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Abstract

General relativity is a generally covariant, locally Lorentz covariant theory of two

transverse, traceless graviton degrees of freedom. According to a theorem of Hojman,

Kuchař, and Teitelboim, modifications of general relativity must either introduce new

degrees of freedom or violate the principle of local Lorentz covariance. In this paper,

we explore modifications of general relativity that retain the same graviton degrees of

freedom, and therefore explicitly break Lorentz covariance. Motivated by cosmology,

the modifications of interest maintain explicit spatial covariance. In spatially covariant

theories of the graviton, the physical Hamiltonian density obeys an analogue of the

renormalization group equation which encodes invariance under flow through the space

of conformally equivalent spatial metrics. This paper is dedicated to setting up the

formalism of our approach and applying it to a realistic class of theories. Forthcoming

work will apply the formalism more generally.
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1 Introduction

For nearly a century, general relativity has been the most successful paradigm for interpreting

and understanding classical gravitational phenomena. To this day, despite ongoing experi-

mental efforts, there have been no unequivocal refutations of general relativity. Nonetheless,

there are compelling reasons to study alternative gravitational theories.

Perhaps the most obvious reason to consider alternative gravitational theories is to ex-

plain empirical anomalies, most notably the observed magnitude of the cosmic acceleration.

The ΛCDM concordance model achieves a parsimonious fit to cosmological observations by

invoking a cosmological constant corresponding to a vacuum energy density ρΛ ≈ (meV )4.

However, known quantum corrections to ρΛ are of order M4
P l ≈ 10120(meV )4, so ΛCDM

suffers from a serious fine-tuning problem [1]. Since we have no handle on the microphysics

responsible for the magnitude of vacuum energy, it is an outstanding theoretical challenge

to determine what physical degrees of freedom are associated with late-time acceleration.

Theories of dynamical dark energy or modified gravity typically introduce new scalar de-

grees of freedom, but to date there is no unambiguous evidence for cosmologically relevant

scalars [2]. One motivation for this paper is the possibility that cosmic acceleration might

be directly associated with the transverse, traceless graviton degrees of freedom.

Apart from any attempt to understand empirical anomalies, there remains a compelling

theoretical reason to study alternatives to general relativity: to determine which of its features

are essential to its experimental success, and which features are merely incidental. To analyze

the theory in this manner, we must know what freedom we have to modify the theory while

retaining its explanatory power. The two transverse, traceless graviton degrees of freedom

are a key feature of general relativity. Though graviton exchange has never been measured

and gravitational waves have never been detected, there is substantial indirect evidence for

these two graviton degrees of freedom [3]. It is therefore natural to ask whether and how we

can modify the behavior of the known graviton degrees of freedom.

In this paper, we construct manifestly consistent modifications of general relativity

that retain the same local degrees of freedom. Since general relativity is the unique Lorentz

covariant theory of a massless spin-2 particle [4, 5, 6, 7], our theories must break Lorentz

covariance explicitly. Theories in which Lorentz symmetry is only broken spontaneously

necessarily rely on additional local degrees of freedom, which appear in the broken phase as

massless Goldstone modes; an example of such a theory is ghost condensation [8].
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General relativity as formulated by Einstein and Hilbert is also a generally covariant

theory, which means that the equations of motion for the spacetime metric gµν take the same

form in any coordinate system. Unfortunately, invariance under coordinate transformations

implies that the theory contains a great deal of gauge arbitrariness, and the true dynamical

degrees of freedom of the theory have proven difficult to isolate. The inaccessibility of the

physical graviton degrees of freedom is a significant obstacle to modifying their behavior. In

fact, the notorious elusiveness of the physical degrees of freedom is also an obstacle to the

canonical quantization of general relativity [9].

This gauge arbitrariness can be understood most clearly by treating general relativity as

a constrained field theory. By writing the spacetime metric gµν in ADM form1 and discarding

a boundary term, the Einstein-Hilbert action can be rewritten in canonical form as a theory

of a spatial metric hij and a conjugate momentum tensor πij subject to four constraints

Hµ [10, 11]. Though hij and πij are not themselves generally covariant objects, the general

covariance of the theory follows from the first class character of the Hµ’s, which generate

gauge transformations corresponding to spacetime diffeomorphisms [12, 13]. By representing

gauge symmetries as constraints on phase space, it becomes straightforward to count degrees

of freedom. According to the standard counting prescription, the presence of four first class

constraints Hµ in a theory of six canonical coordinates hij ensures that general relativity

contains two local degrees of freedom; schematically,

6 · hij
′s− 4 · Hµ

′s = 2 Degrees of Freedom. (1)

See section 2.1 for more detail. In the passage to quantum theory, these transverse, traceless

degrees of freedom become the two polarizations of the graviton.

To isolate the physical graviton degrees of freedom, one would have to solve the four

constraints Hµ. One could then modify the behavior of the graviton in a straightforward

manner. By taking the configuration space for the spatial metric to be Wheeler’s superspace,

it is possible to solve the three momentum constraints Hi by fiat, but the Hamiltonian

constraint H0 has thus far defied solution in general. Unless the Hamiltonian constraint can

be solved, the gauge-arbitrariness of general relativity cannot be eliminated. Fortunately,

though no general solution to the Hamiltonian constraint has been found, it can be solved

in certain circumstances by imposing an appropriate gauge-fixing condition.

1
i.e., in terms of a spatial metric hij , a lapse N ≡ N0, and a shift N i.
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We have established that modifying the behavior of the graviton without new degrees

of freedom will force us to break Lorentz covariance explicitly, but it is enlightening to

see how this conclusion arises in the canonical picture. Under the action of the Poisson

bracket, the Hµ’s of general relativity obey the Dirac algebra [14, 15], which encodes the

local Lorentz covariance of a generally covariant theory [16]. In 1974, Hojman, Kuchař,

and Teitelboim (HKT) proved that general relativity is the unique minimal representation

of the Dirac algebra [17, 18]. It follows immediately that Lorentz covariant modifications of

general relativity introduce additional degrees of freedom beyond the two graviton degrees

of freedom in general relativity [19]. To modify general relativity, one must either introduce

new degrees of freedom or violate the principle of local Lorentz covariance.

We wish our theories to retain the same local degrees of freedom as general relativity,

so in accordance with the theorem of HKT, our theories cannot be Lorentz covariant. This

aspect of our approach is not necessarily a defect. Since we do not observe exact spacetime

symmetry in our universe, this property of general relativity is not necessarily key to the

success of the theory. Simply put, on cosmological scales there is a strong asymmetry

between the past and the future, and the observable universe has a preferred rest frame; these

observations are conventionally understood as a result of spontaneous symmetry breaking,

but explicit symmetry breaking is another logical possibility.

That being said, on cosmological scales in the cosmological rest frame there is substan-

tial evidence for spatial homogeneity and isotropy. To maximize the verisimilitude of our

treatment, the theories we consider will retain explicit covariance under spatial diffeomor-

phisms. To summarize, we will attempt to modify general relativity while preserving 1) the

number of graviton degrees of freedom, and 2) explicit spatial covariance. In this paper, we

develop a general framework within which to explore the freedom we have to modify general

relativity while retaining these two desirable properties.

Concretely, we will begin by recasting general relativity in spatially covariant form,

by solving the Hamiltonian constraint (which generates local time reparametrizations) while

preserving the three momentum constraints (which generate spatial diffeomorphisms). We

will solve the Hamiltonian constraint by choosing a cosmologically motivated gauge: we will

take the determinant of the spatial metric to be the measure of time. This operation de-

stroys the manifest diffeomorphism covariance and local Lorentz covariance of the theory.

We emphasize that this gauge breaks down in the general case when the determinant of
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the spatial metric is allowed to evolve non-monotonically, but it is a natural choice when

considering perturbative corrections to FRW spacetime. By solving the Hamiltonian con-

straint, the determinant of the spatial metric and the trace of the momentum tensor drop

out of the phase space of the theory. We thereby obtain general relativity as a theory of a

unit-determinant metric h̃ij and a traceless conjugate momentum tensor π̃ij subject to three

first class momentum constraints H̃i, which act as the generators of spatial diffeomorphisms.

By the standard counting prescription, the presence of three first class constraints H̃i in a

theory of five canonical coordinates h̃ij guarantees that spatially covariant general relativity

contains two degrees of freedom, as it should; schematically,

5 · h̃ij
′s− 3 · H̃i

′s = 2 Degrees of Freedom. (2)

See section 3.4 for more detail.

Our strategy for modifying general relativity relies on the fact that any theory of five

canonical coordinates subject to three first class constraints contains two degrees of freedom.

To modify general relativity, we will modify the functional form of the physical Hamiltonian

density on the reduced phase space (h̃ij, π̃
ij), subject to the condition that the momentum

constraints H̃i remain first class; to ensure the consistency of the modification, we will

also demand that the constraints H̃i remain preserved by the equations of motion. Any

theory that satisfies these two restrictions will retain manifest spatial covariance, and by the

counting prescription will necessarily contain two graviton degrees of freedom. In this paper,

we introduce the formalism necessary to pursue this program of modification and apply

the formalism to a class of realistic theories. Forthcoming work will apply the formalism

developed here to the goal of constructing viable alternatives to general relativity [20]. In

particular, these alternatives stand a good chance of being consistent with binary pulsar

constraints, which principally constrain the number of gravitational degrees of freedom.

The literature abounds with many and varied approaches to the pursuit of modified

gravity theories, but generally covariant, locally Lorentz covariant modifications of general

relativity that introduce additional degrees of freedom have been the most widely explored.

The well-known method for finding such theories is to construct a scalar Lagrangian den-

sity out of manifestly covariant objects by contracting all free spacetime/Lorentz indices.2

Using this technique, all manner of theories have been explored: scalar-tensor theories [21],

theories with higher-order curvature terms [22, 23, 24], theories of massive gravity [25, 26,

2In the presence of spinor fields, one must treat spacetime indices and Lorentz indices separately.
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27, 28], higher-dimensional gravity theories [29, 30, 31], galileons [32, 33, 34, 35, 36, 37],

chameleons [38], symmetrons [39, 40], cuscutons [41], etc. For a comprehensive review of

Lorentz covariant massive gravity theories with detailed references, see [7]. For a compre-

hensive review of observational tests of modified gravity, see [2].

Approaches to gravity which do not assume general covariance and local Lorentz co-

variance at the outset have been tried as well. The natural procedure for constructing such a

theory depends on which symmetries it is assumed to possess; more often than not, theories

without spacetime symmetry are assumed to maintain explicit spatial symmetry. For exam-

ple, in [15] the action of gravity is assumed to be invariant under spatial diffeomorphisms.

In [42], Lorentz-violating massive graviton theories were classified by assuming the graviton

mass to be invariant under the three-dimensional Euclidean group. A prominent recent ex-

ample of a Lorentz-violating theory is Hořava-Lifshitz gravity [43, 44, 45, 46, 47, 48, 49, 50]3.

Also of note is the work of Barbour, Koslowski, and collaborators on the theory of Shape

Dynamics [51, 52].

This paper is organized as follows. In section 2, we cover the basic concepts of con-

strained field theory in the context of analyzing the phase space and constraint structure of

general relativity. In section 3, we show how to impose our cosmological gauge condition

and solve the Hamiltonian constraint to obtain a consistent spatially covariant formulation

of general relativity. In section 4, we introduce the formalism of our approach to modify-

ing gravity in the context of ultralocal theories of the graviton. In section 5, we apply our

method to derive consistency relations for a class of realistic local theories which includes

general relativity.

2 General Relativity as a Constrained Field Theory

In this section, we will analyze general relativity by treating it as a constrained field theory.

In particular, we will examine its phase space and constraint structure, and count its local

degrees of freedom.

3The original incarnation [43] of Hořava-Lifshitz gravity struggled with consistency issues [46, 47, 48]

which were resolved in [49] by imposing a consistent constraint algebra.
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Our starting point is the Einstein-Hilbert action with a cosmological constant,

S =

∫

dt d3x
√−g

(

R(4) − 2Λ
)

. (3)

From this action, the general covariance of the theory is manifest, but the counting of degrees

of freedom is not. The metric tensor gµν has ten components, but the theory has only two

independent local degrees of freedom. To facilitate the counting of degrees of freedom, it

is conceptually simplest to rewrite the action in canonical form, which makes the counting

manifest. To this end, the spacetime metric gµν must first be expressed in ADM form, in

terms of a lapse N , a shift N i, and a spatial metric hij :

ds2 = gµνdx
µdxν ≡ −N2dt2 + hij(dx

i +N idt)(dxj +N jdt) . (4)

The lapse N is a three-scalar, the shift N i is a three-vector, and the spatial metric hij is a

three tensor. Up to a boundary term, the Einstein-Hilbert action is equivalent to the ADM

action

S =

∫

dt d3x
√
hN

(

KijK
ij −K2 +R− 2Λ

)

. (5)

In this expression, indices are lowered with hij and raised with its inverse hij, R ≡ R(3) is

the Ricci scalar of the metric hij, the extrinsic curvature tensor Kij is defined by

Kij ≡
1

2
N−1

(

ḣij −∇iNj −∇jNi

)

, (6)

K ≡ hijKij, and ∇i ≡ ∇(3)
i is the covariant spatial derivative with respect to the metric

hij . From equation (6), it is clear that time derivatives in the action (5) act only on hij , not

on N and N i, so the lapse and shift are essentially non-dynamical. To obtain the canonical

action, one must first define the momentum conjugate to the spatial metric

πij ≡ δL

δḣij

=
√
h
(

Kij −Khij
)

; (7)

the momentum πij is a three-tensor density of unit weight.4 By inverting the relation between

πij and Kij and dropping a boundary term, one can rewrite the action of general relativity

in canonical form as

S =

∫

dt d3x
(

πijḣij −NµHµ

)

, (8)

4According to the standard convention, the weight of a tensor density is the number of times
√
h multiplies

the underlying tensor.
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where N0 ≡ N and

H0 ≡ −
√
h(R− 2Λ) +

1√
h

(

πijπij −
1

2
(πi

i)
2

)

,

Hi ≡ −2hij∇kπ
jk . (9)

Variation of the action (8) with respect to hij and πij yields Hamilton’s equations,

ḣij(x) =
δH

δπij(x)
, π̇ij(x) = − δH

δhij(x)
, (10)

where the Hamiltonian H is

H =

∫

d3xNµHµ . (11)

To evaluate the above variational derivatives, one must use the relations

δhij(x)

δhkl(y)
=

δπkl(x)

δπij(y)
= δklij δ

3(x− y) , (12)

where

δklij ≡ 1

2

(

δki δ
l
j + δliδ

k
j

)

. (13)

Defining the Poisson bracket

{A,B} ≡
∫

d3z

(

δA

δhmn(z)

δB

δπmn(z)
− δA

δπmn(z)

δB

δhmn(z)

)

, (14)

the equation of motion for any quantity A(hij, π
ij, t) can be written as

Ȧ =
∂A

∂t
+ {A,H}

=
∂A

∂t
+

∫

d3y Nν(y) {A,Hν(y)} . (15)

If A has no explicit dependence on time, its evolution is generated by its Poisson bracket

with the Hµ.

Variation of the action with respect to Nµ yields the four constraints

Hµ ∼ 0 . (16)

The symbol ∼ denotes weak equality, or equality after the constraints Hµ ∼ 0 have been

enforced. For example, if X = Y +λµHµ, then X ∼ Y . Since the constraints define a surface
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in phase space, weak equality is also termed equality on the constraint surface. As an aside,

it follows from (11) and (16) that H ∼ 0; the vanishing of the Hamiltonian on the constraint

surface is a feature common to generally covariant theories whose coordinates and momenta

transform as scalars under time reparametrizations [12].

There is no πµṄ
µ term that would allow us to compute a variational expression for

Ṅµ, so the time evolution of Nµ is unconstrained by the action. The four functions Nµ are

thus arbitrary until and unless we gauge-fix them.

2.1 Constraint Properties & Degrees of Freedom

Before examining the constraints more closely, we pause to review some terminology first

introduced by Dirac for describing constrained theories [14]. A quantity whose Poisson

bracket with each of the constraints vanishes (identically or weakly) is termed first class; a

quantity whose Poisson bracket fails to vanish weakly with at least one constraint is termed

second class. A first class constraint has vanishing Poisson bracket with all constraints,

while a second class constraint has non-vanishing Poisson bracket with at least one other

constraint. In most cases of interest, first class constraints generate gauge symmetries under

the action of the Poisson bracket. Second class constraints can usually be solved, either

implicitly by using the “Dirac bracket” [53], or explicitly by expressing some phase space

variables in terms of others.5

By direct calculation — see appendix A for details — it is possible to prove that the

constraintsHµ are first class, {Hµ(x),Hν(y)} ∼ 0. This means that the symmetry generators

close under the action of the Poisson bracket, as they must in order to consistently represent

a gauge symmetry. In particular,

{H0(x),H0(y)} = Hi(x)∂xiδ3(x− y)−Hi(y)∂yiδ
3(x− y) ,

{H0(x),Hi(y)} = H0(y)∂xiδ3(x− y) ,

{Hi(x),Hj(y)} = Hj(x)∂xiδ3(x− y)−Hi(y)∂yjδ
3(x− y) . (17)

This is the Dirac algebra, first discovered by Dirac in the context of parametrized field

theories in flat spacetime [14, 15]. The gauge symmetry corresponding to this first class

algebra is general covariance, and the constraints Hµ generate spacetime diffeomorphisms.

5See [12] for a pedagogical treatment of the general theory of constrained systems; see [13] for an in-depth

analysis of several interesting constrained systems, including electromagnetism and general relativity.
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The geometrical significance of the Dirac algebra was determined by Teitelboim in [16]:

it is the algebra of the deformations of a spacelike hypersurface embedded in a Lorentzian

spacetime manifold. When the Hµ’s satisfy (17), H0 generates deformations normal to the

surface, while the Hi’s generate deformations parallel to the surface. The Dirac algebra thus

encodes the local Lorentz covariance of a generally covariant system. In fact, four first class

constraints obeying the Dirac algebra are guaranteed to arise in any generally covariant field

theory which satisfies the principle of local Lorentz covariance.

For the constraints to be consistent with the equations of motion, the constraints must

be preserved by the equations of motion, i.e., Ḣµ ∼ 0. Since ∂Hµ/∂t = 0, applying the

equations of motion to Hµ yields

Ḣµ(x) =

∫

d3y Nν(y){Hµ(x),Hν(y)} . (18)

From the first class character of the constraints, it follows that Ḣµ ∼ 0, as desired.

The Hamiltonian formulation of GR is a theory of a spatial metric hij and its conjugate

momentum πij , so the theory contains twelve canonical (or six real) variables. However,

these variables are not independent. First, they are related by the four constraints Hµ ∼ 0.

Second, from equations (10) and (11) it follows that the equations of motion for hij and πij

depend on the four arbitrary functions Nµ; to gauge-fix Nµ would require imposing four

gauge-fixing constraints [12].

6 · hij
′s+ 6 · πij ′s− 4 · Hµ

′s− 4 ·Nµ ′s = 4 canonical DoF . (19)

The theory therefore has four canonical (or two real) degrees of freedom.

3 Spatially Covariant General Relativity

We would like to depart from general relativity by modifying the equations of motion for the

two graviton degrees of freedom. Ideally, we would like to solve all four gauge constraints,

go down to the physical phase space, and modify the theory at that level. In this way,

we would circumvent all the difficulties of consistently modifying a constrained field theory.

Unfortunately, we do not know how to do this.

One possible approach is to modify the equations of motion for the phase space variables

hij and πij . However, the counting of degrees of freedom in general relativity relies on the fact
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that the four constraints Hµ satisfy a consistent first class algebra, namely the Dirac algebra

of equation (17), and we know from the HKT theorem that any modification of the action for

hij and πij will destroy this algebra. If we modify the action for the phase space variables hij

and πij, we must impose an alternative constraint structure that consistently constrains the

phase space to the same degree as the covariance algebra; this is the approach taken in [15],

as well as in [49] and [51, 52]. Since we take the point of view that full spacetime covariance

is a spurious symmetry, we do not wish our theory to contain a constraint structure that

implies the same degree of redundancy as the Dirac algebra.

Though spacetime symmetry is manifestly broken on cosmological scales (whether

spontaneously or explicitly), there is strong evidence for spatial homogeneity and isotropy, so

we will attempt to modify general relativity while preserving the manifest spatial covariance

of the theory. To obtain a spatially covariant formulation of general relativity to modify, we

will solve the Hamiltonian constraint H0 while leaving the three momentum constraints Hi

intact. The Hamiltonian constraint is famously hard to solve in general, but we are inter-

ested in using our theories in a cosmological context, so we will solve it using a gauge-fixing

constraint which is well-defined on an expanding FRW background.

3.1 Metric Decomposition

Before gauge-fixing, we decompose the metric hij into a conformal factor Ω ≡ h1/3 and a

unit-determinant metric h̃ij , i.e.,

hij = Ωh̃ij . (20)

Note that Ω = (
√
h)2/3 is a three-scalar density of weight 2/3, while h̃ij is a three-tensor

density of weight −2/3. The scalar density we will work with is not the conformal factor Ω,

but the volume factor ω ≡
√
h = Ω3/2, which is a scalar density of unit weight. We choose

ω because its conjugate momentum,

πω ≡ δL

δω̇
=

2πi
i

3ω
= −4

3
K , (21)

is a three-scalar and hence invariant under spatial conformal transformations, which rescale

Ω or ω; this fact will simplify matters in sections 4 and 5. The momentum conjugate to h̃ij

is

π̃ij ≡ δL

δ ˙̃hij

= Ω

(

πij − 1

3
hijπk

k

)

= ωΩ

(

Kij − 1

3
Khij

)

, (22)
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which is a traceless three-tensor density of weight 5/3; the quantity

π̃ij
T ≡ π̃ij

ωΩ
(23)

is the corresponding traceless three-tensor. By defining the traceless projection tensor δ̃klij

δ̃klij ≡ δklij −
1

3
h̃ijh̃

kl ,

= δklij −
1

3
hijh

kl , (24)

we can write π̃ij more compactly as

π̃ij = Ωδ̃ijklπ
kl = Ωωδ̃ijklK

kl . (25)

The phase space variables hij and πij can thus be written as

hij = ω2/3h̃ij , πij = ω−2/3π̃ij +
1

2
h̃ijω1/3πω . (26)

The decomposition of the spatial metric into a volume factor and a unit-determinant met-

ric is completely general. Though the corresponding conjugate momenta were derived by

taking variational derivatives of the Einstein-Hilbert Lagrangian, the decomposition of the

momentum tensor into its trace part and its traceless part is likewise completely general.

Those familiar with the techniques of numerical relativity may be reminded of the York-

Lichnerowicz conformal decomposition or the BSSNOK (Baumgarte, Shapiro, Shibata, Naka-

mura, Oohara, and Kojima) formalism [54, 55].

3.2 Cosmological gauge

To solve the constraint H0, we must first gauge-fix the lapse N with a gauge-fixing constraint

χ for which {H0, χ} ≁ 0; this renders H0 second class, and hence solvable. This process

destroys manifest spacetime covariance. Since we wish to retain explicit spatial covariance,

we wish our constraints Hi to remain first class.

In a cosmological context, it is natural to use the volume factor of the spatial metric

as a clock, so that t = t(ω); we call this cosmological gauge. As mentioned in the intro-

duction, cosmological gauge is only valid when the determinant of the spatial metric evolves

monotonically, so this procedure is only valid when considering perturbative corrections to

11



FRW spacetime. When the evolution of ω is monotonic, t(ω) is an invertible function, so

this gauge is equivalent to taking the volume factor ω to be a function of time, i.e., ω = ω(t).

For cosmological purposes, another good gauge choice would be to take πω to be a

function of time. Since πω = −4K/3, this is equivalent to Constant Mean Curvature (CMC)

gauge, in which the trace of the extrinsic curvature tensor K = hijK
ij is chosen to be a

function of time. This gauge will not be used in the present work, but CMC gauge is used

in [15, 41] and mentioned in [54, 55].

To impose cosmological gauge, we add to the canonical action of general relativity a

gauge-fixing constraint

χ ≡ ω − ω(t) , (27)

along with a corresponding Lagrange multiplier λ. The new gauge-fixed action is

S ′ =

∫

dt d3x
(

πijḣij −NµHµ − λχ
)

. (28)

Varying the action with respect to λ then reproduces the constraint

χ ∼ 0 . (29)

By direct calculation — see appendix B for details — one can verify that

{H0(x), χ(y)} =
1

2
πi

i(x)δ
3(x− y) ; (30)

the constraints H0 and χ are thus second class, so we expect to be able to solve them. The

only wrinkle is that

{Hi(x), χ(y)} =
√

h(x)∂xiδ3(x− y) , (31)

so the constraints Hi are also second class! By shuffling our constraints slightly, we can

obtain a set of two second-class constraints and three first class constraints, and thereby

render explicit the spatial covariance of the gauge-fixed action. Indeed, since
{

2
√

h(x)∂xi

(H0(x)

πk
k(x)

)

, χ(y)

}

∼
√

h(x)∂xiδ3(x− y) , (32)

it follows that the combination

H̃i ≡ Hi − 2
√
h ∂i

(H0

πk
k

)

= Hi − 2
√
h∇i

(H0

πk
k

)

(33)
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obeys

{

H̃i(x), H̃j(y)
}

∼
{

H̃i(x),H0(y)
}

∼
{

H̃i(x), χ(y)
}

∼ 0 . (34)

The interpretation of this result is simple. The Hi’s generate spatial diffeomorphisms, while

H0 generates time translation. A generic spatial diffeomorphism will alter the conformal

factor of the spatial metric. If the conformal factor is taken to be the measure of time,

then the Hi’s, by altering the conformal factor, will generate time translation, while H0,

by generating time translation, will alter the conformal factor. The H̃i’s generate spatial

diffeomorphisms and preserve the conformal factor, so they must differ from the Hi’s by the

gradient of a compensating time translation term.

From the definition of H̃i, it is apparent that demanding χ ∼ 0 andHµ ∼ 0 is equivalent

to demanding χ ∼ 0, H0 ∼ 0, and H̃i ∼ 0. The latter set of constraints has the virtue that

the H̃i are first class, which makes manifest the presence of the remaining three gauge

symmetries. We therefore take our five constraints to be the two second class constraints

χ and H0 and the three first class constraints H̃i. Using Hi = H̃i + 2
√
h∇i

(

H0/π
k
k

)

, the

gauge-fixed action can be rewritten in terms of H̃i as

S ′ =

∫

dt d3x

(

πijḣij −N0H0 −N iH̃i − 2
√
hN i∇i

(H0

πk
k

)

− λχ

)

. (35)

Upon integration by parts, the action becomes

S ′ =

∫

dt d3x
(

πij ḣij − ÑH0 −N iH̃i − λχ
)

, (36)

where

Ñ ≡ N − 2

√
h

πk
k

∇iN
i . (37)

Variation of the action S ′ with respect to hij and πij yields Hamilton’s equations,

ḣij(x) =
δH ′

δπij(x)
, π̇ij(x) = − δH ′

δhij(x)
, (38)

where the new Hamiltonian H ′ is

H ′ =

∫

d3x
(

ÑH0 +N iH̃i + λχ
)

. (39)
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The equation of motion for any quantity A(hij , π
ij, t) is therefore

Ȧ =
∂A

∂t
+ {A,H ′}

=
∂A

∂t
+

∫

d3y
(

Ñ(y){A,H0(y)}+N i(y){A, H̃i(y)}+ λ(y){A, χ(y)}
)

, (40)

where the Poisson bracket is defined as in (14). Variation of the action S ′ with respect to

Ñ , λ, and N i yields the five constraints

H0 ∼ 0 , χ ∼ 0 , H̃i ∼ 0 . (41)

The action does not contain time derivatives of the Lagrange multipliers, so at first their

evolution appears unconstrained. Since the H̃i are first class, the three functions N i are

indeed arbitrary until and unless we gauge-fix them. The evolution of Ñ and λ, however,

will be determined by demanding the consistency of H0 and χ with the equations of motion.

For the constraints to be consistent with the equations of motion, they must be pre-

served by the equations of motion; we therefore demand that ˙̃Hi ∼ 0, Ḣ0 ∼ 0, and χ̇ ∼ 0.

Since the H̃i are first class and ∂tH̃i = 0, it follows at once that ˙̃Hi ∼ 0. Since ∂tH0 = 0,

{H0(x),H0(y)} ∼ 0, and {H0(x), H̃i(y)} ∼ 0, it follows that

Ḣ0(x) ∼
∫

d3y λ(y){H0(x), χ(y)}

∼ 1

2
λ(x)πi

i(x) . (42)

On a flat FRW background,6 K = 3ȧ/a and hence πi
i = −2ωK = −6ȧa2. Since we are only

considering gravity on an expanding background, we assume that πi
i(x) ≁ 0 more generally.

The demand Ḣ0 ∼ 0 thus implies

λ ∼ 0 . (43)

Since {χ(x), χ(y)} = 0, {χ(x), H̃i(y)} ∼ 0, and ∂χ/∂t = −ω̇(t), it follows that

χ̇(x) ∼ −ω̇(t) +

∫

d3y Ñ(y){χ(x),H0(y)},

∼ −ω̇(t)− 1

2
Ñ(x)πi

i(x) . (44)

6A spatially-flat FRW spacetime corresponds to N = 1, Ni = 0, and hij = a2(t)δij .
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Since πi
i ≁ 0, demanding χ̇ ∼ 0 allows us to solve for Ñ ,

Ñ ∼ −2ω̇(t)

πi
i

. (45)

The functions Ñ and λ are thus not arbitrary. Since N = Ñ +2
√
h(∇iN

i)/πk
k, the lapse N

has not been completely gauge-fixed, but its arbitrariness stems solely from its dependence

on the three arbitrary functions N i.

As a check, let us revisit the counting of degrees of freedom in cosmological gauge. For

these purposes, the only effect of gauge-fixing is to replace the first class constraint H0 ∼ 0

and the arbitrary function N with the second class constraints H0 ∼ 0 and χ ∼ 0. This

modifies the left hand side of equation (19), but does not change the final tally.

6 · hij
′s+ 6 · πij ′s− 1 · H0 − 1 · χ− 3 · H̃i

′s− 3 ·N i ′s = 4 canonical DoF . (46)

After gauge-fixing, the theory still has four canonical (or two real) degrees of freedom.

3.3 The Action of Spatially Covariant General Relativity

In this section, we will solve the constraints H0 and χ to obtain a spatially covariant for-

mulation of general relativity as a theory of a unit-determinant metric h̃ij and its conjugate

momentum π̃ij . This will set the stage for modifying general relativity in section 4.

Since χ and H0 are second class, they can be solved explicitly to yield expressions for

ω and πω in terms of t, h̃ij , π̃
ij, and spatial derivatives. “Solving” for ω is trivial: ω = ω(t).

Solving for πω requires us to take a square root and pick a sign, which amounts to picking

either an expanding or a contracting background. We pause to emphasize once again that

our procedure is only valid in a cosmological context, when the conformal factor of the spatial

metric can be assumed to be evolving monotonically. To pick the sign corresponding to an

expanding background, first recall that

πω = −4

3
K . (47)

On a flat FRW background, K = 3ȧ/a and hence πω = −4ȧ/a. An expanding FRW

background therefore corresponds to πω < 0. Returning to the general case, we choose

πω < 0 to obtain

πω = πGR ≡ −
√

8

3

√

π̃ij π̃ij

ω2
− R̃

ω2/3
+ 2Λ , (48)
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where indices are raised and lowered with h̃ij, and R̃ is the Ricci scalar for h̃ij . Substituting

these results for ω and πω back into the action S ′ yields the action of general relativity on

the reduced phase space (h̃ij , π̃
ij),

S ′′ =

∫

dt d3x
(

π̃ij ˙̃hij + πωω̇ −N iH̃i

)

, (49)

where

H̃i = −2h̃ij∇̃kπ̃
jk − ω∇̃iπω , (50)

and ∇̃i is the covariant derivative with respect to h̃ij .
7 As discussed in section 3.4, the

constraints H̃i remain first class and continue to represent spatial covariance, so (49) is the

action of spatially covariant general relativity. This action yields the new Hamiltonian

H ′′ =

∫

d3x
(

−ω̇πω +N iH̃i

)

. (51)

The term πijḣij has split into the term π̃ij ˙̃hij and a contribution −ω̇πω to the physical

Hamiltonian density. Variation of the action with respect to h̃ij and π̃ij yields Hamilton’s

equations,

˙̃
hij(x) =

δH ′′

δπ̃ij(x)
, δ̃ijab

˙̃πab(x) = − δH ′′

δh̃ij(x)
. (52)

To evaluate these variational derivatives, one must use the relations

δh̃ij(x)

δh̃kl(y)
= δ̃klij δ

3(x− y) ,
δπ̃ij(x)

δh̃kl(y)
= −1

3
h̃ij π̃klδ3(x− y) , (53)

and

δh̃ij(x)

δπ̃kl(y)
= 0 ,

δπ̃ij(x)

δπ̃kl(y)
= δ̃ijklδ

3(x− y) , (54)

from which follow the operator identities

δ

δh̃ij

= δ̃ijab
δ

δh̃ab

,
δ

δπ̃ij
= δ̃abij

δ

δπ̃ab
. (55)

Defining the Poisson bracket appropriate to the reduced phase space,

{A,B} ≡
∫

d3x

(

δA

δh̃ij(x)

δB

δπ̃ij(x)
− δA

δπ̃ij(x)

δB

δh̃ij(x)

)

, (56)

7The distinction between Hi and H̃i in equation (33) vanishes identically after solving H0.
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any quantity A(h̃ij , π̃
ij, t) obeys the equation of motion

Ȧ =
∂A

∂t
+ {A,H ′′} . (57)

Variation of the action with respect to N i yields the three constraints

H̃i ∼ 0 . (58)

As before, the time evolution of N i is unconstrained by the action; in the absence of a

gauge-fixing procedure, the three functions N i are arbitrary.

3.4 Constraint Properties & Degrees of Freedom

By lengthy direct calculation, it is possible to prove that the constraints H̃i are first class, i.e.,

{H̃i(x), H̃j(y)} ∼ 0. Furthermore, by applying the equations of motion to H̃i, it is possible

to show that ˙̃Hi ∼ 0, so the constraints are preserved by the equations of motion. We defer

demonstrations of these two facts to section 5, where we will examine general relativity in

the context of a class of realistic theories. This is an important consistency check, because

a priori it is not clear that our procedure for solving the Hamiltonian constraint will yield a

consistent action on the reduced phase space.

As a final check, we revisit the counting of degrees of freedom in spatially covariant

general relativity. After imposing cosmological gauge and solving the Hamiltonian constraint

H0 ∼ 0, general relativity is a theory of a unit-determinant spatial metric h̃ij and its traceless

conjugate momentum π̃ij , so the theory contains ten canonical (or 5 real) variables. This

reduction in the size of the phase space is compensated by a corresponding reduction in

the number of constraints and arbitrary functions: the theory contains three first class

constraints H̃i ∼ 0, and its equations of motion involve three arbitrary functions N i.

5 · h̃ij
′s+ 5 · π̃ij ′s− 3 · H̃i

′s− 3 ·N i ′s = 4 canonical DoF . (59)

Spatially covariant general relativity thus contains four canonical (or two real) degrees of

freedom, the same number as fully covariant general relativity.

3.5 Modifying Spatially Covariant General Relativity

We have two criteria in mind for our modified theories of gravity: two graviton degrees of

freedom, and manifest spatial covariance. Our starting point is the action (49) of spatially
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covariant general relativity, which has both of these properties. To modify general relativity,

we will change the functional form of the scalar quantity πω, which in general relativity obeys

πω = πGR. This yields the action

S =

∫

dt d3x
(

π̃ij ˙̃hij + ω̇πω −N iH̃i

)

, H̃i = −2h̃ij∇̃kπ̃
jk − ω∇̃iπω , (60)

where πω is an unspecified scalar function of t, the phase space variables h̃ij and π̃ij , and

spatial derivatives:

πω = πω(t, h̃ij , π̃
ij, ∂i) . (61)

This action leads to the equation of motion

Ȧ =
∂A

∂t
+ {A,H} , (62)

where the Hamiltonian H is

H =

∫

d3x
(

−ω̇πω +N iH̃i

)

, (63)

and the Poisson bracket is

{A,B} ≡
∫

d3x

(

δA

δh̃ij(x)

δB

δπ̃ij(x)
− δA

δπ̃ij(x)

δB

δh̃ij(x)

)

. (64)

Retaining the manifest spatial covariance of the theory amounts to demanding 1) that the

modified H̃i remain first class, i.e.,

{H̃i(x), H̃j(y)} ∼ 0 , (65)

and 2) that the modified constraints be preserved by the modified equations of motion, i.e.,

˙̃Hi ∼ 0 . (66)

Any theory satisfying these two points will be manifestly covariant under spatial diffeomor-

phisms, with the constraints H̃i acting as the generators of the gauge symmetry. Moreover,

the presence of three first class constraints H̃i on the phase space (h̃ij , π̃
ij) guarantees that

such a theory contains two local degrees of freedom, exactly as desired.

In the remainder of the paper, we examine two classes of theories. First, for pedagogical

purposes, we assume that πω does not contain spatial derivatives; this is the ultralocal case.
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Second, to make contact with general relativity, we allow πω to depend on spatial derivatives

through R̃, the Ricci scalar of h̃ij ; this is the local case. Forthcoming work will examine more

general classes of scalar momenta [20]. In section 4, we use the ultralocal case to introduce

the formalism needed to determine when the constraints H̃i remain first class and when the

constraints are preserved by the equations of motion. In section 5, we apply the formalism

to the local case. In both the ultralocal and the local case, the consistency of the constraints

with the equations of motion requires πω to satisfy an analogue of the renormalization group

equation; scalar momenta satisfying this equation are manifestly invariant under spatial

conformal rescaling of the volume factor ω. In the ultralocal case, this is the only consistency

condition that arises. In the local case, demanding that the constraints H̃i satisfy a first class

algebra is equivalent to demanding that πω obey a rather complicated differential equation.

4 Ultralocal Modified Gravity

The ultralocal limit of a theory is achieved by neglecting all terms in the action which are

second order or higher in spatial derivatives. Conceptually, this is the limit in which each

point in space evolves independently of the points around it. The ultralocal truncation of

a theory is a good approximation to the full theory whenever spatial gradients of fields are

small compared to the fields themselves and their time derivatives. This makes it is a natural

limit to take in cosmology.

In general relativity, the ultralocal limit simplifies the form of the Hamiltonian con-

straint while 1) preserving the momentum constraints and 2) maintaining a consistent con-

straint algebra [56]. This approximation has proven fruitful for analyzing both long wave-

length cosmological perturbations [57] and for studying physics near cosmological singulari-

ties [58, 59]. The idea of using cosmological gauge in the ultralocal limit, sometimes referred

to as the separate universe picture, is treated in [56].

In our approach, the ultralocal limit simplifies the form of the physical Hamiltonian

density πω while preserving the form of the momentum constraints H̃i. There are two terms

in the action (60) which contain πω, namely ω̇πω and ωN i∂iπω. Though πω appears in the

action without a spatial gradient acting on it, vector indices in our theory only arise from

spatial gradients, so πω cannot contain terms linear in spatial gradients. In the ultralocal

limit, πω is thus a scalar function of t, h̃ij , and π̃ij that does not contain spatial derivatives,

19



i.e.,

πω = πω(t, h̃ij , π̃
ij) . (67)

When πω is of this form, we will say that πω is an ultralocal function of the phase space

variables. We will now show that this form for πω leads to a first class constraint algebra.

4.1 Constraint Algebra

In this section, we will compute the Poisson bracket {H̃i(x), H̃a(y)} assuming that πω is an

ultralocal function, and use the result to determine when the constraints H̃i remain first

class. To simplify the calculation of {H̃i(x), H̃a(y)}, we split H̃i into a tensor part Ji and a

scalar part Ki. Concretely, we define the vector densities

Ji ≡ −2h̃ij∇̃kπ̃
jk , Ki ≡ −ω∇̃iπω , (68)

in terms of which H̃i becomes simply

H̃i = Ji +Ki . (69)

The Poisson bracket {H̃i(x), H̃a(y)} can then be written as the sum of more manageable

brackets,

{H̃i(x), H̃a(y)} = {Ji(x),Ja(y)}+ {Ki(x),Ka(y)}
+ {Ji(x),Ka(y)}+ {Ki(x),Ja(y)} . (70)

To simplify the evaluation of these component Poisson brackets, we will first compute the

Poisson brackets of the smoothing functionals

FJ ≡
∫

d3x f iJi , FK ≡
∫

d3x f iKi ,

GJ ≡
∫

d3y gaJa , GK ≡
∫

d3y gaKa , (71)

where the functions f i and gi are time-independent smoothing functions. We make the

key assumption that the smoothing functions decay so rapidly at infinity that when we

integrate by parts inside the smoothing functionals, the boundary term vanishes identically;

the smoothing functions are otherwise arbitrary. With the freedom to integrate by parts at
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will, it is straightforward to compute variational derivatives of the smoothing functionals, and

thereby to obtain explicit expressions for their Poisson brackets. To obtain the brackets of

the vector densities from the brackets of the smoothing functionals, we will use the relations

{FJ , GJ} =

∫

d3x d3y f i(x)ga(y){Ji(x),Ja(y)} ,

{FJ , GK}+ {FK , GJ} =

∫

d3x d3y f i(x)ga(y)

(

{Ji(x),Ka(y)}+ {Ki(x),Ja(y)}
)

,

{FK , GK} =

∫

d3x d3y f i(x)ga(y){Ki(x),Ka(y)} . (72)

The fact that equation (72) must hold for all sufficiently well-behaved functions f and g will

allow us to derive explicit expressions for the Poisson brackets involving Ji and Ki.

To compute variational derivatives of the smoothing functional FJ , first integrate by

parts to obtain

FJ = 2

∫

d3x h̃ij π̃
jk∇̃kf

i , (73)

from which it follows that

δFJ =

∫

d3x
{

2π̃jk(∇̃kf
i)δh̃ij + 2h̃ij(∇̃kf

i)δπ̃jk + 2h̃ijπ̃
jkδ∇̃kf

i
}

. (74)

The first two terms in this integral are in a convenient form for taking variational derivatives

with respect to h̃ij and π̃jk, but the third term requires finessing. To evaluate δ∇̃kf
i, expand

the covariant derivative as ∇̃kf
i = ∂kf

i + Γ̃i
krf

r, where Γ̃i
jk is the connection of the metric

h̃ij . It follows immediately that δ∇̃kf
i = f rδΓ̃i

kr. The identity

δΓ̃i
kr =

1

2
h̃im

(

∇rδh̃km +∇kδh̃rm −∇mδh̃rk

)

(75)

thus implies that 2π̃jkh̃ijδ∇̃kf
i = f iπ̃jk∇̃iδh̃jk, so equation (74) becomes

δFJ =

∫

d3x
{

2π̃jk(∇̃kf
i)δh̃ij + 2h̃ij(∇̃kf

i)δπ̃jk + f iπ̃jk∇̃iδh̃jk

}

. (76)

Integrating by parts, this reduces to

δFJ =

∫

d3x
{

2π̃jk(∇̃kf
i)δh̃ij − ∇̃i(f

iπ̃jk)δh̃jk + 2h̃ij(∇̃kf
i)δπ̃jk

}

. (77)

From this expression, it is straightforward to compute variational derivatives of FJ ,

δFJ

δh̃mn

= 2 δ̃mn
ij π̃jk∇̃kf

i − ∇̃i

(

f iπ̃mn
)

− 2

3
π̃mn∇̃if

i ,

δFJ

δπ̃mn
= 2 δ̃jkmn h̃ij∇̃kf

i . (78)
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The corresponding results for GJ are

δGJ

δh̃mn

= 2 δ̃mn
ab π̃bc∇̃cg

a − ∇̃a (g
aπ̃mn)− 2

3
π̃mn∇̃ag

a ,

δGJ

δπ̃mn
= 2 δ̃bcmn h̃ab∇̃cg

a . (79)

The variational calculation for the smoothing functional FK is less straightforward.

After integrating by parts, FK becomes

FK = ω

∫

d3x
(

∂if
i
)

πω , (80)

from which it follows that

δFK = ω

∫

d3x
(

∂if
i
)

δπω . (81)

To evaluate δπω in full generality would be very difficult, so we will make some simplifying

assumptions about the form of πω. In this section, we will assume that πω is an ultralocal

function of t, h̃ij , and π̃ij.

To facilitate calculations, we will enumerate all the scalars that can be built by con-

tracting factors of h̃ij against factors of π̃ij . We begin by recursively defining Πij(n), the

linked chain of n factors of π̃ij . The chain of zero factors of π̃ij is simply

Πij(0) ≡ h̃ij . (82)

The process of adding a link to the chain is defined by

Πij(n+ 1) ≡ π̃i
kΠ

kj(n) . (83)

By closing the chain, one obtains scalars,

φ(n) ≡ Πi
i(n) . (84)

The φ(n) are the only scalars that can be built out of connected contractions of h̃ij and π̃ij .

For an arbitrary ultralocal function πω, it follows that

δπω =
∞
∑

n=2

∂πω

∂φ(n)
δφ(n) . (85)
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Since φ(0) = 3 and φ(1) = 0, δφ(0) = δφ(1) = 0. For n ≥ 2, the variational derivatives of

the φ(n) are

δφ(n)(x)

δh̃mn(y)
=

(

δ̃mn
ab nΠ(n)ab − 1

3
π̃mnnφ(n− 1)

)

δ3(x− y) ,

δφ(n)(x)

δπ̃mn(y)
= δ̃abmnnΠ(n− 1)abδ

3(x− y) . (86)

The variational derivatives of FK are thus

δFK

δh̃mn

= ω
(

∂if
i
)

∞
∑

n=2

n
∂πω

∂φ(n)

(

δ̃mn
jk Π(n)jk − 1

3
π̃mnφ(n− 1)

)

,

δFK

δπ̃mn
= ω

(

∂if
i
)

∞
∑

n=2

n
∂πω

∂φ(n)
δ̃jkmnΠ(n− 1)jk . (87)

Similarly, the variational derivatives of GK are

δGK

δh̃mn

= ω (∂ag
a)

∞
∑

m=2

m
∂πω

∂φ(m)

(

δ̃mn
bc Π(m)bc − 1

3
π̃mnφ(m− 1)

)

,

δGK

δπ̃mn
= ω (∂ag

a)
∞
∑

m=2

m
∂πω

∂φ(m)
δ̃bcmnΠ(m− 1)bc . (88)

We emphasize that these results for FK and GK rely on the ultralocality assumption, and

will be modified in section 5.

We are now in a position to compute the Poisson brackets of the smoothing functionals,

from which we will extract the Poisson brackets of the vector densities Ji and Ki.

• {Ji(x),Ja(y)}

To obtain the bracket {Ji(x),Ja(y)}, we first compute {FJ , GJ}. Combining the FJ

and GJ variations into the bracket {FJ , GJ} yields

{FJ , GJ} = 2

∫

d3z
{(

∇̃cf
i
)(

∇̃ig
a
)

h̃abπ̃
bc −

(

∇̃kg
a
)(

∇̃af
i
)

h̃ijπ̃
jk

+
(

∇̃kf
i
)

∇̃a

(

gah̃ij π̃
jk
)

−
(

∇̃cg
a
)

∇̃i

(

f ih̃abπ̃
bc
)}

. (89)

After integrating by parts, using the definition Ji = −2h̃ij∇̃kπ̃
jk, and using the identity

(

∇̃i∇̃j − ∇̃j∇̃i

)

V a = R̃a
bijV

b, this reduces to

{FJ , GJ} =

∫

d3z
{

f iJa∇̃ig
a − gaJi∇̃af

i + 2f igaπ̃jk
(

R̃jika + R̃jaik

)}

. (90)
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From the symmetries of the Riemann tensor8 and the traceless momentum tensor9, it

follows that 0 = π̃jk
(

R̃jika + R̃jaik

)

, so the last term in the integrand vanishes. The

connection terms inside the remaining covariant derivatives cancel to yield

{FJ , GJ} =

∫

d3z
(

f iJa∂ig
a − gaJi∂af

i
)

. (91)

To extract the bracket {Ji(x),Ja(y)} from this result, first relabel dummy indices

{FJ , GJ} =

∫

d3x f iJa∂ig
a −

∫

d3y gaJi∂af
i . (92)

Under the spatial derivatives in this equation, insert the identities

ga(x) =

∫

d3y δ3(x− y)ga(y) , f i(y) =

∫

d3x δ3(x− y)f i(x) , (93)

to obtain

{FJ , GJ} =

∫

d3x d3y f i(x)ga(y)
(

Ja(x)∂xiδ3(x− y)−Ji(y)∂yaδ
3(x− y)

)

. (94)

Comparing this expression to equation (72) yields the identity

{Ji(x),Ja(y)} = Ja(x)∂xiδ3(x− y)−Ji(y)∂yaδ
3(x− y) . (95)

This is the same algebra obeyed by the Hi in equation (17). This result is completely

independent of our choice of πω, and will carry over unchanged into section 5.

• {Ji(x),Ka(y)}+ {Ki(x),Ja(y)}

To obtain {Ji(x),Ka(y)} + {Ki(x),Ja(y)}, we first compute {FJ , GK} + {FK , GJ}.
Assembling the FJ and GK variations into the Poisson bracket {FJ , GK} yields

{FJ , GK} = −ω

∫

d3z (∂ag
a)

∞
∑

m=2

∂πω

∂φ(m)
mΠ(m− 1)bc∇̃i

(

f iπ̃bc
)

. (96)

By expanding the covariant derivative, simplifying the ensuing total derivative of πω,

and recalling that Ki = −ω∇̃iπω, this expression reduces to

{FJ , GK} =

∫

d3z f iKi∂ag
a − ω

∫

d3z
(

∂if
i
)

(∂ag
a)

∞
∑

m=2

∂πω

∂φ(m)
mφ(m) . (97)

8R̃abcd = R̃cdab, R̃abcd = −R̃bacd = −R̃abdc.
9π̃ij = π̃ji.
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Similarly,

{FK , GJ} = −
∫

d3z gaKa∂if
i + ω

∫

d3z
(

∂if
i
)

(∂ag
a)

∞
∑

m=2

∂πω

∂φ(m)
mφ(m) , (98)

so the sum of the two brackets simplifies considerably,

{FJ , GK}+ {FK , GJ} =

∫

d3z
(

f iKi∂ag
a − gaKa∂if

i
)

. (99)

Integrating by parts and invoking the identity ∂iKa = ∂aKi yields

{FJ , GK}+ {FK , GJ} =

∫

d3z
(

f iKa∂ig
a − gaKi∂af

i
)

. (100)

To extract the quantity {Ji(x),Ka(y)} + {Ki(x),Ja(y)}, relabel dummy indices and

insert the identities in equation (93) to obtain

{FJ , GK}+ {FK , GJ} =

∫

d3x d3y f i(x)ga(y)

×
(

Ka(x)∂xiδ3(x− y)−Ki(y)∂yaδ
3(x− y)

)

. (101)

Combined with equation (72), this result implies that

{Ji(x),Ka(y)}+ {Ki(x),Ja(y)} = Ka(x)∂xiδ3(x− y)−Ki(y)∂yaδ
3(x− y) . (102)

This expression depends strongly on the assumed form for πω. This result is modified

heavily in section 5.1, when πω is allowed to depend on R̃.

• {Ki(x),Ka(y)}

To obtain {Ki(x),Ka(y)}, we first compute the bracket {FK , GK}. Substituting the

FK and GK variations into the Poisson bracket {FK , GK} yields

{FK , GK} = ω2
(

∂if
i
)

(∂ag
a)

∞
∑

m=2

∞
∑

n=2

mn
∂πω

∂φ(m)

∂πω

∂φ(n)

×
(

Π(n)bcΠ(m− 1)bc −Π(m)jkΠ(n− 1)jk
)

. (103)

From the definition of the momentum chain Π(n)ij, it follows that Π(n)bcΠ(m−1)bc =

Π(m)jkΠ(n− 1)jk = φ(n+m− 1). The terms of the sum thus vanish order by order,

so the bracket reduces to

{FK , GK} = 0 . (104)
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By comparing this result to equation (72), it is apparent that

{Ki(x),Ka(y)} = 0 . (105)

When πω is an ultralocal function of the phase space variables, the Poisson bracket

{Ki(x),Ka(y)} vanishes identically. This will not be the case when πω depends non-

trivially on R̃, as in section 5.1.

By substituting equations (95), (102), and (105) into equation (70), and recalling that H̃i =

Ji +Ki, we obtain

{H̃i(x), H̃j(y)} = H̃j(x)∂xiδ3(x− y)− H̃i(y)∂yjδ
3(x− y) . (106)

This is the same algebra obeyed by the Hi in equation (17), and by the Ji in equation (95).

Since H̃i ∼ 0, this result implies that {H̃i(x), H̃j(y)} ∼ 0, so the constraints H̃i are first

class. To establish this result, we assumed only that πω was an arbitrary ultralocal function

of t, h̃ij , and π̃ij; we showed that this was equivalent to making πω a function of t and the

scalars φ(n) defined in equation (84). Evidently, πω can be made any ultralocal function of

the phase space variables and the momentum constraints will remain first class.

4.2 Consistency of Constraints with Equations of Motion

In this section, we will compute the time derivative ˙̃Hi assuming that πω is an ultralocal

function, and use the result to determine when the constraints H̃i are preserved by the

equations of motion. The time evolution of H̃i is determined by the equation of motion

˙̃Hi =
∂H̃i

∂t
+ {H̃i, H} , (107)

where

H =

∫

d3x
(

−ω̇πω +N iH̃i

)

. (108)

Since H̃i = Ji + Ki and ∂Ji/∂t = 0, it follows that ∂H̃i/∂t = ∂Ki/∂t. Recalling that

Ki = −ω∂iπω, the first term in equation (107) becomes

∂H̃i

∂t
= −∂i

(

ω̇πω + ω
∂πω

∂t

)

. (109)
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To simplify the bracket {H̃i, H}, we define

Πω ≡
∫

d3x πω , (110)

so that H can be written as

H = −ω̇Πω +

∫

d3xN iH̃i . (111)

From the first class character of the constraints H̃i, it follows that {H̃i, H} ∼ −ω̇{H̃i,Πω}.
Since H̃i = Ji +Ki, the second term in equation (107) becomes

{H̃i, H} ∼ −ω̇{Ji,Πω} − ω̇{Ki,Πω} . (112)

To compute the brackets {Ji,Πω} and {Ki,Πω}, we first compute the smoothing functional

brackets

{FJ ,Πω} =

∫

d3x f i(x){Ji(x),Πω}

{FK ,Πω} =

∫

d3x f i(x){Ki(x),Πω} . (113)

We have already done all the work needed to evaluate these two brackets: since Πω can be

obtained from GK by the substitution ∂ag
a → ω−1, brackets involving Πω can be obtained

by applying this substitution to brackets involving GK .

• {Ji,Πω}

To compute the bracket {Ji,Πω}, we first compute the bracket {FJ ,Πω}. Applying

∂ag
a → ω−1 to equation (97) and integrating by parts yields

{FJ ,Πω} =

∫

d3x f i∂i

(

−πω +

∞
∑

m=2

mφ(m)
∂πω

∂φ(m)

)

. (114)

It follows by comparing this result with equation (113) that

{Ji,Πω} = ∂i

(

−πω +

∞
∑

m=2

mφ(m)
∂πω

∂φ(m)

)

. (115)

• {Ki,Πω}
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To compute the bracket {Ki,Πω}, we first compute the bracket {FK ,Πω}. By applying

the transformation ∂ag
a → ω−1, equation (104) becomes

{FK ,Πω} = 0 . (116)

Along with equation (113), this implies that

{Ki,Πω} = 0 . (117)

By substituting equations (115) and (117) into equation (112), we obtain

{H̃i, H} ∼ ω̇∂i

(

πω −
∞
∑

m=2

mφ(m)
∂πω

∂φ(m)

)

. (118)

Upon inserting equations (118) and (109) into the equation of motion (107), the ω̇∂iπω terms

cancel to yield

˙̃Hi ∼ −∂i

(

ω
∂πω

∂t
+ ω̇

∞
∑

m=2

mφ(m)
∂πω

∂φ(m)

)

. (119)

Demanding ˙̃Hi ∼ 0 implies the consistency condition

ω
∂πω

∂t
+ ω̇

∞
∑

m=2

mφ(m)
∂πω

∂φ(m)
∼ f(t) , (120)

where f(t) is an arbitrary function of time. We observe that the equation of motion (62) is

invariant under πω → πω + g(t), where g(t) is an arbitrary function of time, so we are free

to apply this transformation to simplify our consistency condition. If we choose g(t) so that

ωg′(t) = f(t), the consistency condition becomes

ω
∂πω

∂t
+ ω̇

∞
∑

m=2

mφ(m)
∂πω

∂φ(m)
∼ 0 . (121)

By assumption, ω(t) is an invertible function of time, so ∂/∂t = ω̇ ∂/∂ω. Our consistency

condition can thus be written as

∆πω ∼ 0 , (122)

where we have defined the operator

∆ ≡ ω
∂

∂ω
+

∞
∑

m=2

mφ(m)
∂

∂φ(m)
. (123)
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To rule out the possibility of a πω which satisfies ∆πω ∼ 0 while ∆πω 6= 0, we note that

the constraints H̃i contain one power of spatial derivatives, while by assumption the scalar

momentum πω is ultralocal. To satisfy ∆πω ∼ 0, the quantity ∆πω would need to depend on

the constraints H̃i, and would thus need to contain at least one power of spatial derivatives.

However, applying ∆ to πω does not increase the number of spatial derivatives. It follows that

∆πω cannot contain any spatial derivatives, and thus cannot depend on H̃i. The consistency

condition can therefore be promoted to

∆πω = 0 . (124)

To obtain the most general solution to this equation, we first note that ∆ (ω−nφ(n)) = 0,

which motivates us to define

φ̄(n) ≡ φ(n)

ωn(t)
. (125)

The most general solution to the condition ∆πω = 0 is an arbitrary function of the φ̄(n).

The explicit time dependence of πω is thus determined by its dependence on the phase space

variables.

To understand this result, we return briefly to the phase space (hij, π
ij). To construct

three-scalars out of the tensor hij and the traceless tensor π̃ij
T , we begin by recursively

defining Πij
T (n), a chain of n factors of π̃ij

T linked together by factors of hij. In analogy with

our construction of the φ(n) of equation (84), we define

Πij
T (0) ≡ hij = Ω−1Πij(0) , (126)

and

Πij
T (n+ 1) ≡ π̃ia

T habΠ
bj(n) = ω−1π̃iafabΠ

bj(n) , (127)

from which it follows that Πij
T (n) = Ω−1ω−nΠij(n). The contraction hijΠ

ij
T (n) yields the

desired scalars,

φT (n) ≡ hijΠ
ij
T (n) =

φ(n)

ωn
. (128)

The φT (n) are the only scalars that can be built out of fully connected contractions of hij

and π̃ij
T . In the presence of the constraint ω ∼ ω(t), it follows that

φT (n) ∼ φ̄(n) . (129)
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In other words, the φ̄(n) are the scalars on the phase space (h̃ij, π̃
ij) which have the correct

conformal weight to have been derived from three-scalars on the phase space (hij , π
ij). It

follows that the φ̄(n) are invariant under spatial conformal transformations which rescale the

volume factor ω, and the condition ∆πω = 0 is thus analogous to a renormalization group

equation.

4.3 Summary

In this section, we developed a formalism for testing when our modified theories of gravity

lead to a consistent first class constraint algebra, and hence contain two degrees of freedom.

To develop the formalism, we made the simplifying assumption that the scalar momentum

πω is an ultralocal function of time t and the phase space variables h̃ij and π̃ij . This as-

sumption is sufficient to guarantee that the constraints H̃i remain first class. However, for

the constraints to be consistent with the equations of motion, πω must be invariant under

renormalization of the volume factor ω. Concretely, πω must obey the renormalization group

equation

∆πω = 0 , (130)

where

∆ ≡ ω
∂

∂ω
+

∞
∑

m=2

mφ(m)
∂

∂φ(m)
. (131)

Satisfying this equation completely fixes the dependence of πω on ω(t). In the next section,

we will generalize our results to a realistic class of scalar momenta.

5 Local Modified Gravity

The ultralocal ansatz has the virtue of simplifying calculations, but the laws of nature are

local, not ultralocal. In this section, we will apply the formalism developed in the last section

to theories in which πω depends on spatial derivatives of the metric h̃ij through a dependence

on the Ricci scalar R̃. Since the πGR of spatially covariant general relativity belongs to this

class (see equation 48), this is a realistic class of theories. As we will demonstrate, such πω

must obey stringent consistency conditions in order for the H̃i to generate a consistent first

class constraint algebra.
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5.1 Constraint Algebra

In this section, we will compute {Hi(x),Ha(y)} assuming that πω is a function of t, the phase

space variables h̃ij and π̃ij, and the Ricci scalar R̃. We will then use the result to determine

when the constraints H̃i remain first class.

As before, we decompose H̃i into a tensor part Ji ≡ −2h̃ij∇̃kπ̃
jk and a scalar part

Ki ≡ −ω∇̃iπω. Computing {Hi(x),Ha(y)} is then a matter of computing the four brackets

in equation (70). The result for {Ji(x),Ja(y)} carries over unchanged from equation (95), but

we will have to revisit the brackets involving Ki. To do so, we will first evaluate the smoothing

functional brackets {FJ , GK}+ {FK , GJ} and {FK , GK}. By comparing the ensuing explicit

expressions to the formal expressions in equation (72), we will derive explicit expressions for

the Poisson brackets involving Ki.

Our analysis of the variational derivatives of the smoothing functional FK defined in

equation (71) proceeds exactly as in the ultralocal case up to equation (81), where the

quantity δπω arises. In this section, we assume that πω is a function of t, h̃ij , π̃
ij , and R̃. To

simplify calculations, note that this is equivalent to making πω a function of t, R̃, and the

φ(n) defined in equation (84). It follows from this assumption that

δπω =

∞
∑

n=2

∂πω

∂φ(n)
δφ(n) +

∂πω

∂R̃
δR̃ . (132)

Substituting this result into equation (81), using the identity δR̃ = −R̃jkδh̃jk + ∇̃k∇̃jδh̃jk,

and integrating by parts yields

δFK = ω

∫

d3x
(

∂if
i
)

(

∞
∑

n=2

∂πω

∂φ(n)
δφ(n)− ∂πω

∂R̃
R̃jkδh̃jk

)

+ω

∫

d3x ∇̃j∇̃k

(

(

∂if
i
) ∂πω

∂R̃

)

δh̃jk . (133)

Using equation (86), it is now straightforward to compute the variational derivatives of FK ,

δFK

δh̃mn

= ω
(

∂if
i
)

∞
∑

n=2

n
∂πω

∂φ(n)

(

δ̃mn
jk Π(n)jk − 1

3
π̃mnφ(n− 1)

)

−ω
(

∂if
i
) ∂πω

∂R̃
δ̃mn
jk R̃jk + ωδ̃mn

jk ∇̃j∇̃k

(

(

∂if
i
) ∂πω

∂R̃

)

,

δFK

δπ̃mn
= ω

(

∂if
i
)

∞
∑

n=2

n
∂πω

∂φ(n)
δ̃jkmnΠ(n− 1)jk . (134)
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The corresponding results for GK are

δGK

δh̃mn

= ω (∂ag
a)

∞
∑

m=2

m
∂πω

∂φ(m)

(

δ̃mn
bc Π(m)bc − 1

3
π̃mnφ(m− 1)

)

−ω (∂ag
a)

∂πω

∂R̃
δ̃mn
bc R̃bc + ωδ̃mn

bc ∇̃b∇̃c

(

(∂ag
a)

∂πω

∂R̃

)

,

δGK

δπ̃mn
= ω (∂ag

a)

∞
∑

m=2

m
∂πω

∂φ(m)
δ̃bcmnΠ(m− 1)bc . (135)

We are now in a position to compute the brackets involving Ki.

• {Ji(x),Ka(y)}+ {Ki(x),Ja(y)}
To compute {Ji(x),Ka(y)} + {Ki(x),Ja(y)}, we first compute {FJ , GK} + {FK , GJ}.
We begin by substituting equations (78) and (135) into the bracket {FJ , GK}. After

expanding and simplifying a total derivatives of φ(n), {FJ , GK} turns into

{FJ , GK} = −ω

∫

d3z f i (∂ag
a)

∞
∑

m=2

∂πω

∂φ(m)
∇̃iφ(m) + 2ω

∫

d3z (∂ag
a)

∂πω

∂R̃
R̃ k

i ∇̃kf
i

−2ω

∫

d3z
(

∇̃kf
i
)

∇̃i∇̃k

(

(∂ag
a)

∂πω

∂R̃

)

+
2

3
ω

∫

d3z
(

∂if
i
)

∇̃c∇̃c

(

(∂ag
a)

∂πω

∂R̃

)

−ω

∫

d3z
(

∂if
i
)

(∂ag
a)

(

2

3
R̃
∂πω

∂R̃
+

∞
∑

m=2

mφ(m)
∂πω

∂φ(m)

)

. (136)

To finesse this expression, integrate by parts, use the identities ∇̃i∇̃jV
i = ∇̃j∇̃iV

i +

R̃ijV
i and 2∇̃jR̃

j
i = ∇̃iR̃, simplify a total derivative of πω, use the identity Ki =

−ω∇̃iπω, and expand to obtain

{FJ , GK} =

∫

d3z f iKi∂ag
a +

4

3
ω

∫

d3z ∇̃k

(

∂if
i
)

∇̃k

(

(∂ag
a)

∂πω

∂R̃

)

−ω

∫

d3z
(

∂if
i
)

(∂ag
a)

(

2

3
R̃
∂πω

∂R̃
+

∞
∑

m=2

mφ(m)
∂πω

∂φ(m)

)

. (137)

Similarly,

{FK , GJ} = −
∫

d3z gaKa∂if
i − 4

3
ω

∫

d3z ∇̃k (∂ag
a) ∇̃k

(

(

∂if
i
) ∂πω

∂R̃

)

+ω

∫

d3z
(

∂if
i
)

(∂ag
a)

(

2

3
R̃
∂πω

∂R̃
+

∞
∑

m=2

mφ(m)
∂πω

∂φ(m)

)

, (138)
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so the sum of the two brackets reduces to

{FJ , GK}+ {FK , GJ} =

∫

d3z f iKi∂ag
a −

∫

d3z gaKa∂if
i

+
4

3
ω

∫

d3z ∇̃k

(

∂if
i
)

∇̃k

(

(∂ag
a)

∂πω

∂R̃

)

−4

3
ω

∫

d3z ∇̃k (∂ag
a) ∇̃k

(

(

∂if
i
) ∂πω

∂R̃

)

. (139)

After integrating by parts, expanding, and using the identity ∂iKa = ∂aKi, this becomes

{FJ , GK}+ {FK , GJ} =

∫

d3z f iKa∂ig
a−
∫

d3z gaKi∂af
i

+

∫

d3z
(

∂if
i
)

(∂k∂ag
a)Mk−

∫

d3z (∂ag
a)
(

∂k∂if
i
)

Mk , (140)

where

Mk ≡ −4

3
ω∇̃k

∂πω

∂R̃
. (141)

To extract the bracket {Ji(x),Ka(y)} + {Ki(x),Ja(y)}, integrate by parts, relabel

dummy indices, and insert the identities in equation (93) to yield

{FJ , GK}+ {FK , GJ} =

∫

d3x d3y f i(x)ga(y)
(

Ka(x)∂xiδ3(x− y)−Ki(y)∂yaδ
3(x− y)

)

+

∫

d3x d3y f i(x)ga(y)∂xi

(

−Mk(x)∂xk∂xaδ3(x− y)
)

−
∫

d3x d3y f i(x)ga(y)∂ya
(

−Mk(y)∂yk∂yiδ
3(x− y)

)

. (142)

By comparing this expression to equation (72), it is clear that

{Ji(x),Ka(y)}+ {Ki(x),Ja(y)} =Ka(x)∂xiδ3(x− y)−Ki(y)∂yaδ
3(x− y)

+∂xi

(

−Mk(x)∂xk∂xaδ3(x− y)
)

−∂ya
(

−Mk(y)∂yk∂yiδ
3(x− y)

)

. (143)

• {Ki(x),Ka(y)}
To compute {Ki(x),Ka(y)}, we first compute the bracket {FK , GK}. Substituting

equations (134) and (135) into the bracket {FK , GK} yields

{FK , GK} = ω2

∫

d3z (∂ag
a)

∂πω

∂π̃jk
∇̃j∇̃k

(

(

∂if
i
) ∂πω

∂R̃

)

−ω2

∫

d3z
(

∂if
i
) ∂πω

∂π̃jk
∇̃j∇̃k

(

(∂ag
a)

∂πω

∂R̃

)

, (144)
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where

∂πω

∂π̃jk
= δ̃bcjk

∞
∑

n=2

n
∂πω

∂φ(n)
Π(n− 1)bc . (145)

After integrating by parts and expanding, the bracket becomes

{FK , GK} =

∫

d3z
(

∂if
i
)

(∂k∂ag
a)N k −

∫

d3z (∂ag
a)
(

∂k∂if
i
)

N k, (146)

where

Nk ≡ ω2∂πω

∂R̃
∇̃j ∂πω

∂π̃jk
− ω2 ∂πω

∂π̃jk
∇̃j ∂πω

∂R̃
. (147)

To extract the bracket {Ki(x),Ka(y)}, integrate by parts, relabel dummy indices, and

insert the identities in equation (93) to obtain

{FK , GK} =

∫

d3x d3y f i(x)ga(y)∂xi

(

−N k(x)∂xk∂xaδ3(x− y)
)

−
∫

d3x d3y f i(x)ga(y)∂ya
(

−N k(y)∂yk∂yiδ
3(x− y)

)

. (148)

Comparing this expression to equation (72), it follows that

{Ki(x),Ka(y)} =∂xi

(

−N k(x)∂xk∂xaδ3(x− y)
)

−∂ya
(

−N k(y)∂yk∂yiδ
3(x− y)

)

. (149)

By substituting equations (95), (143), and (149) into equation (70), and recalling that H̃i =

Ji +Ki, we obtain the identity

{H̃i(x), H̃j(y)} =H̃j(x)∂xiδ3(x− y)− H̃i(y)∂yjδ
3(x− y)

+∂xi

(

−Ik(x)∂xk∂xjδ3(x− y)
)

− ∂yj
(

−Ik(y)∂yk∂yiδ
3(x− y)

)

, (150)

where Ik ≡ Mk +Nk, or

Ik = ω2∂πω

∂R̃
∇̃j ∂πω

∂π̃jk
− ω2 ∂πω

∂π̃jk
∇̃j ∂πω

∂R̃
− 4

3
ω∇̃k

∂πω

∂R̃
. (151)

Expanding the derivatives in this expression and using the fact that H̃i ∼ 0 yields

{H̃i(x), H̃j(y)} ∼ −
(

Ik(x) + Ik(y)
)

∂xi∂xj∂xkδ3(x− y)

−
(

∂xiIk(x)
)

∂xj∂xkδ3(x− y)

+
(

∂yjIk(y)
)

∂yi∂ykδ
3(x− y) . (152)
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The three terms of this equation are algebraically independent, so the necessary and sufficient

condition for the Poisson bracket {H̃i(x), H̃j(y)} to vanish is

Ik ∼ 0 . (153)

In the ultralocal case the constraints were automatically first class, but to generate a first

class constraint algebra in the local case, the scalar momentum πω must obey the fearsome

looking differential equation Ik ∼ 0.

As a check, we will now compute the Ik arising from the πGR of spatially covariant

general relativity. Recall from equation (48) that

πGR = −
√

8

3

√

ω−2φ(2)− ω−2/3R̃ + 2Λ . (154)

Since πGR is a function only of φ(2) and R̃, its partial derivative with respect to π̃ij simplifies,

∂πGR

∂π̃jk
= 2

∂πGR

∂φ(2)
π̃jk . (155)

After substituting this relation into the definition of Ik and recalling that Ji = −2h̃ij∇̃kπ̃
jk,

Ik becomes

Ik(πGR) =− 4

3
ω∇̃k

∂πGR

∂R̃
− ω2∂πGR

∂R̃

∂πGR

∂φ(2)
Jk

+ 2ω2π̃jk

(

∂πGR

∂R̃
∇̃j ∂πGR

∂φ(2)
− ∂πGR

∂φ(2)
∇̃j ∂πGR

∂R̃

)

. (156)

Upon substituting the derivatives

∂πGR

∂φ(2)
=

4

3ω2

1

πGR
,

∂πGR

∂R̃
= − 4

3ω2/3

1

πGR
, (157)

into Ik(πGR), the term in parentheses vanishes. By using the relations Ki = −ω∇̃iπω and

Hi = Ji +Ki, we obtain

Ik(πGR) =
16

9ω2/3π2
GR

Hk . (158)

Since H̃i ∼ 0, the scalar momentum πGR satisfies Ik ∼ 0. The constraints H̃i of spatially

covariant general relativity thus generate a first class constraint algebra.
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5.2 Consistency of Constraints with Equations of Motion

In this section, we will compute the time derivative ˙̃Hi for local πω assuming that the

constraints H̃i are first class, and use the result to determine when the constraints H̃i are

also preserved by the equations of motion. The analysis of ˙̃Hi proceeds exactly as in the

ultralocal case until we arrive at the expression

˙̃Hi = −∂i

(

ω̇πω + ω
∂πω

∂t

)

− ω̇{Ji,Πω} − ω̇{Ki,Πω} , (159)

where as before

Πω ≡
∫

d3x πω . (160)

The point of departure from the ultralocal case is the evaluation of the two Poisson brack-

ets {Ji,Πω} and {Ki,Πω}. To compute them, we first compute the smoothing functional

brackets{FJ ,Πω} and {FK ,Πω}. As in the ultralocal case, we will obtain brackets involving

Πω by applying the substitution ∂ag
a → ω−1 to brackets involving GK .

• {Ji,Πω}

To obtain the bracket {Ji,Πω}, we first compute the bracket {FJ ,Πω}. Applying

∂ag
a → ω−1 to equation (137) and integrating by parts yields

{FJ ,Πω} =

∫

d3x f i∂i

(

−πω +
2

3
R̃
∂πω

∂R̃
+

∞
∑

m=2

mφ(m)
∂πω

∂φ(m)
− ω−1∇̃kMk

)

, (161)

where as before

Mk = −4

3
ω∇̃k

∂πω

∂R̃
. (162)

It follows from an application of equation (113) that

{Ji,Πω} = ∂i

(

−πω +
2

3
R̃
∂πω

∂R̃
+

∞
∑

m=2

mφ(m)
∂πω

∂φ(m)
− ω−1∇̃kMk

)

. (163)

• {Ki,Πω}

To compute the bracket {Ki,Πω}, we first compute the bracket {FK ,Πω}. After sub-

stituting ∂ag
a → ω−1 and integrating by parts, equation (146) becomes

{FK ,Πω} =

∫

d3x f i∂i
(

−ω−1∇kN k
)

, (164)

36



where as before

Nk = ω2∂πω

∂R̃
∇̃j ∂πω

∂π̃jk
− ω2 ∂πω

∂π̃jk
∇̃j ∂πω

∂R̃
. (165)

Comparing with equation (113) yields

{Ki,Πω} = ∂i
(

−ω−1∇kN k
)

. (166)

After substituting equations (163) and (166) into the equation of motion (159) and recalling

that Ik = Mk +Nk, we obtain

˙̃Hi = −∂i

(

ω
∂πω

∂t
+

2

3
ω̇R̃

∂πω

∂R̃
+ ω̇

∞
∑

m=2

mφ(m)
∂πω

∂φ(m)
− ω̇ω−1∇̃kIk

)

. (167)

Since the H̃i are assumed to be first class, it follows necessarily that Ik ∼ 0. Demanding
˙̃Hi ∼ 0 thus implies the consistency condition

ω
∂πω

∂t
+

2

3
ω̇R̃

∂πω

∂R̃
+ ω̇

∞
∑

m=2

mφ(m)
∂πω

∂φ(m)
∼ f(t) , (168)

where f(t) is an arbitrary function of time. Recall once again that the equation of motion (62)

is invariant under πω → πω + g(t), where g(t) is an arbitrary function of time. By choosing

a function g(t) such that ωg′(t) = f(t), the consistency condition becomes

ω
∂πω

∂t
+

2

3
ω̇R̃

∂πω

∂R̃
+ ω̇

∞
∑

m=2

mφ(m)
∂πω

∂φ(m)
∼ 0 . (169)

Since ω(t) is assumed to be an invertible function of time, ∂/∂t = ω̇ ∂/∂ω. In analogy with

our approach in the ultralocal case, we rewrite the consistency condition as

∆πω ∼ 0 , (170)

where we have redefined the operator ∆ as

∆ ≡ ω
∂

∂ω
+

2

3
R̃

∂

∂R̃
+

∞
∑

m=2

mφ(m)
∂

∂φ(m)
. (171)

To rule out the possibility of a πω which satisfies ∆πω ∼ 0 while ∆πω 6= 0, we note that the

constraints H̃i contain a term ∇̃iπω, making the constraints higher order in spatial derivatives

than πω itself. However, by examining a series expansion of πω in the parameter R̃, one can
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verify that applying ∆ to πω does not alter its order in spatial derivatives.10 It follows that

∆πω cannot depend on H̃i. The condition ∆πω ∼ 0 is therefore equivalent to the apparently

stronger condition

∆πω = 0 . (172)

Since ∆(ω−nφ(n)) = 0 and ∆(ω−2/3R̃) = 0, we are led to define the quantities

φ̄(n) ≡ φ(n)

ωn(t)
, R̄ ≡ R̃

ω2/3
. (173)

The most general solution to the condition ∆πω = 0 is an arbitrary function of R̄ and the

φ̄(n). In this manner, the dependence of πω on ω(t) is determined by its dependence on the

phase space variables.

As before, to understand this result, we return briefly to the phase space (hij, π
ij). As

shown in section 4.2, the only scalars that can be built out of the tensor hij and the traceless

tensor π̃ij
T are the φT (n) = ω−nφ(n). If we impose the gauge-fixing constraint ω ∼ ω(t), then

φT (n) ∼ φ̄(n); likewise, the Ricci scalar R of the metric hij obeys R ∼ R̄.11 This means that

R̄ and the φ̄(n) have the correct conformal weight to have been derived from three-scalars

on the phase space (hij , π
ij). The scalars R̄ and the φ̄(n) are thus invariant under spatial

conformal transformations which rescale the volume factor ω, so once again ∆πω = 0 is

revealed to be analogous to a renormalization group equation.

As a check, we will now apply the renormalization group equation to the scalar mo-

mentum πGR of spatially covariant general relativity. Since

πGR = −
√

8

3

√

φ̄(2)− R̄ + 2Λ , (174)

the scalar momentum πGR satisfies the condition ∆πGR = 0; this implies that the constraints

of the theory are preserved by the equations of motion. Combined with the result that

Ik(πGR) ∼ 0, which implies that the constraints are also first class, it is now clear within

the context of our formalism that the constraints H̃i of spatially covariant general relativity

generate a consistent first class algebra. This result justifies the assertions we made in the

first paragraph of section 3.4.

10Spatial derivatives enter πω solely through R̃, so the derivative expansion of πω can be written πω =
∑

∞

k=0
ckR̃

k, where the coefficients ck depend on ω and the φ(n). Applying the ∆ operator to πω changes

the functional form of the ck, but does not generate higher order powers of R̃.
11See equation (264) in appendix C.
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5.3 Summary

In this section, we applied the formalism developed in section 4 to determine when scalar

momenta πω built out of h̃ij, π̃
ij , and R̃ yield a consistent first class constraint algebra. To

ensure the first class character of the constraints H̃i, it is necessary and sufficient for πω to

obey the condition

Ik ∼ 0 , (175)

where

Ik = ω2∂πω

∂R̃
∇̃j ∂πω

∂π̃jk
− ω2 ∂πω

∂π̃jk
∇̃j ∂πω

∂R̃
− 4

3
ω∇̃k

∂πω

∂R̃
. (176)

If ∂πω/∂R̃ = 0, then Ik = 0, so ultralocal scalar momenta satisfy this condition trivially.

The scalar momentum πGR of spatially covariant general relativity depends essentially on R̃,

and thus satisfies this condition non-trivially.

To guarantee the preservation of the constraints H̃i by the equations of motion, the

scalar momentum πω must also be invariant under renormalization of the volume factor ω.

This requires πω to obey the renormalization group equation

∆πω = 0 , (177)

where

∆ ≡ ω
∂

∂ω
+

2

3
R̃

∂

∂R̃
+

∞
∑

m=2

mφ(m)
∂

∂φ(m)
. (178)

This is a generalization of the renormalization group equation (130) to include a possible

dependence of πω on R̃. The scalar momentum πGR satisfies this condition in addition to

the first, so the constraints of spatially covariant general relativity generate a consistent first

class constraint algebra.

6 Conclusions

In this paper, we developed a general formalism for verifying the consistency of spatially

covariant modified theories of the transverse, traceless graviton degrees of freedom. It was a

long road, so it is worth retracing our steps to see the logic of our path.
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In section 2, we showed how to express general relativity as a theory of a spatial

metric hij and its conjugate momentum πij . In this language, the general covariance and

local Lorentz covariance of the theory is encoded by the Dirac algebra obeyed by the four

constraints Hµ. In section 3, we showed how to obtain a spatially covariant version of

general relativity. We began in section 3.1 by splitting the phase space (hij , π
ij) into the

phase space (ω, πω) of the spatial volume factor and the phase space (h̃ij , π̃
ij) of the unit-

determinant metric. In the context of cosmology on an FRW background, it is natural to

represent time diffeomorphism symmetry on the phase space (ω, πω) and to represent spatial

diffeomorphisms on the phase space (h̃ij, π̃
ij); in section 3.2, we showed how to achieve this

splitting using a cosmological gauge condition. On an expanding background, ω drops out

of the dynamical phase space of the theory, and its conjugate momentum πω becomes the

scalar part of the physical Hamiltonian density on the phase space (h̃ij, π̃
ij); in section 3.3, we

showed how to reduce the phase space by solving the Hamiltonian constraint in cosmological

gauge. By successfully projecting the degrees of freedom of general relativity onto the reduced

phase space (h̃ij , π̃
ij), we have shown how to represent the graviton dynamics of general

relativity on the class of conformally equivalent spatial metrics.

To modify general relativity, we simply modified the functional form of the scalar

momentum πω while retaining the explicit spatial diffeomorphism symmetry generated by

the three constraints H̃i. In section 4, we considered the case in which πω is an ultralocal

function of the phase space quantities h̃ij and π̃ij . In this case, the consistency of the

constraints H̃i imposes a single non-trivial condition on the form of πω, namely that it

must satisfy a renormalization group equation with flow parameter ω. The renormalization

group equation encodes the fact that πω must be invariant under flow through the space

of conformally equivalent spatial metrics. In section 5, we applied our formalism to the

case in which πω is also allowed to depend on R̃, the Ricci scalar of the metric h̃ij . In this

case, πω must satisfy a corresponding renormalization group equation, but its form is further

restricted by a differential equation that relates its dependence on R̃ to its dependence on

the phase space variables h̃ij and π̃ij .

As a proof of principle, this paper demonstrates the possibility of consistently modifying

the graviton equations of motion, but more remains to be done. In forthcoming work [20], we

will apply our formalism to search for viable alternatives to general relativity by attempting

to modify the πω of general relativity parametrically in the infrared. If we discover non-
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trivial modifications of general relativity that contain only two degrees of freedom, it could

open up new lines of theoretical and experimental research. A null result, on the other hand,

would serve as further evidence of the uniqueness of general relativity. It will be interesting

to see just how far we can push this program.
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Appendix A: Covariant Constraint Algebra of GR

Recall the Poisson bracket of GR

{A,B} ≡
∫

d3z

(

δA

δhmn(z)

δB

δπmn(z)
− δA

δπmn(z)

δB

δhmn(z)

)

(179)

and the constraints

H0 ≡ −
√
h(R− 2Λ) +

1√
h

(

πijπij −
1

2
(πi

i)
2

)

Hi ≡ −2hij∇kπ
jk . (180)

Our object in this section is to derive the constraint algebra

{H0(x),H0(y)} = Hi(x)∂xiδ3(x− y)−Hi(y)∂yiδ
3(x− y)

{H0(x),Hi(y)} = H0(y)∂xiδ3(x− y)

{Hi(x),Hj(y)} = Hj(x)∂xiδ3(x− y)−Hi(y)∂yjδ
3(x− y) . (181)

To evaluate these Poisson brackets, we first define the smoothing functionals

FH ≡
∫

d3x f 0(x)H0(x) , F ≡
∫

d3x f i(x)Hi(x) ,

GH ≡
∫

d3y g0(y)H0(y) , G ≡
∫

d3y ga(y)Ha(y) , (182)

where the functions f 0, f i, g0, and gi are time-independent smoothing functions. We then

compute the brackets

{FH , GH} =

∫

d3x d3y f 0(x)g0(y){H0(x),H0(y)}

{FH , G} =

∫

d3x d3y f 0(x)ga(y){H0(x),Ha(y)}

{F,G} =

∫

d3x d3y f i(x)ga(y){Hi(x),Ha(y)} . (183)

As in section 4.1, we assume that the smoothing functions decay so rapidly that they elim-

inate all boundary terms generated by integration by parts, but that they are otherwise

arbitrary. This greatly simplifies the explicit evaluation of the brackets of the smoothing

functionals. By comparing the explicit forms of the brackets to the implicit forms in equa-

tion (183), we will derive explicit formulae for the brackets of the Hµ’s.
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To simplify the calculation of the variational derivatives of FH , we will split the Hamil-

tonian constraint H0 into a kinetic piece HT and a potential piece HV . Explicitly, we have

H0 = HT +HV , where

HT ≡ 1√
h

(

hikhjl −
1

2
hijhkl

)

πijπkl ,

HV ≡ −
√
h(R− 2Λ) . (184)

Similarly, FH = FT + FV , where

FT ≡
∫

d3x f 0(x)HT (x) , FV ≡
∫

d3x f 0(x)HV (x) . (185)

Computing the variation δFT is straightforward:

δFT =

∫

d3x f 0

(

1√
h

(

2πi
kπ

kj − πk
kπ

ij
)

− 1

2
HTh

ij

)

δhij

+

∫

d3x f 0 1√
h

(

2πij − hijπ
k
k

)

δπij . (186)

It follows that

δFT

δhmn

= f 0

(

1√
h

(

2πm
kπ

kn − πk
kπ

mn
)

− 1

2
HTh

mn

)

δFT

δπmn
= f 0 1√

h

(

2πmn − hmnπ
k
k

)

. (187)

Likewise,

δGT

δhmn
= g0

(

1√
h

(

2πm
kπ

kn − πk
kπ

mn
)

− 1

2
HTh

mn

)

δGT

δπmn
= g0

1√
h

(

2πmn − hmnπ
k
k

)

. (188)

Keeping in mind that δR = −δhijR
ij + ∇j∇iδhij − ∇k∇kh

ijδhij, computing δFV is

just as straightforward:

δFV =

∫

d3x f 0

(

1

2
HV h

ij +
√
hRij

)

δhij

+

∫

d3x
√
hf 0

(

∇k∇kh
ijδhij −∇j∇iδhij

)

. (189)
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Before taking variational derivatives, we exploit our freedom to integrate by parts to pull

the covariant derivatives off the metric variation δhij :

δFV =

∫

d3x f 0

(

1

2
HV h

ij +
√
hRij

)

δhij

+

∫

d3x
√
h
(

hij∇k∇kf 0 −∇i∇jf 0
)

δhij . (190)

It follows that

δFV

δhmn

= f 0

(

1

2
HV h

mn +
√
hRmn

)

+
√
h
(

hmn∇k∇kf 0 −∇m∇nf 0
)

δFV

δπmn
= 0 . (191)

Similarly,

δGV

δhmn
= g0

(

1

2
HV h

mn +
√
hRmn

)

+
√
h
(

hmn∇k∇kg0 −∇m∇ng0
)

δGV

δπmn
= 0 . (192)

Before computing δF , we integrate by parts inside F :

F = 2

∫

d3xhijπ
jk∇kf

i . (193)

This simplifies the variational calculation:

δF = 2

∫

d3x (∇kf
i)πjkδhij + 2

∫

d3x (∇kf
i)hijδπ

jk + 2

∫

d3x πjkhijδ∇kf
i . (194)

To evaluate δ∇kf
i, first expand the covariant derivative as ∇kf

i = ∂kf
i + Γi

kaf
a. It follows

that δ∇kf
i = faδΓi

ka. The identity

δΓl
ki =

1

2
hlm (∇iδhkm +∇kδhim −∇mδhik) (195)

implies that 2πjkhijδ∇kf
i = f iπjk∇iδhjk. Substituting this result into the expression for δF

and integrating by parts yields

δF = 2

∫

d3x (∇kf
i)πjkδhij −

∫

d3x∇i(f
iπjk)δhjk + 2

∫

d3x (∇kf
i)hijδπ

jk . (196)

It follows that

δF

δhmn
= 2(∇kf

i)πjkδmn
ij −∇i(f

iπmn)

δF

δπmn
= 2(∇kf

i)hijδ
jk
mn . (197)
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Likewise,

δG

δhmn

= 2(∇cg
a)πbcδmn

ab −∇a(g
aπmn)

δG

δπmn
= 2(∇cg

a)habδ
bc
mn . (198)

We are now in a position to compute the Poisson brackets of interest.

• {Hi(x),Hj(y)}

To calculate {Hi(x),Hj(y)}, we will first calculate {F,G}. Substituting equations (197)
and (198) into the Poisson bracket yields

{F,G} = 2

∫

d3z habπ
bc
(

∇cf
i
)

(∇ig
a)− 2

∫

d3z hijπ
jk (∇kg

a)
(

∇af
i
)

− 2

∫

d3z (∇cg
a)∇i

(

f ihabπ
bc
)

+ 2

∫

d3z
(

∇kf
i
)

∇a

(

gahijπ
jk
)

. (199)

After integrating by parts, applying the identity (∇i∇j −∇j∇i) u
a = Ra

biju
b, and

recalling that Hi = −2hij∇kπ
jk, this bracket becomes

{F,G} =

∫

d3z
(

f iHa∇ig
a − gaHi∇af

i
)

+ 2

∫

d3z f igaπjk (Rjika +Rjaik) . (200)

It follows from the symmetry (Rabcd = Rcdab) and antisymmetry (Rabcd = −Rbacd =

−Rabdc) properties of the Riemann tensor that Rjaik = −Rkija. The symmetry property

(πij = πji) of the momentum tensor then implies that πjk (Rjika +Rjaik) = 0, so

{F,G} =

∫

d3z
(

f iHa∇ig
a − gaHi∇af

i
)

. (201)

Upon expanding the covariant derivatives, the connection terms cancel, yielding

{F,G} =

∫

d3z
(

f iHa∂ig
a − gaHi∂af

i
)

. (202)

To extract the Poisson brackets {Hi(x),Hj(y)}, first relabel integration variables,

{F,G} =

∫

d3x f i(x)Ha(x)∂xiga(x)−
∫

d3y ga(y)Hi(y)∂yaf
i(y) , (203)

then use the identities

ga(x) =

∫

d3y δ3(x− y)ga(y) , f i(y) =

∫

d3x δ3(x− y)f i(x) , (204)
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to write

{F,G} =

∫

d3x d3y f i(x)ga(y)
(

Ha(x)∂xiδ3(x− y)−Hi(y)∂yaδ
3(x− y)

)

. (205)

By comparing this expression to (183), we obtain the identity

{Hi(x),Hj(y)} = Hj(x)∂xiδ3(x− y)−Hi(y)∂yjδ
3(x− y) . (206)

• {H0(x),Hi(y)}

To calculate {H0(x),Hi(y)}, we will first calculate {FH , G} = {FT , G} + {FV , G}.
Substituting equations (187) and (198) into the bracket {FT , G} yields

{FT , G} =

∫

d3z f 0∇a (g
aHT ) . (207)

Assembling equations (191) and (198) into the bracket {FV , G} yields

{FV , G} =

∫

d3z f 0 (∇ag
a)HV + 2

∫

d3z
√
hf 0(∇cg

a)R c
a

+ 2

∫

d3z
√
h (∇ag

a)∇c∇cf 0 − 2

∫

d3z
√
h (∇cg

a)∇a∇cf 0 . (208)

After integrating the last two terms by parts, the identity (∇a∇c −∇c∇a)g
a = Racg

a

implies that

{FV , G} =

∫

d3z f 0 (∇ag
a)HV + 2

∫

d3z
√
hR c

a ∇c

(

f 0ga
)

. (209)

By integrating the last term by parts, using the identity 2∇cR
c

a = ∇aR = ∇a(R−2Λ),

and recalling that HV =
√
h(2Λ− R), the bracket becomes

{FV , G} =

∫

d3z f 0∇a (g
aHV ) . (210)

Combining {FV , G} with {FT , G} and recalling that H0 = HT +HV yields

{FH , G} =

∫

d3z f 0∇a (g
aH0) . (211)

Since ga is a three-vector and H0/
√
h is a three-scalar,

∇a(g
aH0) = ∂a (g

aH0) , (212)
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from which it follows that

{FH , G} =

∫

d3z f 0∂a (g
aH0) . (213)

To extract the bracket {H0(x),Hi(y)}, first relabel the variable of integration,

{FH , G} =

∫

d3x f 0(x)∂xa (ga(x)H0(x)) , (214)

then use the identity

ga(x)H0(x) =

∫

d3y δ3(x− y)ga(y)H0(y) (215)

to write

{FT , G} =

∫

d3x d3y f 0(x)ga(y)H0(y)∂xaδ3(x− y) . (216)

By comparing this expression to (183), we obtain the identity

{H0(x),Hi(y)} = H0(y)∂xiδ3(x− y) . (217)

• {H0(x),H0(y)}

To calculate {H0(x),H0(y)}, we will first calculate

{FH , GH} = {FT , GT}+ {FT , GV }+ {FV , GT}+ {FV , GV } . (218)

It is straightforward to verify that the brackets {FT , GT} and {FV , GV } vanish iden-

tically. To compute {FT , GV }, substitute equations (187) and (192) into the Poisson

bracket to obtain

{FT , GV } = 2

∫

d3z f 0πmn∇m∇ng
0

−
∫

d3z f 0g0
1√
h

(

1

2
HV π

k
k + 2

√
hRmnπ

mn

)

. (219)

Likewise,

{FV , GT} = −2

∫

d3z g0πmn∇m∇nf
0

+

∫

d3z f 0g0
1√
h

(

1

2
HV π

k
k + 2

√
hRmnπ

mn

)

. (220)
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The sum of the four brackets reduces to

{FH , GH} = 2

∫

d3z
(

f 0πmn∇m∇ng
0 − g0πmn∇m∇nf

0
)

. (221)

After integrating by parts and recalling that Hi = −2hij∇kπ
jk, the bracket becomes

{FH , GH} =

∫

d3z
(

f 0Hi∇ig
0 − g0Hi∇if

0
)

. (222)

Upon expanding the covariant derivatives in terms of partial derivatives and connection

terms, the connection terms cancel to yield

{FH , GH} =

∫

d3z
(

f 0Hi∂ig
0 − g0Hi∂if

0
)

. (223)

To extract the bracket {H0(x),H0(y)}, relabel integration variables and use the iden-

tities

g0(x) =

∫

d3y δ3(x− y)g0(y) , f 0(y) =

∫

d3x δ3(x− y)f 0(x) (224)

to write

{FH , GH} =

∫

d3x d3y f 0(x)g0(y)
(

Hi(x)∂xiδ3(x− y)−Hi(y)∂yiδ
3(x− y)

)

. (225)

By comparing this expression to (183), we obtain the identity

{H0(x),H0(y)} = Hi(x)∂xiδ3(x− y)−Hi(y)∂yiδ
3(x− y) . (226)

Appendix B: Constraint brackets after imposing χ

We begin with the four constraints Hµ. After introducing the gauge-fixing constraint

χ ≡
√
h− ω(t) , (227)

we need to compute the brackets of each of the five constraints (including χ) with χ. We

introduce the smoothing functionals

Fχ ≡
∫

d3x fχ(x)χ(x) , Gχ ≡
∫

d3y gχ(y)χ(y) , (228)
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where fχ and gχ are arbitrary rapidly-decaying smoothing functions. We then compute the

brackets

{Fχ, Gχ} =

∫

d3x d3y fχ(x)gχ(y){χ(x), χ(y)}

{FH , Gχ} =

∫

d3x d3y f 0(x)gχ(y){H0(x), χ(y)}

{F,Gχ} =

∫

d3x d3y f i(x)gχ(y){Hi(x), χ(y)} . (229)

The variation δFχ is

δFχ =

∫

d3x fχ
1

2

√
hhijδhij , (230)

so

δFχ

δhmn
= fχ

1

2

√
hhmn ,

δFχ

δπmn
= 0 . (231)

Likewise,

δGχ

δhmn

= gχ
1

2

√
hhmn ,

δGχ

δπmn
= 0 . (232)

It follows at once that

{Fχ, Gχ} = 0 . (233)

Comparing with (229), we obtain the identity

{χ(x), χ(y)} = 0 . (234)

We now turn to the brackets of χ with the Hµ.

• {H0(x), χ(y)}

We split {FH , Gχ} into {FH , Gχ} = {FT , Gχ}+ {FV , Gχ}. Assembling equations (187)

and (231) into the Poisson bracket {FT , Gχ} yields

{FT , Gχ} =

∫

d3z f 0gχ
1

2
πk

k . (235)

The bracket {FV , Gχ} vanishes identically, so

{FH , Gχ} =

∫

d3x f 0gχ
1

2
πk

k . (236)
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To extract the bracket {H0(x), χ(y)}, use the identity

gχ(x) =

∫

d3y gχ(y)δ
3(x− y) , (237)

which yields

{FH , Gχ} =

∫

d3x d3y f 0(x)gχ(y)
1

2
πk

k(x)δ
3(x− y). (238)

Comparing to (229), we obtain the identity

{H0(x), χ(y)} =
1

2
πk

k(x)δ
3(x− y). (239)

• {Hi(x), χ(y)}

From equation (197), it follows that

{F,Gχ} = −
∫

d3z gχ
√
h∇if

i . (240)

Integrating by parts and using the fact that gχ is a scalar, this bracket becomes

{F,Gχ} =

∫

d3x f i
√
h∂igχ . (241)

To extract the bracket {Hi(x), χ(y)}, use the identity

gχ(x) =

∫

d3y gχ(y)δ
3(x− y) (242)

to write

{F,Gχ} =

∫

d3x d3y f i(x)gχ(y)
√

h(x)∂xiδ3(x− y) . (243)

Comparing to (229), we obtain the identity

{Hi(x), χ(y)} =
√

h(x)∂xiδ3(x− y) . (244)

Appendix C: Conformal Decomposition

Consider a metric gµν in a number of dimensions d. Denote the determinant of gµν by g.

Define the positive conformal factor

Ω ≡ |g|1/d > 0 (245)
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and the metric

g̃µν ≡ |g|−1/dgµν (246)

so that

gµν = Ωg̃µν . (247)

By construction, the signature of g̃µν is the same as that of gµν . Denote the determinant of

g̃µν by g̃. From the definition of g̃µν , it follows that g̃ = g/|g|, so g̃ = ±1, depending on the

signature of gµν . We therefore call g̃µν a unit-determinant metric.

The inverse metrics are related by gµν = g̃µνΩ−1. We denote the covariant derivative

with respect to gµν by ∇µ, and the covariant derivative with respect to g̃µν by ∇̃µ. The

connection Γλ
µν defined by gµν is

Γλ
µν =

1

2
gλσ (∂µgνσ + ∂νgµσ − ∂σgµν) , (248)

while the connection Γ̃λ
µν defined by g̃µν is

Γ̃λ
µν =

1

2
g̃λσ (∂µg̃νσ + ∂ν g̃µσ − ∂σ g̃µν) . (249)

The connection Γ̃λ
µν obeys Γ̃λ

µν = Γλ
µν − Cλ

µν , where

Cλ
µν =

(

δλσµν − 1

2
g̃λσg̃µν

)

∂σ log Ω . (250)

For convenience, we can write Ω in terms of a scalar field ϕ and a constant Ω0 as

Ω ≡ Ω0e
2ϕ , (251)

in which case

Cλ
µν = δλµ∇̃νϕ+ δλν ∇̃µϕ− g̃µν∇̃λϕ . (252)

The Riemann tensor of gµν is

Rλ
κµν = ∂µΓ

λ
κν − ∂νΓ

λ
κµ + Γλ

µσΓ
σ
κν − Γλ

νσΓ
σ
κµ , (253)

while the Riemann tensor of g̃µν is

R̃λ
κµν = ∂µΓ̃

λ
κν − ∂ν Γ̃

λ
κµ + Γ̃λ

µσΓ̃
σ
κν − Γ̃λ

νσΓ̃
σ
κµ . (254)
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Using Γλ
µν = Γ̃λ

µν + Cλ
µν , the Riemann tensor Rλ

κµν can be rewritten as

Rλ
κµν = R̃λ

κµν + Cλ
µσC

σ
κν − Cλ

νσC
σ
κµ + ∂µC

λ
κν + Γ̃λ

µσC
σ
κν − Γ̃σ

µκC
λ
σν

− ∂νC
λ
κµ − Γ̃λ

νσC
σ
κµ + Γ̃σ

νκC
λ
µσ . (255)

Using

∇̃µC
λ
κν − ∇̃νC

λ
κµ = ∂µC

λ
κν + Γ̃λ

µσC
σ
κν − Γ̃σ

µκC
λ
σν

− ∂νC
λ
κµ − Γ̃λ

νσC
σ
κµ + Γ̃σ

νκC
λ
σµ , (256)

Rλ
κµν becomes

Rλ
κµν = R̃λ

κµν + Cλ
µσC

σ
κν − Cλ

νσC
σ
κµ + ∇̃µC

λ
κν − ∇̃νC

λ
κµ . (257)

The Ricci tensor of gµν is Rµν = Rλ
µλν ; the Ricci tensor of g̃µν is R̃µν = R̃λ

µλν . Tracing

equation (257) appropriately yields

Rµν = R̃µν + Cλ
λσC

σ
µν − Cλ

νσC
σ
µλ + ∇̃λC

λ
µν − ∇̃νC

λ
µλ . (258)

We now express Rµν in terms of R̃µν and derivatives of ϕ. Recalling that δµµ = d, we find

Cλ
λσ = d∇̃σϕ

Cλ
µσC

σ
νλ = (d+ 2)(∇̃µϕ)(∇̃νϕ)− 2g̃µν(∇̃αϕ)(∇̃αϕ) , (259)

so

Rµν = R̃µν + (d− 2)(∇̃µϕ)(∇̃νϕ)− (d− 2)g̃µν(∇̃σϕ)(∇̃σϕ)

− (d− 2)∇̃µ∇̃νϕ− g̃µν∇̃σ∇̃σϕ . (260)

The Ricci scalar for gµν is R = gµνRµν ; the Ricci scalar for g̃µν is R̃ = g̃µνR̃µν . In terms of

covariant derivatives of ϕ, we have

ΩR = R̃− (d− 1)(d− 2)(∇̃αϕ)(∇̃αϕ)− 2(d− 1)∇̃σ∇̃σϕ . (261)

In three dimensions, the Weyl tensor vanishes, so the Riemann tensor is completely

determined by the Ricci tensor and the metric via

Rlkmn =
1

d− 2
(glmRkn − glnRkm − gkmRln + gknRlm)

− 1

(d− 1)(d− 2)
(glmgkn − glngkm)R . (262)
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In this case, it suffices to compute the Ricci tensor. When d = 3, our previous formulas

reduce to

Rij = R̃ij + (∇̃iϕ)(∇̃jϕ)− g̃ij(∇̃kϕ)(∇̃kϕ)− ∇̃i∇̃jϕ− h̃ij∇̃k∇̃kϕ ,

ΩR = R̃− 2(∇̃kϕ)(∇̃kϕ)− 4∇̃k∇̃kϕ . (263)

The condition ω ∼ ω(t) amounts to ϕ ∼ ϕ(t), so in cosmological gauge we have

Rij ∼ R̃ij , ΩR ∼ R̃ . (264)
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and First-Class Constraints,” arXiv:1004.3769 [hep-th]; M. Henneaux, A. Kleinschmidt
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