
from the pure YM case. For N ≥ 2, the result (42) is consistent with the absence of
a mass gap.

As mentioned in the introduction, these expectations also agree with other anal-
yses in the literature. First of all, for N = 8, there is the relation to the ABJM

14



theories; namely that the maximally supersymmetric theory is expected to flow to
a conformal theory[4] in the infra-red. A necessary condition for the flow to confor-
mality is the massless nature of the physical spectrum of Yang-Mills theory. Again,
for the N = 4 theories, the constraints of unbroken supersymmetry prevent a mass
term [28], while partial gauge symmetry breaking can occur giving rise to a Coulomb
branch. Also for N = 2 theories, the expectation is that there is no mass gap, but
with no stable supersymmetric vacuum [28, 32]. The absence of mass gap for N = 2
has also been analyzed by different methods in [26, 27].

The issue of the ground state, or the lack thereof, for the N = 2 theory is a very
interesting one, but is beyond what the measure by itself can address. Nevertheless,
recall that Swzw(H) in the exponent of the measure is crucial for the convergence of
volume integrations. This is true if we start with Ψ0 = 1 as the eigenstate of the
kinetic energy operator and improve on it, as done in [1], or in evaluating expectation
values using the chiral boson version as done in [6]. The absence of such a factor for
N ≥ 2 also points in the direction of an unstable vacuum.

We have imposed supersymmetry in obtaining these answers. Supersymmetry
breaking forN = 1 is another important question, but, again, the measure calculation
by itself is not adequate for analyzing this. However, further development along the
lines outlined here, with a calculation of the ground state wave function, could possibly
shed light on this matter.

We will now turn to the more explicit calculation of the measure of integration
and the Hamiltonian in the supersymmetric theories.

3 Measure from a chiral anomaly computation

We start by considering Majorana fermions in the adjoint representation of the group
SU(N) in 2 + 1 dimensions. The conventions for the gamma matrices is

γµ = {iσ3, σ1, σ2} : CγµC−1 = −(γµ)T (43)

where C is the charge conjugation matrix which may be taken as C = γ2 = σ2. The
Majorana fermions Ψ satisfying Ψ̄ = ΨT C can be brought to the form

Ψ =

(
ψ
ψ†

)
(44)

signaling that there is a single field degree of freedom.

Because of the Majorana condition, the gauge-invariant parametrizations for ψ and
ψ† must be related. There are two choices possible for the gauge-invariant fermionic
variables χ and χ† compatible with the Majorana condition on Ψ. These are given
by

Choice I :

(
χa

χa†

)
=

(
(M−1)abψb

(M †)abψb†

)
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Choice II :

(
χa

χa†

)
=

(
(M †)abψb

(M−1)abψb†

)
(45)

Here Mab = 2Tr(taM tbM−1) is the adjoint representative of M . Denoting M =
et

aθa , for small θa, these two choices become

(
χa

χa†

)
=

[
1∓ i Im(θ)aT a ∓ Re(θ)aT aγ5 + · · ·

]
Ψ (46)

In this expression, γ5 is nothing but σ3. We call it γ5 because it is the chirality matrix
in the two-dimensional sense, for the spatial gamma matrices used above. The dots
represent higher order terms in θ. The upper and lower signs correspond to the choices
I and II respectively. For the transformation of the measure of integration for the
fermion fields, we find,

dψ dψ† = Det
[
1∓ i Im(θ)aT a ∓ Re(θ)aT aγ5 + · · ·

]
dχ dχ† (47)

The evaluation of the determinant will require regularization. One possibility if to use
the well known techniques of chiral anomaly computations in (Euclidean) two dimen-
sional spacetime. For example, we can regulate the determinant using e−(γ·D)2/M2

,
where M is the cut-off and γ · D is the hermitian Dirac operator in two dimensions
given by

γ ·D =
∑

i=1,2

iγi∂i + γi T aAa
i (48)

The computation of the regularized determinant is then standard and gives, upon
taking M → ∞,

Det
[
1∓ i Im(θ)aT a ∓ Re(θ)aT aγ5 + · · ·

]
= ∓

cA
2π

∫
F a
12Re(θ)

a (49)

The above equation is valid to linear order in θ. We can find the determinant for
finite θa by first noting the the variation of the WZW action (24) gives

δSwzw(H) = −
1

2π

∫
F a
12Re(θ)

a (50)

Comparing this with (49), we see that we can integrate the latter to obtain

Det
[
1∓ i Im(θ)aT a ∓ Re(θ)aT aγ5 + · · ·

]
= exp [±cA Swzw(H) ] (51)

A few remarks are in order at this stage. The first is concerned with the reg-
ularization. It is not a priori clear that we should regulate the determinant in the
same way as is done for the chiral anomaly in two dimensions. If we have an intrin-
sically two-dimensional theory, then there is an independent way to corroborate this
result. We can consider the change in the action, which is related to the conserva-
tion of the axial current and, from working out this conservation law using Feynman
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diagrams, it is easy enough to reproduce the same result as obtained by the regu-
larization of the Jacobian as outlined above. But for the (2 + 1)-dimensional case,
the argument is more involved. The fermionic action is of the first-order in the time
derivatives. Its quantization can be done in terms of fermionic coherent states. The
normalization of the states then involves the Kähler potential associated to the sym-
plectic one-form. In the present case, it is of the form ψ†ψ. In constructing the
functional integral via dividing up the interval τ in 〈0|e−τH |0〉, the inner product
〈ψn|ψn+1〉 ∼ exp(ψ†

nψn+1) ≈ exp(ψ†
nψn + ψ†

nψ̇nǫ) combines with the term involving
the Kähler potential in the measure exp(−ψ†

nψn) and exp(−ǫH) to form the three-
dimensional action. (Similar arguments hold for the bosonic coherent states as well.)
In other words, the factor involving the Kähler potential in the measure is exactly
what we would expect from writing out the action as a sum over discrete time-intervals
ǫ. Now, if the three-dimensional theory generates a Chern-Simons term, then the
corresponding Kähler potential being Swzw(H), we would expect such a term to be
generated in the measure of integration for the inner product of states. We know from
[21, 23] that there is a level shift of the CS term induced in three dimensions. So if we
choose a regularization that agrees with the three-dimensional calculation, and hence
with supersymmetry, then we should get the result (51). The result is dependent on
whether supersymmetry is preserved, just as it is in the three-dimensional covariant
calculation.

The second observation is about which of the choices in (45) is the right one.
Again, it is a matter of which symmetry is to be preserved. We shall see that super-
symmetry requires the second choice of the variables.

These considerations suggest a different strategy for the quantization of the theory.
We can set up the supercharges and then obtain the Hamiltonian from the anticom-
mutator of the supercharges, guaranteeing a supersymmetry-preserving regularization
of the terms in the Hamiltonian. We now turn to this task.

4 Mass-gap and Measure for N = 1 YMCS Theory

In this section we shall focus on the Hamiltonian formulation of the minimally su-
persymmetric gauge theory in D = 2 + 1. The measure of integration for the inner
product will emerge as one of the results of this analysis. Our analysis will be gen-
eral enough to incorporate Chern-Simons couplings and the results pertaining to the
integration measure will turn out to be consistent with the discussion in the previous
section. For the sake of completeness, we start with a brief overview of the canonical
quantization of the N = 1 Yang-Mills-Chern-Simons system.
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4.1 Canonical Quantization of the N = 1 Theory

When the Chern-Simons level number is set to zero, the action for the N = 1 super-
symmetric Yang-Mills theory is given by

S = −
1

4 e2

∫
F a
µνF

aµν −
i

2e2

∫
Ψ̄a(γµDµΨ)a (52)

This action is invariant under the supersymmetry transformation

δǫA
a
µ = −i ǭ γµΨ

a, δǫΨ
a =

1

2
F a
µνγ

µνǫ (53)

In a Hamiltonian setting, the supercharges which generate this transformation are

Q† =

∫
(iΨ†γi

δ

δAi
+

1

e2
ψ†B), Q =

∫
(iγiΨ

δ

δAi
+

1

e2
ψB) (54)

As with any other fermionic observable in the theory, the supercharge, is a two-
component spinor, Q1 = q, Q2 = q†. Using the canonical anticommutation relation

{Ψ†
α,Ψβ} = e2δαβ (55)

it is readily verified that {Q†
α, Qβ} = 2H δαβ, where the A0 = 0 gauge choice is

implied.

The classically massless theory described leads to an anomalous, and hence in-
consistent, quantum theory. The parity anomaly of the fermionic action forces the
partition function of this theory to be trivial [25, 28]. To obtain a consistent theory
with minimal supersymmetry in three spacetime dimensions, one must necessarily
add a supersymmetric Chern-Simons term to the action,

SSCS = −
k

4π

∫
d3x Tr

[(
Aµ∂νAα −

2

3
AµAνAα

)
ǫµνα + ie2Ψ̄Ψ

]
(56)

S + SSCS is also invariant under (53). In what is to follow, we shall consider the
theory with the Chern-Simons term added for the sake of generality [11]. The electric
field operators, and the commutation relations between them are given by

E = −i
δ

δĀ
+
ik

4π
A, Ē = −i

δ

δA
−
ik

4π
Ā

[E, Ē] = −
k

2π

(57)

The Gauss law for the theory, which is a constraint on the physical states, is

(DΠ̄)a + (D̄Π)a +
ik

4π
(∂Āa − ∂̄Aa)−

i

2
fabcΨ†bΨc = 0 (58)
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Wave functions, Ξ, satisfying the Gauss law are of the form

Ξ = exp

(
k

2

[
Swzw(M

†)− Swzw(M)
])

Λ′(H,χ, χ†) = eiωΛ (59)

Since eiω is a pure phase, it does not change the norm of the wave functionals, however
it can affect the matrix elements of dynamical quantities. This can be seen explicitly
by writing the observables as operators on Λ rather than on Ξ. For example, the
effective supercharge acting on Λ is given by q̃ = e−iωqeiω. The precise form of the
transformed supercharge is

q̃ =

∫ [
i(ψa)†

(
δ

δAa
+

k

4π
(Ā− ā)a

)
+

1

e2
ψaBa

]
(60)

where a and ā are auxiliary fields satisfying the ‘eikonal’ equations

D̄a = ∂Ā, Dā = ∂̄A (61)

We may solve for a, ā explicitly in terms of the matrix parametrization (22) as

ā = −∂̄MM−1, a =M †−1∂M † (62)

It is instructive to note the form of the Hamiltonian as well. A direct evaluation of
the anticommutator of supercharges gives

H̃ =
1

2
{q̃, q̃†} =−

e2

2

∫
δ2

δAaδĀa
+
mk

2

∫ [
(A− a)a

δ

δAa
− (Ā− ā)a

δ

δĀa

]

+
1

2e2

∫ [
m2

k(A− a)a(Ā− ā)a +BaBa
]
+ i

∫
Ψ̄(γiDi −mk)Ψ

(63)

mk = (e2k/4π) is the topological mass. (There can also be a dynamical generated
addition to this mass which requires a more careful analysis.) Further, we have

supersymmetry, i.e., [q̃, H̃] = 0. This is easily checked using the commutation rules

[
δ

δAa(x)
, āb(y)] = F ab(x, y) ≡ −Mac(x)

1

π(x̄− ȳ)2
M bc(y),

[
δ

δAa(x)
, ab(y)] = 0,

(64)

and the symmetry relation F ab(x, y) = F ba(y, x).

4.2 Choice of Gauge Invariant Variables and N = 1 Super-

symmetry

We now turn to the choice of gauge invariant variables. As noted previously, there are
two different ways of constructing gauge-invariant variables from the adjoint Majorana
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fields. However a unique choice is picked out by analyzing the supercharge. To see
this, we first recall that the change of variables from A → M implies that operator
corresponding to the antiholomorphic component of the electric field and the magnetic
field are given by [1]

−i
δ

δAa
= −iMab(x)

∫

y

G(x, y)pb(y), Ba = −
2π

cA
(M †−1)ab∂̄J b (65)

where the gauge invariant generator pb acts as a SU(N) rotation generator on M
(see equation A1) and G is a regularized expression for the Greens’ function for the
holomorphic derivative ∂; the explicit expression for G can be found in the appendix.
Using these relations we see that the formula for the supercharge (60) becomes

q̃ =

∫ [
i(ψa)†

(
δ

δAa
+

k

4π
(Ā− ā)a

)
+

1

e2
ψaBa

]

= i

∫

x

ψa†(x)Mab(x)︸ ︷︷ ︸
χ†b

[∫

y

G(x, y)pb(y) +
k

4cA
J̄ b(x)

]
−

1

e2
2π

cA

∫
ψa(M †−1)ab︸ ︷︷ ︸

χb

∂̄J b

(66)

In the above equation we have used the following definitions for the currents:

J =
cA
π
∂HH−1 J̄ =

cA
π
H−1∂̄H (67)

The second line in (66) tells us that the natural fermionic variable is χ†(x) =M−1ψ†

(and its hermitian conjugate), which was precisely our choice II which reduced the
volume of configuration space by a factor of e−cASwzw(H). From the point of view of the
renormalization of the level number, the fermionic contribution removes half of the
contribution to the renormalized level number that one had in the pure glue theory,
which is consistent with previous perturbative and nonperturbative computations, as
we have already discussed. Thus if the only change of variables we make is A → M
and let the choice of the gauge invariant fermionic variable be dictated by the form
of the supercharge, then choice II is the unique answer for N = 1 SUSY. We will
see later that similar reasoning can be used to show that the fermionic contribution
to the measure exactly cancels the measure factor obtained the case of the pure glue
theory, for N = 2 and N = 4 supersymmetry.

Starting from (66), our strategy for deriving the Hamiltonian is to compute the
adjoint of the supercharge and then anticommutator between the two. As in the case
of the N = 0 theory [10], it is convenient to define the wave functions Φ such that

Λ′ = exp

(
k

2
Swzw(H)

)
Φ (68)

The integration measure for the inner product for the Φ’s now has the form

dµ = dµ(H) exp [(k + (2− n)cA)Swzw(H)] (69)
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The factor of 2 cA in the exponent is the contribution relevant to the pure glue theory.
Based on the arguments given in section 2, we expect n = 0 for N = 0 and n = 1 for
N = 1. However, we shall keep n as arbitrary for now. After absorbing the factor
exp

(
k
2
Swzw(H)

)
into the wave functions as in (68), we find, for the supercharge, as

an operator on the Φ’s,

q′ = i

∫
χ†a(Gp)a −

1

e2
2π

cA

∫
χa∂̄Ja (70)

The adjoint supercharge has to be computed with respect to the measure (69), and
is found to be

q′† = −i

∫
χa

(
(Ḡp̄)a − i

k

2π
(∂HH−1)a + i

ncA
2π

(∂HH−1)a
)
−

1

e2
2π

cA

∫
(χa∂̄Ja)† (71)

p̄ acts as the SU(N) generator on M † via left action [1]. The term proportional to
k on the right hand side comes from p acting on ekSwzw(H) in the computation of
the adjoint. The term proportional to cA is what remains of the action of p on χ†

(which induces a contribution from G(0)) and the action on e(2−n)cASwzw(H).)3 A naive
evaluation of the anticommutator of the supercharges gives the Hamiltonian as

H =
1

2
{q′, q′†} =

e2

2

∫

u,v

Πrs(u, v)p̄r(u)ps(v) +
2π2

e2 c2A

∫
(∂̄Ja ∂̄Ja)

+
e2(k − ncA)

4π

∫
Ja δ

δJa
(72)

−
1

e2

∫
(χ†D̄J̄χ

† − χDJχ) +
1

e2

(
ke2

4π
−
ncAe

2

4π

)∫
χ†a(H−1)abχb

The formula above can be understood as follows. The first line is the pure Yang-Mills
Hamiltonian, where on states formed out of the bosonic J fields alone, the kinetic
energy operator is

TYM =
e2

2

∫

u,v

Πrs(u, v)p̄r(u)ps(v) ≡
e2cA
2π

(∫
Ja δ

δJa
+

∫
Ωab(xy)

δ

δJa(x)

δ

δJ b(y)

)

Ωab(x, y) =
cA
π2

δab

(x− y)2
− ifabc Jc(y)

π(x− y)
(73)

Notice that Ωab(x, y) is the two-point function appearing in the operator product
expansion of Ja(x) J b(y) in the WZW model. The second line of (72) is the contri-
bution to the mass-gap from the factors of exp [(k − n cA)Swzw(H)] in the measure.
This contribution vanishes when k = n = 0 in the pure Yang-Mills case, as it should.
The last line in the Hamiltonian is the fermionic contribution where D and D̄ are

3For details about the regularization scheme leading to a finite answer for the coincident limit of
G, see [1], and for a discussion about the compatibility of the regulated expression with the measure
on C, see [12].
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the holomorphic and anti-holomorphic covariant derivatives respectively with J and
J̄ playing the roles of the connections. In deriving these results we have also used the
fact that, on functionals of J ,

(Gp)a = i
cA
π
H−1 δ

δJ
(74)

The expression (72) does not seem to be the correct expression for the Hamiltonian
as the bosonic and fermionic masses in H do not appear to be equal. Looking at
the terms that will become mass terms when the Hamiltonian is truncated to the
quadratic level, the mass for the bosons is given by the term

Hbos−mass =
e2

4π
(k + [2− n]cA)

∫
Ja δ

δJa
(75)

corresponding to the value mb = (k + [2 − n]cA)(e
2/4π). On the other hand the

fermionic mass is mf = (k − n)cA (e2/4π). Without the equality of the masses the
Hamiltonian is obviously not supersymmetric. The resolution actually lies in the use
of the Gauss law. Let us eliminate E from (71) using the Gauss law, which in the
original variables was given by

Ia =

(
D̄

δ

δĀ
+D

δ

δA

)a

+
1

e2
fabcψb†ψc = 0, (76)

or equivalently, on physical states,

p̄a = (Hp)a +
1

e2
falm(Hχ†)lχm (77)

The fact that the Gauss law gives a relation between p̄a and pa when they act on
gauge-invariant functionals was already noted in [1]. Since we have functionals of J ,
rather than J̄ , it is preferable to eliminate p̄a. This elimination of p̄a (or E) in the
expression for the adjoint of the supercharge involves

−ψa δ

δĀa
=

1

e2

∫

y

ψa(x)(D̄−1)ab(x, y)f bmnψm†(y)ψn(y) + · · · (78)

The ellipsis represent other terms that we shall come back to shortly. Now, the normal
ordering of this expression results in the term

−ψa δ

δĀa
= (D̄−1)mb(x, x)f bmnψn(x) + · · ·

= −i(M †−1)nlJ lψn + · · ·
(79)

where we have used the regularized result [1],

(D̄−1)ab(x, x) =
i

cA
fabc(M †−1)clJ l (80)
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Obviously, the term (79) in q′†, when anti-commuted with the term
∫
χa†(Gp)a in q′

produces both a bosonic and a fermionic mass-term. This will restore the equality of
the masses as required by supersymmetry. The complete normal ordered expression
that results from the elimination of E in the adjoint supercharge is given by

−ψa δ

δĀa
=(D̄−1)ab(x, x)f banψn(x)−

1

e2

∫

y

(D̄−1)ab(x, y)f bmnψm†(y)ψa(x)ψn(x)

+ ψa(x)

∫

y

(D̄−1)ab(x, y)

(
D

δ

δA

)b

(81)

Or, in terms of the gauge invariant variables, this is equivalent to

−i

∫
χa(x)(Ḡp̄)a(x) =− i

∫
χa(x)(ḠHp)a(x)−

∫
χa(x)Ja(x)

+
i

e2

∫
Ḡab(x, y)f blm(Hχ†)l(y)χa(x)χm(y)

(82)

Computing the Hamiltonian via the anticommutator of the supercharges we now get

H =
1

2
{q′, q′†} =

e2cA
2π

(∫
Ja δ

δJa
+

∫
Ωab(xy)

δ

δJa(x)

δ

δJ b(y)

)
+

2π2

e2c2A

∫
(∂̄Ja∂̄Ja)

+
e2(k − ncA)

4π

∫
Ja δ

δJa
−
icA
2π

∫
fngzḠ(x, y)Hzs(y)χs†(y)χg(y)

δ

δJn(x)

−
1

e2

∫
(χ†D̄J̄χ

† − χDJχ) +
1

e2

(
cAe

2

2π
+
ke2

4π
−
ncAe

2

4π

)∫
χ†a(H−1)abχb

(83)

The equality between the bosonic and fermionic masses at the quadratic level is now
manifest. The expression above is the correct gauge-invariant form of the Hamiltonian
corresponding to the N = 1 Yang-Mills-Chern-Simons theory.

4.3 Checking SUSY Invariance of the N = 1 Hamiltonian

Since the form of the gauge invariant N = 1 Hamiltonian (83) is rather different from
the original Hmailtonian that one started with, containing several nonlocal terms, for
instance, as a further check on the calculations, we shall now verify its supersymmetry
invariance from first principles. To see the invariance of (83) under (70) we first note
that the ‘mass-terms’ are supersymmetric on their own.

[q′,

∫ (
Ja δ

δJa
+ χ†a(H−1)abχb

)
] = 0 (84)
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Before proceeding further, it is useful to rewrite various terms in the nonlocal parts
of the Hamiltonian such that their commutators with q′ involve as few operator com-
mutators as possible. Denoting these two terms by T1, T2, we write

T1 ≡
e2cA
2π

(∫
Ωab(xy)

δ

δJa(x)

δ

δJ b(y)

)

=
e2

2

(
(D̄)−1ac(xz)(DMGp)c(z)(MGp)a(x)

)
(85)

T2 ≡ −
icA
2π

∫
fngzḠ(x, y)Hzs(y)χs†(y)χg(y)

δ

δJn(x)

=
1

2

∫
(D̄)−1ac(x, z)f cmn(Mχ†)m(z)(M †−1χ)n(c)(MGp)a(x)

where the covariant derivative D = ∂ − ∂MM−1 and we have also used,

D̄−1ab(x, y) =M †−1ac(x) Ḡ(x, y)M †cb(y) →M †−1ac(x)
1

π(x− y)
M †cb(y) (86)

The expression on the r.h.s corresponds to the Green’s function with the regulator
removed.
Now we note that the sum T1+T2 commutes with the part of the supercharge involving
pa; i.e.,

[i

∫
χ†a(Gp)a, T2] = −

ie2

2

∫
(D̄)−1ac(x, z)f cmn(Mχ†)m(z)(MGp)n(z)(MGp)a(x)

(87)
The only commutator appearing above is between χ† and χ. We also have

[i

∫
χ†a(Gp)a, T1] = +

ie2

2

∫
(D̄)−1ac(x, z)f cmn(Mχ†)m(z)(MGp)n(z)(MGp)a(x)

(88)
The only nontrivial commutator in this calculation is between χ†a(Gp)a and−∂MM−1

contained in D in T1. From these two results, we see that

[i

∫
χ†a(Gp)a, T1 + T2] = 0 (89)

Moving on to the commutator of these terms with the rest of the supercharge, we
obtain

[
−

2π

e2cA

∫
χa∂̄Ja, T2

]
=+

i

e2

∫
fkmn(M †−1χ)k(Mχ†)m(M †−1χ)m

−
π

cA

∫
(D̄)−1ac(x, z)f cmn(M †−1∂̄J)m(z)(M †−1χ)n(z)(MGp)a(x)

(90)
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The first term on the right hand side involved the functional derivative with respect to
J in T2 acting on the supercharge, while the second term is the result of the fermions
anticommuting between the two terms. Turning to the commutator with T1,

[
−

2π

e2cA

∫
χa∂̄Ja, T1

]
= i

∫
(M †−1χ)m(DMGp)m

+ i

∫
(M †−1χ)l(x)(D̄(x)D(x)D̄−1(x, y))la(MGp)a(y)

= 2 i

∫
(M †−1χ)m(DMGp)m

+ i

∫
(M †−1χ)l(x)([D̄,D](x)D̄−1(x, y))la(MGp)a(y)

= 2 i

∫
(M †−1χ)m(DMGp)m

+
π

cA

∫
(D̄)−1ac(x, z)f cmn(M †−1∂̄J)m(z)(M †−1χ)n(z)(MGp)a(x)

(91)

The second terms on the right hand sides of (90) and (91) cancel. Thus from (89)
and the subsequent algebra, we can conclude that

[q′, T1 + T2] = +
i

e2

∫
fkmn(M †−1χ)k(Mχ†)m(M †−1χ)m + 2i

∫
(M †−1χ)m(DMGp)m

(92)
These terms are precisely canceled by

1

e2
[q′,

∫
χaDJχ

a] = [
i

e2

∫
χ†m(Gp)m,

∫
χaDJχ

a]

= −
i

e2

∫
fkmn(M †−1χ)k(Mχ†)m(M †−1χ)m − 2i

∫
(M †−1χ)m(DMGp)m

(93)

Finally, it is straightforward to see that

[q′,
2π2

e2c2A

∫
(∂̄Ja∂̄Ja)−

1

e2

∫
χ†mD̄J̄χ

†m] = 0 (94)

Putting all tis together, we have demonstrated that

[q′,H] = 0 (95)

We can thus be assured that (70) and its adjoint computed with respect to the
measure (69), along with (83), do give a realization of the N = 1 algebra that we
started with. Furthermore, note that in the case of the standard presentation of the
algebra using the original variables E,Ψ, A, etc., the commutator of the supercharge
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with the Hamiltonian only vanishes up to the Gauss law generator. In the present
case, since we have already eliminated E using Gauss law, the relevant commutator
is identically zero.

It is also worth noting that in the minimally supersymetric case, the number n
is not fixed by the constraints of supersymmetry alone. However we shall see in the
next section that, for theories with extended supersymmetry, it is fixed simply by
demanding that the gauge-invariant Hamiltonian commute with the supercharges.
However, for the N = 1 case, we have to rely on the independent arguments given
earlier in the paper for the volume measure, as well as consistency with the previous
perturbative results [23]; these imply that n = 1 for N = 1.

A nonvanishing coefficient for Swzw(H) in the volume measure implies that the
theory will have a mass-gap, with the scale of the massive excitations set by the
renormalized level number (k + N) (e2/4π). This is also clear from the form of the
Hamiltonian (83). In [24, 32], it was pointed out that, for small enough values of
the level number, the theory can have spontaneously broken supersymmetry. Since
the statement about existence of the mass-gap in the present formalism crucially uses
manifest supersymmetry, we cannot comment on the possibility of supersymmetry
breaking based solely on the results obtained so far. Presumably a computation of
the vacuum wave functional using the present formalism might allow one to study
this interesting dynamical question.

5 Supercharges and Hamiltonians with extended

supersymmetry

We will now consider the extension of the analysis done so far to N = 2 and 4
supersymmetries. The terms in the action, for the theories of interest to us, are

SYM = −
1

4e2

∫
F a
µνF

aµν −
1

2e2

∫
Dµφ

a
AD

µφa
A +

1

2e2

∫
F a
AF

a
A

−
i

2e2

∫
ψ̄a
I γ

µDµψ
a
I −

i

2e2

∫
ω̄aγµDµω

a −
i

2e2

∫
ǫABC ψ̄

a
Aψ

b
Bφ

c
Cf

abc

+
i

e2

∫
ψ̄a
Aω

bφa
Af

abc −
1

4e2

∫
fabcfamnφb

Bφ
c
Cφ

m
Bφ

n
C

SCS = −
k

4π
ǫµνρ

∫
Tr (Aµ∂νAρ +

2

3
AµAνAρ)

+
mk

2e2

∫ (
−iψ̄a

Iψ
a
I + iω̄aωa + 2F a

AΦ
a
A −

1

3
fabcǫABCφ

a
Aφ

b
Bφ

c
C

)

(96)

(As indicated earlier, mk = e2k/4π.) The capital Latin indices take on three values,
which correspond to the manifest SO(3) R-symmetry of the theory. The theory has
four adjoint Majorana fermionis {ψa

I , ω
a}. Setting ω, φ1, φ2, ψ3 to zero truncates the
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action to have N = 2 supersymmetry. If one further sets φ3, ψ2 to zero then we
recover the N = 1 theory discussed earlier. F a

A are auxiliary fields, which may be
replaced by their saddle point values F a

A = −mΦa
I .

After absorbing the factor of exp
[
k
2
Swzw(H)

]
in the measure, as we did in the

N = 1 theory, we obtain the following expression for the N = 4 supercharge,

q′I = i

∫
ψa†
I

δ

δAa
+

1

e2

∫
ψa
IB

a + ǫIJK

∫
ψa
J

(
Πa

φK
+ i

mk

e2
φa
K

)
+

2i

e2
ǫIJK

∫
ψa†
J (D̄φK)

a

−

∫
ωa

(
Πa

φI
− i

mk

e2
φa
I

)
−

2i

e2

∫
ωa†(D̄φ)a (97)

+
i

2e2

∫
fabcǫABIφ

b
Aφ

c
Bω

a +
i

e2

∫
fabcφb

Kφ
c
Iψ

a
K

These give the three SO(3) covariant supercharges; there is a also a fourth supercharge
that commutes with the Hamiltonian. Our purpose is to use these supercharges to
identify the gauge-invariant variables for the fermions, extending what we did for
the minimally supersymmetric case, and, eventually, the Hamiltonian. For this, the
three charges given above are adequate. Further, it is tis supercharge which survives
upon truncation to lower supersymmetries. Because of this, we see immediately that,
if we use supersymmetry to pick out the choice of fermionic variables as we did
earlier, the gauge invariant counterparts of ψI are λI = ψIM

†−1 and λ†I = ψ†
IM ,

just as in the N = 1 case. As a result, for the case of N = 2 supersymmetry
(where the labels I, J, · · · = 1, 2), the fermions contribute e−2×cASwzw(H) to the volume
measure, canceling completely the contribution from the gauge fields. This result
implies the masslessness of the N = 2, k = 0 theory. In the N = 4 case, we have an
additional contribution of e−cASwzw(H) from the third fermion field ψ3. Further, there
is a contribution from the remaining fermion field ω. Since ω does not couple to the
gauge fields directly in the supercharge, its gauge invariant form has to be deduced
from its coupling to the scalar fields. For this, we concentrate on two terms in the
supercharge given by

q′I = ǫIJK

∫
ψa
J

(
Πa

φK
+ i

mk

e2
φa
K

)
−

∫
ωa

(
Πa

φI
− i

mk

e2
φa
I

)
+ · · · (98)

Using the already-settled-upon change of variables ψ → χI , this shows that M †A

is the appropriate gauge-invariant version of A =
(
Πa

φK
+ i(mk/e

2)φa
K

)
. The second

term on the right hand side of (98), which involves A† then tells us that the gauge-
invariant combination for ω is

χω =M−1ω (99)

This corresponds to what we referred to as choice I in section 3. Thus its contribution
to the measure is a factor ecASwzw(H), the exponent having the opposite sign to the
other three fermions. The net result is that, as for the N = 2 case, the fermion
and gauge field contributions involving Swzw(H) cancel out completely in the the
volume measure for the N = 4 theory. (If k = 0, this means that the measure
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simply has dµ(H) and the fermionic fields, and the theory remains massless quantum
mechanically.) This is completely consistent with all other indications obtained in
the literature using alternate methods, as well as our analysis in section 2. We will
see shortly that this conclusion is reinforced by the supersymmetry algebra, just as
in the minimal case.

Proceeding with this choice of gauge invariant fermionic variables we can write
down the the gauge invariant form of the SO(3) covariant supercharge as

q′I =

∫
χa†
I (Gp)a −

2π

e2cA

∫
χa
I (∂̄J)

a + ǫIJK

∫
χa
JΠ

a
ΦK

+ ǫIJK

∫
χa†
J (H−1)ab∂̄Φb

K

−

∫
χa
ω(H

−1)abΠb
ΦI

−
2i

e2

∫
χa†
ω ∂̄Φ

a
I +

imk

e2
ǫIJK

∫
χa
JΦ

a
K +

imk

e2

∫
χa
ω(H

−1)abΦb
I

+
i

e2

∫
fabcΦb

KΦ
c
Iχ

a
K +

i

2e2

∫
fabcǫABIΦ

b
AΦ

c
B(Hχω)

a

(100)

In this equation, ΦL = M †φL and ΠΦL
= M †ΠφL

are the gauge invariant versions of
the scalar fields and their momenta, respectively. The Gauss law constraint is given
by

(D
δ

δA
+ D̄

δ

δĀ
)a +

1

e2
famn

(
ψm†
L ψn

L + ωm†ωn + e2φm
L

δ

δφn
L

)
≈ 0 (101)

In terms of action on functions of the gauge-invariant variables we have introduced,
this translates into

p̄a = (Hp)a +
1

e2
famn

(
(Hχ†

L)
mχn

L + χm†
ω (Hχω)

n + e2Φm
L

δ

δΦn
L

)
(102)

(We may regard the latter form as the requirement of holomorphic invariance of
physical wave functionals.)

Paralleling the discussion of the N = 1 theory, our strategy is to take the measure
of integration to be of the form (69), with n considered to be arbitrary and then
compute the adjoint of the supercharges and enforce the supersymmetry algebra to
determine n. (We expect n to vanish from what has already been said, but we do
not want to presume this at this stage.) After the use of Gauss law to eliminate p̄
and the subsequent normal ordering - these manipulations exactly parallel the N = 1
case studied before - we get

q′†I = −i

∫
χa
I(ḠHp)

a −

∫ (
1−

n

2
+

k

2cA

)
χa
IJ

a

−
i

e2

∫
famnḠ(x, y)

(
(Hχ†

L)
mχn

L + χm†
ω (Hχω)

n + e2Φm
L δΦ

n
L

)
(y)χa

I(x)

+

(
−

2π

e2cA

∫
χa
I (∂̄J)

a + ǫIJK

∫
χa
JΠ

a
ΦK

+ ǫIJK

∫
χa†
J (H−1)ab∂̄Φb

K (103)
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−

∫
χa
ω(H

−1)abΠb
ΦI

−
2i

e2

∫
χa†
ω ∂̄Φ

a
I +

imk

e2
ǫIJK

∫
χa
JΦ

a
K +

imk

e2

∫
χa
ω(H

−1)abΦb
I

+
i

e2

∫
fabcΦb

KΦ
c
Iχ

a
K +

i

2e2

∫
fabcǫABIΦ

b
AΦ

c
B(Hχω)

a

)†

It is also instructive to rewrite this back in terms of the gauge-covariant original
variables. The adjoint supercharge then takes the form

q′†I = −i

∫
ψa
I (x)(D̄

−1)ab(x, y)(D
δ

δA
)b(y)−

icA
π

∫ (
1−

n

2
+

k

2cA

)
ψa
I (A− a)a

−
i

e2

∫
(D̄−1)ab(x, y)f bmn

(
ψm†
L ψn

L + ωm†ωn + e2φm
L

δ

δφn
L

)
(y)ψa

I (x)

+
1

e2

∫
ψa†
I B

a + ǫIJK

∫
ψa†
J Πa

φK
−

2i

e2
ǫIJK

∫
ψa
J(DφK)

a (104)

−

∫
ωa†Πa

φI
+

2i

e2

∫
ωa(Dφ)a −

imk

e2
ǫIJK

∫
ψa†
J φ

a
K −

imk

e2

∫
ωa†φa

I

−
i

2e2

∫
fabcǫABIφ

b
Aφ

c
Bω

a† −
i

e2

∫
fabcφb

Kφ
c
Iψ

a†
K

We can now construct the Hamiltonian from the anticommutator of the supercharges
given above. It is a straightforward, but lengthy, calculation; the result is H =
H0 +Hm, where, in terms of the gauge-covariant variables,

H0 =
e2

2

∫
(D̄−1)ab(x, y)

(
D

δ

δA

)b

y

δ

δAa(x)

+
1

2

∫
(D̄−1)ab(x, y)f bmn

(
ψm†
L ψn

L + ωm†ωn + e2φm
L

δ

δφn
L

)

y

δ

δAa(x)

+
1

e2

∫
ǫABCf

amnφm
Aψ

a†
B ψ

n
C +

1

e2

∫
fabc

(
φc
Aψ

b
Aω

a† + φc
Aω

aψb†
A

)
(105)

+
1

2e2

∫
BaBa +

2

e2

∫
(DφL)

a(D̄φL)
a +

e2

2

∫
Πa

φL
Πa

φL

+
1

e2

∫
(ψa

LDψ
a
L − ψa†

L D̄ψ
a†
L ) +

1

e2

∫
(ωaDωa − ωa†D̄ωa†)

+
1

4
famnfapqφm

Mφ
n
Nφ

p
Mφ

q
N

Hm =
e2(k + (2− n)cA)

4π

∫
(A− a)a

δ

δAa
+
e2(k + (2− n)cA)

4πe2

∫
ψa†
L ψ

a
L

−
k

4π

∫
ωa†ωa +

1

2

[
k

4π

]2
e2

∫
φa
Iφ

a
I

(106)

The second term of H, which is the mass term Hm, we see that the masses of the
gauge field and the SO(3) fermions get a shift proportional to (2 − n)cA while the
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scalars and the fourth fermion do not. Obviously this is the result of the fact that
only the SO(3) fermions couple to the electric field in the supercharge, and are hence
affected by the singular contributions proportional to D̄−1(x, x) brought about by
the use of the Gauss law and normal ordering, see the discussion following (75). For
the theory to be supersymmetric, one must necessarily have equal masses for these
degrees of freedom; this is obtained only when n = 2, which makes the mass term
Hm vanish when k = 0. We can also verify more explicitly, with another lengthy
calculation, that

[qI , H ] = 0 =⇒ n = 2 for N ≥ 2 (107)

Thus in the case of extended supersymmetry, the requirement of supersymmetry in-
variance forces the measure to be exactly what we had presented earlier from anomaly
considerations, leading to a gapless spectrum for the gauge theories in the k = 0 limit.

For completeness, we also give here the formulae for H0 and Hm in terms of the
gauge invariant variables.

H0 =
e2cA
2π

∫
Ωab(x, y)

δ

δJa(x)

δ

δJ b(y)

+
icA
2π

∫
Ḡ(x, y)fabc

(
(Hχb†

L )χ
c
L + χb†

ω (Hχω)
c + Φb

L

δ

δΦc
L

)
(y)

δ

δJa(x)

−
1

e2

∫
fabcǫABCΦ

a
A(Hχ

†)bBχ
c
C −

1

e2

∫
fabc(Φa

Aχ
b
Aχ

†
ω + h.c) (108)

+
2π2

e2c2A

∫
∂̄Ja∂̄Ja +

2

e2

∫
∂̄Φa

A(DJΦL)
a +

e2

2

∫
Πa

ΦL
Πa

ΦL

+
1

e2

∫
(χa

L(DJχL)
a − χa†

L (D̄J̄χL)
a†) +

1

e2

∫
(χa

ω∂χ
a
ω − χa†

ω ∂̄χ
a†
ω )

+
1

4e2

∫
f lpqfkbcΦp

KΦ
q
IΦ

†b
KΦ

†c
I H

lk

Hm =
e2(k + (2− n)cA)

4π

∫ [
Ja δ

δJa
+

1

e2
χa†
L (H−1)abχb

L

]

−
k

4π

∫
χa†
ω H

abχb
ω +

1

2

[
k

4π

]2
e2

∫
Φa

IΦ
a
I (109)

6 Linearization with N = 1, 2, 4 - Spectrum and the

Algebra

As in the case of the purely gluonic theory, one can consistently linearlize the Hamil-
tonian and the supercharges in the supersymmetric theories. This linearization will
yield a purely algebraic justification for the measure. Following [1], one can define
H = et

aφa

( φ ∼ (θ + θ̄) defined in (50)) and expand the Hamiltonian as well as the
supercharges to quadratic order in the φa’s. This produces an abelian-dualized theory
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which can be put in the familiar form involving four scalar fields for the N = 4 case
upon reabsorbing the measure factor e[k+(2−n)cA]Swzw(H) in the wave functionals and
defining the scalar field as

ΦH =
√
kk̄/e2 φ. (110)

(Here k, k̄ denote the Fourier transforms of ∂ and ∂̄, respectively.) The dualized
Hamiltonian for the theory becomes that of a free theory of four scalars (ΦH ,ΦI),
with masses given by

mn = (k + (2− n)cA)
e2

4π
(111)

The fermionic part of the dualized theory is nothing but the naive truncation of the
corresponding parts of (108, 109) to quadratic levels. It is understood, as before, that
n = 1 for N = 1 and n = 2 for N ≥ 2.

At this point it is very instructive to look at the supersymmetry algebra for the
linearized theory. The action corresponding to the free and linearized theory is

Slin =

∫
1

2
Φa

H(∂
µ∂µ −m2

n)Φ
a
H +

1

2
Φa

I (∂
µ∂µ −m2

n)Φ
a
I

−
i

2

∫
λ̄aI(∂

µγµ −mn)λ
a
I + ω̄a(pµγµ +mn)ω

a

(112)

with the previously mentioned constraints on n. The supersymmetry transformation
laws for Slin deduced from the linearization of qI are

δǫΦ
a
H =

i

2
λ̄aIǫI

δǫΦ
a
I =

i

2
(ǫIJKλ̄

a
JǫK + ω̄aǫI)

δλaI =
1

2
(γµ∂µ +mn)(Φ

a
HǫI − ǫIJKΦ

a
JǫK)

δωa =
1

2
(γµ∂µ −mn)ΦIǫI

(113)

The closure of the algebra on the scalars gives

[δβ , δǫ]Φ
a
H =

i

2
(ǭIγ

µβI) ∂µΦ
a
H +

imn

2
ǭIβKǫIJKΦ

a
J

[δβ, δǫ]Φ
a
I =

i

2
(ǭIγ

µβI) ∂µΦ
a
I +

imn

2
ǭKβJǫIJKΦ

a
H

(114)

Thus we see that the algebra, instead of simply closing on the momentum generators,
involves a non-central extension generated by three extra U(1) generators that mix
the dual gauge field ΦH with the three SO(3) covariant scalars. These extra U(1)
symmetries are not visible in the Hamiltonian of the theory, however, they can be
interpreted as symmetries of the on-shell S-matrices of the theories under considera-
tion. In the limit of k = 0 the three ‘hidden’ U(1) generators couple to the manifest
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SO(3) symmetries to generate an SO(4) symmetric S-matrix for the N = 4 theory
to all orders in perturbation theory. As a matter of fact, the SO(N ) invariance of the
S-matrices of the N = 2, 4, 8 theories to all perturbative orders was explicitly shown
in [14].

For the purposes of our present discussion, we see that the appearance of the
mass on the right hand side of (114) implies that the renormalized level-number
(k+(2−n)cA) plays the role of a structure constant. However the algebra (114) must
be satisfied by the linearization of the dualized theory at every perturbative order,
including the tree level theory. As shown earlier in this paper, the renormalization
of the level number (k → (k + (2 − n)cA)) arises from a Jacobian and hence the
term proportional to cA in the renormalized level number is to be regarded as O(~).
It can be readily seen that applying a dualization prescription A = −∂θ to the
tree level N = 4 Hamiltonian, obtained using the canonical quantization procedure
reviewed in (4.1), produces (114) as the symmetry algebra of the quadratic part of the
theory, but with the unrenormalized level number. Since structure constants cannot
undergo quantum corrections, the only way to reconcile these statements, namely, the
consistent appearance of (114) as the symmetry algebra of the linearized theory to all
orders in perturbation theory and the nonrenormalization of a structure constant is
for n to be 2 for N ≥ 2 supersymmetry. We thus see that the results obtained earlier
on the effect of the fermions on the measure can also justified on purely algebraic
grounds.

Finally, we note that that the appearance of the noncentral extension in the the
algebra (114) is tied in with the parity violating nature of the fermion mass-terms.
If one began with the free, massive N = 1 chiral multiplet in four dimensions, its
dimensional reduction (in our conventions) would produce a parity conserving N = 2
mass term ∼

∫
(λ†1λ1 − λ†2λ2) in three dimensions. The closure of the SUSY algebra

with such masses would not result in the extension we have above. It is precisely the
parity violating nature of the

∫
λ†IλI mass term, which, in turn, is dictated by the

parity violating nature of the Chern-Simons term that leads to the massive on-shell
algebra.
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APPENDIX

Here we collect some useful formulae and commutation relations that have been used
throughout the paper. An exhaustive list of the commutation relations between
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various operators used in the gauge invariant framework can be found in[1]

[pa(x), H(y)] = H(y)(−ita)δ(2)(x− y), [pa(x),M(y)] =M(y)(−ita)δ(2)(x− y)

[pa(x), Hbc(y)] = facdHbd(y)δ(2)(x− y), [ps(x), J b(y)] = −i
cA
π
Hbs(y) ∂yδ

(2)(y − x)

(A1)

The definition of J used throughout the paper is

Ja =
2 cA
π

Tr(ta∂HH−1) =
icA
π

(M †)ab(A− a)b (A2)

This is related to the magnetic field as

Ba = F a
12 = −2 i (D̄A− ∂Ā)a = −

2π

cA
(M †−1)ab(∂̄J)b. (A3)

The regulated Green function for the D̄ operator is

(D̄−1)ab(x, y) = (M †−1)ac(x) Ḡcd(x, y) (M †)db(y)

Ḡab(~x, ~y) =
1

π(x− y)

[
δab − e−|~x−~y|2/ǫ

(
H(x, ȳ)H−1(y, ȳ)

)
ab

] (A4)

where ǫ is a regulator parameter, to be taken to zero at the end. The regulated value
of D̄−1 at coincident points is

(D̄−1)ab(x, x) = −
1

π
fabc(A− a)c(x) = +

i

cA
fabc(M †−1)cl(x)J l(x). (A5)

In establishing the supersymmetry invariance of the gauge-invariant forms of the
Hamiltonians, we have repeatedly used the identity

f gak(M)ck(M−1)gm = −fmclM la (A6)

A similar identity holds for M †. We have also used the fact that MT =M−1 for the
adjoint version of M .
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