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In the next decade gravitational waves might be detected using a pulsar timing array. In an effort to de-
velop optimal detection strategies for stochastic backgrounds of gravitational waves in generic metric theories
of gravity, we investigate the overlap reduction functions for these theories and discuss their features. We
show that the sensitivity to non-transverse gravitational waves is greater than the sensitivity to transverse grav-
itational waves and discuss the physical origin of this effect. We calculate the overlap reduction functions
for the current NANOGrav Pulsar Timing Array (PTA) and show that the sensitivity to the vector and scalar-
longitudinal modes can increase dramatically for pulsar pairs with small angular separations. For example, the
J1853+1303–J1857+0943 pulsar pair, with an angular separation of about 3◦, is about 104 times more sensitive
to the longitudinal component of the stochastic background, if it’s present, than the transverse components.

I. INTRODUCTION

General relativity is among the most successful theories of
physics in the 20th century, passing all current weak-field,
slow motion tests with flying colors. Progress in cosmology
and high energy physics over the course of the last fifty years,
however, has brought with it questions that may be unanswer-
able in the context of general relativity. The accelerated ex-
pansion of the universe, the dark matter problem, and infla-
tion have led some authors to re-examine general relativity
and attempt to modify it to explain some of these puzzles. Ad-
ditionally, the incompatibility between general relativity and
quantum field theory may be an indication that modifications
to general relativity are necessary.

A number of alternative theories of gravity have been pro-
posed to address some of these problems. Those which satisfy
the Einstein Equivalence Principle are called metric theories
of gravity. In these theories, the only gravitational fields that
may influence matter are the components of the metric tensor
gµν . Additional fields play the role of generating spacetime
curvature. Metric theories are grouped broadly into several
categories: scalar tensor theories, in which a dynamical scalar
field φ is present in addition to the metric (see Refs. [1–9]);
vector-tensor theories, which contain a dynamic gravitational
four-vector field in addition to the metric (see Refs. [7, 9–12]);
and bimetric theories, which are characterized by “prior” ge-
ometry contained in dynamical scalar, vector or tensor fields
(see Refs. [7, 9, 13]).

Gravitational wave astronomy promises not only to open a
new observational window on the universe, but also to pro-
vide a new testing ground for general relativity. In a general
metric theory of gravity, the six independent components of
the Riemann tensor provide up to six possible gravitational
wave (GW) polarization states, four more than those allowed
in general relativity. Detection of any extra GW polarization
states would be fatal for general relativity. A non-detection
could be used put constraints on the parameters of alternative
theories of gravity.

Several international efforts are currently underway to de-
tect GWs. Of these the most promising on the 5–10 year
timescale are ground-based laser interferometers [14] and pul-

sar timing arrays [15], which aim to detect GWs in the 10–103

Hz and 10−9–10−7 Hz ranges, respectively. Potential sources
for low frequency GWs (10−9–10−7 Hz) include binary su-
permassive black hole mergers [16], cosmic superstrings [17],
relic gravitational waves from inflation [18], and a first order
phase transition at the QCD scale [19].

Previous work on stochastic backgrounds of gravitational
waves in the context of alternative theories of gravity has
shown that three ground-based interferometers are sufficient
to disentangle the polarization content of a general metric the-
ory of gravity [20]. For pulsar timing arrays the form of the
correlation between pulsar pairs as a function of pulsar pair
angular separation depends on the polarization content of the
theory [21]. Additionally it has been shown that pulsar tim-
ing arrays have a greater sensitivity to longitudinal and vector
polarization modes than to transverse modes [21, 22].

In this paper we investigate the problem of stochastic GW
detection using PTAs in the context of the optimal statistic.
We compute the expected cross correlations for pulsar tim-
ing arrays for the case of stochastic backgrounds of GWs for
any metric theory of gravity. The expected cross correlations
are proportional to the so-called overlap reduction function, a
geometrical factor that captures the loss of sensitivity due to
detectors not being co-located or aligned. We explain various
features of the overlap reduction functions including the phys-
ical origin of the increased sensitivity to scalar-longitudinal
and vector polarization modes. In Section II, we use a coor-
dinate independent approach to describe the redshift of pulsar
signals from passing GWs. In Section III we write the opti-
mal cross-correlation filter by maximizing the signal to noise
for a pulsar pair, and define the overlap reduction function for
GWs of any metric theory of gravity. In Section IV we discuss
the effect of GWs of various polarizations on the pulsar-Earth
system, and the physical origin of the increased sensitivity to
longitudinal and shear modes. This effect is most easily un-
derstood in the frequency domain. In Section V, we write
down explicitly the form of the overlap reduction function for
transverse GWs and discuss the form of the function for non-
transverse GWs. We find that for the scalar-longitudinal and
vector (shear) modes, the overlap reduction functions are fre-
quency dependent in the ranges of frequencies and distances
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FIG. 1: Pulsar positions are given with respect to the Solar
System barycenter (located at the origin). Here θ and φ are

the typical polar and azimuthal angles (as projected from the
position of pulsar 1), and pulsar 1 and pulsar 2 are separated

by angle ξ. A gravitational wave, characterized by
polarization angle ψ, propagates along the Ω̂ direction.

relevant to pulsar timing. This is not the case for the transverse
tensor and breathing modes. In Section VI, we compute the
overlap reduction functions for the current NANOGrav PTA
and show that sensitivity to the scalar-longitudinal and vector
(shear) modes increases by at least an order of magnitude for
nearby pulsar pairs for vector modes, and about four orders of
magnitude for the longitudinal mode. We summarize our re-
sults in Section VII. Throughout we work in units where the
speed of light c = 1.

II. DETECTING GRAVITATIONAL WAVES WITH A
PULSAR TIMING ARRAY

The radio pulses from pulsars arrive at our radio telescopes
at very steady rates. Pulsar timing experiments exploit this
regularity. Fluctuations in the time of arrival of radio pulses,
after all known effects have been accounted for, might be due
to the presence of a GW background. If a GW is present the
signal from the pulsar can be red-shifted (or blue-shifted). For
a GW propagating in the direction Ω̂, the redshift of signals
from a pulsar in the direction p̂ is given by [23, 24]

z(t, Ω̂) =
p̂ip̂j

2
(

1 + Ω̂ · p̂
) [hij(tp, Ω̂)− hij(te, Ω̂)] (1)

where hij is the metric perturbation and tp, te represent the
times the pulse was emitted at the pulsar and the time received

FIG. 2: Motion of test masses in response to GWs of the six
polarization modes. The plus (+), cross (×), and

scalar-breathing (b) mode GWs are transverse, while the two
vector modes (x, y) and the scalar-longitudinal (l) mode

GWs are non-transverse. Figure reproduced from Nishizawa
et al. [20] with permission.

at the Solar System barycenter, and we have defined

z(t, Ω̂) =
νe − νp
νp

. (2)

Note that this is the opposite of the sign convention normally
used in the literature [23]. Modified gravity theories extend
the possible polarization modes of GWs present in general rel-
ativity – the plus (+) and cross (×) modes– to a maximum of
six possible modes. For the two pulsar–Earth system shown
in Fig. 1, the GW coordinate system is given by

Ω̂ = (sin θ cosφ, sin θ sinφ, cos θ)

m̂ = (sinφ,− cosφ, 0) (3)
n̂ = (cos θ cosφ, cos θ sinφ,− sin θ)

where, relative to [20], we have fixed the GW polarization
angle ψ = −π/2 to agree with the conventions in [25]. From
(3), the GW polarization tensors can be constructed [20–22,
26, 27]

ε+ij = m̂⊗ m̂− n̂⊗ n̂, ε×ij = m̂⊗ n̂+ n̂⊗ m̂

εbij = m̂⊗ m̂+ n̂⊗ n̂, εlij = Ω̂⊗ Ω̂ (4)

εxij = m̂⊗ Ω̂ + Ω̂⊗ m̂, εyij = n̂⊗ Ω̂ + Ω̂⊗ n̂

where ⊗ is the tensor product and Ω̂ is the direction of GW
propagation. Here, x and y correspond to the vector (spin-
1) polarization modes while b and l correspond to the scalar
(spin-0) breathing and longitudinal modes, respectively. The
plus, cross and breathing modes are characterized by trans-
verse GW propagation, while the longitudinal and vector (or
shear) modes are non-transverse in nature (see Fig. 2).
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Defining the antenna patterns as

FA(Ω̂) = εAij(Ω̂)
p̂ip̂j

2(1 + Ω̂ · p̂)
, (5)

the Fourier transform of (1) may be written as [21, 24, 27]

z̃(f, Ω̂) =
(
e−2πifL(1+Ω̂·p̂) − 1

)∑
A

h̃A(f, Ω̂)FA(Ω̂) (6)

where the sum is over all possible GW polarizations: A =
+,×, x, y, b, l, and L is the distance to the pulsar. The actual
quantity measured in pulsar timing experiments is the timing
residual, which is defined as the difference between the actual
and expected time of arrival (TOA) of a pulse:

R(t) = TOA actual − TOA expected. (7)

The expected TOA for a pulse is modeled and includes daily
and yearly motion of the Earth, the position and proper motion
of the pulsar, motion about a binary companion (if applicable),
etc. The timing residual can be obtained by integrating the
redshift in time [23].

In Fig. 3 we plot the antenna patterns for the various GW
polarization modes in a system where the GW’s direction of
propagation is fixed and the pulsar’s position is varied (see
Appendix A, Eqns. (A20), (A26), (A24) and (A12) for de-
tails), as is usually done in the literature.

III. GW DETECTION STATISTIC

In this section we introduce the optimal cross correlation
statistic [24, 25] for stochastic background searches. The op-
timal cross-correlation statistic involves the calculation of the
overlap reduction function, a geometrical factor that charac-
terizes the loss of sensitivity due to detectors not being co-
located or aligned. We will show how the overlap reduction
function is computed for non-transverse modes. We follow the
analysis (for General Relativity) of Allen and Romano [25].

The plane wave expansion for a GW perturbation propagat-
ing in the direction Ω̂ is given by [25]

hij(t, ~x) =
∑
A

∫ ∞
−∞

df

∫
S2

dΩe2πif(t−Ω̂·~x)hA(f, Ω̂)εAij(Ω̂)

(8)

where i, j are spatial indices, the sum is over all six polariza-
tion states, and the Fourier amplitudes hA(f, Ω̂) are complex
functions satisfying hA(−f, Ω̂) = h∗A(f, Ω̂). A stochastic
background of GWs is produced by a large number of weak,
independent, unresolvable sources. The energy density of this
background per unit logarithmic frequency is given by

Ωgw(f) =
1

ρcritical

dρgw

d ln f
(9)

where dρgw is the energy density of the gravitational waves
and ρcritical is the critical energy density required to close the

universe,

ρcritical =
3H2

0

8πG
(10)

where H0 is the Hubble constant.
The characteristic strain spectrum, hc(f), is typically given

a power-law dependence on frequency so that

hc(f) = A

(
f

yr−1

)α
. (11)

It may also be expressed in terms of the energy density of the
background per unit logarithmic frequency, Ωgw(|f |):

h2
c(f) =

3H2
0

2π2

1

f2
Ωgw(|f |). (12)

For an isotropic stochastic background of GWs, the signal
appears in the data as correlated noise between measurements
from different pulsars. The ith data set is of the form

si(t) = zi(t) + ni(t) (13)

where zi(t) corresponds to the unknown GW signal and ni(t)
to noise (assumed in this case to be stationary and Gaussian).
Because the signal is assumed to be much smaller than the
noise, the properties of the noise determine the variance. We
can express these properties in the frequency domain as

〈ñi(f)〉 = 0 (14)

〈ñ∗i (f)ñj(f
′)〉 =

1

2
δ(f − f ′)Pi(|f |) (15)

where we have introduced the one-sided noise power spec-
trum Pi(|f |).

The cross-correlation statistic is defined as

S =

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′si(t)sj(t

′)Q(t− t′) (16)

where Q(t − t′) is the filter function. The optimal filter is
determined by maximizing the expected signal-to-noise ratio

SNR =
µ

σ
. (17)

Here µ is the mean 〈S〉 and σ is the square root of the variance√
〈S2〉 − 〈S〉2.
In the frequency domain (16) becomes

S =

∫ ∞
−∞

df

∫ ∞
−∞

df ′δT (f − f ′)s̃∗i (f)s̃j(f
′)Q̃(f ′), (18)

and the mean µ is

µ =

∫ ∞
−∞

df

∫ ∞
−∞

df ′ δT (f − f ′)〈z̃∗i (f)z̃j(f
′)〉Q̃(f ′)

(19)

where δT is the finite time approximation to the delta function

δT (f) =
sinπft

πf
.
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(a) (b)

(c) (d)

FIG. 3: Antenna patterns (5) for plus/cross (a), breathing (b), vector-x/vector-y (c), and longitudinal (d) polarization modes.
Note that the cross and vector-y modes are identical to plus and vector-x, respectively, but rotated by 45 degrees and thus do not
appear separately here. In this figure, the GW propagates in the positive z-direction with the Earth at the origin, and the antenna
pattern depends on the pulsar’s direction, specified by polar angle θp and azimuthal angle φp. Exact expressions corresponding

to each figure may be found in Appendix A: (A20) for the plus mode, (A26) for the breathing mode, (A24) for the vector-x
mode, and (A12) for the longitudinal mode. Note that fixing the GW propagation direction while allowing the pulsar position to
change is analogous to fixing the pulsar position while allowing the direction of GW propagation to change (there is an inherent

degeneracy in the GW polarization angle and the pulsar’s azimuthal angle φp).

The assumption that the background is unpolarized, isotropic,
and stationary implies that the expectation value of the Fourier

amplitudes hA(f, Ω̂) must satisfy [24, 25]

〈h∗A(f, Ω̂)hA′(f ′, Ω̂′)〉 =
3H2

0

32π3
δ2(Ω̂, Ω̂′)δAA′ (20)

× δ(f − f ′)|f |−3Ωgw(|f |)
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where δ2(Ω̂, Ω̂′) is the covariant Dirac delta function on the
two-sphere. With the demand (20) in place, the expectation
value of the signals zi(f) may be written as

〈z̃∗i (f)z̃j(f
′)〉 =

3H2
0

32π3

1

β
δ(f − f ′)|f |−3 (21)

× Ωgw(|f |)Γ(|f |).

Here β is a normalization factor and we define [24]

Γ(|f |) = β
∑
A

∫
S2

dΩ (e2πifLi(1+Ω̂·p̂i) − 1) (22)

× (e−2πifLj(1+Ω̂·p̂j) − 1)FAi (Ω̂)FAj (Ω̂)

where the sum is over all possible GW polarizations, and the
exponential phase terms correspond to the pulsar term in the
time domain.

The optimal filter is given by [24, 25]

Q̃(f) ∝ Ωgw(f)Γ(f)

|f |3Pi(f)Pj(f)
, (23)

where Pi(f) and Pj(f) are the power spectra for the ith and
jth pulsar redshift time series that are being cross-correlated
(see Eq. 16).

In general relativity, for the frequency and distance ranges
appropriate to pulsar timing experiments (i.e. for f � 1/L),
the overlap reduction function Γ(f) approaches a constant
which is only a function of the angular separation between
the two pulsars. This constant is proportional to the value
of the Hellings-Downs curve for the angle between the pul-
sars [24, 28]. We will see that for longitudinal modes and
for tensor modes the overlap reduction function remains fre-
quency dependent, even for f � 1/L, and is considerably
larger than for the transverse modes. This indicates an in-
creased sensitivity to such modes. To understand the physical
origin of the increased sensitivity we first discuss the effect of
GWs in the more simple case of a single pulsar-Earth baseline.

IV. GW INDUCED REDSHIFT ON THE PULSAR-EARTH
SYSTEM

In this section we will study the redshifts induced by GWs
of different polarizations on the pulsar-Earth system. From
(6), the redshift induced by this GW may be written as

z̃A(f, Ω̂) =
(
e−2πifL(1+Ω̂·p̂) − 1

) pipj

2(1 + Ω̂ · p̂)
εAij(Ω̂)h̃A.

(24)

The factor of 1/2(1 + Ω̂ · p̂) comes from the relationship be-
tween the affine parameter λ and time t (see Eq. (A9)), and
h̃A = h̃A(f, Ω̂).

In the region where the GW direction, Ω̂ and the pulsar
direction, p̂ are anti-parallel, (24) appears to become singular
due to the 1 + Ω̂ · p̂ term in the denominator (note that the
derivative of hA with respect to the affine parameter vanishes

in this limit; see (A9)). There is in fact no divergence in the
redshift induced. In this regime the exponential can be Taylor
expanded and the 1 + Ω̂ · p̂ term in the denominator cancels.

A Taylor expansion of (24) can be performed in two cases.
In the first, when fL� 1, the metric perturbation is the same
at the pulsar and at the Earth. This case is often referred to as
the long wavelength limit. In the second, when

1 + Ω̂ · p̂� 1

fL
,

the pulse’s direction of propagation and the GW are nearly
parallel (i.e. the GW is coming from a direction near the pul-
sar). In this case the metric perturbation at the pulsar when the
pulse is emitted, and on Earth when the pulse is received, are
also nearly the same. This is often described in the literature
in terms of the pulse “surfing” the gravitational wave.

The surfing description, combined with Eq. (1), might
lead one to incorrectly conclude that the effect of the GW
should cancel in this case because the metric perturbations at
the Earth and the pulsar are the same, despite the divergent
1/(1 + Ω̂ · p̂) term in the redshift. In fact, a delicate cancella-
tion occurs with the divergent term in the denominator which
is only manifest in the frequency domain. Let the pulse direc-
tion and the gravitational wave direction be nearly parallel so
that Ω̂ · p̂ = −1 + δ, where δ � 1. Then as in [24, 27] we
obtain

z̃A(f, Ω̂) ∼ −πifLpipjεAij h̃A. (25)

The redshift is proportional to fL, but for finite δ increases
only to the point where the argument of the exponential in
(24) can no longer be Taylor expanded, at which point it be-
comes an oscillatory function of fL. Whether the redshift
is finite in the δ → 0 limit depends on the projection term
pipjεAijhA. As we will see, the vanishing contribution for the
tensor modes of general relativity occurs solely because of the
transverse nature of these waves, and is unrelated to the “surf-
ing” effect. For longitudinal modes the projection term does
not vanish, and the increase in sensitivity to such modes orig-
inates from GWs that come from directions near the pulsar.
To better understand this, we will look at the behavior of the
redshifts induced by GWs of various modes.

The redshift for a longitudinal mode GW perturbation is

z̃l(f, Ω̂) =
cos2 θ

2(1 + cos θ)
(e−2πifL(1+cos θ) − 1)h̃l, (26)

while the redshift for a plus mode GW perturbation is

z̃+(f, Ω̂) =
− sin2 θ

2(1 + cos θ)
(e−2πifL(1+cos θ) − 1)h̃+.(27)

Here we note that the geometrical factor in the redshift for
the transverse breathing mode differs from (27) only by a
sign, and our analysis of (27) applies equally to the breath-
ing mode. In Fig. 4 we plot the geometrical and phase factor
|z̃(f, Ω̂)/h̃| for both the +-mode and the longitudinal mode.
We plot these for a value of fL in the long wavelength limit
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FIG. 4: (color online) Plots of |z̃(f, Ω̂)/h̃| for the +-mode (dashed blue) and the longitudinal mode (solid red). We show these
for fL = 10−2 (a), a value of fL in the long wavelength limit, and (b) fL = 10, a value of fL typical of pulsar timing

experiments. In the regime of pulsar timing experiments the sensitivity is largest for GW directions near the pulsar θ ≈ π for
both polarizations. In the longth wavelength limit, fL� 1, the pulsar-Earth system is most sensitive to +-mode GWs coming

from the equator, and longitudinal GWs from the poles.

(fL = 10−2), and for a value in the regime of pulsar timing
experiments (fL = 10). In the regime of pulsar timing ex-
periments the sensitivity is largest for GW directions near the
pulsar θ ≈ π for both polarizations. Although we do not show
it here the same is true for all other polarization modes. In the
long wavelength limit, fL � 1, the pulsar-Earth system is
most sensitive to +-mode GWs coming from the equator, and
longitudinal GWs from the poles.

As discussed above, these redshifts appear to become sin-
gular when θ → π, but the pulsar term may be Taylor ex-
panded. Let θ = π − δ, where δ � 1. Then

z̃l(f, Ω̂) ∼ πifL(1− δ2)h̃l (28)

for the longitudinal case, while

z̃+(f, Ω̂) ∼ πifLδ2h̃+ (29)

for the plus mode. In the limit as δ → 0, z̃+ vanishes while
z̃l becomes proportional to fL. The vanishing redshift of z̃+

is therefore due to the transverse nature of the mode, and does
not occur for z̃l, even though in both cases the pulse is “surf-
ing” the GW. In the time domain, in the θ ≈ π region, the
redshift for both modes goes as

zl,+(t, Ω̂) ∝ Lḣl,+. (30)

One may readily identify the right hand side of (30) as a ve-
locity. The interpretation of this result is that, in this limit, the
redshift is proportional to the relative velocity of the pulsar-
Earth system. The velocity of the pulsar when the pulse is
emitted in this limit is approximately equal and opposite to
the velocity of the Earth when the pulse is received.

An identical analysis for the shear GW modes produces
analogous results. Starting from (6), the redshift for the
vector-y mode goes as

z̃y(f, Ω̂) = − cos θ sin θ

(1 + cos θ)
(e−2πifL(1+cos θ) − 1)hy.(31)

The small δ expansion yields

z̃y(f, Ω̂) ∼ −2πifLδ

(
1− δ2

2

)
hy. (32)

Relative to the longitudinal mode the redshift of vector modes
is smaller by a factor of δ and vanishes as δ → 0, but it is still
larger than the transverse modes by a factor of 1/δ.

The same behavior is not present in other sky locations.
If the GW propagates perpendicular to the pulsar-Earth line
(θ = π/2 + δ), then up to second order in δ the redshifts

z̃l =
δ2

2(1− δ)

(
e−2πifL(1−δ) − 1

)
(longitudinal)(33)

z̃+ =
−
(
1− δ2

)
2(1− δ)

(
e−2πifL(1−δ) − 1

)
(plus) (34)

z̃y =
δ
(
1− δ2/2

)
(1− δ)

(
e−2πifL(1−δ) − 1

)
(shear) (35)

are obtained. In this case for small δ the exponential cannot be
expanded unless fL� 1. For this sky location the redshift is
always an oscillatory function of fL. The pulse comes across
different phases of the GW as it propagates toward Earth.

To summarize, one can see that the surfing effect does
not lead to a vanishing response of the pulsar-Earth system
to GW waves coming from θ = π. For the tensor and
scalar-breathing modes, it is the transverse nature of GWs
that is responsible for the vanishing response. For the scalar-
longitudinal modes the response does not vanish—in fact, the
response increases with both frequency and pulsar distance.
For the vector modes the response does vanish, but more
slowly than for the transverse modes. For all GW modes from
directions near θ = π, the redshift increases monotonically
up to some limiting frequency beyond which the Taylor series
expansion of the pulsar term which leads to Eqs. (28) and (29)
can no longer be performed.
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FIG. 5: Hellings and Downs [28] first showed that for
general relativity, an isotropic stochastic background of GWs

is expected to produce the correlation shown in blue. The
correlation for the transverse breathing mode appears in

black.

We now discuss the implications of this effect on the over-
lap reduction functions.

V. OVERLAP REDUCTION FUNCTIONS

As discussed in Section III, the overlap reduction function
for the two pulsars in Fig. 1 is equal to

Γ(|f |) =
3

4π

∑
A

∫
S2

dΩ(e2πifL1(1+Ω̂·p̂1) − 1) (36)

× (e−2πifL2(1+Ω̂·p̂2) − 1)FA1 (Ω̂)FA2 (Ω̂)

= Γ+(|f |) + Γ×(|f |) + Γb(|f |) + Γl(|f |) (37)
+ Γx(|f |) + Γy(|f |)

where all possible GW polarizations are allowed. It is ad-
vantageous to consider each term in the sum (36) separately
since various gravity theories may have different polariza-
tion content [3–13, 20]. The overlap reduction function has a
closed analytic form for transverse GWs. The overlap reduc-
tion function for the plus mode has been calculated by [28]
and is given by

Γ+(ξ) = 3

[
1

3
+

1− cos ξ

2

[
log

(
1− cos ξ

2

)
− 1

6

]]
, (38)

where ξ is the angular separation of the pulsars. For the scalar-
breathing mode, a closed form is given by [21]:

Γb(ξ) =
1

4
(3 + cos ξ) . (39)

For the case of non-transverse GWs, the overlap reduction
functions cannot be integrated analytically and we calculate
them numerically.

In general relativity the pulsar term can be excluded from
the integral (36) without any significant loss of optimal-
ity [24]. The reason for this is that the smallest frequencies
that PTAs are sensitive to are∼ 0.1 yr−1, and the closest PTA

pulsar distances are ∼ 100 ly, so that fL & 10. This is shown
in Fig. 6, where we plot the overlap reduction functions Γ(fL)
with (solid curves) and without (horizontal dashed lines) the
pulsar term for several pulsar separation angles ξ and GW po-
larization modes. The frequencies that PTAs are sensitive to
are to the right of the vertical dashed line at fL = 10 in each
plot. As seen in Fig. 6(a), Γ+(fL) is roughly independent
of frequency over the range of frequencies relevant to pulsar
timing experiments. The same is true for the scalar-breathing
mode, which is shown in Fig. 6(b). It is worth pointing out
that both Γ+(fL) and Γb(fL) are normalized to unity for co-
aligned pulsars. Note that the overlap reduction functions for
all other modes are normalized with the same factor of 3/4π
used in the +-mode.

In Fig. 6(c), we plot the overlap reduction function Γy(fL)
for the vector-y mode. Over the range of relevant frequen-
cies, Γy(fL) is frequency independent for most of the pulsar
separation angles shown. For co-aligned pulsars, however,
Γy(fL) retains frequency dependence well into the range
of pulsar timing frequencies, and takes on values an order
of magnitude higher than those obtained by Γ+(fL) and
Γb(fL).

Similar behavior is shown in Fig. 6(d), where we have plot-
ted the overlap reduction function for the scalar-longitudinal
mode. Here Γl(fL) retains frequency dependence through-
out the relevant frequency range for each of the pulsar separa-
tion angles shown. For the case of co-aligned pulsars, Γl(fL)
does not converge, and for separation angles that do converge
Γl(fL) takes on values that are at least an order of magnitude
larger than those obtained by Γ+(fL) and Γb(fL).

For co-located pulsars we can understand the behavior of
the longitudinal mode analytically. In the problematic sky
region (θ ≈ π), Γl(fL) is proportional to the square of the
redshift,

Γl(fL) ∝ 2π

∫ 1

−1

∣∣∣(e−2πifL(1+cos θ) − 1
)∣∣∣2

× cos4 θ

4(1 + cos θ)2
d(cos θ) (40)

which may be evaluated analytically. In the limit of large fL,

Γl(fL) = π
{

37/6− 4γ − 1/(π(fL)2) + 4 Ci(4πfL)

− 4 log (4πfL) + 2πfL Si(4πfL)} (fL� 1)
∼ (37/6− 4γ)π − 4π log (4πfL) + π3fL, (41)

where γ is Euler’s constant. The overlap reduction function
Γl(fL) is roughly proportional to fL in this limit. Eq. (41)
is shown along with the numerically integrated overlap reduc-
tion functions in Fig. 6(d) and, with the exception of the sin-
gular behavior near the origin (where the large fL approxi-
mation is not valid), agrees well with the numerical Γl(fL)
curve for co-aligned pulsars (ξ = 0).
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FIG. 6: (color online) Γ(fL) with (solid curves) and without (horizontal dashed lines) the pulsar term for the various
polarization modes: plus (a), breathing (b), shear (c) and longitudinal (d). In the latter two modes, smaller pulsar separation
angles are characterized by retained frequency dependence in Γ(fL) in the range of frequencies relevant to pulsar timing
experiments. Nearly all the non-transverse curves eventually converge, but at rather high values of Γ(fL) relative to the

transverse modes, indicating increased sensitivity to GWs with these polarizations. We have plotted the large limit
approximation (41) (dashed black curve) along with Γl(fL) in (d), which is in good agreement with the ξ = 0 curve.

VI. OVERLAP REDUCTION FUNCTIONS FOR THE
NANOGRAV PULSARS

The NANOGrav PTA consists of 24 pulsars. The Australia
Telescope National Facility (ATNF) data for the distances to
these pulsars is given in Table I [29]. Using a simple nu-
merical integration scheme, the overlap reduction function for
each pulsar pair was computed. The main difference relative
to the previous section is that we are including the effect of
different pulsar distances. Results are given in Fig. 7 (a)–
(d) and show that the calculated values of Γ(f) are consis-
tent with the more simple results discussed in Section V for
the non-transverse modes for frequencies up to ∼ 10−9 Hz.
Pulsar pairs with the smallest (ξ . 12◦) separation angles
(starred curves in Fig. 7 (b), (d)) for non-transverse polariza-
tion modes are characterized by large values of the overlap
reduction function and monotonic growth up to some limit-

PSR Distance (kpc) PSR Distance (kpc)
J0030+0451 0.23 J1853+1303 1.60
J0218+4232 5.85 J1857+0943 0.70
J0613−0200 2.19 J1903+0327 6.45
J1012+5307 0.52 J1909−3744 0.55
J1024−0719 0.35 J1910+1256 1.95
J1455−3330 0.74 J1918−0642 1.40
J1600−3053 2.67 J1939+2134 3.58
J1640+2224 1.19 J1944+0907 1.28
J1643−1224 4.86 J1955+2908 5.39
J1713+0747 0.89 J2010−1323 1.29
J1738+0333 1.97 J2145−0750 0.50
J1744−1134 0.17 J2317+1439 1.89

TABLE I: NANOGrav Pulsar Data
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ing frequency. Pulsar pairs with larger (ξ & 12◦) separation
angles (un-starred curves in Fig. 7 (b), (d) and all curves in
Fig. 7) do not display monotonic growth up to a limiting fre-
quency, but still result in much larger values than those of the
plus and cross modes. Fig. 7 shows that sensitivity is greater
for scalar-longitudinal and vector modes than for the tensor
and scalar-breathing modes, and increases rapidly for pulsars
that are nearly co-aligned in the sky. Theoretical sensitivity
estimates using (41) support this result (see Appendix B). In
these plots, increased variation in curve amplitudes appears
due to the fact that the pulsars are not equidistant from the
Earth.

Over the entire range of frequencies plotted for pulsar tim-
ing experiments (between ∼ 10−9 and ∼ 10−7 Hz), the over-
lap reduction functions are approximately constant. In prac-
tice, some optimality will be lost due to the fact that pulsar
distances are known at best to only ∼ 10% [30].

VII. DISCUSSION

Direct detection of GWs might be possible in the next
decade using a pulsar timing array. A detection would pro-
vide a mechanism for testing various metric theories of grav-
ity. To develop optimal detection strategies for stochastic
backgrounds in alternative theories of gravity, we have com-
puted overlap reduction functions for all six GW polarization
modes, including four modes not present in general relativity.

We began by introducing the redshift induced by GWs
of various polarizations, along with the polarization tensors
unique to each mode. We then used the optimal detection
statistic for an unpolarized, isotropic stochastic background
of GWs, defined in Anholm et al. [24], to find the overlap
reduction function, a geometric dependent quantity in the ex-
pression for the expected cross correlation.

We examined the redshifts induced by GWs of various po-
larizations on the pulsar-Earth system, and find that our results
are consistent with those of Anholm et al. [24] and Tinto and
Alves [27]: when the GWs are coming from roughly the same
direction as the pulses from the pulsar, the induced redshift for
any GW polarization mode is proportional to fL, the product
of the GW frequency and the distance to the pulsar. When the
GWs and the pulse direction are exactly parallel the redshift
for the transverse and vector modes vanishes, but it is propor-
tional to fL for the scalar-longitudinal mode.

We show that the vanishing contributions from the tensor,
vector and scalar-breathing modes are not a result of the pulse
surfing the GW. In fact, sensitivity to GWs coming from di-
rections near the pulsar increases for all polarizations. It is
the transverse nature of these modes that is responsible for the
vanishing response. In this limit we also show that the red-
shift is proportional to the relative velocity of the pulsar-Earth
system (Lḣ), which is the same when the pulse is emitted and
when it is received.

We find that the overlap reduction functions for non-
transverse GWs are characterized by frequency dependence
that is significant for nearby pulsar pairs. The values of the
overlap reduction function increase by up to one order of mag-

nitude for the vector polarization modes and up to two orders
of magnitude for the scalar-longitudinal mode. Pulsar timing
arrays are significantly more sensitive to scalar-longitudinal
and vector GW stochastic backgrounds.

Next, we used current pulsar distance and sky-location data
from the ATNF pulsar catalog to calculate the overlap reduc-
tion functions for each pulsar pair in the NANOGrav pulsar
timing array. Over the range of frequencies relevant to pulsar
timing array experiments, these overlap reduction functions
for all polarization modes are roughly constant for most pul-
sar pairs. For nearly co-aligned pulsars, the overlap reduc-
tion functions for scalar-longitudinal and vector modes ex-
hibit marked frequency dependence and asymptote to much
larger values than the overlap reduction functions for trans-
verse modes. In fact for a pair separated but about 3◦ we find
a sensitivity increase of about a factor of 104 for longitudinal
modes.

The results discussed here may be compared to other re-
cent work. Lee et al. [21] calculated the cross-correlation
functions for stochastic GW backgrounds including all six
GW polarizations, and found that the correlation functions
for non-transverse GWs are frequency dependent, as well
as an increased response in the cross-correlation to scalar-
longitudinal GWs, in agreement with our results. This
work was done in the context of the coherence statistic [21]
for stochastic background detection, rather than the optimal
statistic [24]. The coherence statistic is a measure of good-
ness of fit of the pulsar-pair cross-correlations to the Hellings-
Downs curve. For non-transverse modes there is no Hellings-
Downs curve because the overlap reduction functions remain
frequency dependent for large fL. Lee et al. solved this
problem by simulating GW backgrounds and finding effec-
tive background-dependent Hellings-Downs curves for these
theories. In the context of the optimal statistic this is a non-
issue: The frequency dependent overlap reduction functions
can be used to construct the optimal filter in Eq. (23). This
is identical to what is done for LIGO stochastic background
optimal filter construction [25], where the overlap reduction
functions are also frequency dependent.

Alves and Tinto [22] have estimated antenna sensitivities
to GWs of all six polarization modes by assuming a signal-
to-noise ratio of 1 over 10 years and calculating the noise
spectrum. Their results indicate an increase of two to three
orders of magnitude in sensitivity to scalar-longitudinal mode
GWs compared to that of plus and cross mode GWs. To ex-
plain this effect Alves and Tinto compare the effect of a tensor
GW propagating orthogonally to the pulsar-Earth system, and
a scalar-longitudinal GW propagating in a direction parallel to
the pulse direction. They argue that the increased sensitivity to
longitudinal GWs is due to the amount of time a longitudinal
GW affects the pulsar-Earth radio link.

We have compared the effect of GW propagation from di-
rections near the pulsar and orthogonal to the pulsar-Earth
system for all polarization modes. For GW propagation di-
rections parallel to the pulse direction we find that the red-
shift induced by a gravitational wave is large, and seemingly
divergent when the GW and pulse directions are exactly par-
allel. This apparent divergence occurs for longitudinal, trans-
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FIG. 7: Γ(f) for some of the NANOGrav pulsar pairs. Pulsar pairs, along with their angular separation in degrees, are shown
with each curve. As f increases, Γ(f) approaches a constant value. The asterisk indicates the NANOGrav pulsar pair with the

smallest angular separation (∼ 3.35 degrees). Note the larger values of the Γ(f)s for this pair.

verse, and shear modes alike. In that limit, however, the diver-
gent term in the redshift that comes from the relationship be-
tween time and affine parameter derivatives cancels because
the phase of the GW pulse when pulse is emitted is nearly
equal to the phase of the GW when the pulse is received (see
Eqs. (A9), (24) and (25)). The redshift becomes proportional
to the relative velocity of the pulsar-Earth system and a mode-
dependent geometrical projection factor for all GW polariza-
tion modes. In this limit the relative velocity of the pulsar-
Earth system is approximately equal when the pulse is emitted
and received. For transverse and shear modes the projection
factor vanishes when the GW and pulse directions become
parallel. For longitudinal modes the geometrical factor goes
to a constant, so that the pulsar-Earth system is very sensitive
to GWs from directions near the pulsar. This is the physical
origin of the increased sensitivity to scalar-longitudinal GWs.
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Appendix A: Analog to Detweiler’s equation for vector and
scalar polarization modes

Here we show the derivation of the redshift induced by non-
Einsteinian GW modes. This derivation appears in [27] for all
six GW polarizations and is included here for completeness.
We begin by considering the metric due to a longitudinal mode
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gravitational wave perturbation:

gab = ηab + hab(t− z)

=


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 + hL

 . (A1)

Given a null vector sa = ν(1,−α,−β,−γ) in Minkowski
space (where α, β, γ are directional cosines) the correspond-
ing perturbed null vector is given by

σa = sa − 1

2
ηabhbcs

c

= ν


1

−α
−β

−γ(1− hL

2 )

 . (A2)

From the geodesic equation, the t-component of σa must sat-
isfy

dσt

dλ
= −Γtabσ

aσb (A3)

where

Γtab =
1

2
gtc (∂agbc + ∂bgac − ∂cgab)

=
1

2
ġab. (A4)

Now we may write the geodesic equation as

dσt

dλ
= −1

2
ġabσ

aσb

= −1

2
ḣL(σz)2. (A5)

To zeroth order in hL,

(σz)2 = ν2γ2

(
1 +

hL
2

)2

≈ ν2γ2 +O(hL) (A6)

allowing us to write the geodesic equation as

dσt

dλ
=

dν

dλ
= −1

2
ḣLν

2γ2. (A7)

We now need to express the time derivative of the metric per-
turbation, ḣL, as a derivative of the affine parameter λ. Since
hL = hL(t− z), we may write

dhL
dλ

=
∂hL
∂t

dt

dλ
+
∂hL
∂z

dz

dλ

=
∂hL
∂t

dt

dλ
− ∂hL

∂t

dz

dλ
. (A8)

Identifying the relations dt
dλ = ν and dz

dλ = −νγ, we obtain
the relation

ḣL =
∂hL
∂t

=
1

ν(1 + γ)

dhL
dλ

(A9)

which makes the geodesic equation

dν

dλ
= −1

2
ḣLν

2γ2 = −1

2

νγ2

(1 + γ)

dhL
dλ

(A10)

Integrating both sides, we obtain

νe
νp

= exp

(
−1

2

γ2

(1 + γ)
∆hL

)
(A11)

where ∆hl = hel − hpl . Expanding to first order in hL, we
may write

νe − νp
νp

≈ −1

2

γ2

(1 + γ)
∆hL (A12)

= − cos2 θp
2 (1 + cos θp)

∆hL. (A13)

The derivation for vector modes is nearly identical to that of
the longitudinal mode. For the sake of brevity we only detail
the vector-y mode in the remainder of this document. For the
vector-y mode, the metric perturbation takes the form

gab =


−1 0 0 0

0 1 0 0

0 0 1 hy
0 0 hy 1

 . (A14)

The null vector becomes

σa = ν


1

−α
−β +

hyγ
2

hyβ
2 − γ

 . (A15)

Following the same algebraic steps used above, one obtains
the geodesic equation

dσt

dλ
=

dν

dλ
= −ḣyν2γβ, (A16)

which leads to

dν

dλ
= − νγβ

(1 + γ)

dhy
dλ

. (A17)

Integrating this expression and expanding the result to first
order in ∆hy produces the result

νe − νp
νp

≈ − βγ

(1 + γ)
∆hy (A18)

= −cos θp sinφp sin θp
(1 + cos θp)

∆hy. (A19)
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where ∆hy = hey − hpy .
For comparison, we also include the results for the plus,

cross, vector-x, and breathing modes. For the plus mode, we
obtain

νe − νp
νp

≈ −
(
α2 − β2

)
2(1 + γ)

∆h+ (A20)

=
− cos2 φp sin2 θp + sin2 θp sin2 φp

2 (1 + cos θp)
∆h+;

(A21)

for the cross mode,

νe − νp
νp

≈ − αβ

(1 + γ)
∆h× (A22)

= −cosφp sin2 θp sinφp
(1 + cos θp)

∆h×; (A23)

for the vector-x mode,

νe − νp
νp

≈ − αγ

(1 + γ)
∆hx (A24)

= −cos θp cosφp sin θp
(1 + cos θp)

∆hx; (A25)

and for the breathing mode,

νe − νp
νp

≈ −
(
α2 + β2

)
2(1 + γ)

∆hb (A26)

=
− cos2 φp sin2 θp − sin2 θp sin2 φp

2 (1 + cos θp)
∆hb.

(A27)

Here, ∆hA = heA−h
p
A, and we can identify these expressions

with (2).

Appendix B: Sensitivity bounds for Γl(f)

In this section we derive an upper limit estimate for the
value of Γl(f) for pulsars that are nearly co-aligned in the
south-pole region of the sky. We begin by considering a two-
pulsar Earth system in which the pulsars are separated by
angle ξ and are equidistant from the Earth (L1 = L2). In
this scenario the overlap reduction function for a longitudinal
mode GW is given by

Γl(f) =

∫
S2

dΩ
cos2 θ

2(1 + cos θ)

(cos θ cos ξ + sin θ sin ξ cosφ)2

(1 + cos θ cos ξ + sin θ sin ξ cosφ)

(
e2πifL(1+cos θ) − 1

)(
e−2πifL(1+cos θ cos ξ+sin θ sin ξ cosφ) − 1

)
.

(B1)

We would like to work in the approximation where

2πfL(1 + cos θ)� 1. (B2)

To this end, suppose that θ = π − δ, such that δ ≤ ξ � 1
(this constraint on ξ is necessary to achieve a large enough
response in the cross-correlation). Doing the relevant series
expansion in δ and retaining terms to second order, the inte-
grand simplifies significantly and we obtain

Γl(f) ≈ (πfL)2

∫ 2π

0

dφ

∫ δmax

0

dδ (1− δ2)

×
(
1− δ2 − δξ cosφ

)
. (B3)

Here we have used the approximation (B2) to define δmax =
m/
√
πfL, where m ∈ R satisfying m� 1.

Completing the integration over φ eliminates factors of ξ
in the remaining integrand and the remaining mathematics is
straight-forward:

Γl(f) = 2π(πfL)2

∫ δmax

0

dδ (1− δ2)2

≈ 2π(πfL)2

(
δmax −

2

3
δ3
max

)
. (B4)

Replacing the (πfL)2 term withm4/δ4
max and allowing δ ∼ ξ

(this arises from our demand δ ≤ ξ � 1), we obtain

Γl(f) = 2πm4

(
1

ξ3
− 2

3

1

ξ

)
. (B5)

By saturating the inequalitym < 1, we can establish an upper
bound for Γl(f) that depends only on the pulsar separation
angle ξ:

Γl(f) . 2π

(
1

ξ3
− 2

3

1

ξ

)
. (B6)

For example, for a pulsar pair with 3◦ angular separation, we
obtain the upper limit Γl(f) . 4×104, which agrees with the
results shown in Fig. 7(b) for the J1853+1303 – J1857+0943
pulsar pair.
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