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In this paper, we propose a new framework for dark-matter physics. Rather than focus on one or
more stable dark-matter particles, we instead consider a multi-component framework in which the
dark matter of the universe comprises a vast ensemble of interacting fields with a variety of different
masses, mixings, and abundances. Moreover, rather than impose stability for each field individually,
we ensure the phenomenological viability of such a scenario by requiring that those states with larger
masses and Standard-Model decay widths have correspondingly smaller relic abundances, and vice
versa. In other words, dark-matter stability is not an absolute requirement in such a framework,
but is balanced against abundance. This leads to a highly dynamical scenario in which cosmological
quantities such as Q2cpwm experience non-trivial time-dependences beyond those associated with the
expansion of the universe. Although it may seem difficult to arrange an ensemble of states which
have the required decay widths and relic abundances, we present one particular example in which
this balancing act occurs naturally: an infinite tower of Kaluza-Klein (KK) states living in the bulk
of large extra spacetime dimensions. Remarkably, this remains true even if the stability of the KK
tower itself is entirely unprotected. Thus theories with large extra dimensions — and by extension,
certain limits of string theory — naturally give rise to dynamical dark matter. Such scenarios also
generically give rise to a rich set of collider and astrophysical phenomena which transcend those

usually associated with dark matter.

I. INTRODUCTION, MOTIVATION, AND
SUMMARY

Situated at the nexus of particle physics, astrophysics,
and cosmology lies one of the most compelling mysteries
that faces physics today: that of unravelling the identity
and properties of dark matter [1]. From measurements
of galactic rotation curves and velocity dispersions to ob-
servations of the gravitational lensing of galaxy clusters
and the detection of specific acoustic peaks of the cosmic
microwave background (CMB), ample circumstantial ev-
idence suggests that most of the matter in the universe
does not interact strongly or electromagnetically. Such
matter is therefore electrically neutral (dark) and pre-
sumed non-relativistic (cold). Beyond these properties,
however, very little is known about the nature of dark
matter. Fortunately, the current generation of dark-
matter experiments have unparalleled sensitivities, and
new data concerning the possible direct and indirect de-
tection of dark matter can be expected soon. This data
will therefore go a long way towards not only resolving
this pressing cosmological mystery, but also constraining
the possibilities for physics beyond the Standard Model
(SM).

Many theoretical proposals for physics beyond the
Standard Model give rise to suitable dark-matter can-
didates. However, most of these dark-matter candidates
consist of a single particle (or a small collection of par-
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ticles) which are stable on cosmological time scales as
the result of a discrete symmetry. Examples include
the lightest supersymmetric particle (LSP) in supersym-
metric theories, and the lightest Kaluza-Klein particle
(LKP) in certain higher-dimensional theories in which
the Standard Model propagates in the bulk [2]. In the
first case, the LSP is stabilized by the assumption of an
R-parity symmetry, while in the second case the stabi-
lizing symmetry is a so-called “KK parity”. However,
in all cases, the ability of these particles to serve as
dark-matter candidates rests squarely on their stability.
Indeed, any particle which decays into Standard-Model
states too rapidly is likely to upset traditional big-bang
nucleosynthesis (BBN) and its successful predictions of
light-element abundances. Such decays can also leave un-
acceptable imprints in the cosmic microwave background
and diffuse X-ray and gamma-ray backgrounds. For this
reason, stability is often the very first criterion required
for the phenomenological success of a hypothetical dark-
matter candidate.

There is, of course, one important exception to this ar-
gument: a given dark-matter particle need not be stable
if its abundance at the time of its decay is sufficiently
small. A sufficiently small abundance ensures that the
disruptive effects of the decay of such a particle will be
minimal, and that all constraints from BBN, the CMB,
etc., will continue to be satisfied.

In this paper, we shall consider a new framework for
dark-matter physics which takes advantage of this possi-
bility. Specifically, we shall consider a multi-component
framework in which the dark matter of the universe com-
prises a vast ensemble of interacting fields with a variety
of different masses, mixings, and abundances. Rather



than impose stability for each field individually (or even
for the ensemble of fields as a whole), we shall ensure the
phenomenological viability of such a scenario by requir-
ing that those states with larger masses and larger decay
widths into Standard-Model fields have correspondingly
smaller relic abundances, and vice versa. In other words,
dark-matter stability is not an absolute requirement in
such a framework, but is balanced against abundance.
As we shall demonstrate, this leads to a highly dynam-
ical scenario in which cosmological quantities such as
QcpMm experience non-trivial time-dependences beyond
those associated with the expansion of the universe. We
shall therefore refer to such a scenario as “dynamical dark
matter”.

In general, it might seem difficult (or at best fine-
tuned) to have an ensemble of states which are not only
suitable candidates for dark matter but in which the
abundances and decay widths are precisely balanced in
this manner. However, it turns out that theories with
large extra spacetime dimensions not only naturally pro-
vide such ensembles of states, but do so in a manner
which is virtually intrinsic to their construction. If the
Standard Model is restricted to a brane floating in a
higher-dimensional space, it then immediately follows
that any field propagating in the bulk of this space must
be neutral under all Standard-Model symmetries. As a
consequence, such bulk fields can have at most gravita-
tional interactions with the physics on the brane, and will
therefore appear as dark matter from the perspective of
an observer on the brane. Moreover, from the perspective
of this four-dimensional observer, such bulk fields will ap-
pear as an infinite tower of individual Kaluza-Klein (KK)
modes. This, then, would constitute our dark-matter en-
semble.

At first glance, such a scenario for dark matter would
appear to face a major phenomenological hurdle: in the
absence of additional symmetries or ad-hoc assumptions,
an entire Kaluza-Klein tower of bulk states will generally
be unstable: the heavy KK states in such a tower will
generically decay into not only lighter KK bulk states
but also Standard-Model brane states, and the lighter
KK states will also decay into Standard-Model brane
states. Even the stability of the lightest modes of the bulk
field is not guaranteed. This instability of the Kaluza-
Klein tower therefore appears to pose a serious threat for
the survival of big-bang nucleosynthesis in its traditional
form, and can similarly disturb the X-ray and gamma-ray
backgrounds.

Fortunately, there are two critical features of Kaluza-
Klein towers which can play off against each other in
order render such a scenario phenomenologically viable.
As one goes higher and higher in a generic KK tower, it
is true that the decay width of the KK states generally
increases with the KK mass. However, it is also true that
the cosmological abundance associated with such states
can often decrease with the KK mass. This is particularly
true if we imagine that these states are cosmologically
produced through misalignment production, as turns out

to be particularly appropriate for such scenarios. As a
result, it might be possible that all KK states which decay
before or during BBN have such small abundances that
the destructive effects of their decays are insignificant,
while at the same time a significant fraction of the KK
tower survives to the present day and thereby contributes
to the observed total dark-matter abundance. Thus, the
surviving dark matter at the present day would consist
of not merely one or two states, but a significant fraction
of an entire interacting KK tower. Through the existence
of such “dark towers”, theories of large extra spacetime
dimensions therefore provide an ideal realization of our
general dynamical dark-matter scenario.

In this paper, we shall lay out the general properties
of such a scenario and explore the extent to which such
a scenario is viable. Moreover, we shall attempt to do so
in a completely model-independent way, without mak-
ing any assumption concerning the nature of the bulk
field in question. However, it is important to recognize
that this entire approach represents a somewhat unortho-
dox approach to dark-matter physics. By balancing the
stability of the different dark-matter components against
their abundances across a large or even infinite ensemble,
the dark matter in this scenario is intrinsically dynamical
— its different components continue to experience non-
trivial mixings and decays throughout their cosmological
evolution, with such dynamical behavior continuing un-
til, during, and beyond the current epoch. Moreover, be-
cause the dark matter in our scenario has multiple com-
ponents, its phenomenology cannot be characterized in
terms of a single mass or annihilation cross-section. This
can therefore lead to an entirely new dark-matter phe-
nomenology, profoundly changing the way in which such
dark matter might be observed and constrained through
collider experiments and astrophysical observations. In-
deed, within the specific context of large extra dimen-
sions, we shall see that one important new phenomenon
that emerges for such dark matter is the possibility of
“decoherence” — i.e., the phenomenon in which only a
single linear combination of KK modes couples to brane
physics at one instant before decohering and becoming
essentially invisible to the brane at all subsequent times.

It is also important that this framework not be con-
fused with recent proposals concerning so-called “Kaluza-
Klein dark matter” [2]. Theories of KK dark matter re-
quire that the entire Standard Model propagate in the
large extra dimensions [3-5], and that the lowest ex-
cited KK mode of a Standard-Model field (such as the
lowest-excited KK photon or neutrino) be stable as the
result of an internal geometric symmetry such as KK
parity [2, 5]. Such theories of KK dark matter are there-
fore similar to theories of supersymmetric dark matter
— they are theories of a single, stable, dark-matter par-
ticle. While phenomenologically consistent, such a point
of view is diametrically opposed to what we are suggest-
ing here. Moreover, in doing away with the infinite tower
of KK states and focusing exclusively on the single light-
est KK mode, such “KK dark matter” theories also do



away with that part of the physics which is intrinsically
higher-dimensional. The resulting scenarios are there-
fore insensitive to the rich physics that can emerge from
an entire tower of Kaluza-Klein states acting in unison,
with non-trivial masses and mixings governing their dy-
namics. Indeed, it is precisely such behavior that would
give a window into the nature of the extra dimensions
from which such states emerge.

By contrast, because our scenario balances a spectrum
of decay lifetimes against a spectrum of relic abundances,
our framework is sensitive to the physics of the entire
tower of KK states and thereby makes use of the full
higher-dimensional “bulk” in a fully higher-dimensional
way. Moreover, since Type I string theories naturally give
rise to closed-string states (such as the graviton, various
moduli, and axions) which live in more spacetime dimen-
sions than the Standard-Model open-string states which
are restricted to live on D-branes, the scenario we shall
be investigating is also extremely natural — and indeed
almost unavoidable — in certain limits of string theory.
Our work can therefore be seen as providing a test of
the extent to which such string theories remain cosmo-
logically viable as a function of the volume of the extra
dimensions transverse to the Standard-Model brane. In
other words, by studying dynamical dark matter and its
phenomenological viability, we are not only exploring a
new candidate for dark matter but also providing new
phenomenological constraints on large extra dimensions
and certain limits of string theory.

This paper is organized as follows. In Sect. II, we shall
introduce our dynamical dark-matter framework in its
most general form, without making reference to the spe-
cific example of large extra dimensions or KK towers. We
shall discuss how lifetimes and abundances can play off
against each other in such a scenario, and sketch the re-
sulting contributions to the total dark-matter abundance
as they evolve in time. In Sect. III, we shall then focus
on the example of a generic tower of Kaluza-Klein states
emerging from the bulk of large extra dimensions, and
show that such a tower has all the required properties to
be a dynamical dark-matter candidate, with abundances
and lifetimes that satisfy unique mathematical inverse
relations. We shall then proceed, in Sect. IV, to discuss
several laboratory and astrophysical signatures of such
a scenario, focusing on those new features which tran-
scend typical dark-matter signatures and which might
explain why such dark matter has not yet been observed.
Throughout this paper, our analysis shall be as general as
possible without specifying the precise nature of the bulk
field in question. We shall then conclude in Sect. V with
a discussion of extensions and possible generalizations of
our dark-matter framework.

This paper is the first in a two-part series. The primary
purpose of the present paper is merely to provide a gen-
eral theoretical overview of the dynamical dark-matter
framework. As a result, we will not choose a particular
species of dark-matter field, neither restricting ourselves
to specific numbers nor subjecting ourselves to specific

phenomenological bounds. Instead, our discussion here
will focus on the full range of theoretical possibilities af-
forded by this new scenario. However, in a companion
paper [6] we will provide a detailed “proof of concept”
by focusing on the particular case that the KK bulk field
in question is an axion. In particular, in Ref. [6] we will
demonstrate that a bulk axion field can satisfy all the-
oretical and numerical constraints needed to serve as a
dynamical dark-matter candidate, and moreover we will
demonstrate that this candidate also satisfies all known
cosmological, astrophysical, and collider bounds on dark
matter. Indeed, in making this assertion, Ref. [6] will
borrow heavily from the results of a third paper [7], a de-
tailed forthcoming phenomenological study of axions and
axion-like particles in higher dimensions. Thus, taken to-
gether, these papers will demonstrate that our dynamical
dark-matter scenario remains a very real possibility for
explaining the dark matter of the universe.

II. DYNAMICAL DARK MATTER: GENERAL
SCENARIO

In this section we shall begin by discussing our dy-
namical dark-matter scenario in its most general form,
without reference to specific examples such as those in-
volving extra spacetime dimensions or KK towers of bulk
fields.

A. T versus (): Balancing lifetimes against
abundances

Broadly speaking, upon positing any new scenario for
dark matter, one faces certain immediate constraints
which must be satisfied. These constraints ultimately
restrict either the abundance of the dark matter, the life-
time of the dark matter, or the relation between the two.

Let us begin by considering the case of a single dark-
matter particle y. Since this dark-matter particle is
presumed unique, it alone must carry the entire ob-
served dark-matter abundance: Q, = Qcpm ~ 0.23 [8].
However, given this large abundance, consistency with
constraints coming from big-bang nucleosynthesis, the
cosmic microwave background, and diffuse X-ray and
gamma-ray backgrounds together require that x have a
lifetime which meets or exceeds the current age of the
universe. Otherwise, decays of x run the risk of disturb-
ing BBN and its successful predictions for light-element
abundances. Such early decays also have the potential to
distort the cosmic microwave background as well as the
X-ray and gamma-ray backgrounds.

However, because of the quantum-mechanical nature
of the decay process, not all dark matter will decay at
once. As a result, the lifetime of x must actually exceed
the age of the universe by at least one or two orders
of magnitude in order to ensure that x has a negligible
chance of having already decayed in the recent past. This



likewise implies that such a particle also has a negligible
chance of decaying either today or tomorrow. Such a
particle y is therefore “hyper-stable”. Indeed, this is the
case for most if not all known single-particle dark-matter
candidates.

Hyper-stability is the only way in which a single-
particle dark-matter candidate can satisfy the compet-
ing constraints of having a significant abundance €, ~
Qcpm while simultaneously avoiding the dangerous ef-
fects of decaying into Standard-Model particles. This
then results in a dark-matter scenario which is “frozen”
in time, with cosmological quantities such as €2, evolving
only because of the expansion of the universe.

However, the primary purpose of this paper is to pro-
pose that there is another way — a “dynamical” way —
to satisfy these competing constraints. First, we recog-
nize that in some sense, it is somewhat unnatural to con-
sider the dark matter of the universe as consisting of only
a single particle. After all, the visible matter of the uni-
verse constitutes only a small fraction of the energy den-
sity attributed to dark matter, and yet is teeming with a
diversity and complexity, known as the Standard Model,
in which a complex network of elementary particles is
organized according to their own internal principles. It
therefore seems natural to consider the new opportunities
that are open to us by taking the dark matter to consist
of multiple particles as well.

In this paper, we shall therefore imagine that the
dark matter consists of a vast ensemble of particles y;,
i =1,2,..., N with N > 1. The first observation that fol-
lows from this assumption is that none of these particles
individually needs to have a significant abundance, since
they may still collectively yield the correct total abun-
dance QcpMm-. As a special case, for example, we might
imagine that each particle y; shares a common abun-
dance Q; = Qcpm/N. However, if these particles were
also to have equal lifetimes, then this would not solve our
second constraint — that of protecting the successes of
BBN and minimally impacting the CMB and other dif-
fuse backgrounds — unless each of these particles is not
only stable but hyper-stable. This is because the net ef-
fect of the nearly simultaneous decays of each of these NV
particles would be no different than that of the decay of
a single particle carrying the full abundance Qcpy .

However, the fact that we have multiple particles fur-
nishes us with an alternate way to satisfy these con-
straints: we can imagine that each of these particles has a
significantly different lifetime. In general, these particles
can also have different individual abundances. As long
as those particles which have relatively short lifetimes
also have correspondingly small abundances, and as long
as those particles which have relatively large abundances
also have relatively long lifetimes, we can reproduce the
correct total dark-matter abundance Qcpy while simul-
taneously avoiding any damaging effects on BBN, the
CMB, etc. In this way, the existence of a vast ensem-
ble of dark-matter particles x; opens up the possibility
of balancing abundances against decay widths in a non-

trivial way across a multitude of states.

This, then, is the essence of our dynamical dark-matter
proposal. The fact that we have distributed the to-
tal required dark-matter abundance across many states
means that no particular state is forced to carry a sig-
nificant abundance on its own. We thus have the room
to give these states a whole spectrum of lifetimes (or de-
cay widths) without running afoul of cosmological con-
straints.

Note that the usual scenario of a single hyper-stable
dark-matter particle is nothing but a special case of this
more general framework: even though our scenario has
N > 1, it still remains possible that one particle (or just
a few particles) could carry the bulk of the abundance
QcpMm at the present time. Following the same logic
that applied in the single-particle case, this small sub-
set of states would then be required to be hyper-stable,
and all of the remaining states would have abundances
that are far too insignificant to be of consequence. How-
ever, the novel features of our scenario emerge in the
opposite limit, when we imagine that none of our dark-
matter states individually carries the bulk of the total
relic abundance. Some fraction of these states then no
longer need to be hyper-stable, leading to a dynamical
scenario in which spontaneous dark-matter decays are oc-
curring prior to, during, and beyond the current epoch.
As a result of this behavior, cosmological quantities such
as Qcopm will experience time-variations which transcend
those due to the ordinary expansion of the universe.

B. Dynamical dark matter: Time-evolution of
individual components

It is possible to outline the salient features of this sce-
nario somewhat more quantitatively without loss of gen-
erality. For this purpose, we shall describe the history
of the universe as progressing through four distinct eras
respectively associated with inflation (vacuum domina-
tion), reheating (RH), radiation domination (RD), and
matter domination (MD). Note that the reheating era is
itself essentially matter-dominated, with the matter in
this case consisting of the oscillating inflaton. Likewise,
note that even though the current epoch is technically
a ACDM universe, approximating this epoch as matter-
dominated is nevertheless a fairly good approximation.
For the purposes of our general discussion, we shall not
specify the particular energy or temperature scales as-
sociated with the transitions between these eras; such
scales, especially as they relate to inflation and reheat-
ing, are likely to be highly model-dependent. However,
regardless of these energy scales, a quantity whose energy
density p and pressure p are related through a single-
parameter equation of state of the form p = wp will have
a relative relic abundance Q = p/periv that scales as a



function of cosmological time ¢ according to'

t(1=3w)/2 RD era
Q ~ (2w RH/MD eras (1)
exp[—3H (1 +w)t] inflationary era .
Recall that w = 0 for matter, while w = —1 for vac-

uum energy (cosmological constant) and w = +1/3 for
radiation and curvature respectively.

For concreteness, we shall assume that the individ-
ual components of the eventual dark matter in our sce-
nario are described by scalar fields ¢; with correspond-
ing masses m; and widths I'; describing their decays
into Standard-Model states. For simplicity we shall also
assume that these widths I'; correspond to processes
in which a given dark-matter component ¢; decays di-
rectly into SM states (i.e., ¢; — SM) without pass-
ing through any other dark-matter components as in-
termediate states. In other words, we shall assume that
extra-ensemble decays ¢; — SM (with combined total
width T';) dominate over all possible intra-ensemble de-
cays ¢; — ¢; + .... It turns out that this is a valid as-
sumption for many realistic scenarios to be discussed in
this paper and in Ref. [6], and in the Appendix we shall
discuss what happens when this assumption is relaxed.

In a Friedmann-Robertson-Walker (FRW) cosmology
parametrized by a Hubble parameter H(t) ~ t~! in
which we assume that our dark-matter component fields
¢; have negligible spatial variations as well as negligible
self-interactions, these fields will time-evolve according
to the differential equation

Gi + [BH(t) +Tilgs + mi¢; = 0. (2)

This is the equation for a damped harmonic oscillator,
with critical damping occurring for 3H(t) + I'; = 2m;;
note that the single-derivative “friction” term in this
equation receives two separate contributions, one arising
from the cosmological Hubble expansion and the other
arising from the intrinsic decay of ¢;. As a result, at early
times for which 3H(t) +T'; > 2m;, the field ¢; is over-
damped: it does not oscillate, and consequently its en-
ergy density behaves like vacuum energy (with w = —1).
By contrast, at later times for which 3H (¢t) + I'; < 2m;,
the field is underdamped: it therefore oscillates, and con-
sequently its energy density scales appropriately for mat-
ter (with w = 0). The condition 3H(t) + T'; = 2m; thus
describes the “turn-on” time at which oscillatory behav-
ior begins and the field begins to act as true matter.
Given these observations, we can now sketch how each
of the abundances €2; for each component ¢; will behave

I The results in Eq. (1) follow from the general facts that p ~
R3(+w) apd perit ~ H?, where R and H are respectively
the scale factor and Hubble parameter. Recall that these lat-
ter quantities have the scaling behaviors (R, H) ~ (t'/2,¢t=1)
in an RD era; (R,H) ~ (t2/3,t71) in RH or MD eras; and
(R, H) ~ (ef* constant) in an inflationary era.

in our scenario. For concreteness, we shall assume that
these abundances are all initially established at a com-
mon time ty. Moreover, we shall assume that each com-
ponent has an initial abundance which decreases as a
function of its mass. While not all production mecha-
nisms have this property, we shall see in Sect. IIT that
misalignment production in particular can accomplish
this task.

Immediately upon establishment of these abundances,
the states in our ensemble can be separated into two
groups. Those heavier states with masses 3H (t9) +
I'; < 2m,; will all begin oscillating simultaneously. In
other words, they experience a simultaneous, instan-
taneous turn-on. By contrast, the lighter states with
3H(to) + I'; > 2m,; will experience a step-by-step “stag-
gered” turn-on, with lighter and lighter states crossing
the turn-on threshold at later and later times. Indeed,
if we approximate H(t) ~ /3t where k is a constant
within each era, then a given mode with mass m; will
turn on at a time ¢; ~ k/2m;. Thus the lightest states
are necessarily the last to turn on. Indeed, x = 2 for the
RH and MD eras, while ¥ = 3/2 for the RD era.

Finally, once these states are all “turned on” and be-
have as matter with w = 0, their abundances ; will
evolve as discussed above until such times t ~ 7; = I‘i_l
as these states decay. Specifically, the abundance €2; ~
pi/H? associated with each component ¢; will evolve ac-
cording to the differential equation

Qi+<3H+2%+Fi> Q =0. (3)

[This equation follows directly from Eq. (2) upon use of
the general expression p; = 3(m;¢? + $2) and the virial
theorem m;¢? = (bf, the latter holding for oscillations
whose frequencies are large compared with T';.] Note
that if we ignore the decays of these particles (i.e., if
we set I'; — 0), the solutions to this differential equation
are nothing but the results given in Eq. (1) for w = 0.
Upon decay, however, the corresponding abundance €;
drops rapidly to zero; this occurs when ¢t ~ 7, and in-
deed I'; 2 3H + 2H/H at t ~ 7;. For simplicity, in the
rest of this paper we shall approximate such decays as
occurring promptly and completely at ¢ = ;. However
this approximation will not be critical for any of our con-
clusions, and can easily be discarded if needed.

Combining all these features, we can then sketch the
salient features of our scenario as in Fig. 1. In this plot,
we have taken the time at which the initial abundances
are established to be during the inflationary era, but
other time intervals are also possible. We have also as-
sumed that I'; < 3H (¢;) when 3H (¢;) = 2m;, so that the
decay widths I'; affect the final decay times 7; but not
the staggered “turn-on” times t;.

Several features which are clear from this sketch help
to define and characterize this scenario. First, we see
that at the present time, there continue to be a plethora
of dark-matter states. Although each of these has an
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FIG. 1: A sketch of our dynamical dark-matter scenario in which the dark matter of the universe comprises a vast ensemble of
individual components with different masses, abundances, and lifetimes. This plot illustrates the evolution of the abundance
of each dark-matter component as a function of time, assuming that all abundances are initially established at a common
time (chosen here to be prior to or during the inflationary era), with values that decrease as a function of the component
mass. For all subsequent times, these abundances scale as vacuum energy until 3H (¢t) = 2m;, after which point they scale as
matter. Open circles indicate states which inflate away, while closed circles indicate states which decay into SM particles with
associated lifetimes that decrease with increasing mass. In our scenario, the lifetimes and abundances are balanced against each
other in such a way that there continue to exist a plethora of dark-matter states which survive at the present time: although
each such state has an extremely small abundance €2; < 1, they collectively reproduce Q2cpm. Nevertheless, because of their
extremely small abundances, states which have already decayed into SM particles leave negligible imprints on the CMB and
other observable astrophysical and cosmological backgrounds. An important feature of this scenario is that it is fully dynamical,
with the composition and properties of the dark matter continuing to experience a non-trivial time evolution before, during,
and even after the current epoch.

extremely small abundance (exponentially suppressed on
on the plot in Fig. 1), they can collectively produce a
sizable, O(1) abundance which we choose to identify with
the observed dark-matter abundance Qcpy =~ 0.23 [8].

Second, we observe that our dark-matter states are not
governed by the notion of stability: while some are indeed
more stable than others, decays of dark-matter states can
occur throughout the evolution of the universe. This is
not in conflict with observational constraints because of
the extremely small abundances of those states which de-
cay at critical epochs during the evolution of the universe.
In other words, as discussed above, lifetimes and abun-

dances are balanced against each other in this scenario.

Third, as a consequence of these features, we see that
nothing is particularly special about the present time in
this framework. Dark-matter states need not be held
stable until the present moment, and the current age of
the universe plays no special role in this scenario. Indeed,
as evident from the sketch in Fig. 1, dark-matter states
decay prior to, during, and after the present era. What
results, then, is a scenario in which the dark matter is
not frozen in time at the present era, but continues to
act as a highly dynamical component of an ever-evolving
universe.



C. Characterizing a given dark-matter
configuration: Qo, 7, and wes

In general, there are three quantities which we can use
in order to characterize the configuration of our dark-
matter ensemble at any instant in time, and to track its
subsequent time-evolution. We shall begin by introduc-
ing these three quantities and discussing the relations
between them. Then, we shall discuss several qualitative
aspects of their overall time-evolutions.

1. Fundamental definitions and relations

The first quantity we shall define in order to character-
ize the configuration of our dark-matter ensemble is the
total dark-matter abundance:

Qior = Z Qi . (4)

Note that we should include in this sum the contributions
from only those components in our ensemble which have
already “turned on” (i.e., have begun oscillating) and
which are therefore already behaving as true matter. Re-
stricting such contributions in this way ensures that Q¢
can truly be associated with a total dark-matter abun-
dance. Of course, all of the components in our ensemble
will eventually “turn on” and behave as dark matter af-
ter enough time has passed. It is for this reason that we
shall continue to refer to each component of our ensemble
as a dark-matter component, regardless of its particular
turn-on time.

The quantity ot describes the total dark-matter
abundance at any instant of time. However, we may also
define a complementary quantity n which describes how
this total abundance is distributed across the different
components:

Q
n=1- Qtot . (5)

Here Qp = max;{Q;} is defined to be the largest individ-
ual dark-matter abundance from amongst our ensemble
of dark-matter states. Thus, n measures what fraction
of the total abundance Qo is mot carried by a single
dominant component. We see from its definition that n
varies within the range 0 < n < 1: values of 7 near zero
signify the traditional situation in which the total dark-
matter abundance is predominantly carried by a single
state, while larger values of 7 signify departures from
this traditional configuration. In this sense, then, n can
also be viewed as quantifying the degree to which our
scenario deviates from the more traditional dark-matter
framework at any instant in time.

Recall that we have assumed for this discussion that
the more massive components of our ensemble have
smaller initial abundances, and vice versa. Indeed, this
assumption is already reflected in the sketch in Fig. 1.

It then follows that the largest abundance Q in Eq. (5)
will correspond to the lightest component in our ensem-
ble. However, in the event of a “staggered” turn-on, the
lightest components in the ensemble are necessarily the
last to turn on. Indeed, prior to their turn-on times, the
abundances of these lightest states contribute to the to-
tal dark-energy abundance rather than to the total dark-
matter abundance. We must therefore be careful to iden-
tify € as the abundance associated with the lightest of
those components which have already turned on. As a
result, even the identity of the component whose abun-
dance is to be identified with €y can occasionally be time-
dependent.

While both 4 and 7 characterize the configuration of
our dark-matter ensemble at a given instant in time, one
of the critical features of our dynamical dark-matter sce-
nario is precisely that it is dynamical — +i.e., that these
quantities have non-trivial time-evolutions. Of course,
some of this time-evolution is common to all dark-matter
scenarios, arising due to the Hubble expansion of the
universe during its reheating, radiation-dominated, or
matter-dominated eras. There are, however, additional
time-dependent effects which are unique to our dynam-
ical dark-matter scenario. For example, one such effect
dominates the physics of the final, matter-dominated era,
and arises because the total dark-matter abundance in
our scenario has been distributed across many individual
dark-matter components, each with a potentially differ-
ent lifetime. This phenomenon leads to a slowly falling
Qot at late times. Clearly the time-evolution of g
during this period is extremely sensitive to not only the
distribution of the abundances €); across the different
dark-matter components within the ensemble, but also
the decay widths I'; which govern the times at which
these different components decay.

For this reason, it will be useful to define a quantity
which can meaningfully characterize the aggregate time-
evolution of our ensemble. Moreover, we would like this
quantity to characterize this time-evolution regardless of
the particular cosmological era under study, and likewise
to quantify the extent to which this time-evolution in-
trinsically differs from that normally associated with the
cosmological expansion of the universe.

We have already seen in Eq. (1) that the time-
dependence of the abundance €); associated with a sin-
gle dark-matter component can be parametrized by its
equation-of-state parameter w. It is therefore natural
to ask what “effective” equation-of-state parameter weg
might collectively describe our entire dynamical ensemble
of dark-matter components. For example, even though
each individual dark-matter component behaves as mat-
ter (with w = 0), the decays of these components at late
times (or even their staggered turn-ons at early times)
might conspire to produce an effective w-value for the
entire ensemble which is non-zero. Such behavior is il-
lustrated in Fig. 2 for decays that occur during the final
matter-dominated era. In all cases and in all cosmolog-
ical eras, the presence of an effective weg which differs
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FIG. 2: A sketch of the total dark-matter abundance in our scenario during the final, matter-dominated era. Even though
each dark-matter component individually has w = 0, the spectrum of lifetimes and abundances of these components conspire
to produce a time-dependent total dark-matter abundance €20t which corresponds to an effective equation of state with w > 0.

(however slightly) from zero would then signify a depar-
ture from the traditional dark-matter scenarios.

We can also understand this at a mathematical level.
The fact that each individual dark-matter component has
an abundance which follows the behavior in Eq. (1) with
w = 0 does not guarantee that their sum (o must follow
the same behavior. Indeed, the two effects which can al-
ter the time-evolution of the sum Q;.; in our scenario are
a possible staggered turn-on at early times, and the indi-
vidually decaying dark-matter components at late times.
Thus the time-dependence of it need not necessarily
follow Eq. (1) with w = 0.

One possibility, of course, is that i, will continue
to follow Eq. (1), but with some other effective value
Wesr. However, even this outcome requires that our indi-
vidual dark-matter components exhibit certain relation-
ships between their abundances and lifetimes which need
not actually hold for our dark-matter ensemble. There-
fore, in general, we expect that ,¢ might exhibit a
time-dependence which does not resemble that given in
Eq. (1) for any constant weg. Or, to phrase this some-
what differently, we expect that in general, our effective
equation-of-state parameter weg might itself be time-
dependent. We therefore seek to define a function weg (t)
which parametrizes a time-dependent equation of state
for our dynamical dark-matter ensemble as a whole.

In order to define such an effective function weg(t), let

us first recall that the traditional parameter w is funda-
mentally defined through the relation p = wp where p
and p are respectively the pressure and energy density of
the “fluid” in question. Of course, in an FRW universe
with radius R, the conservation law for energy density
dE = —pdV yields the relation d(R3p) = —pd(R?), from
which it immediately follows that (p + p)dR?/R® = —dp
or 3(p+ p)dlog R = —dp. Recognizing p+p = (1+w)p
and dlog R = Hdt where H is the Hubble parameter, we
thus have
dlogp
pranl (6)

This is a completely general relation which makes no as-
sumptions about the time-(in)dependence of w. We may
therefore take this to be our fundamental definition for
’(Ucﬁ'(t) - i.e.,

1 dlog pio
et (t) = _(ﬁ%—i—l)

1 [/ dlog Qo
2 ( dlogt )

2 (dlog Qo
"3 ( dlogt

3H(1+w) =

for RH/MD eras

>+% for RD era .
(7)

Note that while our derivation has thus far been com-



pletely general, we have specialized to specific cosmolog-
ical eras in passing to the final expressions in Eq. (7).
Specifically, we have written piot = Qiotperit and taken
3H ~ k/t where k = 2 (RH/MD), x = 3/2 (RD).

The final expressions in Eq. (7) are easy to interpret
physically, since the double-logarithmic derivatives which
appear in these expressions are nothing but the slopes in
the sketches in Figs. 1 and 2. However, the important
point of this derivation has been to demonstrate that wes
defined as in Eq. (7) continues to have a direct interpreta-
tion as a true equation-of-state parameter relating energy
density and pressure, even when weg is time-dependent.
No other definition of weg would have had this property.

The results in Eq. (7) provide a relation between weg
and Qo1 (t). However, it is also possible to derive a sim-
ilar relation between weg and 7. Assuming that we re-
strict our attention to periods of time after all staggered
turn-ons are complete (so that the identity of the dark-
matter component associated with € is fixed), it triv-
ially follows from the definition of 7 in Eq. (5) that

leg Qtot
- — RH/MD
dlog(1—mn) ( dlogt > / cras
dlogt o dlog Qo 1
- —— — RD .
( dlogt + 2 ere

(8)

Using the results in Eq. (7), we therefore find that

1 [w] RH/MD eras

2 dlogt
Weg(t) = (9)
2 [dlog(l —n)
- | — D .
3 [ dlogt RD era

It therefore follows that decreasing n corresponds to pos-
itive weg, and vice versa. As a self-consistency check, we
also observe that the standard paradigm — which has
7 = 0 for all times — has weg = 0 for all times as well.

2. Qtot, 1, and wegr: Qualitative time-dependent behaviors

Having defined the three quantities {Qyot, 7, wesr } that
we will use in order to characterize a general configura-
tion of our dark-matter ensemble, we now seek to under-
stand the time-dependence that will be generically exhib-
ited by these quantities across the different cosmological
eras. As we shall see, several qualitative observations
can be made even without further assumptions concern-
ing the individual abundances and decay widths within
our ensemble.

Given the sketch in Fig. 1, it is perhaps easiest to un-
derstand the qualitative behavior of Q. as a function
of time. There is, of course, the time-dependence for
Qtot which can be associated with the regular Hubble
expansion of the universe and which causes Q¢ to in-
crease during the radiation-dominated era. This aspect
of the time-dependence is generally common to all dark-
matter scenarios. However, as discussed above, there

are two additional effects which are specifically associ-
ated with our dynamical dark-matter scenario and which
cause (o4 to experience a further time-dependence. The
first of these is the possibility of a “staggered” turn-on
across the different dark-matter components in our en-
semble — i.e., the possibility that some components will
remain longer than others in a state in which their abun-
dances §; grow rapidly as ~ t2 but contribute to the total
dark-energy abundance rather than to (;o¢. This feature,
when present, will thus generally cause {2, to experience
a more gradual growth (but also a greater eventual max-
imum value) than would otherwise occur in a more tradi-
tional dark-matter scenario. However, at later stages of
the cosmological evolution (particularly during the final,
matter-dominated era), we see that our different dark-
matter components have a broad spectrum of lifetimes
and decay widths. This causes (ot to experience a slow
step-wise decline before finally reaching zero upon the de-
cay of the last-surviving dark-matter component within
the ensemble.

Similar qualitative arguments also apply to the time-
evolution of 7. An initial value of 7 is implicitly deter-
mined once the abundances for each of the dark-matter
components are established. Of course, if this occurs dur-
ing an inflationary period, it is possible that certain more
massive components will have inflated away by the time
the inflationary period ends. If this is the case, then we
may regard the “initial” value of 1 to be the value of 5
at the end of the inflationary period.

In general, after that point, the evolution of 7 can ex-
perience as many as three distinct phases. Let ¢; denote
the time at which the last (lightest) dark-matter compo-
nent has turned on, and let ¢ denote the time at which
the most massive dark-matter component decays. As-
suming to > t;, there are therefore three distinct time
intervals which become relevant.

During t; < t < t9, each of the individual dark-
matter abundances experiences a common overall time-
dependent scaling behavior as the universe evolves. As
a result, the ratio between the abundances of these com-
ponents remains fixed. In other words, 1 remains frozen
during this period (even though .4 may continue to
vary).

For ¢t > t5, by contrast, it is clear that the decays of the
more massive dark-matter components have the cumula-
tive effect of decreasing ot without altering Q4. What
results, then, is a step-by-step, threshold-by-threshold
decline in the value of 7. This process continues un-
til only a single dark-matter component survives and 7
reaches zero. By assumption, in our scenario this will not
happen until the distant future, at ¢t = Ffl > thow Where
T'; is the decay width of the second-lightest dark-matter
component.

However, during the period t < t;, a “staggered” turn-
on for the individual dark-matter components can also
generally induce a non-trivial time-evolution for 7. In-
deed, each time a new lightest dark-matter component
turns on, its abundance € suddenly contributes to the



total dark-matter abundance Q0. This abundance
also displaces the previous largest individual abundance
Q. We therefore find that with each such successive
turn-on, 1 experiences a shift in its value:

By assumption, Qf > Q. However, it is easy to see
from Eq. (10) that ' < n only if Qf > Qo/n. Since
0 <n <1, we see that this condition is guaranteed to be
satisfied only if n = 1, and guaranteed not to be satisfied
only if n = 0. In all other cases, this condition may or
may not be satisfied, and this will cause 7 to either de-
crease or increase, respectively. We also observe that in
a very rough sense, 7 tends to stabilize and avoid either
the 7 = 1 or the n = 0 extremes: as n — 1, it becomes
easier and easier to satisfy the constraint that drives n
lower, while as n — 0, it becomes easier and easier to
satisfy the constraint that pushes n higher. Indeed, if
we imagine that each new abundance €} somehow has a
random value greater than the previous 2y, we can envi-
sion an “oscillatory” behavior in which 7 varies between
its two limits. Unfortunately, we cannot be more specific
about this behavior without knowing something further
about the individual abundances that exist during such
a staggered turn-on phase.

We therefore conclude that n will take an initial value
once the abundances are established, and that this value
can then undergo a non-trivial time dependence if there is
an initial period during which a staggered turn-on occurs.
After the staggered turn-on is complete,  will remain
frozen until late times when our individual dark-matter
components begin to decay. This will then cause 1 to fall
monotonically, ultimately vanishing when only the single
longest-lived dark-matter component remains. However,
it is regarded to be a fundamental property of our sce-
nario that n is nevertheless presumed to be significantly
different from zero at the present time.

Finally, we turn to the behavior of weg as a function
of time. However, given the relations in Eq. (9), it is
relatively straightforward to map out the rough time-
dependence of weg. During the staggered turn-on phase
(i.e., t < t1), we have seen that n may either increase
or decrease; this implies that weg may be either negative
or positive. Moreover, the fact that n tends to stabilize
during this period, avoiding its extreme values at n = 0
or n = 1, implies that weg will likewise tend to stabilize
around zero, with positive values of weg ultimately fol-
lowed by negative values, and vice versa. As indicated
above, however, this assumes that each new abundance
Qf that turns on has a value which is greater than the
previous 2y but is otherwise somewhat random.

During the period t; < t < t9, by contrast, the be-
havior of weg is far simpler to describe: we simply have
Weg = 0. This is completely in accord with our obser-
vation that n stays frozen during this period, and that
our dynamical ensemble is behaving as ordinary dark-
matter during this period (except with a non-zero value
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of n). Finally, for the period ¢ > to after our individual
dark-matter components have begun to decay, we have
argued that 7 is monotonically decreasing. This implies
that weg is strictly positive during this period, a feature
which is illustrated in Fig. 2 and which again serves as
a cosmological “smoking gun” for our dynamical dark-
matter scenario.

D. A signature of dynamical dark matter:
Time-evolution of (o, 7, and wesr during the final
matter-dominated epoch

As just discussed, one of the most important signatures
of our dynamical dark-matter framework is the fact that
the total dark-matter abundance Qior is a time-evolving
quantity — even during the current matter-dominated
epoch. Within such a framework, it is therefore only to
be regarded as an accident that this quantity happens to
reproduce a specific observed value Qcpy = 0.23 at the
present time.

With only a few additional assumptions, it turns out
that we can explicitly calculate the time-evolution of the
total dark-matter abundance ;¢ during this epoch. We
can also explicitly calculate the time-dependence of 7,
and the resulting equation of state weg(f). In the rest
of this section, we shall therefore concentrate on the fi-
nal matter-dominated epoch. Indeed, this is the epoch
during which a non-trivial time-evolution for Q. arises
only because of the decays of the individual dark-matter
components within our ensemble.

Within this era, each dark matter component ¢; has
a relative abundance €2; which remains constant until it
decays at a time t ~ 7; = F;l. Taking this decay to be
nearly instantaneous, we can thus write

Ql(t) = 916(7‘1 - t) y (11)
whereupon we see that

dQyot (t) d

— = ;Q%@(n—w = _zi: Qi6(ri—t) (12)
where we have defined Qo (t) = >, Q,(t) and used the
relation dO(z)/dx = 6(x) where 6(z) is the Dirac o-
function. In the limit that we truly have a large number
of dark-matter states, we can imagine that the spectra
of decay widths I'; and decay times 7, =1T"; 1 are nearly
continuous, with continuous variables I and 7. With this
approximation, we can view {); as a continuous function
Q(7) and convert the sum over states to an integral, i.e.,

Z = /dT’nT(T) (13)

where n,(7) is the density of dark-matter states per unit
of 7, expressed as a function of 7. Eq. (12) then becomes

Aor(t) _ —/dTQ(T)nT(T)5(T—t)

dt
= —Qt)n,(t) . (14)



In general, the quantities n(7) and () are unspeci-
fied, their properties depending on the particular dark-
matter scenario under study and the specific features of
our dark-matter ensemble. However, it will prove con-
venient to parametrize these quantities in terms of their
scaling behaviors as functions of I'":

Q) = Ar>, nr(I') = BT? (15)
with overall (generally dimensionful) coefficients (A, B)
and scaling exponents (a, 3). Since the abundances of
states in our scenario generally have an inverse relation
to their decay widths, we expect that @ < 0. Note that
nr in Eq. (15) is the density of states per unit of T,
whereupon it follows that

@) _ Mnr . (16)

fir = e dr

We thus find that Q(I')n,(I') ~ ABT*+t8+2] or equiva-
lently Q(7)n, (1) ~ ABT=*7#=2_ Use of Eq. (14) then
leads to the result

dot () —a—B—2

—— = —ABt ¢ . 17

o (17)

Imposing the condition that Qi = QcpMm at the present
time ¢t = thow and assuming that o + 8 # —1 then leads
to the solution

AB
Qiot(t) = Q — T (geBTl _mashly
tt() CDM+C¥+B+1( now )
(18)
For a + 8 = —1, by contrast, we have the solution
t
Qiot(t) = Qcpm — ABlog <t > - (19)

Under the assumptions in Eq. (15), the results in
Egs. (18) and (19) are completely general in a matter-
dominated era. Moreover, it is clear from Egs. (18) and
(19) that in all cases, Qo decreases with time. This is
precisely as expected, since all of the time dependence of
Qtot in a matter-dominated era arises due to the decays
of the individual dark-matter components within the en-
semble. Notice that some of these functional forms for
Qtot actually predict that Qo4 (t) will eventually hit zero;
this is also not unexpected, since this corresponds to the
final decay of the last remaining dark-matter component
in the ensemble. Needless to say, we should not consider
any of these Qo (t) functions beyond the times when they
might hit zero. Nevertheless, as long as our dark-matter
ensemble obeys the scaling laws in Eq. (15), the functions
given in Eqs. (18) and (19) correctly describe the behav-
ior of the corresponding total dark-matter abundances
Qo (t).

Given the results in Egs. (18) and (19) as well as the
definition in Eq. (7) for a matter-dominated era, we can
also obtain a solution for the time-dependent equation-
of-state parameter weg(t) associated with our ensemble
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of decaying dark-matter states. For x = a+ § # —1, we
find

(14 z)w.
) = 20
Wert (t) 2w, + (14 2 — 2w, (t/tuow ) +* 20)
where
AB
Wy = Weft(fnow) = o177 - (21)
2QCDMtn0W

Note that for w,
approximated by

< 1, this result is fairly well-

)xl . (22)

t
war(t) ~ w, (

tl’]OW
By contrast, for x = —1, we instead obtain
Wi
et (t) = 23
wert(t) 1 — 2w, log(t/tnow) (23)
where
AB
® = eff (bnow) = . 24
we = w(tao) = zo-— 1)

The behavior of the results in Egs. (20) and (23) de-
pends critically on the relationship between z and wy.
For 14+x < 2w,, we find that weg always increases mono-
tonically as a function of ¢ before reaching w, at t = tyow-
By contrast, for 1 + = > 2w,, this function decreases
monotonically before reaching w, at t = 4. Finally, for
142 = 2w,, we have the exact result that weg (t) = w. for
all t. This (admittedly fine-tuned) case illustrates that
it is possible to achieve a time-independent equation-
of-state parameter weg = w, under the assumptions in
Eq. (15), and moreover that this value of w, can be tuned
to any positive value desired. This is indeed the situa-
tion illustrated in Fig. 2, which is plotted for a < 0 and
B8 >0.

The above qualitative descriptions indicate the history
of weg (t) prior to the present day. However, in general,
this same increasing or decreasing behavior continues for
t > tnow (i-€., through and beyond the current epoch),
with one important caveat: for 1 4+ z < 2w,, we see
that weg (¢) not only continues to increase, but eventu-
ally hits a pole. However, such poles represent the lo-
cations at which the corresponding :.¢-functions have
zeroes. These poles are therefore unphysical, signalling
the decay of the last component within our dynamical
dark-matter ensemble, and we can restrict our analysis
of these functions to times preceding these critical values.

If our dynamical dark-matter scenario is to be in
rough agreement with cosmological observations, we ex-
pect that w, today should be fairly small (since tradi-
tional dark “matter” has w = 0). We also expect that
the function weg(¢) should not have experienced strong
variations within the recent past. This suggests that sit-
uations with x < —1 are likely to be phenomenologically
preferred over those with > —1, since having z < —1



ensures that 0 < weg(t) < w, for allt < €yow. Indeed, the
more negative x becomes, the closer to vanishing weg (t)
remains before finally reaching w, at t = t,y. However,
depending on the detailed properties of the particular
realization of our dynamical dark-matter scenario under
study, values of x near —1 or slightly above may also be
phenomenologically acceptable.

Finally, we may also use these results to solve for 7 as
a function of time. For x = a + 8 # —1, we find

2wy + [N (1 + 2) — 2w, ] (t/tnow) 1T

t) = 25
n(t) 2w, + [L+ 2 — 2w, (t/tnow) 17 (25)
where w, is given in Eq. (21) and where
Qo
N = Ntnow) = 1— 19) (26)
CDM
Likewise, for z = —1, we have
N — 2wy log(t/tnow
nt) = Uy (27)

1 — 2w, log(t/tnow)

where w, is given in Eq. (24). It is not surprising that
7, unlike weg, depends on two independent dimension-
less quantities w, and 7, since the very definition for n
introduces a new quantity €y which had not previously
appeared.

Note that all time-dependence for 7(t) cancels, with
n(t) ~ n. for all z, if either w, — 0 or ., — 1. This
makes sense, since in the first case . does not change
while in the second case 9 — 0. These are the only
two ways in which 7 can remain constant. In all other
cases, however, n(t) is always a decreasing function of
time, as expected. We also see from Egs. (25) and (27)
that n(t) — 1 for all z > —1 as t/tpow — 0. Indeed, this
holds regardless of the values of w, or 7.

While these characteristics successfully conform to our
expectations concerning the behavior of 7(t), there are
some features that the functional forms in Egs. (25) and
(27) do not accurately capture. For example, if z + 1 <
2w, /nx, these functions predict that n(t) will eventually
become negative beyond a certain late time. Moreover,
while these functions resemble those for weg in that they
properly capture the pole that results when Qiot — 0,
they do not necessarily approach n — 0 before hitting
this pole.

The reason behind these failures is easy to understand.
Unlike Q¢ and weg, the quantity n has a special charac-
teristic not shared by the others: it is sensitive not only
to Qiot, but also to Q. Features such as having 7 reach
zero but not become negative are extremely sensitive to
the value of Qg and the fact that Qi must exactly hit
Qo after all but the lightest dark-matter component have
decayed. Indeed, these features are extremely sensitive to
the fine-tuned and ultimately discrete nature of the light-
est dark-matter components, and this is precisely the sort
of information that our scaling assumptions in Eq. (15)
are incapable of modelling. Thus, while we may view the
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functions in Egs. (25) and (27) as being reasonably ac-
curate for most portions of the cosmological evolution in
the matter-dominated era, we should not maintain this
expectation beyond a certain time when all but a few
dark-matter components have decayed.

To summarize, then, in this section we have presented
a dynamical multi-component dark-matter scenario in
which individual component abundances and lifetimes
are balanced and distributed across the components in
such a way that constraints from BBN and other back-
grounds are potentially satisfied. An important part of
this scenario is the proposition that both 7 and weg are
different from zero at the present time, the former signif-
icantly so, and that components of the dark matter are
actively decaying prior to, during, and beyond the cur-
rent epoch. As a result, cosmological quantities such as
Qtot experience a time-evolution which transcends that
due to the ordinary expansion of the universe.

III. DYNAMICAL DARK MATTER MEETS
THE INCREDIBLE BULK

Thus far, we have done little more than present a new
framework for dark-matter physics. In particular, we
have not yet demonstrated that an ensemble of dark-
matter states can easily be assembled in which the in-
dividual component abundances are naturally balanced
against lifetimes in a well-motivated way. In this section,
however, we shall demonstrate that an infinite tower of
Kaluza-Klein states propagating in the bulk of large extra
spacetime dimensions naturally constitutes an ensemble
of states with the desired properties. As we shall see,
this occurs because KK towers obey a special “balanc-
ing” constraint which relates the lifetimes of individual
KK modes to their abundances. Specifically, we shall
demonstrate that the KK modes within a generic KK
tower exhibit abundances 2; and SM decay widths T';
which obey an inverse relation of the form anticipated in
Eq. (15), i.e.,

Q7% ~ constant (28)

for some o < 0. This constraint ultimately emerges as a
consequence of the non-trivial interplay between physics
in the bulk and physics on the brane.

A. General setup

For simplicity, we shall consider our spacetime to take
the form My x S1/Zs, where M4 denotes ordinary four-
dimensional Minkowski spacetime and S1/Zs denotes a
line segment which is realized as a Zy orbifold of a cir-
cle of radius R. We shall take 2™ = (z#,y) to denote
the coordinates on this spacetime, with the Z, orbifold
action identified as y — —y, and imagine that the Stan-
dard Model is restricted to a brane at the fixed point
y = 0. We are therefore considering a “toy” ADD-like



scenario [10] with a single flat extra dimension. Despite
the simplicity of this toy model, we are making no as-
sumptions at this stage about relevant mass scales or the
full number of extra spacetime dimensions that might ac-
tually exist in a more fully realized scenario. Indeed, we
believe that most of the desired properties that emerge
from this scenario are likely to be retained if we imagine
that our spacetime contains additional extra dimensions,
or is warped [9] rather than flat.

In such a scenario, all fields that propagate in
the “bulk” are necessarily singlets with respect to all
Standard-Model gauge forces. As a result, such fields can
have at most highly suppressed (e.g., gravitational) inter-
actions with the Standard-Model fields, and thus appear
as dark-matter candidates. Such fields might include the
graviton, axion, and other moduli fields. For simplicity,
we shall consider the case in which the bulk field is a
five-dimensional scalar ®, but we shall make no further
assumptions about its properties.

Neglecting gravity, and with ; generically denoting
the Standard-Model fields, we see that such a scenario
therefore has an action of the form

S = /d4xdy [Louk(®) 4 6(y) Lorane (¥i, )] . (29)

In general, we may assume that our five-dimensional bulk
action takes the form

Louk = 50u®*0M® — 1M (30)

where 0Op; denotes a five-dimensional derivative and
where M is an unspecified bulk mass. In certain cases,
specific symmetries may restrict us to the case with
M = 0, but we shall leave M general until further notice.

Likewise, the brane action will generically consist of
two contributions — the usual Standard-Model action
Lsn, and an action L,y which arises due to the interac-
tions between ® and the Standard-Model fields:

Ebranc = ﬁSM +£int . (31)

In general, there are two types of interactions which will
concern us. The first class of interactions result in explicit
couplings between ® and the Standard-Model fields, and
will ultimately be responsible for allowing ® to decay into
Standard-Model states. We shall discuss such interac-
tions in Sect. ITI.B. There is, however, another possible
type of interaction term which can also appear within
Lint: this is a possible “brane mass” for @ itself, i.e.,

Ling O —im?|Q*. (32)

Such a brane mass can emerge as an effective operator
arising due to perturbative or non-perturbative dynamics
wholly restricted to the brane. Note that this brane-mass
term must not be confused with the primordial bulk mass
that appears in Eq. (30); rather, this term has its origins
within the physics on the brane itself, and appears as
part of Lyrane within Eq. (29) rather than Lpy.
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These minimal assumptions are already sufficient to
permit us to understand the nature of the resulting
Kaluza-Klein spectrum for ®. Indeed, the following re-
sults are similar to those previously obtained in Ref. [11].
As appropriate for compactification on the line segment
S1/Z,, we can decompose our five-dimensional field ® in
terms of an infinite tower of four-dimensional modes ¢,

1 = ky)
r z*)cos | —= | ; 33
TR 2 ) (%) e
the normalization factors
- { 1 for k=0
W2 fork >0

are designed to ensure that each mode ¢ has a canon-
ically normalized kinetic term in the resulting four-
dimensional theory. We then find that

(I)(;Cl"y) =

(34)

S = /d4:v dy [30p® M@ — LM3|®|° — L5(y)m? ®?]

= [de (1Y 0si0man— 1 Y Miianor | (9)
k=0

k,£=0
where the Kaluza-Klein (mass)? matrix is given by

M:, = (Z—i + M2> Spe + rerem? . (36)

Given these results, we see that this mass matrix would
have been diagonal were it not for the brane mass term.
This in turn implies that the KK mass eigenstates ¢y
necessarily differ from the KK momentum eigenstates ¢y
— i.e., there is a non-trivial mizing that is induced as a
result of the KK mass. This mixing turns out to be crit-
ical for our analysis. In general, we may characterize the
degree of mixing in terms of the dimensionless parameter

1

Yy =5 (37)
For y > 1 the mass matrix is essentially diagonal;
this is what trivially occurs, for example, in the four-
dimensional R — 0 limit in which the excited KK modes
decouple. By contrast, in the opposite limit y < 1,
the mixing is essentially maximal across all of the eigen-
modes.

It is possible to describe the solutions for the eigenval-
ues A\? of the (mass)? matrix in closed form, and thereby
obtain explicit expressions for the corresponding mass
eigenstates. The eigenvalues turn out to be the solutions
to the transcendental equation

7m?R cot (TFR\/)\2 - M?) — VM2 (3)

If m were zero (i.e., no brane mass), the solutions to this
equation would be nothing but the expected eigenvalues

n2

o= M7+ —

- 7 nez, (39)



and more generally this remains approximately true when
m < 1/R, i.e., when y > 1. What is perhaps surprising,
however, is that the presence of a non-zero brane mass
does not result in a further additive shift in this mass
spectrum for the KK tower (as does the bulk mass term),
but instead distorts the lower mass eigenstates in the
tower so that they approximately follow the alternate
spectrum

(n+3)?

2 2
Xo= M

nez. (40)
Remarkably, this is precisely the spectrum which we
would normally associate with a five-dimensional field
® which is taken to be anti-periodic (rather than peri-
odic) around the extra-dimensional circle prior to orb-
ifolding! Indeed, for general values of y, the solutions A,
of Eq. (38) tend to follow the spectrum in Eq. (40) for
n < m/y?, while they follow the spectrum in Eq. (39)
for n > 7 /y? and smoothly transition between the two
spectra for intermediate values n ~ m/y?. As we have dis-
cussed above, this unusual behavior is the consequence of
the non-trivial interplay between brane and bulk physics,
and may have applications beyond its appearance here.

For each mass eigenvalue A\, we can also solve for the
corresponding mass eigenstate |¢y) as a linear combina-
tion of the KK-momentum eigenstates |¢y). We find the
exact result [11]

o) = A Y g (41)

N2 f2y?
where we have defined the dimensionless eigenvalues
A= VX2 - M2/m (42)

and where

A)\E

V2 1
3 (43)

1472y + A2

Given these results, it is straightforward to convert
between the mass-eigenstate basis |¢x) and the KK-
momentum basis |@x). It turns out that there are two
specific groups of matrix elements involved in this con-
version which will be of particular interest to us. The
first involves the KK zero-mode ¢i—¢, for which we have
the matrix elements

(PalPr=0) = Ax . (44)

However, the second concerns the projection of the five-
dimensional bulk field ®(y) onto the Standard-Model
brane at y = 0, i.e.,

oo

¢/ = (I)(y)|y:0 = ZTk(bk (45)

k=0
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FIG. 3: Values of A, (falling curves) and A2 A (rising curves),
plotted as functions of the mass eigenvalues S\/y = AR fory =

m (black), y = /7 (blue), and y = 1 (red). For each y, there
are only a dlscrete set of corresponding allowed eigenvalues
X (indicated with solid dots); note that the quantity X\/y =
VA2 — M?R takes values closer to Z + 1/2 near the bottom
of each tower and shifts to values closer to Z as A increases.
I~n each case, we see that A, falls with increasing X, while
A2 A, increases with increasing X and ultimately reaches an
asymptote A2Ay = /2 as A — co.

For this projection field, we likewise have the matrix el-
ements

(Pal0")

o0 2732
TiEA
A Z A2 — 22
k=0

. (_A) 4 = 324, 46)
) )

where we have made use of Eq. (38) in the final equality.

In Fig. 3, we plot the values of Ay and A2A, as func-
tions of A and y. We see that A, falls with increasing
A, while A\24, increases with i increasing X and ultimately
reaches an asymptote X245 — /2 as A — oo. Moreover,
we see that larger and larger values of A are needed to
reach this asymptote as y decreases.

B. Balancing I" versus ()

We now address the central feature underpinning dy-
namical dark matter: the balance between the SM decay
widths I'y associated with each KK mass eigenstate and
the corresponding cosmological abundances 2. As we



shall show, an inverse relation of the form anticipated in
Eq. (28) naturally emerges across the entire KK tower.

1. Abundances Q)

We begin by focusing on the different cosmological
mode abundances 2, that can arise in such a scenario.

During the course of the evolution of the universe,
there are many production mechanisms through which
the different KK states might come to be populated and
thereby acquire non-zero abundances. One such method,
for example, is thermal production; another relies on
purely geometric effects (e.g., topological defects such as
cosmic strings and domain walls) and the decays associ-
ated with them. However, there is also a third production
mechanism which exists in cases where the bulk mass M
happens to vanish: this is so-called “misalignment pro-
duction”.

In many string-theoretic contexts, bulk fields often do
have vanishing bulk masses. Such fields often include
gravitational and/or geometric moduli fields; they also
include various axion-like fields. Moreover, as we shall
demonstrate, the predictions of misalignment production
are rather straightforward to calculate, and are fairly
generic for bulk fields as a whole. We shall therefore
take M = 0 in what follows, and restrict our attention
to abundances established through misalignment produc-
tion.

It is easy to understand the physical underpinnings
of misalignment production within the framework of dy-
namical dark matter. Prior to the brane dynamics that
establishes the brane mass m, the fact that M = 0 implies
that our theory exhibits a five-dimensional shift symme-
try ® — ® + ¢, where ¢ is a constant. As a result, any
value for (®) is equally likely to occur:

(@) = 073 (47)

where 6 is a random O(1) dimensionless coefficient and
where fg is a mass scale (or decay constant) associated
with the five-dimensional ® field in the bulk. Decom-
posed into KK eigenstates via Eq. (33), this non-zero vev
for the five-dimensional field ® implies a non-zero vev for
the KK zero mode:

(o) = 0fy, (o) =0 forall k>0 (48)
where
fo = V2R fY?. (49)

Note that all of the higher KK modes ¢y, with & > 0 must
have vanishing vevs as a result of the five-dimensional
shift symmetry.

This is the situation that exists prior to (i.e., at en-
ergies higher than those associated with) the brane dy-
namics that establishes the brane mass m. However, once
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this brane mass is established, we must shift to the mass-
eigenstate basis, whereupon we see from Eq. (44) that
Eq. (48) now takes the form

(6r) = 0Axf

Thus, we see that all of the mass eigenstates will gener-
ally have non-zero values. Of course, the fact that that
these vevs are all related through the coefficients A, is a
reflection of our original five-dimensional shift symmetry
in the bulk.

The dynamics that establishes the brane mass m also
leads to a non-zero energy density p associated with
the configuration in Eq. (50). In general, the four-
dimensional energy density py associated with each mode
¢» is given by py = $A%(¢x)?. Given Eq. (50), we thus
have

for all . (50)

pr = 202224372 (51)

Of course, at any moment in the evolution of the universe,
the critical energy density is given by

Perit = 3M3EH? (52)

where Mp = (87G )~ 1/? is the reduced Planck scale and
where H is the Hubble parameter. The initial abundance

Q) = pa/Perit associated with the ¢y mode is thus given
by

Lo\ 2
2
0) _ 9_~2 2 mfe
Q7 = 6)\A’\ (MpH) . (53)

This is, in fact, a completely general result.

We shall let ¢y denote the time at which this initial
abundance is established by the brane dynamics. Thus
O (to) = Qg\o)' The next question, however, is to de-
termine the corresponding value of Q(tyow). In order
to do this, we see from Fig. 1 that we must make some
assumptions about whether tg is situated during the re-
heating, radiation-dominated, or matter-dominated eras,
and whether the ¢, mode experiences an instantaneous
“turn-on” at ty or a staggered “turn-on” at a time
tn > tg. There are therefore six different cases to con-
sider.

For simplicity we shall assume that for the modes ¢,
which are part of a staggered turn-on, the corresponding
turn-on time ty occurs at the threshold 3H(t)) = 2.
(Of course, if ¢ty < tp, then such modes turn on only
at tg.) We shall also assume that all modes in a given
tower actually turn on during the same era as %y, so that
our turn-on “cascade” down the tower does not cross a
boundary between two different eras. Finally, we shall
assume that within each era, H(t) takes the approxi-
mate form H(t) = k/3t where k = 2 for the reheat-
ing and matter-dominated eras and k = 3/2 during the
radiation-dominated era. This implies that ¢y = k/2\.
Note that this approximate form for H(t) is generally
valid at relatively late times within each era, and we



shall disregard all O(1) “threshold” effects associated
with the boundaries between different eras. Thus, we
shall implicitly take {2, to be a continuous function of
t, as sketched in Fig. 1, and we shall therefore disregard
all A-independent O(1) numerical coefficients in those ex-
pressions for Q) (tnow) which follow.

Clearly, if tg occurs during the final matter-dominated
era (i.e., if tg > tyry), then modes which turn on instan-
taneously (i.e., modes with ¢y < to) will have abundances

N
D (tnow) ~ X000 ~ 3242 X, <A*Z—¢’ (mto)?
P
(54)
where X denotes the expected damping factor due to
dark-matter decays:

Xy = e Taltow—to) (55)

By contrast, for those modes which experience a stag-
gered turn-on (i.e., modes with ty > tg), this result be-
comes

9 A 2

t

QA(tHOW) ~ X Qg‘O) (t_)\) - Ai s <]£—¢> (56)
0 P

where we have substituted the result ¢y ~ 1/X in passing
to the final expression.

By contrast, for tp within the radiation-dominated era
(i.e., tru S to S tumre), these two cases are instead given
by

" 1/2
Q)\(tnow) ~ X)\ QE\O) ( MRE
to
f 2
~ A2A2 X, (M_¢’> (mto)®'? (mtrme)"/?
P
(57)
and
2 1/2
t t
QA(tHOW) ~ XAQE‘O) (_k> (MRE)
to £
f 2
~ A2 A2 X, <M—¢> (mtmre)? .
P
(58)

Finally, for tg within the reheating era (i.e., tg S tru),
these two cases are instead given by

" 1/2
QA(tHOW) ~ XAQE‘O) (ﬁ)
RH

2 1/2
~ N2A3% X, I (mto)? <tMRE> /
Mp trRH

(59)

16

and

2 1/2
t t
QA(tDOW) ~ X)‘Qg\O) <_A> ( MRE>

to tRH

N 12
t
A (MP tRH

(60)

Interestingly, of all six cases, this is the only one which
yields a result for Q) (fnow) which is parametrically inde-
pendent of the scale m.

It is also instructive to examine the manner in which
these results scale with A. Surveying Eqs. (54) through
(60), we see that the dependence of Q) on X follows only
three different patterns, depending on the specific turn-
on behavior experienced by the KK mode in question and
the era during which it takes place:

5\2A§ instantaneous
Qx ~ § A/242  staggered (RD era) (61)
A3 staggered (RH/MD eras) .

Under the assumption of misalignment production, this
result is exact and completely general. However, given
the definition in Eq. (43), we may approximate

Ay~ /A for A< /T +72/y2 (62)
A 1/22 for A>T+ n2/y2.

In the future, we shall refer to these two approximation
regimes as the small-A and large-\ regimes; note that
while there always exists a large-A regime, the existence
of a small-\ regime depends on the value of y. We then
find that the results in Eq. (61) lead to the large-\ scaling
behaviors

A~2  instantaneous
1\77/2 staggered (RD era) (63)
A% staggered (RH/MD eras)

Q) ~

as well as the small-\ behaviors

constant  instantaneous
Oy~ {A32 staggered (RD era) (64)
A2 staggered (RH/MD eras) .

Indeed, the only A-dependence which is not included in
these results is that which appears through the decay
widths in the X -factors in Eqgs. (54) through (60). How-
ever, these X, factors only express the physics of the
eventual dark-matter decay processes; they play no role
in determining the mode abundances that exist prior to
decay, which is our main interest in this discussion. As
a result, we shall disregard these X factors in what fol-
lows, understanding that our analysis is primarily ap-
propriate for the period that exists prior to the onset
of decays of the KK states with significant abundances.
(Indeed, the final period of KK decays will be discussed



in Sect. IT1.B.3 after we have analyzed the behavior of
the decay widths Ty in Sect. II1.B.2.)

Given the individual abundances €, in Egs. (54)
through (60), we can now calculate the values of both
Qiot and n that exist prior to the onset of significant KK
decays. Recall that ¢ is nothing but the sum over all
of the individual abundances 2, while 1 describes how
that total abundance is distributed across the different
modes. Indeed, we see from Eq. (63) that the lightest of
the KK modes will always carry the greatest abundance.
It then follows from its definition in Eq. (5) that n indi-
cates what fraction of the total abundance is carried by
the excited states in the KK tower. For this reason we
shall occasionally refer to n as the “tower fraction”.

Let us first consider Q. At first glance, it might
seem algebraically cumbersome to tally these individual
mode abundances 2y, since they each have a different A-
dependence given in Eq. (61) and we would need to sum
over all of the eigenvalue solutions to the transcendental
equation in Eq. (38). However, it turns out that the
resulting spectrum of A-eigenvalues satisfies two critical
identities [11]:

d oA =1,
A

These identities ultimately stem from the unitary nature
of the mapping between the KK-momentum basis and
the mass-eigenstate basis. Thus, unless our KK tower
experiences a staggered turn-on during the radiation-
dominated era, summing over the individual abundances
in Eq. (61) is particularly simple.

What is truly remarkable about the identities in
Eq. (65) is that they hold for all values of y. They
are thus independent of the degree of non-diagonality
exhibited by the KK mass matrix, and independent of
the degree to which the corresponding KK modes are
mixed. As a result, if we assume that f¢, to, and m
are all y-independent, it then follows that Q. will be
y-independent as well! Although dialing the value of y
(i.e., adjusting the radius of the extra spacetime dimen-
sion) might change the distribution of abundances across
the infinite tower of KK states, the total abundance re-
mains essentially fixed.

We stress that this result holds only for those cases in
which the KK abundances are established either instan-
taneously, or through a staggered turn-on which takes
place during the reheating or matter-dominated eras. By
contrast, if these KK abundances are established through
a staggered turn-on during the radiation-dominated era,
the total abundance Q. today will be proportional to
>, AY2A42. This quantity is not y-independent, but
rather has the y-dependence shown in Fig. 4. As a re-
sult, our preferred choices for parametric quantities such
as f¢, to, and m would need to be altered in order to
compensate for this effect.

The results in Eq. (61) also allow us to calculate the
tower fraction n prior to the onset of significant KK
decays. Indeed, the three different patterns for €y in

dONAL = 1. (65)
A
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FIG. 4: The quantity Z/\ 5\1/2A§, plotted as a function of y.
Note that the total dark-matter abundance 2ot prior to the
onset of significant KK decays is proportional to this quan-
tity if the individual KK abundances are initially established
through a staggered turn-on during the radiation-dominated
era. As a result, this curve also illustrates the y-dependence
of Q4o¢ in this case. By contrast, for all other cases, the total
abundance (2ot is y-independent.

Eq. (61) imply three different distributions for the abun-
dances across the different mass eigenstates in the KK
tower. Therefore, if we additionally assume that all of
the states in a given tower simultaneously fall into one of
these three cases, there will be three corresponding possi-
ble behaviors for the “tower fraction” 7 defined in Eq. (5),
viewed as a function of the non-diagonality parameter y.
These results are shown in Fig. 5, and we see that 7 in-
deed spans a range of O(1) values, as desired. These re-
sults are also highly y-dependent, illustrating that while
adjusting y changes the total abundance only in certain
restricted circumstances, it changes the distribution of
these abundances quite substantially in all cases.

It is easy to understand the overall features exhibited
in Fig. 5. As y — o0, we enter the four-dimensional
limit in which virtually no abundance is carried by the
excited KK modes. As a result, these modes become
completely irrelevant to the dark-matter problem, and
n — 0. By contrast, as y — 0, our KK states experience
maximal mixing, as a result of which the corresponding
value of 7 is maximized. Since A, ~ (n + 3)/R for all
n in this limit, we can easily calculate these maximum
values of 7, obtaining the result that nmax = 1 in the case
of instantaneous turn-on, while for the case of staggered
turn-on during a reheating or matter-dominated era we
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FIG. 5: The tower fraction 7 after all dark-matter modes
have “turned on” and entered the present matter-dominated
epoch, plotted as a function of y for three different regimes of
misalignment production: (a) instantaneous turn-on, in which
case 2\ ~ S\QA?\; (b) staggered turn-on during a radiation-
dominated era, in which case ) ~ 5\1/2143\; and (c) staggered
turn-on during a reheating or matter-dominated era, in which
case Oy ~ A2. In each case we see that n — 0 as y — oo,
while 7 approaches a fixed maximum value 7max as y — 0.

have

-1
> 1
e = 1‘4lzm]

n=0

~ -3~ 0189, (66)

T2

and for the case of staggered turn-on during a radiation-
dominated era we have

-1
> 1
R S,
— (n+1/2)3/2
2v/2
= 1-* ~ 0408  (67)

(2v2-1)¢(3/2)

where ¢ denotes the Riemann zeta-function. All three of
these limiting values are evident in Fig. 5.

2. Decay widths Iy

Next, we turn to the decay widths I'y which can be
expected in such a scenario.

Up to this point, we have assumed nothing more than
that the bulk field in our setup has a vanishing bulk mass
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M = 0 and a non-vanishing brane mass m # 0. As
we have seen, this has proven sufficient to allow us to
determine not only the Kaluza-Klein “spectroscopy” of
our dark towers but also the corresponding cosmological
mode abundances that emerge from misalignment pro-
duction. In some sense, it is remarkable that these results
rely on such minimal assumptions; indeed, this happy
fact explains why our results thus far are extremely gen-
eral and can be expected to hold for all bulk fields for
which M = 0 and m # 0.

However, in order to discuss the decay widths of these
KK modes into Standard-Model states, we shall require
further information concerning the couplings between the
five-dimensional bulk field ® and the four-dimensional
Standard-Model states. In other words, we shall require
further information concerning the interaction terms that
might appear within L, in Eq. (31) and thereby be-
come part of our four-dimensional effective Lagrangian.
Of course, it is most dangerous for the consistency and
phenomenological viability of our dynamical dark-matter
scenario if these decay widths are too large. Our conser-
vative approach to this problem will therefore be to con-
sider the worst possible scenario and determine how large
these decay widths might be. Since the largest decay
widths will generally arise from the operators of lowest
possible dimension within Ly, the first step in our anal-
ysis is therefore to determine what forms such operators
might take.

Imposing Lorentz invariance and invariance under all
Standard-Model gauge symmetries, we find that our op-
tions are fairly limited. The separate brane/bulk struc-
ture of this dark-matter setup requires that our bulk
dark-matter field ® be a singlet under all Standard-Model
gauge symmetries. This implies that any combinations of
brane fields to which ® couples must be gauge invariant
by themselves. Moreover, in order to restrict ourselves
to operators of lowest possible dimensionality, we shall
consider operators which are at most linear in ®. We
shall also assume for this discussion that ® is real. Let-
ting 1 denote a generic Standard-Model fermion and F},,
denote a generic Standard-Model field strength for any
gauge group, we then find that the operators of lowest
possible dimensionality come in two groups. If ® is CP-
even, the lowest-dimension operators which may appear
in Ly take the form

- 1 }
5 Yy oy, =2 P F, F* (68)
fe fe

where fg is the five-dimensional mass scale associated
with ® which originally appeared in Eq. (47). By con-
trast, if ® is CP-odd, the lowest-dimension operators
which may appear in L, take the form

1 — 1 -
7 OB TG, S S ELEY(69)
i s

where FH ~ e"P? F,. These groups of operators then



respectively give rise to the four-dimensional couplings

i & YO, i ¢ F, " (70)
) )

and

— ) e, = Eu (7
fe fs

where ¢, as defined in Eq. (45), is the projection of ®
onto the Standard-Model brane, and where f¢ is defined
in Eq. (49).

This list exhausts the possible dimension-five opera-
tors. It is encouraging that we see among this list of pos-
sible operators the standard moduli and axion couplings
— indeed, in the CP-even case we can even regard the lin-
ear prefactor ¢’/ f¢ as the leading term of an exponential
prefactor exp(¢'/ f¢), and thereby recognize the standard
dilaton coupling in string theory. Thus, this list of opera-
tors includes most of our cases of phenomenological inter-
est. At first glance, it might seem that operators of even
lower dimension could be constructed — e.g., ®y1) and
®1py°1p. However, such operators are not gauge invari-
ant because all of the fermions 1 in the Standard Model
are chiral. Likewise, dimension-four operators such as
|®|2|H|? are also forbidden as they would violate the shift
symmetry under which ® — & + constant.

Although kinematic effects favor the di-photon de-
cay mode ¢’ — 7, the four-dimensional couplings in
Egs. (70) and (71) all lead to SM decay rates of the same
parametric order. Standard calculations then lead to an
overall decay width

)\3
1
where we have substituted Eq. (46) in the final step. Use
of Egs. (62) then leads to the large-A behavior 'y ~ A3
as well as the small-\ behavior T A~ A5,

Before concluding our discussion of the decay widths,
it is important to note that there will generally exist
many competing decay modes for our KK states which
do not exclusively involve Standard-Model particles as
end-products. One example includes intra-ensemble de-
cays (i.e., decays within the KK tower, from heavier KK
states to lighter KK states); indeed, this possibility will
be discussed in general terms in the Appendix. Also, in
cases involving multiple fields in the bulk, it is possible
for bulk KK states of one species to decay to bulk states
of another species.

While such decays can be important on a number of
cosmological and phenomenological levels, they gener-
ally do not significantly diminish the abundance of what
might be termed “dark matter” or increase the corre-
sponding abundance of what might be termed “visible
matter”. Moreover, it is often the case that such decays
are significantly suppressed relative to the KK decays

3

/ A 3 2
Ty ~ =(oal¢))? = 72 ()\214,\) (72)
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that proceed directly to Standard-Model brane states.
Such suppressions can occur for a variety of reasons,
some of which depend on the fact that physics in the
bulk is often governed directly by (and therefore sup-
pressed by) the gravitational Planck scale, and some of
which are the consequences of extra restrictive symme-
tries which exist purely in the bulk and which therefore
do not apply to decays of bulk fields into brane fields.
Of course, a detailed analysis of this question requires
specifying a particular bulk field, along with a complete
Lagrangian for the theory including its gravitational in-
teractions. While such an analysis is beyond the scope
of this theoretical overview, an analysis of this sort does
appear in Refs. [6, 7] where it is shown that such decays
are indeed greatly suppressed in a specific realistic model
of dynamical dark matter. This result therefore confirms
our general expectations in one specific example.

We have therefore assumed in this paper that the pri-
mary decay mode for each KK bulk mode is directly into
a Standard-Model brane state. However, as discussed in
the Appendix, our dynamical dark-matter scenario can
easily be generalized to accommodate more complex de-
cay channels if this should ultimately prove appropriate
in a given situation.

8. Balancing lifetimes against abundances

Having calculated the spectrum of abundances 2, and
the spectrum of decay widths I' across our KK tower, we
can now see exactly how KK towers manage to balance
lifetimes against abundances. Combining the results in
Egs. (63) and (72), we find that for large A our KK tow-
ers indeed always obey a balancing equation of the form
anticipated in Eq. (28):

. 2/3
instantaneous : QI )\/ ~ constant

staggered (RD era) : Q,\I‘Z\/ % ~ constant

staggered (RH/MD eras) : QAFiB ~ constant .
(73)

Indeed, this asymptotic behavior holds for A >
/14 72/y2. Thus, we see that our KK towers succeed in
balancing lifetimes against abundances in a robust fash-
ion, regardless of the particular type of “turn-on” they
experience and regardless of the cosmological era during
which this “turn-on” takes place.

While Eq. (73) describes the crucial asymptotic behav-
ior at the “top” of the KK tower, a similar set of relations
describes the “bottom” of each KK tower. Combining
the small-A behavior in Eq. (64) with the small-\ result
'y ~ A5 leads to the relations

)y ~ constant

QAFi/lo ~ constant

instantaneous :

staggered (RD era) :

staggered (RH/MD eras) : Q,\l"i/5 ~ constant

(74)



for A < /1+ w2 /y?. We stress, however, that this be-
havior is relevant only at the bottom of a KK tower, and
only for relatively small y. Indeed, regardless of the value
of y, the behavior of the abundances and decay widths al-
ways eventually shifts to satisfy the relations in Eq. (73)
as we pass to higher and higher modes in a given KK
tower.

Given these results for the abundances Q) and de-
cay widths T'y, we can now calculate the general («, )
scaling coefficients that appear in Eq. (15). These re-
sults also enable us to deduce an “effective” equation
of state for our ensemble of decaying dark-matter KK
components. The values of «, of course, are directly ev-
ident from Eq. (73) for large A and from Eq. (74) for
small \. Likewise, since the states in our KK tower are
nearly equally spaced throughout the tower, we know
that the density of states per unit X\ is essentially \-
independent: my ~ A’. Per unit of I', this translates
into np ~ ny|dl/d\| = ~ TA=2)/% for T ~ X%, We thus
have § = —2/3 for large A\, and 8 = —4/5 for small \.

We therefore conclude that for large A, a general KK
tower has the scaling coefficients

(—2/3,—2/3) instantaneous
{ (=7/6,—2/3) staggered (RD era)
(—4/3,-2/3) staggered (RH/MD eras) .
(75)
By contrast, for small 5\, these results are modified to
become

(a,8) =

instantaneous

staggered (RD era)

staggered (RH/MD eras) .
(76)

Given these (a, ) scaling coefficients, we can also
calculate the effective equation-of-state function weg(t)
which describes the collective effects of the decays of the
individual modes along the KK tower. Indeed, as we
have seen in Sect. II, the behavior of this function weg (t)
depends critically on the value of the sum x = o + .
However, given the results in Egs. (75) and (76), we can
easily tabulate the values of x for the different cases un-
der study, obtaining the results shown in Table I. As
we see from Table I, most of the z-values for a general
KK tower tend to cluster near x S — 1. This is remark-
able, since we have already shown in Sect. II that this is
precisely the range for x which is preferred phenomeno-
logically. We thus see that a KK tower indeed serves as
an excellent realization of dynamical dark matter.

One feature which emerges from Table I is that re-
gardless of the turn-on behavior of the individual modes,
the value of = generally decreases as we pass from the
large-A regime to the small-\ regime. This generally cor-
responds to passing from early times (during which the
decays of the heavier KK modes dominate the physics) to
later times (during which only the lighter KK modes are
still present). Indeed, this transition typically occurs for

values of A ~ /1 + 72 /y? which decrease as a function
of y. Thus, we do not expect to see the small-\ behavior

(07 _4/5)
(avﬁ) = { (_3/107 _4/5)
(—2/5,-4/5)
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large X | small
instantaneous —4/3 —4/5
staggered (RD era) —-11/6 | —11/10
staggered (RH/MD eras) -2 —6/5

TABLE I: Values of the equation-of-state parameter x = a+
for different portions of a general KK tower with different
“turn-on” phenomenologies. We observe that KK towers nat-
urally give rise to values < — 1, which is precisely the range
favored phenomenologically.

emerge strongly except for later times in small-y scenar-
ios.

Needless to say, all of the above conclusions are pred-
icated on approximations which model the KK tower
according to certain power-law scaling behaviors. It is
therefore natural to wonder how robust these conclusions
actually are when compared with the results of a com-
plete numerical calculation which uses the exact numeri-
cal values for the eigenvalues A across the entire KK tower
and which avoids any approximations for the coeflicients
Ay which appear in the KK mode abundances and de-
cay widths. However, it is straightforward to perform
such a calculation. In Fig. 6, we plot a rescaled version
of the total dark-matter abundance Q,¢ as a function
of time during its final decay-dominated period, assum-
ing (as in Sect. II) that these decays occur during the
present matter-dominated cosmological era. Each panel
in Fig. 6 corresponds to one of the three different cases
that describe how the individual abundances in the KK
tower might have been established; indeed, following the
results in Eq. (61), this “rescaled” Q4o is defined in each
case as Y, AFA3 X, with k = 2 (first panel of Fig. 6),
k =1/2 (second panel), and k£ = 0 (third panel). More-
over, in making these plots, we have assumed that each
KK state decays instantaneously at t = 7\ = 1";1 so that
the contributions from individual states will be readily
discernible. This is tantamount to approximating X in
Eq. (55) as X, (t) =~ ©(T'y ' —t). Finally, in order to com-
pare curves with different values of y, an overall normal-
ization for the time axis for each curve has been chosen
such that the time ¢ is expressed in units of I'y ! where
Ty is the decay width of the lightest KK mass eigenstate.
As a result the curves in Fig. 6 share a common location
at which Q¢ ultimately vanishes in each case, signifying
the eventual decay of the final, lightest state in the KK
tower.

Although the total dark-matter abundance Qo ulti-
mately vanishes at log(I'gt) = 0 for all curves, we see
that the overall time-evolution of Q. as we approach
this vanishing point is highly y-dependent. As y — oo,
we see that i,y remains constant until it experiences
a single, sudden, complete decay; this of course corre-
sponds to the traditional scenario of a single dark-matter
particle. By contrast, for smaller values of y, we see that
multiple modes with different decay widths carry the to-
tal dark-matter abundance .; as a result, the resulting
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FIG. 6: The (rescaled) total dark-matter abundance Qsot, plotted as a function of time for each of the three cases relevant for
a general KK tower. In each panel, the uppermost curve corresponds to y = 10 and the successively lower curves correspond
toy=3,y=1,y=0.5 and y = 0.1. In order to compare curves with different values of y, we have plotted log;,(I'ot) on the
horizontal time axis, where I'g is the decay width of the lightest KK mass eigenstate associated with each curve. This ensures
that the curves share a common horizontal location at which 2.+ vanishes in each case, signifying the decay of the final, lightest
state in the KK tower. We see from these results that overall shape of the time-dependence of {20 is highly y-dependent: the
y — oo limit corresponds to the usual scenario of a single dark-matter particle (with ot remaining essentially constant until
this particle decays), while smaller values of y correspond to situations in which Q¢ is distributed across multiple KK modes
with different decay widths. It is this property which leads to a time-dependent 2o+ and thus a non-trivial “effective” equation
of state for the dark KK tower.
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FIG. 7: The tower fraction 7, plotted as a function of time for each of the three cases relevant for a general KK tower. In each
panel, the lowest curve corresponds to y = 10 (not visible in the center and right panels) and the successively higher curves
correspond to y =3, y = 1, y = 0.5, and y = 0.1. Thus, these values for 7 directly correspond to the values of ot plotted in
Fig. 6. In general, we observe that n increases with decreasing y, and that the maximum value of 7 shown for each curve is

consistent with the results of Fig. 5.

transition of ;¢ from its maximum value to zero is more
gentle. In all cases the quantity 1 — 7 indicates the rela-
tive size of this final “last step” down to 2.t = 0; note
that the results for n implicitly shown here in terms of
the relative final step size are consistent with those shown
in Fig. 5. Likewise, the initial values of Qo also confirm
our expectations discussed earlier: the instantaneous and
staggered (RH/MD) cases have initial values at Qo1 = 1,
in accordance with Eq. (65) for all y, while the initial
values shown on the second panel are y-dependent and
correspond to the values shown in Fig. 4.

Using the results for Qiot(¢) shown in Fig. 6, we can
now proceed to calculate the corresponding tower frac-

tions n(t). The results are shown in Fig. 7. As expected,
we see that n increases with decreasing y. Moreover, we
can now see directly that the maximum value of 7 shown
for each curve is consistent with the results of Fig. 5.
Using the results for Qiot(¢) shown in Fig. 6, we can
also proceed to calculate the corresponding equation-of-
state function weg(t) which follows from the definition
in Eq. (7). Equivalently, we can use the results for 7(t)
shown in Fig. 7 along with the definition in Eq. (9). In
either case, the results are shown in Fig. 8. In passing
from Figs. 6 and 7 to Fig. 8, we have calculated loga-
rithmic slopes numerically for each successive KK decay
event and then plotted a continuous function. It is clear
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FIG. 8: The effective dark-matter equation-of-state parameter wes, plotted as a function of time for each of the three cases
relevant for a general KK tower. In each panel, the lowest curve corresponds to y = 10 and the successively higher curves
correspond to y = 3, y = 1, y = 0.5, and y = 0.1. Thus, these values for weg directly correspond to the values of {2t plotted
in Fig. 6, or equivalently the values of n plotted in Fig. 7. In all cases, we see that weg — 0 as ¢ — 0. Note that although the
values of ot were plotted in Fig. 6 only up to an overall rescaling factor, the values of weg plotted here are insensitive to this
rescaling and are thus meaningful on an absolute scale. We thus see that wes never exceeds 0.1 for a general KK tower, and is

generally much smaller.

that the results in Fig. 8 are in complete agreement with
our general expectations for weg from Sect. II: in each
case we observe the general tendency that weg — 0 as
t — 0, and likewise in all but one case weg approaches
a pole at t = I’y ! (corresponding to the fact that Qo
hits zero upon the decay of the final, lightest dark-matter
mode in the KK tower).

These results are also in agreement with our expecta-
tions based on the KK scaling coefficients in Table I. As
y decreases, we see the emergence of a definite shift in
the behavior of weg(t) as we transition from early times
to later times. This corresponds to the shift from large-
A behavior to small-A behavior in Table I. Indeed, in
the case of an “instantaneous” turn-on, we even observe
that our function weg (t) develops a slight mazimum for
smaller values of y, shifting from increasing behavior to
slightly decreasing behavior. This change in the slope
of weg(t) for this particular situation is directly corre-
lated with the fact that the value of x in Table I shifts
from z < —1 to x > —1. We see from both Table I and
Fig. 8 that this is the only case in which such interesting
behavior occurs.

At first glance, it might seem surprising that we are
able to obtain effective equation-of-state functions weg (t)
which depend on z, but which are otherwise universal
when plotted versus T'gt. Indeed, weg(t) depends on a
number of parameters: not just the dimensionless expo-
nents « and 3 in Eq. (15), but also dimensionful quanti-
ties such as the leading coefficients A and B in Eq. (15)
as well as physical parameters such as Qcpy which are
involved in setting a boundary condition for Q. Indeed,
all of these parameters appear in our approximate results
for Qor(t) in Egs. (18) and (19). However, the important
point is that while Q¢ depends on all of these dimension-
ful quantities somewhat independently, weg(t) depends

on them in only one particular combination. This was
already apparent in Egs. (20) and (23), where the com-
bination in question was nothing but w. = Weg (tnow)-

Of course, the results for weg(t) in Egs. (20) and (23)
were respectively derived from the results for Qo (t) in
Egs. (18) and (19), and these in turn were realized by
taking our boundary condition to be Qtot (tnow) = QcDM-
However, we can equivalently write our boundary condi-
tion in the form Qo (1/T9) = 0, where we are assum-
ing that each KK mode with mass A decays promptly at
t=1) = 1";1, with 'y denoting the width of the lightest
mass eigenmode. Following the same algebraic manip-
ulations as in Sect. II then leads to equations of state
which are written in terms of I'g rather than wy:

2z +1) [1 = (Tot)*™] ' ofora# -1
weff(t) =
2(Tot) ! for z = —1
(77)

where x = o + 5. Thus, when expressed in terms of the
dimensionless time variable 't as in Fig. 8, our weg(t)-
functions are indeed universal, depending only on x.

It is important to bear in mind that in this section we
have made only minimal assumptions concerning the pre-
cise nature of this KK tower or the identity of the fields
it represents. We therefore expect that all of the features
we have discussed in this section will hold quite gener-
ally, regardless of the identity of the particular field(s)
which happen to populate the bulk and constitute the
KK tower.



IV. DYNAMICAL DARK MATTER: NOVEL
SIGNATURES AND PHENOMENOLOGICAL
CONSTRAINTS

Having described the general theoretical structure of
our dynamical dark-matter framework, we now present
several additional features of this framework which are
likely to be of importance in enabling this framework to
satisfy phenomenological constraints. As in other sec-
tions, our discussion here will be restricted to broad,
model-independent themes, and we shall present a de-
tailed phenomenological analysis of one specific dynami-
cal dark-matter scenario in Refs. [6, 7].

It turns out that there are three phenomenological fea-
tures which are unique to dynamical dark matter, and
which under certain circumstances might be taken as sig-
natures (or even “smoking guns”) of the overall frame-
work.

e No well-defined dark-matter mass or cross-section:
First, since the dark-matter “candidate” within the
dynamical dark-matter framework is not a single
particle, but rather an ensemble of particles, it
does not have a specific mass or cross-section asso-
ciated with it. This represents a marked difference
relative to most other dark-matter proposals, and
implies that the kinematics associated with the
production and decay of dynamical dark matter
is likely to be quite different from that associated
with more traditional single-component dark
matter. This could have dramatic consequences
for collider phenomenology (and potentially for
direct detection), and may also have a number of
cosmological implications.

e Coupling suppression for light modes: Second, it
is almost inevitable that the eventual phenomeno-
logical success or failure of specific dynamical dark-
matter scenarios involving large extra dimensions
will ultimately rest in part on the couplings be-
tween the dynamical dark matter in the bulk and
the Standard-Model states on the brane. Such cou-
plings are of critical importance because they gov-
ern the degree to which this dark matter might
be “visible” to the Standard Model. From intu-
itions based on studies of KK graviton dynamics,
one might suspect that all mass eigenstates in the
bulk would couple to the brane with equal strength.
However, it turns out that the opposite is true for
theories with a brane mass: while the most of the
couplings between the fields on the brane and the
mass eigenstates in the bulk are indeed uniform,
the couplings between the brane and the lightest
mass eigenstates in the bulk are significantly sup-
pressed. We have already seen this behavior in
Fig. 3, where we plot the coupling matrix element
(pr]¢') = A2A3 as a function of A: although this
coupling always reaches an asymptotic value for
sufficiently large A, this coupling is significantly
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suppressed for small A. Indeed, the magnitude of
this suppression can be controlled by varying the
non-diagonality parameter y.

This suppression feature is of immense phenomeno-
logical importance, since the couplings of the light-
est dark-matter eigenstates to the brane are pre-
cisely those which are the most dangerous for
the viability of our dynamical dark-matter frame-
work. Thus, this suppression feature can be very
important in relaxing numerous phenomenological
bounds on dynamical dark matter, and thereby
constitutes an unexpected additional effect which
can help dynamical dark matter stay dark despite
its multitude of states.

Decoherence: Finally, there is an additional fea-
ture associated with dynamical dark matter in large
extra dimensions which can play an important role
in its phenomenology: this is the phenomenon of
“decoherence” [11]. As we have seen in Sect. III,
only one particular linear combination of bulk dark-
matter modes ¢, can couple to the brane: this
is the linear combination ¢’. However, once ¢’ is
created through an interaction with the brane, it
rapidly decoheres as it propagates because it is not
a mass eigenstate.

One way to understand this decoherence involves
simple quantum mechanics: because ¢’ consists
of a huge number of different mass eigenstates,
and because the masses of these eigenstates are
generally not related to each other through ratio-
nal multiplicative factors, the different mass eigen-
states fall out of phase with each other under time-
evolution and will not reconstitute ¢’ within fi-
nite time. Thus, they cannot couple to the brane
at later times, and essentially become “invisible”
as far as physics on the brane is concerned. An-
other (quantum field-theoretic) way to describe the
same phenomenon is simply that the amplitude as-
sociated with any process that involves the pro-
duction and subsequent detection of dark matter
on the brane will have multiple individual contri-
butions, each associated with the propagation of
an intermediate state consisting of an individual
dark-matter component. However, because these
individual components have different masses, their
corresponding amplitudes accrue different phases.
These amplitudes therefore destructively interfere
within the calculation of any cross-section sum.

This decoherence phenomenon can have impor-
tant phenomenological consequences. Indeed, de-
coherence generically induces a suppression of the
cross-section for any process involving virtual dark-
matter particles by a factor of N, where N is the
number of such particles being exchanged. This,
then, is yet another mechanism which helps dy-
namical dark matter stay dark. We emphasize that
this feature is not specifically extra-dimensional;



it applies to any dark-matter framework in which
the dark matter has many components of different
masses, and in which only a specific linear combina-
tion of those components can couple to Standard-
Model states.

Needless to say, dynamical dark matter must ulti-
mately be subjected to all of the phenomenological
bounds and constraints that apply to more traditional
dark-matter candidates. However, because dynamical
dark matter consists of a vast ensemble of individual
states which are not necessarily stable on cosmological
time scales, many of these constraints take unusual forms
in this context. We shall therefore now provide a quick
overview of the different classes of laboratory, astrophys-
ical, and cosmological constraints which apply to dark
matter in general, and then indicate the forms they can
be expected to take within the context of dynamical
dark matter. Once again, we emphasize that our goal
here is merely to provide a model-independent theoret-
ical overview in which we restrict ourselves to address-
ing a single question: for each class of constraints that
apply to theories of dark matter, what combinations of
parameters are bounded in the traditional framework and
how do these combinations translate into our dynami-
cal dark-matter framework? Explicit details concerning
a particular dynamical dark-matter scenario can be found
in Refs. [6, 7].

Broadly speaking, there are four classes of constraints
which apply to any candidate theory of dark matter.

e First, there are general constraints on the relic
dark-matter abundance and on the dark-matter
equation of state. The constraints on the dark-
matter abundance Qo (t) are similar to those
which apply in traditional dark-matter scenarios:
Qtot (tnow) must match the observed dark-matter
relic abundance Qc¢py; the dark-matter ensemble
must not cause the universe to become matter-
dominated too early; etc. However, our sce-
nario differs from traditional dark-matter scenar-
ios in that it gives rise to an equation-of state-
parameter weg which can be different from zero and
which generally exhibits a non-trivial time depen-
dence. Astrophysical and cosmological considera-
tions therefore imply additional constraints on our
equation-of-state function weg(t), or equivalently
on the scaling coefficients (a, 3).

e Second, there are constraints on dark matter which
derive from physical processes in which dark matter
is produced through its interactions with Standard-
Model particles but not subsequently detected. For
example, there are collider constraints on processes
in which dark-matter particles manifest themselves
as missing energy. Furthermore, if the dark-matter
candidates in question are sufficiently light, addi-
tional constraints can be derived from limits on
dark-matter production by astrophysical sources.
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For example, dark-matter particles produced in
stars and supernovae can carry away energy from
these sources very efficiently. This can lead to ob-
servable effects on stellar lifetimes, energy-loss rates
from supernovae, etc. Indeed, observational lim-
its on the magnitudes of these effects imply strin-
gent bounds on any light particle whose interac-
tions with the Standard-Model fields are highly
suppressed.

To see how such considerations constrain the pa-
rameters of a generic dark-matter model, let us
consider a traditional single-component scenario in
which the dark-matter candidate resides in a hid-
den sector. The dominant interaction between the
dark sector and the Standard Model in such sce-
narios occurs through non-renormalizable opera-
tors O, of mass dimension n, suppressed by inverse
powers of some large mass scale A associated with
the cutoff of the theory. For example, A might be
an effective Planck scale Mp in the case of dark-
matter candidates associated with gravity, or a par-
ticle mass Mg in the case of candidates such as a
right-handed neutrino, or a dynamical scale such
as the Peccei-Quinn scale fpq in the case of ax-
ions. The cross-section for dark-matter production
will therefore be suppressed by a factor of A2(4=7),
and constraints in this class thus ultimately become
constraints on A.

For example, in the specific dynamical dark-matter
scenario presented in Sect. III, the leading oper-
ators have mass-dimension five, and A is equated
with the suppression scale f¢. Thus, constraints in
this class ultimately become bounds on 1/]?(125 Or,
phrased directly in terms of the decay widths and
abundances which are the bedrock of our scenario,
these constraints yield bounds on >, A™3I'y, where
the sum over mass eigenstates includes only those
states which are kinematically relevant for the pro-
cess in question.

We conclude, then, that constraints of this type
tend to place bounds on the particular combina-
tion >, A7%I'y. However, this quantity is signif-
icantly affected by the coupling-suppression effect
discussed above. As a result, such bounds can often
turn out to be considerably weaker that one might
imagine at first glance.

Third, there are constraints that arise from situa-
tions in which dark matter is produced through its
interactions with Standard-Model particles and is
then subsequently detected (either directly or indi-
rectly) via those same interactions. Here we have in
mind not only astrophysical production with sub-
sequent detection on earth, but also any process in-
volving virtual dark-matter particles. Which phys-
ical processes of this sort serve to constrain a par-
ticular dark-matter particle are extremely model-
specific. Axions and other similar particles, for



example, are constrained primarily by helioscope
searches, microwave-cavity experiments, etc.; other
particles are more stringently constrained by col-
lider limits, and so forth. Nevertheless, a few
generic observations can be made.

If we assume, as above, that the dark matter re-
sides in a hidden sector, it then follows that the
cross-sections for processes of this sort are propor-
tional to A**=™)_ Thus, once again, limits on such
cross-sections ultimately become bounds on A. For
example, in the specific dynamical dark-matter sce-
nario presented in Sect. III, they become bounds on
1/fj;, or equivalently on the quantity (3°, A73I'y)2.
In terms of overall mass scales, we might approx-
imate this quantity as Y, A7°T%, but we must
also bear in mind that the cross-terms within such
products can be significant. Indeed, these are pre-
cisely the situations in which the decoherence phe-
nomenon discussed above can play a role. Thus,
these constraints might also turn out to be signifi-
cantly weaker than they might at first sight appear.

Finally, there are constraints on dark-matter decays
and annihilations. As far as decays are concerned,
we have in mind constraints such as those from big-
bang nucleosynthesis, measurements of the cosmic
microwave background, observations of the diffuse
X-ray and gamma-ray backgrounds, etc. The ba-
sic idea behind all of these constraints is that the
decays of a cosmological population of dark-matter
particles can result in measurable deviations from
the standard cosmology at times ¢ 2 1 s, or leave
(unobserved) imprints on these backgrounds. In
situations in which dark-matter annihilation cross-
sections are sufficiently large, various additional
limits (such as those from typical indirect-detection
methods) would also apply.

Let us focus on those constraints related to dark-
matter decays, as these are generic to dynamical
dark-matter scenarios. (By contrast, constraints
related to dark-matter annihilation tend to be
somewhat model-dependent, and indeed often do
not apply.) Roughly speaking, in a traditional
single-component dark-matter scenario, such dark-
matter decay constraints tend to place bounds on
the product 2, Iy, where 2, and I'y, are the abun-
dance and decay width of our dark-matter field x,
suitably evaluated during the appropriate cosmo-
logical period. In a dynamical dark-matter frame-
work, by contrast, this now becomes a constraint
on

() = > Iy (78)
A

where again our abundances and widths are to
be evaluated during the cosmological epoch dur-
ing which decays can contribute to the effect in
question (the disruption of BBN, distortions of the
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CMB, etc.). It is important to note that this de-
pendence on time effectively truncates the range of
the above sum to those states whose lifetimes fall
roughly within the time scale associated with that
epoch. Put another way, only those states whose
masses lie within certain characteristic ranges con-
tribute to the sum. Of course, at a mathematical
level, the behavior of this sum ultimately depends
critically on the balancing relations that happen to
hold across the entire dark-matter ensemble. Note
that these arguments will be addressed more rigor-
ously in Refs. [6, 7].

Finally, for completeness, we also mention two further
classes of constraints which must also be borne in mind.
Unlike the previous constraints, these are substantially
more model-dependent.

e First, there can be phenomenological bounds that

accompany (and are therefore specific to) partic-
ular realizations of dynamical dark matter. For
example, we have seen that an infinite tower of
Kaluza-Klein states furnishes an excellent realiza-
tion of dynamical dark matter. However, the
extra-dimension brane/bulk framework brings with
it a whole host of additional bounds and con-
straints, some of which come from the fact that
we are now attempting to do standard physics
within such a context (e.g., the need for a late-
time-reheating (LTR) cosmology [10]), and others
of which place bounds on the context itself (e.g.,
Eo6tvos-type or Cavendish-type “fifth-force” exper-
iments which restrict the allowed sizes of the extra
dimensions). Such constraints are clearly highly
model-dependent, and frequently they are are also
wholly independent of the general dynamical dark-
matter framework.

Finally, there can also be constraints that arise sim-
ply for reasons of theoretical self-consistency. For
example, if we assume (as we have done here) that
our initial dark-matter abundances are determined
through misalignment production, then we must
insist that misalignment production indeed dom-
inates over other production mechanisms such as
thermal production. This, of course, yields a non-
trivial constraint on the parameters of the model.
Likewise, the assumption that dynamical dark mat-
ter in the bulk decays preferentially to Standard-
Model states on the brane, rather than to other dy-
namical dark-matter states in the bulk, implies yet
another self-consistency requirement. Once again,
however, constraints in this class tend to be highly
model-dependent and therefore do not represent
generic constraints on the dynamical dark-matter
framework.

This is clearly a fairly long list of constraints, and one
must not minimize the impact that they can have in rul-
ing out specific dark-matter proposals. In Refs. [6, 7],



however, we shall study one particular realization of dy-
namical dark matter, and we shall exhaustively work
through all of the constraints relevant for this partic-
ular realization. We shall find that for this particular
scenario, our dynamical dark-matter framework indeed
survives all known laboratory, astrophysical, and cosmo-
logical constraints. This will thereby furnish us with an
“existence proof” that dynamical dark-matter can indeed
be a viable, alternative framework for addressing the cen-
tral questions in dark-matter physics.

Finally, we remark that for some purposes it may
also be interesting to consider the phenomenology as-
sociated with our overall dark-matter framework when
the individual component decay widths I'; are extremely
small. Of course, in the actual limit I'; — 0 we know
that Q,x approaches a constant in the final, matter-
dominated era; likewise, wegg — 0. In this respect, this
limit of our framework begins to resemble a traditional
non-dynamical dark-matter framework, thereby allowing
us to evade many of the most stringent phenomenological
constraints coming from dark-matter decays in the early
universe. However, even in this limit, our framework
nevertheless continues to retain those distinctive features
which stem from its underlying multi-component nature.
For example, we can still have n # 0. We also still have
the possibility of staggered turn-ons as well as the possi-
bility of coupling suppression for light modes. We even
continue to have decoherence, even though many of the
processes for which decoherence is most phenomenolog-
ically relevant will already tend to be suppressed in the
I'; — 0 limit. And perhaps most importantly, the dark
matter in our framework will continue to evade simple
characterization in terms of a single well-defined mass or
cross-section.

Needless to say, we are not particularly interested in
the limit T'; — 0. Indeed, we regard the dynamical as-
pects of our dark-matter framework to be among its most
intriguing features and key signatures. However, the free-
dom to tune the values of I'; relative to the other dimen-
sional parameters in our framework is important from a
theoretical standpoint because it illustrates that our over-
all dark-matter framework possesses a means of “dialing”
the scale associated with its dynamical aspects relative to
those associated with its multi-component aspects. This
is particularly relevant because the dynamical aspects of
our framework are often ultimately subject to an entirely
different set of phenomenological bounds and constraints
than those governing its multi-component aspects. Thus,
the freedom to independently adjust the scales associated
with these different aspects of our dark-matter framework
gives this framework an added flexibility when it comes
to satisfying many of the phenomenological bounds dis-
cussed above.

Of course, within the particular higher-dimensional
brane/bulk context discussed in Sect. III, this free-
dom may initially appear to be lacking: a single five-
dimensional mass scale fg governs not only the magni-
tudes of the abundances of individual dark-matter com-
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ponents but also the magnitudes of their corresponding
decay widths. Indeed, in particular realizations of this
framework, even the brane mass m can be tied to fg,
and we shall see an explicit example of this in Ref. [6].
However, there is in principle no reason why the mass
scale fg which appears in Eq. (47) and which ultimately
sets the scale for dark-matter abundances needs to be the
same as the mass scale f¢ which appears in Egs. (68) and
(69) and which ultimately sets the scale for decay widths.
Indeed, identifying these two quantities is merely a min-
imal assumption about the energy scales in our higher-
dimensional theory, and we can easily envision more com-
plex scenarios in which these two mass scales are signifi-
cantly different.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have introduced a new framework for
dark-matter physics which we call “dynamical dark mat-
ter”. Unlike most approaches to the dark-matter problem
which hypothesize the existence of a single, stable, dark-
matter particle, our dynamical dark-matter framework
may be characterized by the fact that the requirement of
stability is replaced by a delicate balancing between cos-
mological abundances and lifetimes across a vast ensem-
ble of individual dark-matter components. This setup
therefore collectively produces a time-varying cosmolog-
ical dark-matter abundance, and decays of the different
dark-matter components can occur continually through-
out the evolution of the universe.

Although our framework is quite general and need not
be tied to a specific set of particles or theoretical mod-
els, we have shown that one natural realization of this
scenario consists of a tower of KK states correspond-
ing to a single higher-dimensional field propagating in
the bulk of large extra spacetime dimensions. Indeed,
as we have shown, the states in such a “dark tower”
naturally obey inverse “balancing” equations that relate
their abundances and decay widths in just the right man-
ner. Remarkably, this remains true even if the stability
of the KK tower itself is entirely unprotected. Our dy-
namical dark-matter scenario is therefore well-motivated
both in field theory and string theory, and can even be
used to constrain the cosmological viability of certain
limits of string theory. We have also seen that within
this context, dynamical dark matter generically gives
rise to certain phenomena such as coupling suppression
and decoherence which may help to explain why dark
matter is dark and thus far unobserved. Such phenom-
ena transcend those usually associated with traditional
single-component dark matter, and may in some sense
be viewed as unique signatures for a dark-matter fram-
work such as ours which rests on the existence of a large
multitude of individual dark-matter components.

Needless to say, there are many possible generalizations
of our basic dynamical dark-matter framework. Some of
these apply to dynamical dark matter in general, while



others are more specific to realizations involving extra
dimensions. For example, insofar as our general dark-
matter ensemble is concerned, there are several natural
extensions which can be contemplated.

e Not all components within the ensemble need be
scalars. Higher-spin fields may also be considered.
We may even demand that our ensemble be su-
persymmetric, although there would be no obvious
need for R-parity within such supersymmetric ex-
tensions as far as dark-matter considerations are
concerned.

e In this paper, we have examined the case of rela-
tively simple dimension-five couplings between the
components in the ensemble and the fields of the
Standard Model. However, different scenarios may
involve different coupling structures, and thus dif-
ferent models will lead to their own own distinctive
phenomenologies.

e Continuing along these lines, we have assumed in
this paper that all of the components of our dy-
namical dark-matter ensemble are neutral under
the Standard-Model gauge symmetries. While this
choice is particularly convenient, allowing the pos-
sibility of specific realizations of our scenario in
higher-dimensional brane/bulk Kaluza-Klein the-
ories, there is nothing intrinsic to the dynamical
dark-matter framework that requires this to be the
case. In particular, some or all of the compo-
nents of our dark-matter ensemble could have O(1)
SU (2) weak interactions with the Standard Model.
This would, of course, undoubtedly tighten many
of the phenomenological constraints on such sce-
narios; likewise, scattering processes involving such
dark-matter components are also generally likely
to play an important role and would need to be in-
cluded in the analysis along the lines discussed in
the Appendix. However, as long as the lifetimes of
the ensemble components are sufficiently balanced
against their abundances, the basic features of our
framework will remain intact.

e In this paper, we have considered all decays of
our ensemble components to be essentially instan-
taneous. However, such decays really have an ex-
ponential time-dependence. The fact that these de-
cays have different widths can thus lead to further
non-trivial effects on the time-dependence of the
total dark-matter abundance associated with the
ensemble.

e The primary decay mode for a given dark-matter
component within our ensemble need not always
be directly into Standard-Model states. In par-
ticular, it is also possible to consider decays from
heavier ensemble components into lighter ensemble
components. Note that in this sense, we are view-
ing the ensemble as consisting of all states which
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are neutral under Standard-Model symmetries, in-
cluding fields which reside in what might in more
traditional contexts be considered a hidden sector.
Such intra-ensemble decays could significantly alter
the sorts of balancing equations which might arise
across our dynamical ensemble, and as we shall dis-
cuss in the Appendix, they can thereby modify the
time-dependence associated with Qiet, 17, and weg.

Misalignment production need not be the only
mechanism through which the abundances of our
individual components are initially established.
Many other mechanisms (e.g., thermal production,
decays arising from topological defects, etc.) also
provide ways of populating the different compo-
nents, and can likewise lead to different resulting
phenomenologies for dynamical dark matter. In
particular, it would be very interesting (and rele-
vant for our overall framework) to see whether the
correct, sorts of balancing relations might arise for
situations in which our different ensemble compo-
nents are populated in the manner of a standard
WIMP — i.e., by thermal freeze-out.

At many points in this paper, we have made as-
sumptions that simplify our analysis. For example,
in Sect. IT we have assumed that ¢1, the time by
which our staggered turn-on has ended, is less than
ta, the time at which significant dark-matter de-
cays commence. Likewise, we have assumed for
much of our analysis of abundances in Sect. III
that a staggered turn-on, if it occurs, takes place
entirely within a single epoch (either RH, RD, or
MD). While such assumptions prove useful for ana-
lyzing the effects of different features of our frame-
work individually, there is nothing intrinsic to the
dynamical dark-matter framework which requires
that these features be separated in this way, and
numerous extensions and combinations of these fea-
tures are possible.

Although we have discussed several different signa-
tures which are unique to dynamical dark matter,
it is likely that our discussion has only begun to
scratch the surface. It would be interesting to in-
vestigate what other kinds of signatures are also
possible within this framework.

Finally, our discussion in this paper has assumed
a standard FRW cosmology. However, it would be
interesting to repeat this analysis for a ACDM cos-
mology (and also for versions thereof with low re-
heat temperatures, as appropriate for theories with
large extra dimensions). Indeed, within such cos-
mologies, quantities such as Qo will experience
additional types of time-dependence beyond those
considered here.

Likewise, within the specific framework of large extra
dimensions in which our dynamical ensemble of dark-
matter components is represented by an infinite tower of



Kaluza-Klein states, there are also numerous generaliza-
tions and extensions which may be contemplated.

e We may consider situations involving multiple
species of bulk fields. For example, the bulk can
be a crowded place, consisting of a whole plethora
of particles which are neutral under all Standard-
Model gauge symmetries: these include gravitons
and gravitini, axions and other axion-like particles,
string-theory moduli, right-handed neutrinos, and
so forth. From the point of view of physics on the
brane, all of these states can be considered “dark
matter”, and their contributions to quantities such
as ior must all be considered within the overall
dynamical dark-matter framework.

e We also need not restrict ourselves to a single extra
spacetime dimension. Multiple extra dimensions
are also possible.

e Likewise, our extra dimensions need not necessar-
ily be flat. Warped extra dimensions will give rise
to an entirely different KK spectroscopy, and as a
result the phenomenology of dynamical dark mat-
ter within such contexts is likely to be significantly
different from what has been presented here.

The above represent ideas for generalizing our overall
dynamical dark-matter scenario. However, it may also be
possible to use this kind of dynamical framework in order
to address questions that go beyond dark matter per se.
While some of these are relatively straightforward, others
are indeed quite speculative.

e One of the key features of dynamical dark mat-
ter is that quantities such as Qo4 are dynamical
(i.e., time-dependent) in this framework — even
during the current matter-dominated epoch dur-
ing which the dark-matter abundance is normally
thought to be roughly constant. It is therefore pos-
sible that such a dynamic approach could serve as
a starting point towards addressing the cosmic co-
incidence problem.

e Further along these lines, it might also be possi-
ble to address the cosmological constant within a
similar framework. For example, the energy den-
sity associated with each scalar field ¢; prior to
its “turn-on” behaves as dark energy rather than
dark matter. Thus in this respect the cosmolog-
ical constant in our framework is time-dependent
as well, and this sort of dynamic cosmological con-
stant might even persist into the current epoch if
there continue to exist light scalar modes which
have not yet turned on. In this case, the process of
dark-matter decays would necessarily overlap with
the process of a staggered turn-on, and one might
be able to develop a consistent theory in which a
vast ensemble of states gives rise to both dynamical
dark matter and dynamical dark energy.
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e The framework of dynamical dark matter might

also provide a new means of placing phenomenolog-
ical bounds on string theory (and in particular, on
candidate string models). After all, string models
are typically rife with “bulk” fields — even if their
extra dimensions are compactified at or near the
traditional Planck scale. Some of these fields (such
as moduli) are model-dependent: they depend
on the particular kind of compactification geom-
etry employed in the construction of the candidate
string model and their masses depend on the par-
ticular stabilization mechanisms, if any, which have
been employed. By contrast, some of these fields
are generically model-independent: these include
all fields associated with the (super)gravity multi-
plet, such as the graviton, dilaton, other higher-
form fields, and their possible superpartners. In-
deed, if the Standard Model is restricted to a stack
of D-branes within a given string construction, the
corresponding “bulk fields” include all string states
which do not couple to those branes.

While these fields are typically required for the self-
consistency of the string, those that are massless
require stabilization. Indeed, this is nothing but
the standard moduli problem. However, depend-
ing on the specific cosmological properties of these
fields, it is also true that their abundances must
necessarily be considered as contributing either to
the total dark energy or the total dark matter of
the universe — even after they are stabilized. An
analysis of their cosmological effects is then likely to
run along the lines we have presented here, and the
cosmological viability of the underlying candidate
string model thus necessarily becomes an issue to
be studied within a dynamical dark-matter (or dy-
namical dark-energy) framework. Indeed, in such
cases our dark-matter ensemble could potentially
include not only string KK modes, but also (a sub-
set of) string oscillator modes and string winding
modes.

One central feature of our dynamical dark-matter
scenario is the phenomenon in which an ensemble of
decaying “stuff” with one equation of state collec-
tively simulates “stuft” with a different equation of
state. For example, in the specific dynamical dark-
matter scenario presented here, an ensemble of de-
caying dark-matter states (i.e., each with w = 0)
collectively simulates an effective equation of state
with weg > 0. This notion of using a vast ensem-
ble of states with one equation of state to simulate
another is, we believe, worthy of exploration in its
own right, independently of the specific uses for
dark-matter physics that we have presented here.

Further along the above lines, it is natural to ask
whether we could construct an ensemble of indi-
vidual components of “stuft” with negative w. The
decays of these components within the ensemble



would therefore act to increase the effective value
of w, and perhaps even simulate w = 0. In other
words, it is possible that dark matter might not
even need to be comprised of matter! In some
sense, this is the converse of the scenario we have
presented here, in which individual matter com-
ponents collectively produce a value for weg which,
though not too different from zero, is still non-zero.
Indeed, both scenarios may represent equally legit-
imate approaches to the dark-matter problem.

e Pursuing these lines still further, one can even spec-
ulate as to whether an ensemble of decaying dark-
energy components (each with w = —1) could sim-
ulate dark matter (with w = 0). Indeed, such
individual dark-energy components need be noth-
ing more complicated than a set of scalar fields
¢; which decay (potentially into a hidden sector)
prior to turning on. Such an approach might then
“unify” dark energy and dark matter as simulta-
neously stemming from a primordial ensemble of
scalar fields.

e Along entirely different lines, there is another phe-
nomenon inherent in our dynamical dark-matter
framework which is potentially interesting in its
own right: this is the phenomenon (discussed in
Sect. III) in which a KK tower appears to have
periodic modings for its heavier modes, but anti-
periodic modings for its lighter modes. As we have
seen in Sect. III, this result emerges rather generi-
cally, requiring only a bulk field that somehow ac-
crues a non-zero brane mass. This phenomenon is
extremely interesting, because one normally asso-
ciates the modings of a given field with its bound-
ary conditions around non-contractible loops in a
topologically non-trivial space, or equivalently with
the magnitudes of the fluxes which might penetrate
those loops. This phenomenon therefore seems to
suggest a mechanism by which such modings or
fluxes might become effectively energy-dependent.

e Finally, the general phenomenon of decoherence is
interesting in its own right. This might be ex-
tremely relevant for axion invisibility (see, e.g., the
discussion in Ref. [11]), and is also likely to be of
more general applicability. Indeed, this might pro-
vide an interesting approach to the moduli problem
in string theory, and explain why moduli such as
the dilaton are not observed.

We see, then, that our dynamical dark-matter frame-
work appears to be pregnant with numerous possibili-
ties for extension and generalization. However, even as a
framework for dark-matter physics, we caution that our
presentation here has been limited to only the broadest
model-independent theoretical aspects and features. In
particular, it still remains to choose a specific realization
of this scenario in terms of a particular species of bulk
field, and examine the phenomenological consequences of
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such a choice in complete detail. In other words, it still
remains to build an actual model of dark matter within
this framework. However, this is precisely what we shall
do in Refs. [6, 7], and we shall verify there that our spe-
cific models satisfy all known collider, astrophysical, and
cosmological constraints. We thus conclude that the dy-
namical dark-matter framework can indeed serve as a
viable alternative to the standard paradigm of a single,
stable, dark-matter particle, and that dynamical dark
matter therefore has a legitimate place alongside other
approaches to dark-matter physics.
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Appendix: Intra-ensemble decays

Throughout this paper, we have implicitly assumed
that each component of our dark-matter ensemble prefer-
entially decays directly into one or more Standard-Model
states rather than into another, lighter component within
the ensemble. In other words, we have been assuming
that the decays associated with the widths I'; take the
direct extra-ensemble form ¢; — SM, and that such di-
rect decays dominate over all possible intra-ensemble de-
cays which might produce other dark-matter components
among their end-products. However, it is easy to gener-
alize our overall framework to include cases in which this
assumption is relaxed.

Towards this end, it proves useful to start by rewriting
Eq. (3) in a more useful form. Recall that Q; = p;/perit,
where p; is the energy density associated with our os-
cillating ¢; field and where perit = 3M3H?, where Mp
is the reduced Planck mass. Eq. (3) can therefore be
rewritten as

However, because this energy density p; is entirely as-
sociated with the coherent oscillations of the (zero-
momentum modes of the) scalar ¢; field, it is possible
to repackage this energy density in terms of an effective
number density n; = p;/m;. We then find

n; + (3H + Fi) n; = 0. (A2)
Indeed, Eq. (A.2) describes the evolution of the number
densities associated with each of the oscillating compo-
nents in our ensemble under the assumption that the only
decays available for these components are direct decays



into Standard-Model states, i.e., ¢; — SM, with widths
T;.

Let us now consider what happens if we introduce an
additional set of intra-ensemble decays of the form

STN g+ x @ (A.3)
J

Here the a-index labels the specific decay channel, and
Ni(f) are non-negative integers describing the multiplic-
ities of the ¢; particles produced in this decay channel
(each of which may be assumed to have m; < m;). Like-
wise, X (@ collectively represents any fields outside our
dark-matter ensemble (potentially including Standard-
Model fields) which may also happen to be produced in

this decay process. We shall let I‘EO‘) denote the width
associated with the decay in Eq. (A.3).

The inclusion of such additional decay channels into
our discussion leads to two additional effects on the time-
evolution of the number densities n;. First, there will be
an additional decline in n; due to the new decay channels
for ¢; which are now available. However, there is also
the possibility of an increase in n; due to the production
of ¢; particles from the decays of presumably heavier
components ¢; within the ensemble. Indeed, we find that
Eq. (A.2) is now replaced with the coupled system of
differential equations

+(3H+Fi+za:1"§a)>n - Z(ZN(“ 9)

(A.4)
In general, the solutions to Eq. (A.4) can exhibit a
number of striking behaviors. Not only can there be di-
rect decays into Standard-Model states, as before, but
there can also be “cascade” decays that take place en-
tirely within the dark-matter ensemble, from heavier
states down to lighter states. Indeed, a given state can
also decay directly into Standard-Model states at any
point along the cascade. As a result, a particularly rich
and subtle phenomenology can easily ensue depending
on the relations between I'; and I‘EO‘), with different por-
tions of the ensemble exhibiting different particle-decay
patterns in a manner reminiscent of the vacuum-decay
patterns studied in Ref. [12]. The corresponding values
of n; can then alternatively rise and fall as time evolves.
The possibility of such dark-to-dark intra-ensemble de-
cays also allows even more striking features to emerge.
For example, once a given heavy state ¢; “turns on”, it
can potentially decay to lighter states ¢ which, because
of their relative lightness, have not yet turned on. Thus,
in this way, we see that a given component ¢; within
our ensemble can simultaneously contribute to dark mat-
ter (in the form of daughter particles from the decays of
heavier dark-matter components ¢;); to “dark radiation”
(if the momenta of these ¢y, daughter particles are large
compared to their masses); and to dark energy (in the
form of the energy still trapped in the overdamped field

br)-
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Given the result in Eq. (A.4), it might seem at first
glance to be a straightforward exercise to obtain a cor-
responding set of coupled differential equations for the
energy densities p; and the abundances €2;. Indeed, all
that would seem to be necessary would be to start with
Eq. (A.4) in place of Eq. (A.2) and essentially reverse the
process that led from Eq. (A.1) to Eq. (A.2). However, in
going from Eq. (A.1) to Eq. (A.2) we needed to assume
that all of the energy density p; was in the form of coher-
ent zero-momentum mode oscillations of the field ¢;, and
this will no longer be true when intra-ensemble decays are
possible. Indeed, the daughters ¢; which are produced
through such intra-ensemble decays are literal particles
— they have their own momenta and energies which are
governed by the kinematics of the specific intra-ensemble
decays which produced them. As a result, while it is
still valid to discuss the time-evolution of a total num-
ber density n; as in Eq. (A.4), we cannot simply identify
pi; = m;n; in order to obtain a corresponding set of equa-
tions for the energy densities p; or abundances €);.

In order to handle this calculation correctly, it is first
necessary to express the relations in Eq. (A.4) in terms
of the phase-space distributions f;(|p;|,t) [or equivalently
fi(E;, t), simply denoted f;] associated with each field ¢;.
This will essentially yield a Boltzmann equation which
describes the time-evolution of these distributions. To
do this, we observe that in general we may write

m= /<d3 @

[dra (1 £ fo)] [dmp(1 = fi)] -+

|'/\/l|2 3
(A.5)

2F;

where I'; is the width for a generic decay of the form
¢; — a+ b+ ..., where M is the corresponding matrix
element (including an implicit Dirac d-function to en-
force momentum conservation), where the momentum-
integration measures are given by dr = gd*p/[(27)32FE)]
with ¢ signifying the number of associated degrees of free-
dom, and where the & signs are chosen positive for bosons
and negative for fermions. The left side of Eq. (A.4) then
takes the form

/ (d 131 fit <3H+ri+2r§“>> fi] (A.6)

and the right side of Eq. (A.4) takes the form

ZN“” J1am2 4 Tiam 1+ 5™

ki

(L )N [drx (1 FOIMPE (A7)

where M is the matrix element for the decay ¢; —

> N;Z‘)gbk + X Equating the d®p; integrands in



Egs. (A.6) and (A.7) then yields the result
fi+ <3H+FZ— + ZFE‘”) fi =

1+ fi (a)

[l (L )N M drx (14 fx)]| M2
(A.8)

[Tldme @+ f))V5
ki

where we have recognized that although there are in prin-
ciple N J(lo‘ ) different ways of identifying an integrand with
respect to d®p; within Eq. (A.7), each yields the same re-
sult and therefore any choice will suffice.

Eq. (A.8) is a set of coupled differential equations for
the phase-space distributions f;. Indeed, while T'; is in-
dependent of the f;, the quantity 1-‘1(_04) has a hidden de-

pendence on all f; for which NZ-(;‘) # 0. However, despite
the complexity of this system of equations, our remain-
ing task is conceptually easy: we simply begin with the
distributions

£l to) = 4m®ma(¢{™)? 83 (p))

at the time ¢y when our abundances are initially es-
tablished, and then use the results in Eq. (A.8) in or-
der to evolve these distributions forward in time. In-
deed, the initial distributions in Eq. (A.9) reflect noth-
ing more than the assertion that the original state of

(A.9)
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our ensemble consists of fields ¢; whose zero-momentum

modes are displaced by some amount gbz(-o) from their
minima in field space, with a resulting energy density
given by p; = %m?(¢§0))2. While the time-evolution
of the effective number densitites n; can then be ob-
tained from Eq. (A.8) by integrating this equation with
respect to the measure [ d3p;/(2m)? [thereby reproduc-
ing Eq. (A.4)], the time-evolution of the corresponding
energy densities p; can be obtained from Eq. (A.8) by in-
tegrating Eq. (A.8) with respect to the alternative mea-
sure [[d3p;/(2m)3E; = [[d®p;/(27)3]\/|pi|* + m?2. This,
then, provides us with the desired coupled differential
equations for the energy densities p;, from which it is
then trivial to obtain the corresponding equations for the
abundances ;.

Needless to say, there are many caveats which must
be borne in mind when applying this formalism. First,
in general we must require that such intra-ensemble de-
cays not produce daughter particles with great momenta,
for then our dark matter would not be sufficiently cold.
Likewise, although we have included the possibility of
intra-ensemble decays in the above analysis, we have dis-
regarded the possible contributions from scattering pro-
cesses which also potentially involve our ensemble compo-
nents. Indeed, this is generally an excellent approxima-
tion for gravitons, moduli, axions, and other fields which
are very weakly coupled. We have also disregarded the
effects of inverse decays.
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