aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Spatially covariant theories of a transverse, traceless
graviton: Formalism
Justin Khoury, Godfrey E. J. Miller, and Andrew J. Tolley
Phys. Rev. D 85, 084002 — Published 2 April 2012
DOI: 10.1103/PhysRevD.85.084002


http://dx.doi.org/10.1103/PhysRevD.85.084002

Spatially Covariant Theories of a Transverse, Traceless

Graviton, Part I: Formalism

Justin Khoury!, Godfrey E. J. Miller! and Andrew J. Tolley?

I Center for Particle Cosmology, Department of Physics & Astronomy
University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104

2 Department of Physics, Case Western Reserve University
10900 Euclid Ave, Cleveland, OH 44106

Abstract

General relativity is a generally covariant, locally Lorentz covariant theory of two
transverse, traceless graviton degrees of freedom. According to a theorem of Hojman,
Kuchar, and Teitelboim, modifications of general relativity must either introduce new
degrees of freedom or violate the principle of local Lorentz covariance. In this paper,
we explore modifications of general relativity that retain the same graviton degrees of
freedom, and therefore explicitly break Lorentz covariance. Motivated by cosmology,
the modifications of interest maintain explicit spatial covariance. In spatially covariant
theories of the graviton, the physical Hamiltonian density obeys an analogue of the
renormalization group equation which encodes invariance under flow through the space
of conformally equivalent spatial metrics. This paper is dedicated to setting up the
formalism of our approach and applying it to a realistic class of theories. Forthcoming

work will apply the formalism more generally.



1 Introduction

For nearly a century, general relativity has been the most successful paradigm for interpreting
and understanding classical gravitational phenomena. To this day, despite ongoing experi-
mental efforts, there have been no unequivocal refutations of general relativity. Nonetheless,

there are compelling reasons to study alternative gravitational theories.

Perhaps the most obvious reason to consider alternative gravitational theories is to ex-
plain empirical anomalies, most notably the observed magnitude of the cosmic acceleration.
The ACDM concordance model achieves a parsimonious fit to cosmological observations by
invoking a cosmological constant corresponding to a vacuum energy density py =~ (meV)%.
However, known quantum corrections to pa are of order Mp, ~ 102°(meV)?, so ACDM
suffers from a serious fine-tuning problem [1]. Since we have no handle on the microphysics
responsible for the magnitude of vacuum energy, it is an outstanding theoretical challenge
to determine what physical degrees of freedom are associated with late-time acceleration.
Theories of dynamical dark energy or modified gravity typically introduce new scalar de-
grees of freedom, but to date there is no unambiguous evidence for cosmologically relevant
scalars [2]. One motivation for this paper is the possibility that cosmic acceleration might

be directly associated with the transverse, traceless graviton degrees of freedom.

Apart from any attempt to understand empirical anomalies, there remains a compelling
theoretical reason to study alternatives to general relativity: to determine which of its features
are essential to its experimental success, and which features are merely incidental. To analyze
the theory in this manner, we must know what freedom we have to modify the theory while
retaining its explanatory power. The two transverse, traceless graviton degrees of freedom
are a key feature of general relativity. Though graviton exchange has never been measured
and gravitational waves have never been detected, there is substantial indirect evidence for
these two graviton degrees of freedom [3]. It is therefore natural to ask whether and how we

can modify the behavior of the known graviton degrees of freedom.

In this paper, we construct manifestly consistent modifications of general relativity
that retain the same local degrees of freedom. Since general relativity is the unique Lorentz
covariant theory of a massless spin-2 particle [4, 5, 6, 7], our theories must break Lorentz
covariance explicitly. Theories in which Lorentz symmetry is only broken spontaneously
necessarily rely on additional local degrees of freedom, which appear in the broken phase as

massless Goldstone modes; an example of such a theory is ghost condensation [8].
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General relativity as formulated by Einstein and Hilbert is also a generally covariant
theory, which means that the equations of motion for the spacetime metric g, take the same
form in any coordinate system. Unfortunately, invariance under coordinate transformations
implies that the theory contains a great deal of gauge arbitrariness, and the true dynamical
degrees of freedom of the theory have proven difficult to isolate. The inaccessibility of the
physical graviton degrees of freedom is a significant obstacle to modifying their behavior. In
fact, the notorious elusiveness of the physical degrees of freedom is also an obstacle to the

canonical quantization of general relativity [9].

This gauge arbitrariness can be understood most clearly by treating general relativity as
a constrained field theory. By writing the spacetime metric g, in ADM form® and discarding
a boundary term, the Einstein-Hilbert action can be rewritten in canonical form as a theory
of a spatial metric h;; and a conjugate momentum tensor 7 subject to four constraints
H,, [10, 11]. Though h;; and 7 are not themselves generally covariant objects, the general
covariance of the theory follows from the first class character of the H,’s, which generate
gauge transformations corresponding to spacetime diffeomorphisms [12, 13]. By representing
gauge symmetries as constraints on phase space, it becomes straightforward to count degrees
of freedom. According to the standard counting prescription, the presence of four first class
constraints H,, in a theory of six canonical coordinates h;; ensures that general relativity

contains two local degrees of freedom; schematically,
6-hi;'s—4-H,s =2 Degrees of Freedom. (1)

See section 2.1 for more detail. In the passage to quantum theory, these transverse, traceless

degrees of freedom become the two polarizations of the graviton.

To isolate the physical graviton degrees of freedom, one would have to solve the four
constraints H,. One could then modify the behavior of the graviton in a straightforward
manner. By taking the configuration space for the spatial metric to be Wheeler’s superspace,
it is possible to solve the three momentum constraints H; by fiat, but the Hamiltonian
constraint Hg has thus far defied solution in general. Unless the Hamiltonian constraint can
be solved, the gauge-arbitrariness of general relativity cannot be eliminated. Fortunately,
though no general solution to the Hamiltonian constraint has been found, it can be solved

in certain circumstances by imposing an appropriate gauge-fixing condition.

Li.e., in terms of a spatial metric hij, a lapse N = NO, and a shift N?.
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We have established that modifying the behavior of the graviton without new degrees
of freedom will force us to break Lorentz covariance explicitly, but it is enlightening to
see how this conclusion arises in the canonical picture. Under the action of the Poisson
bracket, the H,’s of general relativity obey the Dirac algebra [14, 15], which encodes the
local Lorentz covariance of a generally covariant theory [16]. In 1974, Hojman, Kuchaf,
and Teitelboim (HKT) proved that general relativity is the unique minimal representation
of the Dirac algebra [17, 18]. It follows immediately that Lorentz covariant modifications of
general relativity introduce additional degrees of freedom beyond the two graviton degrees
of freedom in general relativity [19]. To modify general relativity, one must either introduce

new degrees of freedom or violate the principle of local Lorentz covariance.

We wish our theories to retain the same local degrees of freedom as general relativity,
so in accordance with the theorem of HKT, our theories cannot be Lorentz covariant. This
aspect of our approach is not necessarily a defect. Since we do not observe exact spacetime
symmetry in our universe, this property of general relativity is not necessarily key to the
success of the theory. Simply put, on cosmological scales there is a strong asymmetry
between the past and the future, and the observable universe has a preferred rest frame; these
observations are conventionally understood as a result of spontaneous symmetry breaking,

but explicit symmetry breaking is another logical possibility.

That being said, on cosmological scales in the cosmological rest frame there is substan-
tial evidence for spatial homogeneity and isotropy. To maximize the verisimilitude of our
treatment, the theories we consider will retain explicit covariance under spatial diffeomor-
phisms. To summarize, we will attempt to modify general relativity while preserving 1) the
number of graviton degrees of freedom, and 2) explicit spatial covariance. In this paper, we
develop a general framework within which to explore the freedom we have to modify general

relativity while retaining these two desirable properties.

Concretely, we will begin by recasting general relativity in spatially covariant form,
by solving the Hamiltonian constraint (which generates local time reparametrizations) while
preserving the three momentum constraints (which generate spatial diffeomorphisms). We
will solve the Hamiltonian constraint by choosing a cosmologically motivated gauge: we will
take the determinant of the spatial metric to be the measure of time. This operation de-
stroys the manifest diffeomorphism covariance and local Lorentz covariance of the theory.

We emphasize that this gauge breaks down in the general case when the determinant of



the spatial metric is allowed to evolve non-monotonically, but it is a natural choice when
considering perturbative corrections to FRW spacetime. By solving the Hamiltonian con-
straint, the determinant of the spatial metric and the trace of the momentum tensor drop
out of the phase space of the theory. We thereby obtain general relativity as a theory of a
unit-determinant metric iLij and a traceless conjugate momentum tensor 7 subject to three
first class momentum constraints #;, which act as the generators of spatial diffeomorphisms.
By the standard counting prescription, the presence of three first class constraints H; in a
theory of five canonical coordinates 712-]- guarantees that spatially covariant general relativity

contains two degrees of freedom, as it should; schematically,

5-hi;'s —3-H;'s = 2 Degrees of Freedom. (2)

See section 3.4 for more detail.

Our strategy for modifying general relativity relies on the fact that any theory of five
canonical coordinates subject to three first class constraints contains two degrees of freedom.
To modify general relativity, we will modify the functional form of the physical Hamiltonian
density on the reduced phase space (ﬁ,-j, 77), subject to the condition that the momentum
constraints H; remain first class; to ensure the consistency of the modification, we will
also demand that the constraints #H,; remain preserved by the equations of motion. Any
theory that satisfies these two restrictions will retain manifest spatial covariance, and by the
counting prescription will necessarily contain two graviton degrees of freedom. In this paper,
we introduce the formalism necessary to pursue this program of modification and apply
the formalism to a class of realistic theories. Forthcoming work will apply the formalism
developed here to the goal of constructing viable alternatives to general relativity [20]. In
particular, these alternatives stand a good chance of being consistent with binary pulsar

constraints, which principally constrain the number of gravitational degrees of freedom.

The literature abounds with many and varied approaches to the pursuit of modified
gravity theories, but generally covariant, locally Lorentz covariant modifications of general
relativity that introduce additional degrees of freedom have been the most widely explored.
The well-known method for finding such theories is to construct a scalar Lagrangian den-
sity out of manifestly covariant objects by contracting all free spacetime/Lorentz indices.?
Using this technique, all manner of theories have been explored: scalar-tensor theories [21],

theories with higher-order curvature terms [22, 23, 24|, theories of massive gravity [25, 26,

2In the presence of spinor fields, one must treat spacetime indices and Lorentz indices separately.
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27, 28], higher-dimensional gravity theories [29, 30, 31|, galileons [32, 33, 34, 35, 36, 37],
chameleons [38], symmetrons [39, 40], cuscutons [41], etc. For a comprehensive review of
Lorentz covariant massive gravity theories with detailed references, see [7]. For a compre-

hensive review of observational tests of modified gravity, see [2].

Approaches to gravity which do not assume general covariance and local Lorentz co-
variance at the outset have been tried as well. The natural procedure for constructing such a
theory depends on which symmetries it is assumed to possess; more often than not, theories
without spacetime symmetry are assumed to maintain explicit spatial symmetry. For exam-
ple, in [15] the action of gravity is assumed to be invariant under spatial diffeomorphisms.
In [42], Lorentz-violating massive graviton theories were classified by assuming the graviton
mass to be invariant under the three-dimensional Euclidean group. A prominent recent ex-
ample of a Lorentz-violating theory is Hotava-Lifshitz gravity [43, 44, 45, 46, 47, 48, 49, 50]3.
Also of note is the work of Barbour, Koslowski, and collaborators on the theory of Shape
Dynamics [51, 52].

This paper is organized as follows. In section 2, we cover the basic concepts of con-
strained field theory in the context of analyzing the phase space and constraint structure of
general relativity. In section 3, we show how to impose our cosmological gauge condition
and solve the Hamiltonian constraint to obtain a consistent spatially covariant formulation
of general relativity. In section 4, we introduce the formalism of our approach to modify-
ing gravity in the context of wltralocal theories of the graviton. In section 5, we apply our
method to derive consistency relations for a class of realistic local theories which includes

general relativity.

2 General Relativity as a Constrained Field Theory

In this section, we will analyze general relativity by treating it as a constrained field theory.
In particular, we will examine its phase space and constraint structure, and count its local

degrees of freedom.

3The original incarnation [43] of Hofava-Lifshitz gravity struggled with consistency issues [46, 47, 48]

which were resolved in [49] by imposing a consistent constraint algebra.



Our starting point is the Einstein-Hilbert action with a cosmological constant,

S = / dt &z /=g (R —24). (3)

From this action, the general covariance of the theory is manifest, but the counting of degrees
of freedom is not. The metric tensor g,, has ten components, but the theory has only two
independent local degrees of freedom. To facilitate the counting of degrees of freedom, it
is conceptually simplest to rewrite the action in canonical form, which makes the counting
manifest. To this end, the spacetime metric g, must first be expressed in ADM form, in

terms of a lapse N, a shift N’, and a spatial metric h;;:
ds® = g, datdz” = —N?*dt* + hy;(dz’ + N'dt)(da’ + N7de). (4)

The lapse N is a three-scalar, the shift N’ is a three-vector, and the spatial metric h;; is a
three tensor. Up to a boundary term, the Einstein-Hilbert action is equivalent to the ADM

action
S = /dt dPr VAN (K K9 — K2 + R—2A). (5)

In this expression, indices are lowered with h;; and raised with its inverse h", R = R®) is

the Ricci scalar of the metric h;;, the extrinsic curvature tensor K;; is defined by

Ky = 5N (hy = VN, ~ ;) (6)

K = WK, and V; = V§3) is the covariant spatial derivative with respect to the metric
hij. From equation (6), it is clear that time derivatives in the action (5) act only on h;;, not
on N and N?, so the lapse and shift are essentially non-dynamical. To obtain the canonical
action, one must first define the momentum conjugate to the spatial metric
. oL . .
= — = Vh (K7 - Kh'); (7)
Ohij

the momentum 7% is a three-tensor density of unit weight.* By inverting the relation between
7% and K% and dropping a boundary term, one can rewrite the action of general relativity

in canonical form as

S = / dt P (wiﬂ'hi]— - N“’Hu> , 8)

4 According to the standard convention, the weight of a tensor density is the number of times v/ multiplies

the underlying tensor.



where N = N and
1 1 .
HO = —\/E(R - 2A) + ﬁ (77'2]77'2] 5(77'22-)2) s
Hi = —2hiij7rjk . (9)

Variation of the action (8) with respect to h;; and 7 yields Hamilton’s equations,

. OH g oH
his = —— , (4 = — , 1
](LL’) 571'”(1’) n (SL’) 5h2](l’) ( 0)
where the Hamiltonian H is
H = /d% NFH, . (11)

To evaluate the above variational derivatives, one must use the relations

= — = M — ), 12
Shuy) ~ owo(y) 00 Y "
where
1
N 5 (6705 + 6,57) . (13)
Defining the Poisson bracket
dA 0B dA 0B
= 3 —
{4, B} = /d © (5hmn(2) drmn(z)  ommn(z) 5hmn(z)) ’ (14)
the equation of motion for any quantity A(h;;, 77,t) can be written as
. 0A
A= A H
5 T4 H}
0A
=S [V (A ). (15)

If A has no explicit dependence on time, its evolution is generated by its Poisson bracket
with the H,.

Variation of the action with respect to N* yields the four constraints
H,~0. (16)

The symbol ~ denotes weak equality, or equality after the constraints H, ~ 0 have been

enforced. For example, if X =Y +M%H,,, then X ~ Y. Since the constraints define a surface
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in phase space, weak equality is also termed equality on the constraint surface. As an aside,
it follows from (11) and (16) that H ~ 0; the vanishing of the Hamiltonian on the constraint
surface is a feature common to generally covariant theories whose coordinates and momenta

transform as scalars under time reparametrizations [12].

There is no wuN # term that would allow us to compute a variational expression for
N*, so the time evolution of N* is unconstrained by the action. The four functions N* are

thus arbitrary until and unless we gauge-fix them.

2.1 Constraint Properties & Degrees of Freedom

Before examining the constraints more closely, we pause to review some terminology first
introduced by Dirac for describing constrained theories [14]. A quantity whose Poisson
bracket with each of the constraints vanishes (identically or weakly) is termed first class; a
quantity whose Poisson bracket fails to vanish weakly with at least one constraint is termed
second class. A first class constraint has vanishing Poisson bracket with all constraints,
while a second class constraint has non-vanishing Poisson bracket with at least one other
constraint. In most cases of interest, first class constraints generate gauge symmetries under
the action of the Poisson bracket. Second class constraints can usually be solved, either
implicitly by using the “Dirac bracket” [53], or explicitly by expressing some phase space
variables in terms of others.’

By direct calculation — see appendix A for details — it is possible to prove that the
constraints #,, are first class, {#,(z), H.(y)} ~ 0. This means that the symmetry generators
close under the action of the Poisson bracket, as they must in order to consistently represent

a gauge symmetry. In particular,

{Ho(w), Ho(y)} = H'(2)0,:8°(x —y) — H'(y)0,:6°(x — ) ,

{Ho(2), Hi(y)} = Ho(y)0u0*(x — y),

{Hi(w), H;(y)} = Hj(2)0,:6° (2 — y) — Hi(y)D,i0*(x — ) - (17)
This is the Dirac algebra, first discovered by Dirac in the context of parametrized field

theories in flat spacetime [14, 15]. The gauge symmetry corresponding to this first class

algebra is general covariance, and the constraints H, generate spacetime diffeomorphisms.

5See [12] for a pedagogical treatment of the general theory of constrained systems; see [13] for an in-depth

analysis of several interesting constrained systems, including electromagnetism and general relativity.



The geometrical significance of the Dirac algebra was determined by Teitelboim in [16]:
it is the algebra of the deformations of a spacelike hypersurface embedded in a Lorentzian
spacetime manifold. When the H,’s satisfy (17), Ho generates deformations normal to the
surface, while the H;’s generate deformations parallel to the surface. The Dirac algebra thus
encodes the local Lorentz covariance of a generally covariant system. In fact, four first class
constraints obeying the Dirac algebra are guaranteed to arise in any generally covariant field
theory which satisfies the principle of local Lorentz covariance.

For the constraints to be consistent with the equations of motion, the constraints must
be preserved by the equations of motion, i.e., 7;[# ~ 0. Since 0H,/0t = 0, applying the

equations of motion to H, yields
i) = [ 5 N"(0) (o). 1o )} (18)

From the first class character of the constraints, it follows that ’H“ ~ 0, as desired.

The Hamiltonian formulation of GR is a theory of a spatial metric h;; and its conjugate
momentum 7%, so the theory contains twelve canonical (or six real) variables. However,
these variables are not independent. First, they are related by the four constraints H, ~ 0.
Second, from equations (10) and (11) it follows that the equations of motion for h;; and 7%
depend on the four arbitrary functions N*; to gauge-fix N* would require imposing four

gauge-fixing constraints [12].
6-hi's+6-77's—4-H,'s—4- N"'s =4 canonical DoF . (19)

The theory therefore has four canonical (or two real) degrees of freedom.

3 Spatially Covariant General Relativity

We would like to depart from general relativity by modifying the equations of motion for the
two graviton degrees of freedom. Ideally, we would like to solve all four gauge constraints,
go down to the physical phase space, and modify the theory at that level. In this way,
we would circumvent all the difficulties of consistently modifying a constrained field theory.

Unfortunately, we do not know how to do this.

One possible approach is to modify the equations of motion for the phase space variables

h;; and 7. However, the counting of degrees of freedom in general relativity relies on the fact
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that the four constraints H,, satisfy a consistent first class algebra, namely the Dirac algebra
of equation (17), and we know from the HKT theorem that any modification of the action for
h;; and 77 will destroy this algebra. If we modify the action for the phase space variables h;;
and 7, we must impose an alternative constraint structure that consistently constrains the
phase space to the same degree as the covariance algebra; this is the approach taken in [15],
as well as in [49] and [51, 52]. Since we take the point of view that full spacetime covariance
is a spurious symmetry, we do not wish our theory to contain a constraint structure that

implies the same degree of redundancy as the Dirac algebra.

Though spacetime symmetry is manifestly broken on cosmological scales (whether
spontaneously or explicitly), there is strong evidence for spatial homogeneity and isotropy, so
we will attempt to modify general relativity while preserving the manifest spatial covariance
of the theory. To obtain a spatially covariant formulation of general relativity to modify, we
will solve the Hamiltonian constraint H, while leaving the three momentum constraints H;
intact. The Hamiltonian constraint is famously hard to solve in general, but we are inter-
ested in using our theories in a cosmological context, so we will solve it using a gauge-fixing

constraint which is well-defined on an expanding FRW background.

3.1 Metric Decomposition

Before gauge-fixing, we decompose the metric h;; into a conformal factor Q = h'/? and a

unit-determinant metric 712-]-, i.€.,

Note that Q = (v/h)*? is a three-scalar density of weight 2/3, while h;; is a three-tensor
density of weight —2/3. The scalar density we will work with is not the conformal factor €2,
but the volume factor w = vh = 932, which is a scalar density of unit weight. We choose

w because its conjugate momentum,

oL 27, 4

is a three-scalar and hence invariant under spatial conformal transformations, which rescale

Q or w; this fact will simplify matters in sections 4 and 5. The momentum conjugate to 712-]-

= 0L (Hﬂ' - %h"jvr’“k) = Wl (K"ﬂ' -~ %K h"j) : (22)

18
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which is a traceless three-tensor density of weight 5/3; the quantity

T
7= . (23)

is the corresponding traceless three-tensor. By defining the traceless projection tensor Sf]l

- 1~ -
Kl _ skl kl
0;j = 0j5 — §hijh ;

1
we can write 7% more compactly as
7 = Qogak = Qo K* . (25)

The phase space variables h;; and 7 can thus be written as

hi; = w?3hy;, 7 = BFY 4 %ﬁijwl/sww. (26)
The decomposition of the spatial metric into a volume factor and a unit-determinant met-
ric is completely general. Though the corresponding conjugate momenta were derived by
taking variational derivatives of the Einstein-Hilbert Lagrangian, the decomposition of the
momentum tensor into its trace part and its traceless part is likewise completely general.
Those familiar with the techniques of numerical relativity may be reminded of the York-
Lichnerowicz conformal decomposition or the BSSNOK (Baumgarte, Shapiro, Shibata, Naka-

mura, Oohara, and Kojima) formalism [54, 55].

3.2 Cosmological gauge

To solve the constraint Hy, we must first gauge-fix the lapse IV with a gauge-fixing constraint
x for which {H,, x} » 0; this renders Hg second class, and hence solvable. This process
destroys manifest spacetime covariance. Since we wish to retain explicit spatial covariance,
we wish our constraints H; to remain first class.

In a cosmological context, it is natural to use the volume factor of the spatial metric
as a clock, so that ¢t = t(w); we call this cosmological gauge. As mentioned in the intro-
duction, cosmological gauge is only valid when the determinant of the spatial metric evolves

monotonically, so this procedure is only valid when considering perturbative corrections to
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FRW spacetime. When the evolution of w is monotonic, ¢(w) is an invertible function, so

this gauge is equivalent to taking the volume factor w to be a function of time, i.e., w = w(t).

For cosmological purposes, another good gauge choice would be to take m, to be a
function of time. Since 7, = —4K/3, this is equivalent to Constant Mean Curvature (CMC)
gauge, in which the trace of the extrinsic curvature tensor K = h;; K% is chosen to be a
function of time. This gauge will not be used in the present work, but CMC gauge is used
in [15, 41] and mentioned in [54, 55].

To impose cosmological gauge, we add to the canonical action of general relativity a

gauge-fixing constraint
v=w—wl), (27)
along with a corresponding Lagrange multiplier \. The new gauge-fixed action is
S = / dtd*z (hy — N*Hy, = Ax) (28)
Varying the action with respect to A then reproduces the constraint
x~0. (29)
By direct calculation — see appendix B for details — one can verify that
(Hol2), X(w)} = 57,00 (x —y): (30)

the constraints Hy and x are thus second class, so we expect to be able to solve them. The

only wrinkle is that

{Hi(2), x(0)} = Vh(2)00:6°(x — y) | (31)

so the constraints H; are also second class! By shuffling our constraints slightly, we can
obtain a set of two second-class constraints and three first class constraints, and thereby

render explicit the spatial covariance of the gauge-fixed action. Indeed, since

{QW% (%) ,X(y)} ~ V()06 — ) (32)

it follows that the combination

™

k
=H;, — 2VhV; (%) (33)

o
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obeys

{Fa@). 7} ~ {Fu@), 1)} ~ {Flw)xw)} ~ 0. (34)

The interpretation of this result is simple. The H;’s generate spatial diffeomorphisms, while
Ho generates time translation. A generic spatial diffeomorphism will alter the conformal
factor of the spatial metric. If the conformal factor is taken to be the measure of time,
then the H,’s, by altering the conformal factor, will generate time translation, while H,,
by generating time translation, will alter the conformal factor. The H;’s generate spatial
diffeomorphisms and preserve the conformal factor, so they must differ from the H;’s by the

gradient of a compensating time translation term.

From the definition of H;, it is apparent that demanding x ~ 0 and H, ~ 0is equivalent
to demanding x ~ 0, Ho ~ 0, and H; ~ 0. The latter set of constraints has the virtue that
the H,; are first class, which makes manifest the presence of the remaining three gauge
symmetries. We therefore take our five constraints to be the two second class constraints
x and Hy and the three first class constraints 7:[2 Using H; = 7—21 + 2vhV; (?—Lo/ﬂkk), the

gauge-fixed action can be rewritten in terms of H; as

9:/&&xO%WJW%—M%—%@MW<%>—M) (35)
Upon integration by parts, the action becomes
Sszﬁx@ww—ﬁm—N%rm@, (36)
where
NEN—%%WM. (37)

Variation of the action S’ with respect to h;; and 7% yields Hamilton’s equations,

. OH' . oOH'
hij(z) = ——, T () = — , 38
](l’) 671'”(1’) n (ZIZ’) 6}1”(1’) ( )
where the new Hamiltonian H' is
He/ﬁx@%+M&+M) (39)
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The equation of motion for any quantity A(h;;, 77, t) is therefore

i=%y {A H'"}
¥
— %_t + /d3y (N(y){A, Ho(y)} + N () {A, Hi(y)} + My){A, X(y)}) ; (40)

where the Poisson bracket is defined as in (14). Variation of the action S” with respect to
N, \, and N' yields the five constraints

Ho~0, x~0, Hi~0. (41)

The action does not contain time derivatives of the Lagrange multipliers, so at first their
evolution appears unconstrained. Since the H; are first class, the three functions N are
indeed arbitrary until and unless we gauge-fix them. The evolution of N and ), however,

will be determined by demanding the consistency of Hy and y with the equations of motion.

For the constraints to be consistent with the equations of motion, they must be pre-
served by the equations of motion; we therefore demand that H; ~ 0, Ho ~ 0, and x ~ 0.
Since the H; are first class and 9,H; = 0, it follows at once that H; ~ 0. Since §,Ho = 0,

{Ho(z), Ho(y)} ~ 0, and {Ho(x), Hi(y)} ~ 0, it follows that
Flole) ~ [ M) Hola) x(0)
~ A () (42)

On a flat FRW background,’ K = 3a/a and hence 7', = —2wK = —6aa®. Since we are only
considering gravity on an expanding background, we assume that 7%;(x) ~ 0 more generally.
The demand Mg ~ 0 thus implies

A~ 0. (43)
Since {x (), x(v)} = 0, {x(z), Hi(y)} ~ 0, and dx/dt = —&(t), it follows that

d*y N(y){x(x), Ho(y)},

(@) () - (44)

X(@) ~ —w(t) +

~ —(t) —

l\DI»—t\

6 A spatially-flat FRW spacetime corresponds to N =1, N; = 0, and h;; = a?(t)d;;.
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Since 7, » 0, demanding y ~ 0 allows us to solve for N,

NN_iﬁx (45)

The functions N and A are thus not arbitrary. Since N = N 4 2v/h(V;N?) /7", the lapse N

has not been completely gauge-fixed, but its arbitrariness stems solely from its dependence

on the three arbitrary functions N°®.

As a check, let us revisit the counting of degrees of freedom in cosmological gauge. For
these purposes, the only effect of gauge-fixing is to replace the first class constraint Hy ~ 0
and the arbitrary function N with the second class constraints Hy ~ 0 and x ~ 0. This

modifies the left hand side of equation (19), but does not change the final tally.
6-hiy's+6-77's—1-Hy—1-x—3-H;'s —3-N'"'s =4 canonical DoF . (46)

After gauge-fixing, the theory still has four canonical (or two real) degrees of freedom.

3.3 The Action of Spatially Covariant General Relativity

In this section, we will solve the constraints H, and x to obtain a spatially covariant for-
mulation of general relativity as a theory of a unit-determinant metric fzij and its conjugate

momentum 7%. This will set the stage for modifying general relativity in section 4.

Since x and H, are second class, they can be solved explicitly to yield expressions for
w and 7, in terms of ¢, hy;, 7, and spatial derivatives. “Solving” for w is trivial: w = w(t).
Solving for 7, requires us to take a square root and pick a sign, which amounts to picking
either an expanding or a contracting background. We pause to emphasize once again that
our procedure is only valid in a cosmological context, when the conformal factor of the spatial
metric can be assumed to be evolving monotonically. To pick the sign corresponding to an

expanding background, first recall that

4
mo= 5k (47)

On a flat FRW background, K = 3a/a and hence m, = —4a/a. An expanding FRW

background therefore corresponds to m, < 0. Returning to the general case, we choose

8 [wymi R
ﬂ-w:TrGRE_\/;\/ ;2 —m—‘—QA, (48)
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7, < 0 to obtain




where indices are raised and lowered with izij, and R is the Ricci scalar for BZ] Substituting

these results for w and m, back into the action S’ yields the action of general relativity on

the reduced phase space (h;;, 7),
S = / dt d*z (frij%ij + Mo — Niﬂi> : (49)
where
H; = —2h; Vip7?* — WV, (50)

and V, is the covariant derivative with respect to ﬁ,-j.7 As discussed in section 3.4, the
constraints H; remain first class and continue to represent spatial covariance, so (49) is the

action of spatially covariant general relativity. This action yields the new Hamiltonian
H" = /d?’x (—dmw +Ni7:[,-> . (51)

The term 7% hzy has split into the term 7% izij and a contribution —wm, to the physical

Hamiltonian density. Variation of the action with respect to 712-]- and 7% yields Hamilton’s

equations,
o oH" i oH"
hii(1) = ———, 67 7% (z) = —— . 52
.]( ) 677-2'](:(:) ab ( ) 5h”(l’) ( )
To evaluate these variational derivatives, one must use the relations
Shy; - S 1.
() e gy, W Laks ) (53)
Shi(y) Shii(y) 3
and
=0 = 0,50° (z — 54
67~Tkl(y) ) 5ﬁkl(y) kil (LU y) ’ ( )
from which follow the operator identities
) ) ) )
~—:62J~— :6ab . 55
5hij abéhab ’ Y Y §qab ( )

Defining the Poisson bracket appropriate to the reduced phase space,

[ [ 0A 6B 0A 9B
{4, B} = /d ’ ((57m(x) oa(x) 67 (x) 57%;‘(35)) | "

"The distinction between H; and #; in equation (33) vanishes identically after solving Hy.
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any quantity A(hg;, 7, t) obeys the equation of motion
. 0A
A=Ay, (57)

Variation of the action with respect to N yields the three constraints

Hi~ 0. (58)

As before, the time evolution of N? is unconstrained by the action; in the absence of a

gauge-fixing procedure, the three functions N* are arbitrary.

3.4 Constraint Properties & Degrees of Freedom

By lengthy direct calculation, it is possible to prove that the constraints H, are first class, i.e.,
{H;(x),H;(y)} ~ 0. Furthermore, by applying the equations of motion to H,, it is possible
to show that 7—~lz ~ 0, so the constraints are preserved by the equations of motion. We defer
demonstrations of these two facts to section 5, where we will examine general relativity in
the context of a class of realistic theories. This is an important consistency check, because
a priori it is not clear that our procedure for solving the Hamiltonian constraint will yield a

consistent action on the reduced phase space.

As a final check, we revisit the counting of degrees of freedom in spatially covariant
general relativity. After imposing cosmological gauge and solving the Hamiltonian constraint
Ho ~ 0, general relativity is a theory of a unit-determinant spatial metric fzij and its traceless
conjugate momentum 7%, so the theory contains ten canonical (or 5 real) variables. This
reduction in the size of the phase space is compensated by a corresponding reduction in
the number of constraints and arbitrary functions: the theory contains three first class

constraints H; ~ 0, and its equations of motion involve three arbitrary functions N°.
5- iL,-j 's+5-79's —3.H,;'s —3- N''s = 4 canonical DoF . (59)

Spatially covariant general relativity thus contains four canonical (or two real) degrees of
freedom, the same number as fully covariant general relativity.
3.5 Modifying Spatially Covariant General Relativity

We have two criteria in mind for our modified theories of gravity: two graviton degrees of

freedom, and manifest spatial covariance. Our starting point is the action (49) of spatially
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covariant general relativity, which has both of these properties. To modify general relativity,
we will change the functional form of the scalar quantity =,,, which in general relativity obeys

T, = Tgr. Lhis yields the action
S = /dt dgl’ (ﬁ'”ilm + wﬂ'w - NZ?:[Z) y ?‘N[Z = —Qilijﬁkﬁ'jk - w@ﬂw y (60)

where 7, is an unspecified scalar function of ¢, the phase space variables izij and 79, and

spatial derivatives:
T = mo(t, hij, 79, 0;) . (61)

This action leads to the equation of motion

. 0A
A=—+{AH}, (62)
ot
where the Hamiltonian H is
H= / dx (—wm + Ni’;fli) , (63)

and the Poisson bracket is

_ 3 0A 0B o4 o5
{4,B} = /d v ((ﬁm(z) o7 (x) 07 (x) 5f~lij(95)> | "

Retaining the manifest spatial covariance of the theory amounts to demanding 1) that the

modified H; remain first class, i.e.,
{Hi(2), H;(y)} ~ 0, (65)

and 2) that the modified constraints be preserved by the modified equations of motion, i.e.,

H; ~ 0. (66)
Any theory satisfying these two points will be manifestly covariant under spatial diffeomor-
phisms, with the constraints H; acting as the generators of the gauge symmetry. Moreover,
the presence of three first class constraints H; on the phase space (ﬁi]—, 7%7) guarantees that

such a theory contains two local degrees of freedom, exactly as desired.

In the remainder of the paper, we examine two classes of theories. First, for pedagogical

purposes, we assume that 7, does not contain spatial derivatives; this is the wultralocal case.
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Second, to make contact with general relativity, we allow 7, to depend on spatial derivatives
through R, the Ricci scalar of izij; this is the local case. Forthcoming work will examine more
general classes of scalar momenta [20]. In section 4, we use the ultralocal case to introduce
the formalism needed to determine when the constraints 7:[2 remain first class and when the
constraints are preserved by the equations of motion. In section 5, we apply the formalism
to the local case. In both the ultralocal and the local case, the consistency of the constraints
with the equations of motion requires 7, to satisfy an analogue of the renormalization group
equation; scalar momenta satisfying this equation are manifestly invariant under spatial
conformal rescaling of the volume factor w. In the ultralocal case, this is the only consistency

condition that arises. In the local case, demanding that the constraints H; satisfy a first class

algebra is equivalent to demanding that m, obey a rather complicated differential equation.

4 Ultralocal Modified Gravity

The ultralocal limit of a theory is achieved by neglecting all terms in the action which are
second order or higher in spatial derivatives. Conceptually, this is the limit in which each
point in space evolves independently of the points around it. The ultralocal truncation of
a theory is a good approximation to the full theory whenever spatial gradients of fields are
small compared to the fields themselves and their time derivatives. This makes it is a natural

limit to take in cosmology.

In general relativity, the ultralocal limit simplifies the form of the Hamiltonian con-
straint while 1) preserving the momentum constraints and 2) maintaining a consistent con-
straint algebra [56]. This approximation has proven fruitful for analyzing both long wave-
length cosmological perturbations [57] and for studying physics near cosmological singulari-
ties [58, 59]. The idea of using cosmological gauge in the ultralocal limit, sometimes referred

to as the separate universe picture, is treated in [56].

In our approach, the ultralocal limit simplifies the form of the physical Hamiltonian
density ,, while preserving the form of the momentum constraints #;. There are two terms
in the action (60) which contain 7, namely wm,, and wN'd;m,. Though m, appears in the
action without a spatial gradient acting on it, vector indices in our theory only arise from
spatial gradients, so 7, cannot contain terms linear in spatial gradients. In the ultralocal

limit, 7, is thus a scalar function of , hi:, and 77 that does not contain spatial derivatives,

¥Rl
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1.€.,
Ty = 7Tw(t, ilij, ’ﬁ'”) . (67)

When 7, is of this form, we will say that 7, is an wltralocal function of the phase space

variables. We will now show that this form for 7, leads to a first class constraint algebra.

4.1 Constraint Algebra

In this section, we will compute the Poisson bracket {H,(x), Hq(y)} assuming that ,, is an
ultralocal function, and use the result to determine when the constraints H; remain first
class. To simplify the calculation of {#H;(z), Ha(y)}, we split H,; into a tensor part J; and a

scalar part K;. Concretely, we define the vector densities
T = —2f~Lij@k7~rjk, K = —wVim,, (68)
in terms of which H; becomes simply
Hi=JT+ K. (69)

The Poisson bracket {#;(z), Ho(y)} can then be written as the sum of more manageable

brackets,

{Hi(2). Ha(y)} = {Ti(x), Tu(y)} + {Ki(2). Kaly)}
+{Ji(2), Kaly)} + {Ki(2), Ta(y)} - (70)

To simplify the evaluation of these component Poisson brackets, we will first compute the

Poisson brackets of the smoothing functionals
Fy= / Pz 1T, Fr= / Pz [,
Gy = /dsyg“ja, Gk = /dsyg“ICa, (71)

where the functions f* and ¢° are time-independent smoothing functions. We make the
key assumption that the smoothing functions decay so rapidly at infinity that when we
integrate by parts inside the smoothing functionals, the boundary term vanishes identically;

the smoothing functions are otherwise arbitrary. With the freedom to integrate by parts at
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will, it is straightforward to compute variational derivatives of the smoothing functionals, and
thereby to obtain explicit expressions for their Poisson brackets. To obtain the brackets of

the vector densities from the brackets of the smoothing functionals, we will use the relations

(F.G) = / & Py F(@)g W), Tuly)}
(Fy.Gx} +{Fi, Gy} = / & &y fi(2)g"(y) (ma:), Ku(y)} + {Ki(a), Ja<y>}),

(Fie,Gr} = / & dy Fi(2)g" (5 {Kula), Ka(y)} (72)

The fact that equation (72) must hold for all sufficiently well-behaved functions f and g will

allow us to derive explicit expressions for the Poisson brackets involving 7; and K;.

To compute variational derivatives of the smoothing functional F;, first integrate by

parts to obtain
F;=2 / B hy; 7 V f1 (73)
from which it follows that
SF, = / & {Qﬁjk(m F)Ohi; + 2y (Vi f )67 + 20y, 746V, fi} . (74)

The first two terms in this integral are in a convenient form for taking variational derivatives
with respect to izij and 7%, but the third term requires finessing. To evaluate §V f?, expand
the covariant derivative as Vi f? = Oy f* + 'L 7, where fzk is the connection of the metric
hi;. Tt follows immediately that 6V f? = f76T% . The identity

oTi = %hm (Vréi}km V0 — vméﬁrk) (75)
thus implies that 279%h;;0V,f* = fi77*V;6h 1., so equation (74) becomes
SF, — / & {zfrﬂ'k(m FYOhi; + 2Ny (Vi f )77 + fifrjk@,-aﬁjk}. (76)
Integrating by parts, this reduces to
SF, — / B {zfrﬂf(% FYohi; — Va(f77) Sy, + 20 (Ve fi)afrjk} . (77)

From this expression, it is straightforward to compute variational derivatives of F/j,

5FJ Tmn ~jkv ) v L ~mn 2~m7L~ i
S = 2 A = Vi (R - GRS
OFr it oo
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The corresponding results for G; are

5GJ ~ ~b ~ ~ o 2 o ~
—— =20"" 7V ,.g* — V, (¢*7™") — ="V 9%,
i ab g (g"7™) — 5 g
6GJ ‘“’b ~ lnd
=20"° hupV.q9". 79
S7mn mn bv g ( )

The variational calculation for the smoothing functional F is less straightforward.

After integrating by parts, Fx becomes
Fy = w/d?’:z (Q-fi) T s (80)
from which it follows that
0F = w/d?’:z (Q-fi) oMy, . (81)

To evaluate o7, in full generality would be very difficult, so we will make some simplifying
assumptions about the form of 7. In this section, we will assume that 7, is an ultralocal
and 7.

function of ¢, fzij,

To facilitate calculations, we will enumerate all the scalars that can be built by con-
tracting factors of h;; against factors of 7. We begin by recursively defining 119 (n), the

linked chain of n factors of #%. The chain of zero factors of 7% is simply
11 (0) = h'7 . (82)
The process of adding a link to the chain is defined by
9 (n 4+ 1) = 7, 117 (n) . (83)
By closing the chain, one obtains scalars,
¢(n) =1I';(n). (84)

The ¢(n) are the only scalars that can be built out of connected contractions of iLij and 7Y,

For an arbitrary ultralocal function 7, it follows that

[e.e]

o,
om, = ; W&gb(n) . (85)
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Since ¢(0) = 3 and ¢(1) = 0, 6¢(0) = dp(1) = 0. For n > 2, the variational derivatives of

the ¢(n) are

6@5(7@)(1') Smn ab 1 ~mn 300
) (ot = 37 mofn—1) ) s =)
dp(n)(z) =y B 3(g _

57 () = oo nll(n —1),0°(x —y) .

The variational derivatives of i are thus

5FK . i - 87Tw Sl ik _ 1~mn _
s~ O 25000 ( " = 556t =),

5FK 8f Z

8¢

Similarly, the variational derivatives of G are

0G a - o, Smn C 1~mn
ﬁ = w (Ouy )me <5bc I(m)* — 3T P(m — 1)) ;

OCK _ (009" S m a”;l 5% TI(m — 1),

&ﬁ-mn

(86)

(88)

We emphasize that these results for Fx and Gk rely on the ultralocality assumption, and

will be modified in section 5.

We are now in a position to compute the Poisson brackets of the smoothing functionals,

from which we will extract the Poisson brackets of the vector densities J; and IC;.

o {Ji(x), Ja(y)}

To obtain the bracket {J;(x), J.(y)}, we first compute {F};,G;}. Combining the F);

and G ; variations into the bracket {F;, G} yields

(F1.Goy =2 [ @ {(9r) (Fia) hui® = (Vag) (V) i
+ (@kfl> Va (gaﬁijﬁjk) - (@Cg“> v, (fiizabfrl”)} .

(89)

After integrating by parts using the definition J; = —2i~zij V7% and using the identity

(@Z§j - @]@J Ve = V. this reduces to

bZJ
(F1.Go} = [ @2 {F0.9:0" = 70" +28'9°F" (Rt + Fin) }.
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From the symmetries of the Riemann tensor® and the traceless momentum tensor?, it
follows that 0 = 7% (éﬁka + éjaik>, so the last term in the integrand vanishes. The

connection terms inside the remaining covariant derivatives cancel to yield
(F1.Go} = [ @2 (150" - g"T 0. (91)
To extract the bracket {7;(x), J.(y)} from this result, first relabel dummy indices
(#1.Got = [ @ergog - [ Eyggo.r. (92)
Under the spatial derivatives in this equation, insert the identities
@) = [EPa W, S = [Efe-pfe. @)
to obtain
{F), G} = /dgﬂf &y f(2)g"(y) (Ja(2)05:0° (v = y) = Ti(y)0yed’(x = y)) . (94)
Comparing this expression to equation (72) yields the identity
{Ti(2), Ta(W)} = Tu(2)0,:0%(x — y) — Ti(y)0ye0*(z — y) . (95)

This is the same algebra obeyed by the H; in equation (17). This result is completely

independent of our choice of 7, and will carry over unchanged into section 5.

o {Ji(x),Ka(y)} + {Ki(2), Tuly) }
To obtain {J;(x), Ke(y)} + {Ki(x), Tu(y)}, we first compute {F;, Gk} + {Fk,Gs}.
Assembling the F; and Gk variations into the Poisson bracket {F};, Gx} yields

o
on,,

{F;,Gg} = —w/d?’z (0.9%) Z Wmﬂ(m — 1)V, (fizh). (96)

By expanding the covariant derivative, simplifying the ensuing total derivative of =,

and recalling that IC; = —w@ﬂrw, this expression reduces to

{F; Gg} = / Az k0,9 — w / &z (0:f%) (Dag™) Y 827(2;;)m¢(m). (97)

85 — = — = — =
Rabcd - Rcdalh Rabcd - _Rbacd - _Rabdc-
i = 7,
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Similarly,

(FeGob = = [@as o [0 @) @) S Fesmotm), o5
so the sum of the two brackets simplifies considerably,
(F1.Gic) + {Fi, G} = [ 2 (FI0ug" ~ 9°K0if). (99)
Integrating by parts and invoking the identity 0;,K, = 9,/K; yields
(Fy, G} + [Fre, Gy} = / &z (fKadig® — ¢*Kduf) (100)

To extract the quantity {J;(z), K.(y)} + {Ki(z), Ju(y)}, relabel dummy indices and
insert the identities in equation (93) to obtain
(F1.Gic} + {Fi.Ga) = [ oy Fla)g* (v
X (Ka(@)040%(x — y) — Ki(y)0yed®(z — y)) . (101)

Combined with equation (72), this result implies that

{Ji(@), Ka(y)} + {Ki(2), Tu(y)} = Ka(2)0,:0%(x — y) — Ki(y)yed®(z —y) . (102)

This expression depends strongly on the assumed form for 7,,. This result is modified

heavily in section 5.1, when 7, is allowed to depend on R.

{’Cl(z)a Ica(y)}
To obtain {/C;(z), K.(y)}, we first compute the bracket {Fy,Gx}. Substituting the
Fx and Gk variations into the Poisson bracket { Fy, Gk} yields

S 87Tw on,,
{Fie, G} = 92 D 3o )

X (T1(n)"TI(m = 1)y = T(m)™TI(n — 1)) . (103)

From the definition of the momentum chain I1(n)¥, it follows that IT1(n)*II(m —1). =
II(m)" 1I(n — 1);s = ¢(n +m — 1). The terms of the sum thus vanish order by order,

so the bracket reduces to

{Fr,Gr} =0. (104)
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By comparing this result to equation (72), it is apparent that

{Ki(z), Ka(y)} = 0. (105)

When 7, is an ultralocal function of the phase space variables, the Poisson bracket
{Ki(z),Ku(y)} vanishes identically. This will not be the case when 7, depends non-

trivially on R, as in section 5.1.

By substituting equations (95), (102), and (105) into equation (70), and recalling that H; =
Ji + K;, we obtain

{Hi(x), Hi(y)} = Hj(2)0,:8%(x — y) — Hi(y)0,u > (x — y). (106)

This is the same algebra obeyed by the H; in equation (17), and by the J; in equation (95).
Since H; ~ 0, this result implies that {H;(x),H;(y)} ~ 0, so the constraints H; are first
class. To establish this result, we assumed only that 7, was an arbitrary ultralocal function
of t, izij, and 7; we showed that this was equivalent to making 7, a function of ¢ and the
scalars ¢(n) defined in equation (84). Evidently, m, can be made any ultralocal function of

the phase space variables and the momentum constraints will remain first class.

4.2 Consistency of Constraints with Equations of Motion

In this section, we will compute the time derivative ; assuming that =, is an ultralocal
function, and use the result to determine when the constraints H; are preserved by the

equations of motion. The time evolution of H, is determined by the equation of motion

A,

n . H 1
Hi ==+ {Hi H}, (107)
where
H= /d?’x (—mw + N”H) . (108)
Since H; = J; + K; and 0J:;/0t = 0, it follows that OH,; JOot = OK;/0t. Recalling that
K; = —w0;m,, the first term in equation (107) becomes
OH, : O
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To simplify the bracket {H;, H}, we define

I, = /d%m, (110)
so that H can be written as
H = —oIl, + / Bz N'"H; . (111)

From the first class character of the constraints H;, it follows that {#;, H} ~ —w{H,, IL,}.
Since H; = J; + K;, the second term in equation (107) becomes

{H;, HY ~ —o{J;, I, } — &{K;, 1L, } . (112)

To compute the brackets {7;, [1,} and {/C;, 1}, we first compute the smoothing functional

brackets

(F)IL} = / & fi(x) (). IL}
(FrIL} = / & fi() (K (), IL} (113)

We have already done all the work needed to evaluate these two brackets: since II,, can be
obtained from Gy by the substitution 0,¢9* — w™!, brackets involving II,, can be obtained

by applying this substitution to brackets involving Gk .

o {7, 1L,}

To compute the bracket {J;,1l,}, we first compute the bracket {F;,II,}. Applying
0,9* — w™t to equation (97) and integrating by parts yields

{F;, 11} = /d3gg 1o, <—7rw + Z mae(m) 32@@) . (114)

It follows by comparing this result with equation (113) that

(T, I} =0 <—7rw + > mg(m) 82?;)) : (115)

m=2

hd {ICH Hw}
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To compute the bracket {/;, 1}, we first compute the bracket { Fx, 11, }. By applying

1

the transformation d,9* — w™"', equation (104) becomes

{Fi, 1} =0. (116)
Along with equation (113), this implies that

{Ki 1L} = 0. (117)

By substituting equations (115) and (117) into equation (112), we obtain

{H;, H} ~ &, (m — > mg(m) om, ) . (118)

d¢(m)

Upon inserting equations (118) and (109) into the equation of motion (107), the wd;m,, terms

cancel to yield

H; ~ —0; < Cay Z aﬁ“’)> . (119)

Demanding H; ~ 0 implies the consistency condition

aﬂ“’ + W ngb 87““) ~ f(t), (120)

where f(t) is an arbitrary function of time. We observe that the equation of motion (62) is
invariant under 7, — 7, + g(t), where g(t) is an arbitrary function of time, so we are free
to apply this transformation to simplify our consistency condition. If we choose g(t) so that

wg'(t) = f(t), the consistency condition becomes

~0. (121)

By assumption, w(t) is an invertible function of time, so 9/0t = w d/0w. Our consistency

condition can thus be written as
Am, ~0, (122)

where we have defined the operator

_ o9 S st
A:waw+n;2 o( )a¢(m)' (123)
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To rule out the possibility of a m, which satisfies Am, ~ 0 while Ax, # 0, we note that
the constraints H,; contain one power of spatial derivatives, while by assumption the scalar
momentum 7, is ultralocal. To satisfy Am, ~ 0, the quantity An, would need to depend on
the constraints #;, and would thus need to contain at least one power of spatial derivatives.
However, applying A to 7, does not increase the number of spatial derivatives. It follows that
A, cannot contain any spatial derivatives, and thus cannot depend on ;. The consistency

condition can therefore be promoted to
Am, =0. (124)

To obtain the most general solution to this equation, we first note that A (w™"¢(n)) = 0,

which motivates us to define

d(n) = o) (125)

The most general solution to the condition Ax, = 0 is an arbitrary function of the ¢(n).
The explicit time dependence of 7, is thus determined by its dependence on the phase space

variables.

To understand this result, we return briefly to the phase space (h;;, 7). To construct
three-scalars out of the tensor h;; and the traceless tensor 7?32 , we begin by recursively
defining H?g(n), a chain of n factors of 7?? linked together by factors of h;;. In analogy with

our construction of the ¢(n) of equation (84), we define

and
I (n -+ 1) = #thl1% (n) = w7 [ 11% (n), (127)

from which it follows that IT%(n) = Q~'w™"I1%(n). The contraction hy;II%(n) yields the

desired scalars,

¢(n)

wn

or(n) = hyllh(n) =

(128)

The ¢r(n) are the only scalars that can be built out of fully connected contractions of hy;

and ﬁrf,z . In the presence of the constraint w ~ w(t), it follows that
¢r(n) ~ ¢(n). (129)
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In other words, the ¢(n) are the scalars on the phase space (iluij, 7)) which have the correct
conformal weight to have been derived from three-scalars on the phase space (h;;, 7). It
follows that the ¢(n) are invariant under spatial conformal transformations which rescale the
volume factor w, and the condition Am, = 0 is thus analogous to a renormalization group

equation.

4.3 Summary

In this section, we developed a formalism for testing when our modified theories of gravity
lead to a consistent first class constraint algebra, and hence contain two degrees of freedom.
To develop the formalism, we made the simplifying assumption that the scalar momentum
7, is an ultralocal function of time ¢ and the phase space variables izij and 7%. This as-
sumption is sufficient to guarantee that the constraints H; remain first class. However, for
the constraints to be consistent with the equations of motion, 7, must be invariant under
renormalization of the volume factor w. Concretely, 7, must obey the renormalization group

equation
Az, =0, (130)

where
9 ZOO )

Satisfying this equation completely fixes the dependence of 7, on w(t). In the next section,

we will generalize our results to a realistic class of scalar momenta.

5 Local Modified Gravity

The ultralocal ansatz has the virtue of simplifying calculations, but the laws of nature are
local, not ultralocal. In this section, we will apply the formalism developed in the last section
to theories in which 7, depends on spatial derivatives of the metric fzij through a dependence
on the Ricci scalar R. Since the mqr of spatially covariant general relativity belongs to this
class (see equation 48), this is a realistic class of theories. As we will demonstrate, such m,,
must obey stringent consistency conditions in order for the H; to generate a consistent first

class constraint algebra.
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5.1 Constraint Algebra

In this section, we will compute {H;(z), H.(y)} assuming that 7, is a function of ¢, the phase
space variables 712-]- and 7%, and the Ricci scalar R. We will then use the result to determine

when the constraints 7—21 remain first class.

As before, we decompose H; into a tensor part J; = —Qﬁij@kﬁjk and a scalar part
K; = —wV;m,. Computing {H;(z), Ha(y)} is then a matter of computing the four brackets
in equation (70). The result for { 7;(x), J.(y)} carries over unchanged from equation (95), but
we will have to revisit the brackets involving IC;. To do so, we will first evaluate the smoothing
functional brackets {Fy, Gk} + {Fk, G} and {Fk,Gk}. By comparing the ensuing explicit
expressions to the formal expressions in equation (72), we will derive explicit expressions for

the Poisson brackets involving IC;.

Our analysis of the variational derivatives of the smoothing functional F defined in
equation (71) proceeds exactly as in the ultralocal case up to equation (81), where the
quantity dm, arises. In this section, we assume that 7, is a function of ¢, fzij, 7 and R. To
simplify calculations, note that this is equivalent to making 7, a function of ¢, R, and the

¢(n) defined in equation (84). It follows from this assumption that

Z am L Mose (132)
OR

Substituting this result into equation (81), using the identity 0R = —fzjkéﬁjk + @kﬁjﬁﬁjk,
and integrating by parts yields

5FK :w/ (Z aﬂ-w aaﬂ;R]kéhjk)
w/d%ﬁf@k <(af ) am) Ship, . (133)

Using equation (86), it is now straightforward to compute the variational derivatives of Fg,

o _ oy (a.f) ini (%"H(n)j’“ - %fr%(n — 1))

0Rinn = 00(n)
aﬂ-w mn Djk N Awihwid aﬂ-w
0 () T2 R 4wl (00 S
OF
57};; =w (0 f7) Z a¢ (n—1). (134)
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The corresponding results for G are

5GK > 07@ b 1 ~
_ — mTLH C _ mn _ 1
. (0.9%) Z maa < (m)"* = 37" (m ))
aﬂ-w Smn pbe Tmnyrbyrc a aﬂ-w
i (0ug) TG B Y ((aag )% R) ,
0Gr >
S = mz — 1)pe- (135)

We are now in a position to compute the brackets involving IC;.

o {Ji(x), Ka(y)} + {Ki(x), Ta(y)}

To compute {J;(z), Ko(y)} + {Ki(z), To(y)}, we first compute {F;, G} + {Fx, G}
We begin by substituting equations (78) and (135) into the bracket {F;, Gx}. After
expanding and simplifying a total derivatives of ¢(n), {F;, Gk} turns into

<. Or Oy ~ 1= .
w _i'JRkV 7
on 1 Vel

[F), G} = —w / RTCYE)Y Vib(m) + 2w / &2 (D.9°)

Op(m
oo a5
w/3 (w)W (0.0 %)
_w/dgz (0:17) (Pag (2 aﬂ“+zm¢ aﬂ“)) (136)

To finesse this expression, integrate by parts, use the identities VZ-VjVi = §j@iV" +
é,-jVi and Q@jé/ — V,R, simplify a total derivative of 7, use the identity &; =
—w@ﬂrw, and expand to obtain

(G = [ s it + 5o [ 09, 0r) 9 (0 5

—W/d?’z (0:f7) (Dag™) (% ~aa7;% + Z meo(m) 82?72)) : (137)

+

(OS] )

Similarly,
3 a 7 4 3. a\ vk i aﬂ-w
{FK>GJ} =— [ d&°29"K0; f" — gw d’z Vy, (aag )V (aif) Ok
3 7 2 - 87Tw aﬂ'w
; 1
s [ @2 (0f) (0" <3 r m232m¢ - (138)
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so the sum of the two brackets reduces to

{F;,Gg} +{Fk,G,} I/d32 fKiBag" — /dszgalca&'fi

_w/d% Vi (0:f7) VF ((&lg“) %)
5o [ @m0 (0 22). )

After integrating by parts, expanding, and using the identity 0;,K, = 9,/;, this becomes
(F1.Gic} + (.G} = [ fR.0g'~ [ @zgK0.s

+/ 2 (0if") (0x0ug )Mk—/dsz (0.9") (0,0 ") MF (140)

where

4 87@,

To extract the bracket {Ji(x),Ko(y)} + {Ki(x), Ju(y)}, integrate by parts, relabel

dummy indices, and insert the identities in equation (93) to yield

{F), Gk} +{Fk,G;} = / Pz d®y ()9 (y) (Ka(2)0:0°(x — y) — Ki(y)9yad* (x — y))
+ [ Py £ )0 (~MH@)0008 1)
- [ @y g way (-MH 00,8 - y). (142

By comparing this expression to equation (72), it is clear that

{Ji(@), Ka(y)} + {Ki(2), Tu(y)} =Ka(2)0::0°(x — y) = Ki(y)0ye0*(z — y)
0y (—MF(2) 0410406 (2 — )
—ya (= MF(y)0,:0,:0°%(x — y)) . (143)

Y

{’Cl(z)a Ica(y)}

To compute {K;(x),Ky(y)}, we first compute the bracket {Fy,Gg}. Substituting

equations (134) and (135) into the bracket {Fi, Gk} yields
{F,Gx} = w2/d3z (Dag®) g”“’ A ((a f') 82")

it [ @) E e (@) 7). (144)
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where

o 3 Zn%n<n ). (145)
After integrating by parts and expanding, the bracket becomes
{Fr, Gk} = /dsz (0if") (OrBag™) N — /dsz (Dag®) (Ox0:f") NF, (146)
where
N, = w287rw i om, 2 on, i 87@, ' (147)

OR = Omik ok = OR
To extract the bracket {IC;(z), K.(y)}, integrate by parts, relabel dummy indices, and

insert the identities in equation (93) to obtain
{Fr,Gg} = / Pr Py f1(2)g"(y)0pi (—N*(2)0,00,06° (2 — )
- /d?’x &y f1(2)g" (1) dye (—N* ()01 0,1 0% (x — y)) . (148)
Comparing this expression to equation (72), it follows that

{Ki(2), Ka(y)} =0 (=N™(2)031 0506 (x — y))
—ya (=N*(y)0,:0,:0°(x — y)) . (149)

By substituting equations (95), (143), and (149) into equation (70), and recalling that H; =
J; + K, we obtain the identity

{Hi(2), H;(y)} =H;(2)0,:8(@ — y) — Hi(y)9,36°(x — y)
0y (—IF(2)0,00,:0%(x — y)) — Oy (=T"(¥)0r0,6° (x — ) (150)

where I, = My, + N, or

omy, ~ . O, omy, ~ .0, 4 -~ Orm
SRRk v el A v/ i —.
Expanding the derivatives in this expression and using the fact that H; ~ 0 yields
{Hi(2), H; (1)} ~ = (T"(@) +I*()) 0,01 00 8° ( — )
— (&NI’“(x)) 8xj8xk(53(flf - y)
+ (8yjI’“(y)) 0yi8yk63(x — y) . (152)

34



The three terms of this equation are algebraically independent, so the necessary and sufficient
condition for the Poisson bracket {#;(z), H,(y)} to vanish is

T ~0. (153)

In the ultralocal case the constraints were automatically first class, but to generate a first
class constraint algebra in the local case, the scalar momentum 7, must obey the fearsome

looking differential equation Zj ~ 0.

As a check, we will now compute the Z; arising from the mgr of spatially covariant

general relativity. Recall from equation (48) that

TGR = —\/g \/w_2¢(2) — W 2BR 4 2A. (154)

Since g is a function only of ¢(2) and R, its partial derivative with respect to 7 simplifies,

aﬂ'GR o 2071‘(;1{ ~
orik — “og(2) *

(155)

After substituting this relation into the definition of Z; and recalling that J; = —QiLij@kﬁjk,

7). becomes

4 -~ Omgr ,Omar OmGR
I(m =——-wV — — W = T
H(man) == g Vi OR 09(2)""
~ 87TGR ~ -aWGR 87TGR ~ -aﬂ'(}R)
+ 27 ( =V - I 156
“\or ¥ 962) 902" oR (156)
Upon substituting the derivatives
4 1 4 1
OmGr _ o Omer , (157)
06(2)  3w?mar OR 3w?2/3 war
into Zy(mgr), the term in parentheses vanishes. By using the relations K; = —w§i7rw and
H;, = J; + K;, we obtain
T = 16 H 158
k(WGR) = m k- ( )

Since 7:[, ~ 0, the scalar momentum ngr satisfies Z, ~ 0. The constraints 7:[, of spatially

covariant general relativity thus generate a first class constraint algebra.
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5.2 Consistency of Constraints with Equations of Motion

In this section, we will compute the time derivative H; for local 7, assuming that the
constraints 7—21 are first class, and use the result to determine when the constraints 7—21 are
also preserved by the equations of motion. The analysis of H; proceeds exactly as in the

ultralocal case until we arrive at the expression

7, = —0, (www n w%) {5 LY — Of, TLLY (159)
where as before
I, = /d?’anrw. (160)

The point of departure from the ultralocal case is the evaluation of the two Poisson brack-
ets {J;, [} and {/C;,I1,}. To compute them, we first compute the smoothing functional
brackets{ Fy, 11, } and {Fk,II,}. As in the ultralocal case, we will obtain brackets involving
I1,, by applying the substitution 9,9* — w™! to brackets involving G .

o {J;, 1L}
To obtain the bracket {J;,1I,}, we first compute the bracket {Fj, 11,}. Applying
0.9” — w™! to equation (137) and integrating by parts yields

Fy = | d%fi@-( ww+QRa”“+Zm¢ )0t w—lmw>, (161)

where as before

4 -~ Onm,
It follows from an application of equation (113) that
2 - 0m, 8 ” -
(75,11, =a,-< —7, + R T +Zm¢ T NG 1kak>. (163)
L4 {]CZ7Hw}

To compute the bracket {K;, I1,}, we first compute the bracket {Fy, 11,}. After sub-
stituting 9,9* — w™! and integrating by parts, equation (146) becomes

{Fp, 11} = / &z f10; (—w 'VINT) | (164)
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where as before

omy ~ . O, omy, =0T
= w2V v
N = P BV o — W et VI (165)
Comparing with equation (113) yields
{Ki 1L} = 0; (—w ' VNF) . (166)

After substituting equations (163) and (166) into the equation of motion (159) and recalling
that Z,, = M}, + N, we obtain

— W—lmzk> . (167)
m

Since the H, are assumed to be first class, it follows necessarily that Z% ~ 0. Demanding

7:[,- ~ 0 thus implies the consistency condition

or, 2.-0m, . ~— on,,
W + gwR o +wmz::2m¢(m)a¢(m)

~ f(t), (168)

where f(t) is an arbitrary function of time. Recall once again that the equation of motion (62)
is invariant under 7, — 7, + g(t), where g(¢) is an arbitrary function of time. By choosing

a function g(t) such that wg'(t) = f(t), the consistency condition becomes

or, 2.-0m, . — on,,
2 g ~0. 1
Wy + BwR +me:2 m¢(m)a¢(m) 0 (169)

Since w(t) is assumed to be an invertible function of time, 9/0t = w 0/0w. In analogy with

our approach in the ultralocal case, we rewrite the consistency condition as
Ar, ~ 0, (170)

where we have redefined the operator A as

Azwiqtgﬁi

- )
o t3 aRjL;m‘b(m)W(m)' (171)

To rule out the possibility of a 7, which satisfies Am,, ~ 0 while Ar, # 0, we note that the
constraints 7:[, contain a term @mw, making the constraints higher order in spatial derivatives

than 7, itself. However, by examining a series expansion of 7, in the parameter R, one can
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verify that applying A to 7, does not alter its order in spatial derivatives.!? It follows that
A, cannot depend on H;. The condition A, ~ 0 is therefore equivalent to the apparently

stronger condition
Amy =0, (172)
Since A(w™"¢(n)) = 0 and A(w™?3R) = 0, we are led to define the quantities

- ¢(n)
() wn(t)’ w2/3°

(173)

The most general solution to the condition Am, = 0 is an arbitrary function of R and the
#(n). In this manner, the dependence of 7, on w(t) is determined by its dependence on the

phase space variables.

As before, to understand this result, we return briefly to the phase space (h;;, 7). As
shown in section 4.2, the only scalars that can be built out of the tensor h;; and the traceless
tensor 77 are the ¢r(n) = w™"¢(n). If we impose the gauge-fixing constraint w ~ w(t), then
or(n) ~ ¢(n); likewise, the Ricci scalar R of the metric h;; obeys R ~ R.!! This means that
R and the ¢(n) have the correct conformal weight to have been derived from three-scalars
on the phase space (h;j, 7). The scalars R and the ¢(n) are thus invariant under spatial
conformal transformations which rescale the volume factor w, so once again Am, = 0 is

revealed to be analogous to a renormalization group equation.

As a check, we will now apply the renormalization group equation to the scalar mo-

mentum mgr of spatially covariant general relativity. Since

QR = —\/g \/¢3(2) — R+ 2A, (174)

the scalar momentum mgr satisfies the condition Argr = 0; this implies that the constraints

of the theory are preserved by the equations of motion. Combined with the result that
Ti(mgr) ~ 0, which implies that the constraints are also first class, it is now clear within
the context of our formalism that the constraints H; of spatially covariant general relativity
generate a consistent first class algebra. This result justifies the assertions we made in the

first paragraph of section 3.4.

108patial derivatives enter m,, solely through R, so the derivative expansion of m, can be written 7, =
Z;OZO ¢, R¥, where the coefficients ¢y, depend on w and the ¢(n). Applying the A operator to m, changes

the functional form of the ¢z, but does not generate higher order powers of R.
HSee equation (264) in appendix C.
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5.3 Summary

In this section, we applied the formalism developed in section 4 to determine when scalar
momenta m, built out of fzij, 7 and R yield a consistent first class constraint algebra. To

ensure the first class character of the constraints H;, it is necessary and sufficient for =, to

obey the condition

I ~ 0, (175)
where
o, ~. 0T om, ~.0m, 4 ~ Om
— ey Y ey e -
T =w 8Rv ik w aﬁjkv Y Bka Y (176)

If on,/ OR = 0, then Z; = 0, so ultralocal scalar momenta satisfy this condition trivially.
The scalar momentum wr of spatially covariant general relativity depends essentially on R,

and thus satisfies this condition non-trivially.

To guarantee the preservation of the constraints H; by the equations of motion, the
scalar momentum 7, must also be invariant under renormalization of the volume factor w.

This requires 7, to obey the renormalization group equation

Am, =0, (177)
where
0 20 & )

This is a generalization of the renormalization group equation (130) to include a possible
dependence of 7, on R. The scalar momentum mar satisfies this condition in addition to
the first, so the constraints of spatially covariant general relativity generate a consistent first

class constraint algebra.

6 Conclusions

In this paper, we developed a general formalism for verifying the consistency of spatially
covariant modified theories of the transverse, traceless graviton degrees of freedom. It was a

long road, so it is worth retracing our steps to see the logic of our path.

39



In section 2, we showed how to express general relativity as a theory of a spatial
metric h;; and its conjugate momentum 7. In this language, the general covariance and
local Lorentz covariance of the theory is encoded by the Dirac algebra obeyed by the four
constraints H,. In section 3, we showed how to obtain a spatially covariant version of
general relativity. We began in section 3.1 by splitting the phase space (h;;,7") into the
phase space (w,m,) of the spatial volume factor and the phase space (ﬁij, 77 of the unit-
determinant metric. In the context of cosmology on an FRW background, it is natural to
represent time diffeomorphism symmetry on the phase space (w, 7,) and to represent spatial
diffeomorphisms on the phase space (izij, 77); in section 3.2, we showed how to achieve this
splitting using a cosmological gauge condition. On an expanding background, w drops out
of the dynamical phase space of the theory, and its conjugate momentum 7, becomes the
scalar part of the physical Hamiltonian density on the phase space (fzij, 7); in section 3.3, we
showed how to reduce the phase space by solving the Hamiltonian constraint in cosmological
gauge. By successfully projecting the degrees of freedom of general relativity onto the reduced
phase space (izij,frij ), we have shown how to represent the graviton dynamics of general

relativity on the class of conformally equivalent spatial metrics.

To modify general relativity, we simply modified the functional form of the scalar
momentum 7, while retaining the explicit spatial diffeomorphism symmetry generated by
the three constraints H;. In section 4, we considered the case in which 7, is an ultralocal
function of the phase space quantities izij and 7%, In this case, the consistency of the
constraints #; imposes a single non-trivial condition on the form of m,, namely that it
must satisfy a renormalization group equation with flow parameter w. The renormalization
group equation encodes the fact that m, must be invariant under flow through the space
of conformally equivalent spatial metrics. In section 5, we applied our formalism to the
case in which 7, is also allowed to depend on R, the Ricci scalar of the metric 712] In this
case, T, must satisfy a corresponding renormalization group equation, but its form is further
restricted by a differential equation that relates its dependence on R to its dependence on
the phase space variables h;; and 7%

As a proof of principle, this paper demonstrates the possibility of consistently modifying
the graviton equations of motion, but more remains to be done. In forthcoming work [20], we
will apply our formalism to search for viable alternatives to general relativity by attempting

to modify the 7, of general relativity parametrically in the infrared. If we discover non-
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trivial modifications of general relativity that contain only two degrees of freedom, it could
open up new lines of theoretical and experimental research. A null result, on the other hand,
would serve as further evidence of the uniqueness of general relativity. It will be interesting

to see just how far we can push this program.
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Appendix A: Covariant Constraint Algebra of GR

Recall the Poisson bracket of GR

[, [ A 4B 54 0B
{A. B} = / d (an(z) Samn (=) Smmn(a) 5hmn(z)) (179)

and the constraints

Ho=—Vh(R—2\) + — (w%j - %(W’})Q)

S -

H; = —2h;;V,mik . (180)
Our object in this section is to derive the constraint algebra

{Ho(z), Ho(y)} = H'(2)0,:0°(x — y) — H' (y)9,:6*(x — y)
{Ho(x), Hi(y)} = Ho(y)0wi0®(x — y)
{Hi(x), H;(y)} = H;j(2)0,:6° (2 — y) — Hi(y)0,6° (x — y) - (181)

To evaluate these Poisson brackets, we first define the smoothing functionals
Fu= [ @), F= [df@me),
Gu= [y, G= [SugwHal). (182)

where the functions f°, f?, ¢°, and ¢’ are time-independent smoothing functions. We then

compute the brackets

[Fu, G} = / & Py £2(2)8° () {Holx). Holy)}
(Fu, G} = / P dPy ()9 () [Ho(x), Haly)}
(F.G} = / B &y f1(2)g" (9){Halw), Ha(y) ) (183)

As in section 4.1, we assume that the smoothing functions decay so rapidly that they elim-
inate all boundary terms generated by integration by parts, but that they are otherwise
arbitrary. This greatly simplifies the explicit evaluation of the brackets of the smoothing
functionals. By comparing the explicit forms of the brackets to the implicit forms in equa-

tion (183), we will derive explicit formulae for the brackets of the H,,’s.
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To simplify the calculation of the variational derivatives of F, we will split the Hamil-

tonian constraint H, into a kinetic piece Hr and a potential piece Hy . Explicitly, we have

HO = HT + Hv, where

1 .
— = ikl — =hijh 7T”7Tkla
f( FUt T )
—Vh(R —2A).

Hr

Similarly, Fy = Fr + Fy, where

Fr= / & o) Hr(z), B = / da fO(x) My ()

Computing the variation ¢ Fr is straightforward:
1 .
0 = /d3x f° (ﬁ (27T2k7TkJ ok ) — —HTh”) oh;
1 g
+ /d?’x foﬁ (27Tij - hijﬂ'kk) o .

It follows that

;fifn = (# (2™ — ™) = %HThmn)
LR s —

Likewise,
giii N ( 1h (2"t — mhr™n) — %%Thmn)
(;an; = goﬁ 2 n — hmnﬂkk) :

(184)

(185)

(186)

(187)

(188)

Keeping in mind that §R = —6h;; RY + VIVidh;; — V¥V h¥6h,;, computing 6Fy is

just as straightforward:
1 - -
(SFV = /dgllf fo <§th” + \/ERU) 6h”

+ / &Pz Vhf (VEVhISh; — VIV Shy;)

43

(189)



Before taking variational derivatives, we exploit our freedom to integrate by parts to pull

the covariant derivatives off the metric variation dh;;:
1 . .
(SFV = /d?’x fo <§th2] + \/ﬁRU) (Shw
+ /d3x Vh (hijvkkao — Vivjfo) Ohij . (190)

It follows that

F 1
;h LA <§thmn + JERW) + VR (B VRO — v )
JFy
=0. 191
dmrmn 0 (191)
Similarly,
G 1
van =g <§thm" + \/ERW") + Vh (WY VR — VVg)
Gy
=0. 192
dmrmn 0 (192)

Before computing 6 F', we integrate by parts inside F":
F=2 / Az by "V (193)
This simplifies the variational calculation:
0F = 2/d3:17 (Vi fH)mi*6hy; + 2/d3x (Vi fHhiom?h + 2/d3z T hi 6NV f (194)

To evaluate 6V f*, first expand the covariant derivative as Vi f* = 0y f* + ', f*. It follows
that 0V, f* = f*6T%,. The identity

ol = %hlm (Vibhym + V0l — Vidhiy) (195)

implies that 2m9%h;;6V f* = fir¥V,6h;x. Substituting this result into the expression for §F
and integrating by parts yields

SF =2 / Px (Vi fO)roh; — / Px Vi (fin*)Shix + 2 / Pr (Vi fHhyor® . (196)

It follows that

F L
5 = 2(Vif i (197)
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Likewise,

5G a c cmn a_mn

6hfmn = 2(ch )ﬂ-b 60,6 - va(g ™ )

oG _ 2(Veg™) hapdl,, . (198)
5ﬂ-mn

We are now in a position to compute the Poisson brackets of interest.

o {Hi(z),H;(y)}
To calculate {H;(x), H,(y)}, we will first calculate { F, G}. Substituting equations (197)
and (198) into the Poisson bracket yields

{F,G} =2 / A’z hapm™ (Vef?) (Vig®) — 2 / a2 him* (Vig®) (Vaf?)

9 / B2 (Vog®) Vo (fihap™) +2 / & (Vi) Vo (ghiyn®) . (199)

After integrating by parts, applying the identity (V,V; —V;V,)u® = R“bijub, and
recalling that H; = —thjvkwjk, this bracket becomes
{F,G} = /dgz (f"HaVig" — ¢“MiVof)
+2 / d*z f1 g% (Rjira + Rjaik) - (200)
It follows from the symmetry (Rupeq = Reday) and antisymmetry (Ruped = —Rpaca =

—Rapac) properties of the Riemann tensor that R, = —Rjijq. The symmetry property

(7% = 77%) of the momentum tensor then implies that m* (Rjir + Rjair) = 0, so
{F,G} = /dgz (f"HoVig® — ¢"HiVaf") . (201)
Upon expanding the covariant derivatives, the connection terms cancel, yielding
(F,G} = / &z (FHa0u9" — g"Hi0uf7) - (202)
To extract the Poisson brackets {#;(z), H;(y)}, first relabel integration variables,
(F.6) = [ £ Hale)ng’ (@) - [ Cug@H@Or ). (203)

then use the identities

g'(z) = / Pys e — ). fy) = / Erde—y)fi),  (204)
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to write
{F,G} = / Fad’y f1(2)g"(y) (Ha(2)05:0°(x — y) = Hi(y)9yed’(x —y)) . (205)
By comparing this expression to (183), we obtain the identity

{Hi(x),H;(y)} = H;(2)0,:6° (x — y) — Hi(y)0yi6*(x — y) . (206)

{Ho(z), Hi(y)}

To calculate {Ho(x),H;(y)}, we will first calculate {Fy,G} = {Fr,G} + {Fyv,G}.
Substituting equations (187) and (198) into the bracket {Fr, G} yields

{Fr,G} = / d*z OV, (9"Hr) - (207)
Assembling equations (191) and (198) into the bracket {Fy, G} yields
(1.6} = [ @ (Vg o + 2 [ 2 VAPV )R,
+2 / B2 Vh (Vag®) Ve VEfO —2 / B2 Vh (Veg?) Vo Vere. (208)

After integrating the last two terms by parts, the identity (V,V.— V.V,)g* = R..9“
implies that

{Fy,G} = / d®z 0 (Vag®) Hy + 2 / &2 VhR V. (9% . (209)

By integrating the last term by parts, using the identity 2V .R,° = V,R = V,(R—2A),
and recalling that Hy = v/h(2A — R), the bracket becomes

{Fv,G} = / &’z fVa (9"Hv ) - (210)
Combining {Fy, G} with {Fr, G} and recalling that Ho = Hp + Hy yields
{Fu,G} = / d*z f'V, (g"Ho) - (211)
Since ¢“ is a three-vector and Hy/+v/h is a three-scalar,
Va(9*Ho) = 0a (9"Ho) , (212)
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from which it follows that
{Fy,G} = / d*z 20, (¢°Ho) . (213)

To extract the bracket {Ho(x), H;(y)}, first relabel the variable of integration,

(Fir,G) = [ &2 1(@)0s (5" (a)Ho(a). (214)
then use the identity
g @Hala) = [ 45— " ()Haly) (215)
to write
(Fr.G} = [ dody fa)g" (0 Ha1)0n8* (o~ ). (216)

By comparing this expression to (183), we obtain the identity
{Ho(2), Hi(y)} = Ho(y)2:0°(z — y) . (217)

{Ho(x), Ho(y)}
To calculate {Ho(z), Ho(y)}, we will first calculate

{Fu,Gu} ={Fr,Gr} +{Fr,Gv}+{Fv,Gr} +{Fv,Gv}. (218)

It is straightforward to verify that the brackets {Fr, Gr} and {Fy, Gy} vanish iden-
tically. To compute {Fr, Gy}, substitute equations (187) and (192) into the Poisson

bracket to obtain
{Fr,Gy} = 2/d3z foﬂm"VmVngO

— / d*z fog(]% (%?—Lm’“k + zﬁRmnwm”) : (219)

Likewise,

{Fv, GT} = —2/d32 goﬁm"VmanO

+/d32 fogo\/iﬁ (%vakk + QﬁRmnﬁmn) ) (220)
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The sum of the four brackets reduces to
{Fu,Gy} = 2/d32 (foﬂm"VmVngO — gowm"VmanO) ) (221)
After integrating by parts and recalling that H; = —2h;; V7%, the bracket becomes
{Fy,Gy} = / &z (FPH' V9" — "1V 7). (222)

Upon expanding the covariant derivatives in terms of partial derivatives and connection

terms, the connection terms cancel to yield

{Fu,Gy} = /d?’z (fO”Hi@-gO — gO’Hi@-fO) ) (223)
To extract the bracket {Ho(x), Ho(y)}, relabel integration variables and use the iden-
tities
P = [EPa-nPw. )= [Ele-nre e
to write

{Fu,Gg} = /d3x Py fO(2)g° (y) (H'(2)0,:0° (x — y) — H'(9)9,:6°(x — y)) . (225)
By comparing this expression to (183), we obtain the identity

{Ho(2), Ho(y)} = H'(2)0,:0°(x — y) = H'(y)0,:0°(x — ). (226)

Appendix B: Constraint brackets after imposing

We begin with the four constraints H,. After introducing the gauge-fixing constraint

x=Vh—uw(t), (227)

we need to compute the brackets of each of the five constraints (including y) with x. We

introduce the smoothing functionals

F = / Co fo)x(@), G, = / &y g ()X () | (228)
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where f, and g, are arbitrary rapidly-decaying smoothing functions. We then compute the
brackets

(PG = [ @ody [ @)
(Fir, Gy} = [ @ty @) (Holo) x(0)

(F,G) = / & &y £ (2)gy () {Hi(z), X(v)} (229)
The variation 5FX is
OF, = / A3z fxé\/ﬁhijéhij, (230)
SO
oF, 1 . oF,
T fgVhR™, 0 =0. (231)
Likewise,
6Gy 1 - 0Gy
T— gxi\/ﬁh D s =0 (232)
It follows at once that
{F\. Gy} =0. (233)

Comparing with (229), we obtain the identity

{x(®),x(y)}=0. (234)

We now turn to the brackets of x with the H,,.

o {Ho(x), x(y)}
We split { Fyy, G, } into {Fy, Gy} = {Fr,G,} + {Fv, G, }. Assembling equations (187)
and (231) into the Poisson bracket {Fr, G, } yields

1
(Fr.G) = [ & o5 (235)

The bracket {Fy, Gy} vanishes identically, so

1
(Fir. Gy = [ @ o575 (236)
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To extract the bracket {Ho(x), x(v)}, use the identity

ao) = [ Eya )6 —y). (237)
which yields
(Fir. Gy} = [ oy Pa)gy)3mh @8 - ). (238)
Comparing to (229), we obtain the identity
{Ho(r), X(0)} = 575 (0)5°(x — ). (239)
{Hi(z), x(v)}
From equation (197), it follows that
{(F,Gy\} = — / 43z g, VAV, f'. (240)
Integrating by parts and using the fact that g, is a scalar, this bracket becomes
{F,Gy} = / &z fiVhdig, - (241)
To extract the bracket {H;(x), x(y)}, use the identity
oo = [Eyo )y (242)
to write
(F.6) = [ @ty f@)go)vh@oss(e - ). (213

Comparing to (229), we obtain the identity

{Hi(2), x(0)} = Vh(2)00:6 (x — y) . (244)

Appendix C: Conformal Decomposition

Consider a metric g, in a number of dimensions d. Denote the determinant of g,, by g.

Define the positive conformal factor

Q=g > 0 (245)
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and the metric

G = 19179, (246)

so that
Guv = Qg/w . (247)

By construction, the signature of g,, is the same as that of g,,. Denote the determinant of
Gy by §. From the definition of §,,, it follows that § = ¢/|g|, so ¢ = 1, depending on the

signature of g,,,. We therefore call g,, a unit-determinant metric.

The inverse metrics are related by g = §*Q~!. We denote the covariant derivative
with respect to g,, by V,, and the covariant derivative with respect to g, by @M. The

connection F;}V defined by g, is

1
Pf\w = §g>\a (8ugua + 0,,g,w — 8(,9“,,) , (248)

while the connection ff;u defined by g, is

. 1y, - ) )
F;),\LV = §g>\ (augvcr + al/g,ucr - ach;w) . (249)
The connection ff;u obeys I /’)V =T /’)V - C’;\V, where
1
Co = (52;‘ - 59*“%) 0, log Q. (250)

For convenience, we can write ) in terms of a scalar field ¢ and a constant {2 as

Q = Qe (251)
in which case
Ch, = Vo + Ve — G V. (252)
The Riemann tensor of g, is
R, =0.I -0+, —T).T7,, (253)
while the Riemann tensor of g, is
Ry = 0T — T, + T4, B, — 4,77, 251)
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Using Fi‘w = fi‘w +C)

", the Riemann tensor RA,_W, can be rewritten as

R, =R, +CCs, —C 0o + 0,00, + 17,08, —19,C

KUy po ' Ky Vo~ KL po ™~ Ky pur~ov
A A Yo no A
- 90,C, — 1,00, + 17,0, (255)
Using
v A = A A A o o A
V#Cm/ - VVCnu - 8;LCW + F;,LO'CHV - FMHCJV
A A Yo no A
- 0,0, — 1,00, + 17,0, (256)
RA,_W, becomes
A pA A o A o = A = A
R kv R Ky + C;,LUOHV - OI/O'CHM + VNCHV - vVOnu : (257)
The Ricci tensor of g,, is R, = R/\;mﬁ the Ricci tensor of g, is EW = }é’\w\u. Tracing
equation (257) appropriately yields
Ry = Ry, + C3,C5, — C)L.CT + VaCh, — V,Coy (258)

We now express R, in terms of RW and derivatives of ¢. Recalling that 6% = d, we find
Chy = dV,p
CroCin = (d+2)(V,u0) (Vo) = 25, (Vo) (V20) (259)
SO

RMV = R,uu + (d - 2)(€MQP)(@V¢) - (d - 2)@#1/(6030)(@090)

- (d - 2)6;1@1/90 - guuva€030 . (260)

The Ricci scalar for g, is R = g"”R,,,; the Ricci scalar for g, is R = f]‘“’éw. In terms of

covariant derivatives of ¢, we have
QR =R~ (d—1)(d —2)(Vap) (V%) — 2(d — 1)V V. (261)

In three dimensions, the Weyl tensor vanishes, so the Riemann tensor is completely
determined by the Ricci tensor and the metric via
1
lemn :ﬁ (glmRkn - glanm - gkaln + gkanm)
1

_m(glmgkn — GinGkm) R (262)
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In this case, it suffices to compute the Ricci tensor. When d = 3, our previous formulas

reduce to

R;; = éij + (@#P)(ﬁﬂ@) - fh’j(ﬁk@)(@k@ - @iﬁjﬁp - ;Lij@k@kSD,

QR = R — 2(V,p)(VFp) — 4V V0. (263)
The condition w ~ w(t) amounts to ¢ ~ (), so in cosmological gauge we have
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