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A quantum-mechanical theory is PT -symmetric if it is described by a Hamilto-

nian that commutes with PT , where the operator P performs space reflection and

the operator T performs time reversal. A PT -symmetric Hamiltonian often has a

parametric region of unbroken PT symmetry in which the energy eigenvalues are

all real. There may also be a region of broken PT symmetry in which some of the

eigenvalues are complex. These regions are separated by a phase transition that

has been repeatedly observed in laboratory experiments. This paper focuses on the

properties of a PT -symmetric igφ3 quantum field theory. This quantum field the-

ory is the analog of the PT -symmetric quantum-mechanical theory described by the

Hamiltonian H = p2 + ix3, whose eigenvalues have been rigorously shown to be all

real. This paper compares the renormalization-group properties of a conventional

Hermitian gφ3 quantum field theory with those of the PT -symmetric igφ3 quantum

field theory. It is shown that while the conventional gφ3 theory in d = 6 dimensions

is asymptotically free, the igφ3 theory is like a gφ4 theory in d = 4 dimensions; it is

energetically stable, perturbatively renormalizable, and trivial.
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I. INTRODUCTION

A PT -symmetric quantum theory is described by a Hamiltonian that commutes with PT ,

where the operators P and T perform space reflection and time reversal [1, 2]. Even if a PT -

symmetric Hamiltonian is not Dirac Hermitian (that is, it is not invariant under combined

matrix transposition and complex conjugation), the eigenvalues of the Hamiltonian can still

be entirely real. PT -symmetric Hamiltonians are particularly interesting because they often

have a parametric region of unbroken PT symmetry in which the eigenvalues are all real and

a region of broken PT symmetry in which some of the eigenvalues are complex [1–4]. These

regions are separated by a phase transition that has been repeatedly observed in laboratory

experiments [5–14].

A heavily studied class of PT -symmetric Hamiltonians is [1–4]

H = p2 + x2(ix)ǫ, (1)

where ǫ is a real parameter. The eigenvalues of this Hamiltonian are all real when ǫ ≥ 0

and mostly complex when −1 < ǫ < 0. Thus, the region of unbroken PT symmetry is ǫ ≥ 0

and the region of broken PT symmetry is −1 < ǫ < 0. These two regions are separated by

a phase transition at ǫ = 0 [1–4].

A special example of a PT -symmetric Hamiltonian whose eigenvalues are all real and

positive is the cubic Hamiltonian

H = p2 + ix3. (2)

The d-dimensional, Euclidean-space, field-theoretic equivalent of this quantum-mechanical

theory is described by the Lagrangian density

L =
1

2
(∂φ)2 +

1

2
m2φ2 + i

g

6
φ3. (3)

This Lagrangian is clearly not Hermitian, but if we assume that the field φ transforms as a

pseudoscalar, then it is PT -symmetric. This is because under this assumption, φ changes

sign under space reflection P, and since i changes sign under T , the interaction term is PT

invariant.

While a conventional gφ3 theory is interesting from a theoretical point of view, it is, of

course, a physically unacceptable theory because the real cubic potential 1
2
m2φ2 + 1

6
gφ3 is

not bounded below. As a consequence, there cannot be a stable ground state.



3

Perturbation theory provides an easy intuitive explanation for the absence of a stable

ground state. The Feynman graphical rules for a conventional gφ3 quantum field theory

follow directly from the Lagrangian density

L =
1

2
(∂φ)2 +

1

2
m2φ2 +

g

6
φ3. (4)

The momentum-space amplitudes for a vertex and a line are

vertex : −g,

line :
1

p2 +m2
. (5)

Using these Feynman rules, we can in principle calculate the ground-state energy density

E0(g) by summing all connected vacuum graphs. Because all such graphs have even numbers

of vertices, this sum takes the form of a formal Taylor series in powers of g2:

E0(g) =

∞
∑

n=0

A2ng
2n, (6)

where A2n is the contribution of graphs having 2n vertices. The key point here is that

all graphs contributing to the ground-state energy density have the same sign and add in

phase, and thus the coefficients in the series (6) all have the same sign. This series is

divergent because the number of graphs having 2n vertices grows like n! [15, 16], but unlike

the perturbation series for a gφ4 field theory, it is not a Stieltjes series [17] because it does

not alternate in sign. Consequently, the Borel sum [17] of the perturbation series has a

cut on the real-positive axis in the complex-g2 plane. This perturbative argument shows

that the ground-state energy density is complex; the imaginary part of the energy density

is the discontinuity across the cut. We conclude that the ground-state of the conventional

gφ3 theory is unstable; that is, it decays (tunnels out to infinity through the barrier in the

potential) with a lifetime given by the imaginary part of E0(g
2).

On the other hand, perturbation theory also gives a simple intuitive argument that the

non-Hermitian, PT -symmetric Lagrangian density (3) defines a theory with a stable ground

state. Note that the cubic potential in this theory is complex, and thus we cannot ask

whether it is unbounded below. The idea of a potential being bounded below applies only

if the potential is real; unlike the real numbers, the complex numbers are not ordered, so

the notion of boundedness simply does not apply. We obtain the PT -symmetric Lagrangian

in (3) from the conventional Lagrangian in (4) by replacing g by ig. When we do so, the
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perturbation series in (6) now alternates in sign. As a consequence, it is a series of Stieltjes

and its Borel sum is real [18–20]. We conclude from this argument that it is likely that the

ground-state for this theory is stable.

While this perturbative argument is only heuristic, there is a rigorous proof [21, 22] that

the spectrum of the cubic, quantum-mechanical PT -symmetric Hamiltonian in (2) is real

and bounded below. It is not yet known at a rigorous level whether the energy levels of

the unconventional quantum field theory in (3) are real and bounded below because for this

theory one can only rely on perturbative calculations.

To show that the PT -symmetric quantum field theory in (3) is a physically acceptable

quantum theory one must (in addition to proving that the spectrum of the theory is bounded

below) verify that there is a Hilbert space with a positive inner product and that time

evolution is unitary. To demonstrate this, one would have to show that there exists a linear

operator C whose square is unity and that C commutes with both the Hamiltonian and

with the PT operator [1, 2]. In perturbation theory the C operator for the igφ3 theory has

been calculated to leading order [23], but it is not known rigorously whether the Lagrangian

(3) defines a physically acceptable theory. (There may even be a critical value of g at

which a PT phase transition from a physically acceptable theory having real energies to

an unphysical theory having complex eigenvalues occurs.) However, we do know for certain

that the conventional gφ3 Lagrangian in (4) defines a physically unacceptable theory!

While the conventional Lagrangian in (4) is physically unacceptable and the unconven-

tional Lagrangian in (3) may or may not be physically acceptable, it is certainly interesting

to study these Lagrangians from a mathematical point of view. The purpose of this article is

to examine and contrast the renormalization-group properties of these two Lagrangians. We

will show that while a conventional gφ3 theory in d = 6 dimensions is asymptotically free,

the igφ3 theory is like a gφ4 theory in d = 4 dimensions; that is, it is stable, perturbatively

renormalizable, and trivial.

This paper is organized as follows: In Sec. II we review the standard perturbative renor-

malization treatment of a conventional gφ3 theory. Then, in Sec. III we carry out the

renormalization-group analysis for the gφ3 theory. In Sec. IV we repeat the analysis of

Sec. III for a PT -symmetric igφ3 theory. We give some concluding remarks in Sec. V.
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II. PERTURBATION THEORY FOR A d-DIMENSIONAL gφ3 THEORY

The vacuum persistence functional in the presence of an external source J for a d-

dimensional Euclidean-space quantum field theory described by a Lagrangian L is

Z[J ] =

∫

Dφ e
∫
ddx(−L+Jφ). (7)

Let us consider the unrenormalized Lagrangian for a conventional Hermitian gφ3 quantum

field theory in which we include a linear self-interaction term:

L =
1

2
(∂µφ)

2 +
1

2
m2φ2 +

g

6
φ3 + hφ. (8)

We can then rewrite Z[J ] as

Z[J ] = N e−
∫
V (δ/δJ)e

1

2

∫ ∫
JDbJ , (9)

where N is a normalization constant, Db is the usual bosonic propagator in coordinate space,

and V (φ) = hφ+ gφ3/6.

The one-loop one-particle-irreducible unrenormalized vertex functions in momentum

space are

Γ(1) = h +
g

2

∫

ddp

(2π)d
1

p2 +m2
, (10)

Γ(2)(q) = q2 +m2 −
g2

2

∫

ddp

(2π)d
1

(p2 +m2)[(p+ q)2 +m2]
, (11)

Γ(3)(q1, q2) = g + g3
∫

ddp

(2π)d
1

(p2 +m2)[(p+ q1)2 +m2][(p+ q1 + q2)2 +m2]
. (12)

To evaluate the above integrals we use the standard integral identities

∫

ddl

(2π)d
1

(l2 +∆)n
=

1

(4π)d/2
Γ(n− d/2)

Γ(n)
∆

d

2
−n, (13)

∫

ddl

(2π)d
l2

(l2 +∆)n
=

1

(4π)d/2
d

2

Γ(n− d/2− 1)

Γ(n)
∆

d

2
+1−n, (14)

∫

ddl

(2π)d
lµlν

(l2 +∆)n
=

∫

ddl

(2π)d
l2ηµν/tr(η)

(l2 +∆)n
, (15)

∫

ddl

(2π)d
lµ

(l2 +∆)n
= 0. (16)

where ηµν is the metric matrix.
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The upper critical dimension for the Hermitian gφ3 theory is d = 6. At d = 6 the cubic

operator φ3 is marginal (just as φ4 is marginal at d = 4). The theory turns out to be

asymptotically free, as we will see below.

Normally, in textbooks the φ3 theory at or near d = 6 dimensions is discussed for peda-

gogical reasons [24]. This is because the perturbative results are easily established and the

theory provides a simple example of an asymptotically free theory. Furthermore, unlike the

gφ4 theory in d = 4 dimensions, a contribution to the wave function renormalization con-

stant Z is already present at the one-loop level. However, no physical meaning is attached

to the conventional gφ3 theory because, as noted earlier, it is unstable (that is, the spectrum

is unbounded below).

Let us now examine the behavior of this gφ3 theory near d = 6. Let I1, I2, and I3

represent the three integrals that appear in Γ1, Γ2, and Γ3 above. With the help of (13), at

d = 6− ǫ we get

I1 =

∫

ddp

(2π)d
1

p2 +m2
=

m4µ−ǫ

64π3ǫ
+O

(

ǫ0
)

, (17)

where here and in the following we introduce the ’t Hooft scale µ and give only the divergent

parts of I1, I2 and I3.

Next, we consider the second integral

I2 =

∫

ddp

(2π)d
1

(p2 +m2)[(p+ q)2 +m2]
. (18)

To extract its divergent part, we take two derivatives:

∂I2
∂qµ

= −

∫

ddp

(2π)d
2(p+ q)µ

(p2 +m2)[(p+ q)2 +m2]2
,

∂2I2
∂qµ∂qν

=

∫

ddp

(2π)d
8(p+ q)µ(p+ q)ν − 2gµν [(p+ q)2 +m2]

(p2 +m2)[(p+ q)2 +m2]3
. (19)

We then expand I2(q) around q = 0:

I2(q) = I2

∣

∣

∣

q=0
+ qµ

∂I2
∂qµ

∣

∣

∣

∣

q=0

+
1

2
qµqν

∂2I2
∂qµ∂qν

∣

∣

∣

∣

q=0

+ I2(q)
(finite)

=

∫

ddp

(2π)d
1

(p2 +m2)2
−

∫

ddp

(2π)d
2q · p

(p2 +m2)3

+

∫

ddp

(2π)d
4(p · q)2 − q2(p2 +m2)

(p2 +m2)4
+ I2(q)

(finite)

=

∫

ddp

(2π)d
1

(p2 +m2)2
−

∫

ddp

(2π)d
1

(p2 +m2)3

+
4

trη
q2

∫

ddp

(2π)d
p2

(p2 +m2)4
+ I2(q)

(finite), (20)
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where we have used the identities (13) and (14). The result is

I2(q) = −
q2µ−ǫ

192π3ǫ
−

m2µ−ǫ

32π3ǫ
+O

(

ǫ0
)

. (21)

Finally, for I3 we use the identity

I3 =

∫

ddp

(2π)d
1

(p2 +m2)[(p+ q1)2 +m2][(p+ q1 + q2)2] +m2

=

∫ 1

0

dx dy dz δ(x+ y + z − 1)

∫

ddp

(2π)d
1

D3
(22)

in which D is evaluated at k = q1 + q2:

D = x(p2 +m2) + y[(p+ q1)
2 +m2] + z[(p + k)2 +m2]

= (x+ y + z)(p2 +m2) + 2p · (yq1 + zk) + yq21 + zk2. (23)

By performing the shift l = p+ yq1 + zk, D becomes

D = l2 +m2 + yq21 + zk2 − (yq1 + zk)2. (24)

We then obtain

I3 =

∫ 1

0

dz

∫ 1−z

0

dy

∫

ddl

(2π)d
2

[l2 +m2 + yq21 + zk2 − (yq1 + zk)2]
3

=
µ−ǫ

64π3ǫ
+O

(

ǫ0
)

. (25)

In terms of the standard definitions for the renormalized quantities

φ = Z1/2φR,

Z = 1 + δZ,

h = Z−1/2(hR + δh),

m2 = Z−1(m2
R + δm2),

g = Z−3/2(µǫ/2gR + δg), (26)

where the φ3 coupling constant gR is made dimensionless by introducing the ’t Hooft scale

µ, the renormalized vertex functions are

Γ
(1)
R = hR + δh−

gRm
4
Rµ

−ǫ/2

128π3ǫ
+ . . . ,

Γ
(2)
R = p2 +m2

R + δZp2 + δm2 + g2R

(

p2

384π3ǫ
+

m2
R

64π3ǫ

)

+ . . . ,

Γ
(3)
R = gR + δg +

g3Rµ
ǫ/2

64π3ǫ
+ . . . , (27)
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where we have omitted the finite one-loop contributions. Therefore, by adopting the MS-

scheme [25], we get

δh =
gRm

4
Rµ

−ǫ/2

128π3ǫ
,

δZ = −
g2R

384π3ǫ
,

δm2 = −
g2Rm

2
R

64π3ǫ
,

δg = −
g3Rµ

ǫ/2

64π3ǫ
. (28)

Finally, we define the dimensionless renormalized couplings h, m2, and g, which should

not be confused with the bare parameters in (26):

hR = µ4−ǫ/2h,

m2
R = µ2m2,

gR = g. (29)

The one-loop renormalization-group (RG) functions for the dimensionless renormalized cou-

plings are then given by

γ =
1

2
µ
∂

∂µ
δZ =

g2

768π3
, (30)

βh = −(4− ǫ/2)h− µh
∂(µǫ/2−4δh/h)

∂µ
+ γh

= −(4− ǫ/2)h+
gm4

128π3
+

g2h

768π3
, (31)

βm2 = −2m2 − µm2∂(µ
−2δm2/m2)

∂µ
+ 2γm2

= −2m2 −
g2m2

64π3
+

g2m2

384π3
= −2m2 −

5g2m2

384π3
, (32)

βg = −
ǫ

2
g − µg

∂(µ−ǫ/2δg/g)

∂µ
+ 3γg

= −
ǫ

2
g −

g3

64π3
+

g3

256π3
= −

ǫ

2
g −

3g3

256π3
. (33)

III. RENORMALIZATION-GROUP ANALYSIS OF gφ3 THEORY

From (31), (32), and (33), we see that near d = 6 the theory possesses only a Gaussian

fixed point (GFP): h∗ = m2∗ = g∗ = 0. As is well known, the linearization of the RG
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equations around the GFP shows that near this point the couplings scale according to their

scaling dimension. That is, by defining t = ln(µ/µ0), we find that

h(t) ∼ e−(4−ǫ/2)t,

m2(t) ∼ e−2t,

g(t) ∼ e−ǫt/2. (34)

Note that γ(g∗) = 0 at the GFP.

Finally, from βg we see that at d = 6 the theory is asymptotically free. The explicit

solution of the RG equation µd(g2)
dµ

= 2gβg is

g2(µ) =
g20

1 +
3g2

0

128π3 ln
(

µ
µ0

) , (35)

where µ0 is an arbitrary scale and g0 = g(µ0). In (35) we immediately recognize the usual

features of asymptotic freedom and infrared slavery. However, we emphasize that despite

exhibiting these important physical properties, the conventional gφ3 theory is unstable.

IV. RG ANALYSIS FOR THE PT -SYMMETRIC igφ3 THEORY

By making the substitutions h → ih and g → ig in (31)–(33), we find that

γ = −
g2

768π3
, (36)

βh = −(4− ǫ/2)h+
gm4

128π3
−

g2h

768π3
, (37)

βm2 = −2m2 +
5g2m2

384π3
, (38)

βg = −
ǫ

2
g +

3g3

256π3
. (39)

Unlike the conventional gφ3 theory, we now have nontrivial fixed points at

h∗ = 0,

m2∗ = 0,

g∗ = ±
√

128π3ǫ/3, (40)

in addition to the usual GFP.
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As in the conventional case, the flow near the GFP is dictated by the canonical dimensions

of the couplings. Near the non-Gaussian fixed points, however, the linearization of the RG

equations gives the following new scaling behavior:

h(t) = c1e
g1t,

m2(t) = c2e
g2t,

g(t) = g∗ + c3e
g3t, (41)

where g1 = (−4 + 4ǫ/9), g2 = (−2 + 5ǫ/9) and g3 = ǫ are the eigenvalues of the 3 × 3

Jacobian matrix that defines the linearized RG flow around the non-Gaussian fixed points,

and c1, c2, and c3 are arbitrary coefficients. This result comes from solving the linearized

system of differential RG equations around the non-Gaussian fixed points (see Fig. 1). From

these equations we see that h, m2, and g are still eigendirections of the Jacobian matrix, as

was the case for the GFP. Finally, the anomalous dimension of the field is

γ = −
ǫ

18
. (42)

It is worth noting that the hyperscaling relation that connects the anomalous dimension

of the field with the eigenvalue g1, namely

η = 2γ = 2 + d+ 2g1, (43)

is satisfied, as expected. Here, η is the exponent that gives the anomalous scaling of the

two-point function. Near the critical region, the latter behaves as

Γ
(2)
R (q) ∼

1

q2−η
. (44)

V. CONCLUSIONS

We have shown that the PT -symmetric igφ3 quantum field theory near d = 6 dimensions

possesses three fixed points, the GFP and two nontrivial ones in (40). At d = 6 (ǫ = 0) the

three fixed points merge in a unique fixed point, which is the gaussian one. From the βg

function (39), we can see that when ǫ = 0, the theory is trivial:

g2(µ) =
g20

1−
3g2

0

128π3 ln
(

µ
µ0

) . (45)
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FIG. 1: Four RG trajectories in the (m2, g2) plane near the non-Gaussian fixed point m2∗ = 0,

g2∗ = 128π3ǫ/3 obtained from (38) and (39) for ǫ = 0.5. The four initial values are m2(t = 0) =

−0.1, 0.1, −0.1, 0.1 and correspondingly g2(t = 0) = 0.2, 0.4, 0.4, 0.2. The eigendirections are the

dashed line and the g2 axis.

This allows us to conclude that the igφ3 theory is energetically stable, perturbatively renor-

malizable, and trivial. This triviality property is the same as for the conventional Hermitian

gφ4 theory in d = 4 dimensions. If we consider this igφ3 theory in d = 6 dimensions from an

effective-field-theory standpoint (as is the case for the Higgs sector of the Standard Model),

it can be treated as a perfectly sensible physical theory.

From the RG point of view, however, what seems to us to be more interesting is what

happens when d < 6 (d = 6 − ǫ). In this case, if we consider the (m2, g2) plane, we have a

situation that closely parallels the ferromagnetic case as described in d = 4− ǫ dimensions,

where we have the Gaussian and the Wilson-Fisher fixed points. In Fig. 2 the (M2, g) plane
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for the ordinary gφ4 theory in d = 4− ǫ dimensions is shown and the RG flows on this plane

are plotted. The GFP is at the origin, while the Wilson-Fisher fixed point is on the left

of the M2 = 0 axis. The dashed lines are the eigendirections and the Wilson-Fisher fixed

point is at the crossing of the two eigendirections (one of which is the relevant direction, the

other the irrelevant one). The two fixed points, the GFP and the WFFP determine the RG

flows on this plane. In the case of a PT -symmetric igφ3 theory in d = 6− ǫ dimensions the

situation in the (m2, g2) plane is essentially the same. However, the role of the M2 term of

the ferromagnetic model is played by m2, while the role of g (in the gφ4 term) is played by

g2 (compare Figs. 1 and 2). In the (m2, g2) plane the two eigendirections are the m2 = 0

axis and the dashed line of Fig. 1. The non-Gaussian fixed point is at the crossing of the

two eigendirections.

-0.4 -0.2 0.0 0.2 0.4
-0.5

0.0

0.5

1.0

1.5

2.0

M2

g

FIG. 2: Four RG trajectories in the (M2, g) plane for the scalar gφ4 theory in d = 3 dimensions

near the Wilson-Fisher fixed point. The initial values are: M2(t = 0) = −0.25, 0.1, −0.4, 0 and

correspondingly g = 0.5, 0.75, 1.1, 1.5. The eigendirections are indicated by the two dashed lines.

It is evident from Figs. 1 and 2 that the RG flow in the (m2, g2) plane is the same as

the RG flow in the ferromagnetic case; that is, it is the same as the flow in the (M2, g)

plane. In both cases these flows are governed by the two fixed points (the Gaussian one

and the non-Gaussian one). As is clear from Figs. 1 and 2, the Gaussian fixed point of the

ferromagnetic case corresponds to the Gaussian fixed point of the igφ3 theory; the Wilson-

Fisher fixed point of the ferromagnetic case corresponds to our non-Gaussian fixed point:
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m2 = 0, g2 = 128π3ǫ/3. Regarding the two fixed points in (40), g = ±
√

128π3ǫ/3, it should

be noted that in establishing this parallel, we refer to the square of the coupling constant

g2 rather than to the coupling constant g itself. We do this because it is convenient to treat

the two fixed points in a unified manner because the physics around either fixed point is the

same.

We note that the additional non-Gaussian fixed points of the PT -symmetric theory are

also present in the conventional gφ3 theory although they are purely imaginary [see βg in

(33)]. Therefore, by considering also the purely imaginary solutions to the equation βg = 0

in the conventional gφ3 theory, in a sense we recover the results obtained by stating from the

beginning that the gφ3 coupling in the Lagrangian is purely imaginary (which is the case for

the PT -symmetric theory). In summary, while the equation βg = 0 in the conventional gφ3

theory has one real and two imaginary conjugate solutions, in the PT -symmetric theory all

of the three solutions are real.

Finally, we point out that in both the conventional and the PT -symmetric theories the

RG equations for g and m2 with βm2 and βg given by (32)–(33) and (38)–(39), respectively,

can be solved exactly. Having defined t = ln µ
µ0

as before, for the conventional theory we get

g2(t) =
g20e

−ǫt

1 +
3g2

0

128π3

(

1−e−ǫt

ǫ

)

, (46)

m2(t) = m2
0e

−2t

[

1 +
3g20

128π3

(

1− e−ǫt

ǫ

)]−5/9

, (47)

and for the PT -symmetric theory we get

g2(t) =
g20e

−ǫt

1−
3g2

0

128π3

(

1−e−ǫt

ǫ

)

, (48)

m2(t) = m2
0e

−2t

[

1−
3g20

128π3

(

1− e−ǫt

ǫ

)]−5/9

. (49)
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