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On Absence of 3-loop Divergence in N=4 Supergravity

Renata Kallosh
Department of Physics, Stanford University, Stanford, CA 94305, USA

We argue that N=4 supergravity is 3-loop UV finite because the relevant supersymmetric candi-
date counterterm is known to be SL(2,R)× SO(6) invariant, which violates the Noether-Gaillard-
Zumino current conservation. Analogous arguments, based on the universality properties of groups
of type E7, also apply to N=5,6,8 in 4,5,7 loops, respectively, since the 1/N BPS invariants break
duality symmetry between Bianchi identities and quantum corrected vector field equations.

I. INTRODUCTION

A new miraculous cancellation of the 3-loop ultraviolet
divergence was discovered [1] at 3-loops in d=4 N=4 su-
pergravity1 using d=4 N=4 and N=0 Yang-Mills theory
and BCJ color-kinematic duality [2]. Pure d=4 N=4 su-
pergravity [3] (without vector multiplets) has an electro-
magnetic SL(2,R) × SO(6) duality group G which will
be central for our discussion of N=4.

Meanwhile, the earlier recent work [5] predicted that
all N ≥ 4 supergravities are expected to be UV divergent
at loop order L = N−1, since the new supersymmetric
and duality invariant 1/N BPS candidate counterterms
were constructed at the fully non-linear level. In par-
ticular for N=4 the 3-loop R4 divergence was predicted
and for N=8 the 7-loop ∂8R4 divergence was predicted,
complementing the analysis in [6]. It is therefore rather
important to understand the origin of the cancellation
of the UV divergences of tens of thousands of high-rank
tensor integrals in [1].

The difference with the previous case of 3-loop UV
finiteness of N=8 [7] is that the candidate counterterm
[8] was only known at the linear level. But this differ-
ence may not be important since the duality argument
in [9] for explanation of the 3-loop finiteness in N=8, is
also valid for N=4, as we will show below. The argu-
ment in [9] is based on duality current conservation and
associated with it Noether-Gaillard-Zumino (NGZ) iden-
tity [10]. The argument is valid beyond N=8 case due
to universality property of extended supergravity duality
groups G, which belong to groups of type E7 [11].

One has to keep in mind that N=4 supergravity has
a 1-loop triangle anomaly [12]. Therefore each higher-
loop computation may, or may not support the formal
path integral predictions. By looking at Table I in [1]
it seems likely that the anomaly may not yet kicked in
at the 4-graviton 3-loop level. The role of anomaly re-

1 The absence of the 3-loop UV divergence in N=4 d=4 super-
gravity was also derived in [4] using the 2-loop heterotic string
theory computation and the R

4 non-renormalization theorem.

quires a separate investigation here. But the underlying
path integral prediction [9] for N=4 supergravity is the
SL(2,R)× SO(6) duality current conservation and asso-
ciated with it Noether-Gaillard-Zumino (NGZ) identity
[10].

The old counterterm prediction paradigm was devel-
oped in [8], [13] and applied recently in [5]. The new
point made in [9] required to revisit this paradigm: It
was shown that the electro-magnetic duality symmetry
rotating the Bianchi identities ∂µF̃

µν = 0 into the vector

field equations ∂µG̃
µν = 0 is always broken when su-

persymmetric duality invariant quantum corrections are
added to classical extended supergravity. This means,
quite unexpectedly, that the duality invariant countert-
erms, including the counterterms constructed in [5], may
be forbidden by the requirement of duality invariance of
the theory modified by quantum corrections.

A need to revisit the old counterterm paradigm was
confirmed in [14]. However, it was conjectured there that
it is always possible to restore the duality symmetry in
presence of a counterterm, by modifying the original the-
ory. The procedure of restoration of duality symmetry of
the deformed action was further developed in [15–17]. It
was demonstrated there that the restoration of duality
broken by the quartic counterterm deformation requires
the existence of the Born-Infeld type deformation, involv-
ing higher derivatives. So far the restoration procedure
performed for various models in [15–18] was only efficient
for U(1) duality models. However, even if a successful
Born-Infeld version of N=4 and N=8 supergravity were
constructed, it is not obvious whether the existence of
such new highly nonlinear theories would have any im-
plications for the issue of UV finiteness of the original
N=4 and N=8 supergravity, see a discussion of this is-
sue in [17].

In this paper we will show, along the lines of [9], that
the requirement of duality symmetry forbids the 3-loop
UV divergence in N=4 supergravity. In the absence of an
alternative explanation of the 3-loop finiteness of N=4
supergravity, the result of the computation in [1] may
be viewed as an evidence that our duality argument [9]
provides a useful tool for investigation of UV properties
of extended supergravity.
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II. UNIVERSALITY OF DUALITY GROUPS OF

TYPE E7 IN EXTENDED SUPERGRAVITIES

In all extended supergravities N≥ 4 scalars are in the
coset space G

H
where the duality group G is of type E7.

This includes SL(2,R)× SU(4), SU(5, 1), SO∗(12) and
E7(7) for N=4,5,6,8 respectively2. In particular, duality
groups G of type E7 in extended supergravity admit a
symplectic representation, a doublet (F,G) which trans-
forms in the fundamental representation of Sp(2n,R):

(

F
G

)′

=

(

A B
C D

)(

F
G

)

, (1)

whereas the gauge kinetic n×n matrix N (φ) transforms
via fractional transformation

N (φ)′ = (C +DN )(A +BN )−1 . (2)

Here the vector part of the action is

Lv =
1

4
F · ImN (φ) · F + F · ReN (φ) · F̃ , (3)

where the symbol · is used for matrix multiplication. The
scalar part is

Ls =
1

2
gij(φ)∂µφ

i∂µφj , (4)

where gij(φ) is the scalar metric of the nonlinear σ-model
associated with the G/H coset space. The dual vector
field strength is defined as

G̃µν(F, φ) ≡ 2
δSv(F, φ)

δFµν
. (5)

The electro-magnetic duality symmetry

(

∂µF̃
µν

∂µG̃
µν

)′

=

(

A B
C D

)(

∂µF̃
µν

∂µG̃
µν

)

, (6)

rotating the Bianchi identities ∂µF̃
µν = 0 into the vector

field equations ∂µG̃
µν = 0, is always broken when duality

invariant quantum corrections are added to classical ex-
tended supergravity. The total quantum corrected action
has to transform under duality [10] as follows:

δ

δFΛ

(

S[F ′, ϕ′]−S[F, ϕ]− 1

4

∫

(F̃CF + G̃BG)
)

= 0 (7)

Here the duality transformation on vectors acts so that
the Noether-Gaillard-Zumino (NGZ) duality current is

2 For recent studies of the universality in properties of groups of
type E7, in application to black holes and cosmology, see [19]
and references therein.

conserved. The reason for this identity is that G has
to transform as in (1) but this should also be consis-
tent with its definition given in (5) where the G trans-
formations rules depend on those of F and φ. When
the action is deformed, for example by counterterms,
so that Sv = Scl

v + λSct, G is also deformed so that
G(F, φ) = Gcl(F, φ)+Gct(F, φ). The classical supergrav-
ity action satisfy NGZ identity, but the counterterms are
duality-invariant, which means that

Sct[F ′, ϕ′] = Sct[F, ϕ] , (8)

which violates the current conservation (7) for the quan-
tum corrected action, when the counterterms are the only
addition to the classical action.

III. COUNTERTERM PREDICTION FOR N≥ 4,
L =N−1 UV DIVERGENCE

The true geometric on shell supersymmetric and du-
ality invariant candidate non-BPS counterterms appear
for the first time in L =N , for example for N=4 L = 4,
or for N=8 L = 8, [8], [13]. The status of 1/N BPS
invariants, next to geometric ones, was not clear for a
very long time. The situation was clarified recently in
[5] where it was shown that each of these superinvariants
can be defined by the integral over the fraction of the su-
perspace, 4(N -1) fermionic coordinates, and nevertheless
is both supersymmetric as well as duality invariant at the
fully non-linear level. These candidate counterterms are
given in [5]

IN = κ2(L−1)

∫

dµ(N ,1.1)Bαβ̇B
αβ̇ , (9)

where L = N−1 and N = 4, 5, 6, 8. Here Bαβ̇ is some bi-
linear combination of the torsion superfield, whose first
component is a gaugino field and the measure of inte-
gration dµ(N ,1.1) is defined with the help of a harmonic
superspace, which allows to single out one particular di-
rection in N space as a special. For example, in N=4

Bαβ̇ ≡ B1
αβ̇l

, Bl
αβ̇k

≡ χ̄lij

β̇
χαkij , (10)

where the spinorial superfield χαkij and its conjugate χ̄kij
α̇

are invariant under the duality group SL(2,R)× SO(6)
and direction 1 (in i, j, k = 1, 2, 3, 4) is special.

Spinors are invariant under G-duality, in particular
for N=4 spinorial superfield χαkij and its conjugate are
SL(2,R)×SO(6) invariant, for N=5 they are SU(5.1) in-
variant, for N=6 they are SO∗(12) and for N=8 they are
E7(7) invariant. This leads to the statement that IN=4

is invariant under SL(2,R) × SO(6), IN=5 is invariant
under SU(5.1) IN=6 is one of the two possible SO∗(12)
invariants, and IN=8 is invariant under E7(7) where IN

is defined in (9) for all these cases. Supersymmetry is
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manifest since the expression is defined in an on shell su-
perspace. Finally, spinors transform under H-symmetry,
if it is not gauge-fixed, or under the compensating trans-
formation, if it is gauge-fixed, but the counterterms are
constructed to be H-invariant.

It is therefore not accidental that the prediction in [5]
about the N=4, L=3 and N=8, L=7 and intermediate
cases, N=5, L=4 and N=6, L=5, concerning the univer-
sal candidate counterterms in (9) has the flavor of uni-
versality for all of these cases. But it just turned out [1]
that N=4, L=3 is free of divergences, whereas the case
N=8, L=7 is beyond our reach, computationally.

We will now proceed with the explanation of the ar-
gument in [9] which predicts that all these cases are free
of divergences. The general case of G-duality explained
in [10], [9] for N - extended supergravity and the one
for N=8 with E7(7) duality are both complicated tech-
nically. The case of N=4 with SL(2,R) × SO(6) sym-
metry of equations of motion and Bianchi identities is,
fortunately, relatively simple.

IV. A TOY MODEL OF N=4 SUPERGRAVITY

We will discuss the N=4 supergravity formulation [3]
in conventions of [20], which also provides the string the-
ory context of this model. In the toy model we will keep
the axion-dilaton and only one vector field, so that only
the SL(2,R) duality will be present. The coset space G

H

is SL(2,R)
U(1) . The scalar part of the action depending on

τ = χ+ ie−φ is

Ls = −1

2

∂µτ∂
µτ̄

Imτ2
= (∂µφ∂

µφ+ e2φ∂µχ∂
µχ) . (11)

This is a σ-model action for the SL(2,R)
U(1) coset space, see

[20] for details. It is a particular case of the general G/H
scalar action, given in (4). The action (11) is SL(2,R)
invariant under duality transformation:

τ ′ =
Dτ + C

Bτ +A
, (12)

with real global parameters A,B,C,D restricted by
AD − BC = 1 (in general case in (1) each A,B,C,D
is given by a n × n matrix, restricted by the Sp(2n,R)
condition). The vector part of the bosonic action is

Lv = −1

4
(e−φF 2 + χFF̃ ) , (13)

where Fµν = ∂µA
n
ν−∂νA

n
µ and F̃µν = 1

2e
−1ǫµνλσFλσ . Up

to a change of conventions between [20] describing N=4
and generic extended supergravities in [10] the general
kinetic term for vectors N (φ) can be identified with τ in
N=4.

There is a Bianchi identity for the vector field ∂µF̃µν =
0. To define a duality transformation action on vectors
we need to form an SL(2,R) doublet as defined in (5)

so that the vector field equations are ∂µG̃µν = 0. The
SL(2,R) symmetry action on the a single vector doublet
is given in (1) for the Sp(2n,R) with n = 1. Under these
transformations equations of motion and Bianchi iden-
tities are mixed, as shown in (6). One can check that
the variation of the vector part of the classical vector
action under SL(2,R) transformation of scalars and vec-
tors given in (12), (1), with G defined in (5) is in agree-
ment with the NGZ identity (7). Note that the action
is invariant under “electric” transformations with param-
eters A,D when B = C = 0. It is only non-invariant
when the off-diagonal transformations mixing “electric”
components with “magnetic” , B,C are involved which
include a shift of a scalar, τ → τ + const. For example,
for A = 1, D = 1, and B = β, C = γ,

δF = βG , δG = γF , δτ = γ − βτ . (14)

That is why the non-trivial part of duality symmetry in-
volves the soft scalar limits, studied in the recent analysis
of the supergravity counterterms, for example in [6], but
it also mixes electric and magnetic fields.

V. DUALITY INVARIANT COUNTERTERMS

It was important in the proof of duality invariance of
IN in (9) that the superfield χαkij is manifestly invari-
ant under G and covariant under H for all N ≥ 4 where
scalars are in G

H
. In our toy model of N=4 supergrav-

ity with gauge-fixed local H = U(1) when the model has
only one complex physical scalar τ , an illustration of the
point above can be given. Under supersymmetry the first
component of the spinor superfield transforms as follows

δǫχαijk = e−φ/2Fαβ[ijǫ
β
k] + ... (15)

Under global SL(2,R)

(

e−φ/2
)′

=
1

|Bτ +A|e
−φ/2, (Fαβij)

′ = (Bτ +A)Fαβij

(16)
Therefore e−φ/2Fαβij transforms with the scalar-
dependent phase

(

e−φ/2Fαβij

)′

=
Bτ +A

|Bτ +A|e
−φ/2Fαβij , (17)

which is a τ -field dependent compensating transforma-
tion for local U(1) gauge-fixing. Thus the superfield
χαijk also transforms only under the compensating U(1)
and the product of two such spinorial superfields Bl

αβ̇k
≡

χ̄lij

β̇
χαkij is both SL(2,R) and U(1) invariant.
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Thus, if we would look at the bosonic part of the super-
gravity counterterms, in particular, IN in (9), we would
find that they - being functions of scalars and vectors -
are invariant under SL(2,R) symmetry as shown in eq.
(8). Therefore the deformed action

Sdef = Scl + λ IN (18)

with deformed SL(2,R) doublet (F,G), where

G = Gcl + 2λ
δIN

δF
, (19)

does not satisfy the NGZ identity and duality symmetry
is broken. In particular, for the N=4, L=3 case the UV
divergence IN=4 would break the duality.

VI. BORN-INFELD TYPE SUPERGRAVITY?

In [14] it was conjectured that it may be possible to
develop the deformation of the action (18) further, so
that the new action

Ŝdef = Scl + λS1 + λ2S2 + ...λnSn + ... (20)

is consistent with NGZ identity (7), despite the fact that
with Sn = 0 for n ≥ 2 the duality current conservation
is broken. It was suggested in [14] that the duality argu-
ment of [9] may not imply UV finiteness in the classes of
the models where such construction is possible.

We have studied this proposal in [15]-[17] and found
that a certain generalization of the procedure or Ref.
[14] is indeed possible. This lead to the discovery of
new, previously unknown models with electro-magnetic
duality group G = U(1). In particular, the Born-Infeld
model with higher derivatives with initial deformation of
the Maxwell action via open string corrections λ(∂F )4

with λ = (α′)4 was completed, a recursive formula for
Sn in (20) was found in [16] and all terms of the type
λn∂4nF 2n+2 were produced algorithmically. Some large
classes of models with non-linear U(1) duality, general-
izing the Born-Infeld model with N=2 supersymmetry
[21] were constructed in [17, 18].

The reason for the infinite proliferation of Born-Infeld
type terms with higher powers of F in extended super-
gravities is the same as in the original Born-Infeld model
[22]. Once the Maxwell action is deformed, by quartic
in F terms, an infinite number of Fn terms has to be
added in order to preserve the U(1) duality at the non-
linear level. The self-duality property of the Born-Infeld
action,

FF̃ +GG̃ = 0 , (21)

which is a degenerate case of NGZ identity (7), was in
fact discovered by Schrödinger [23] in 1935.

In classical extended supergravities the classical action
is universally quadratic in F , see eq. (3). The 3-loop
counterterms R4 + (∂F )4 + R2(∂F )2 + (∂2φ)4 + ... have
terms quartic in ∂F , so all higher order terms with more
F and more derivatives must be present in (20). When
groups of type E7 degenerate to U(1) and extended su-
pergravities degenerates to pure N=0 Maxwell theory, we
know the answer [16] for Born-Infeld model with higher
derivatives, satisfying the NGZ constraint at the non-
linear level when G(F ) depends on all powers of F . It
is interesting that the U(1) duality group is a degenerate
case of groups of type E7.

The concept of degeneration (when the quartic invari-
ant becomes a perfect square) is easy to illustrate using
the E7(7) invariant Cartan-Cremmer-Julia black hole en-

tropy formula [24], S = 4π
√
J . It depends on one funda-

mental 56 (pij , qij), i = 1, ..., 8

JE7(7)
= pijqjkp

klqli −
1

4
pijqijp

klqkl

+
1

96
ǫijklmnpqqijqklqmnqpq

+
1

96
ǫijklmnpqp

ijpklpmnppq . (22)

In N=4 the symplectic representation is R = (2, 6) in
SL(2,R)×SO(6), and the quartic invariant remains quar-
tic, not degenerate, see eqs. (33) in [25]

JSL(2,R)×SO(6) = q2p2 − (q · p)2 . (23)

Reducing to U(1) with i = 1 leads to a degeneration of
the quartic invariant of groups of type E7

JU(1) = p2q2 − 1

4
p2q2 =

3

4
(pq)2 (24)

into a perfect square [11, 19].

From the perspective of the UV finiteness of N=4
and N= 8 supergravity, it is important that, at present,
the Born-infeld type duality symmetric model are known
only for the subclass of degenerate groups of type E7,
namely for U(1) duality models. This may explain
why the duality argument [9], which was developed for
the investigation of the conjectured all-loop finiteness of
the N=8 supergravity, may also account for the N=4
case: In both cases the corresponding groups are non-
degenerate groups of type E7.

VII. DISCUSSION

The 3-loop UV finiteness of N=8 was discovered [7]
back in 2007. Five years later, a similar result was ob-
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tained in N=4 supergravity [1]. It is interesting that
the origin of miraculous cancellations in both cases may
be related to the universality of type E7 duality groups
in classical extended supergravities. These dualities (in-
cluding E7(7) and SL(2,R) × SO(6), respectively) and
local extended supersymmetry seem to control the Feyn-
man graphs at the 3-loop quantum level. In N=8 case
other explanations of the 3-loop UV finiteness were pro-
posed over the years, but for N=4 the duality current
conservation is the only explanation available at present.
More computational data, especially for anomaly-free
N=5, L=4 and N=6, L=5 will help to test this expla-
nation of the 3-loop N=4 and N=8 miracles. In N=4
one has to keep in mind that the anomaly may interfere
with symmetry expectations starting from L=4. This is-

sue has to be investigated more thoroughly, since it looks
plausible that N=4 L=4 result could be in reach.

In conclusion, we believe that the duality current con-
servation argument in [9], which explains the just estab-
lished 3-loop finiteness of N=4 supergravity [1], should
be studied more extensively and it may help to clarify
the UV properties of extended supergravities.
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R. Roiban and especially S. Ferrara for very stimulating
discussions. This work is supported by SITP and NSF
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