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We consider vectorial, asymptotically free N = 1 supersymmetric SU(Nc) gauge theories with
Nf copies of massless chiral superfields in various representations and study how perturbative pre-
dictions for the lower boundary of the infrared conformal phase, as a function of Nf , compare with
exact results. We make use of two-loop and three-loop calculations of the beta function and anoma-
lous dimension of the quadratic chiral superfield operator product for this purpose. The specific
chiral superfield contents that we consider are Nf copies of (i) F + F̄ , (ii) Adj, (iii) S2 + S̄2, and
(iv) A2 + Ā2, where F , Adj, S2, and A2 denote, respectively, the fundamental, adjoint, and sym-
metric and antisymmetric rank-2 tensor representations. We find that perturbative results slightly
overestimate the value of Nf,cr relative to the respective exact results for these representations, i.e.,
slightly underestimate the interval in Nf for which the theory has infrared conformal behavior. Our
results provide a measure of how closely perturbative calculations reproduce exact results for these
theories.

I. INTRODUCTION

A longstanding question in gauge theories concerns
how well the beta function, calculated to some order in a
perturbation expansion in the gauge coupling, describes
the properties of an asymptotically free gauge theory, in
particular, its evolution from high Euclidean momentum
scales µ in the ultraviolet (UV) to low µ in the infrared
(IR). Part of the difficulty in answering this question
stems from the fact that only the first two terms (i.e.,
the one-loop and two-loop terms) in the beta function
are scheme-independent. Recall that the beta function
effectively resums the naive perturbation expansion in
defining a running gauge coupling g(µ). There is special
interest in the case where the two-loop beta function has
a zero away from the origin. If this zero occurs at a very
small value of α(µ) = g(µ)2/(4π), then one expects that
the theory does not confine or produce bilinear fermion
condensates and associated spontaneous chiral symme-
try breaking (SχSB). In contrast, if the theory has suffi-
ciently few fermions, then this IR zero of the beta func-
tion occurs at sufficiently large α that one expects the
theory to confine and spontaneously break chiral sym-
metry. For ordinary non-supersymmetric SU(Nc) gauge
theories, based on the calculations of the one-loop [1] and
two-loop [2] terms in the beta function, there have been
a number of studies of this UV to IR evolution (an early
work is [3]). A particularly interesting possibility is that
the IR zero of the beta function could occur at a value
only slightly larger than the critical value for SχSB, so
that the theory would remain quasi-conformal for a large
interval in lnµ, with a large but slowly running (“walk-
ing”) coupling and an associated large anomalous dimen-
sion γm of the bilinear fermion operator ψ̄ψ [4, 5]. There
has been intensive recent work to study quasi-conformal
behavior using lattice methods, and much progress has
been made [6]. These studies have considered not only
fermions in the fundamental representation of the gauge

group (usually SU(2) or SU(3)), but also fermions in
higher-dimensional representations. This has reflected
interest in quasi-conformal behavior in gauge theories
with fermions in higher-dimensional representations; for
a review, see [7].
In this paper we consider vectorial, asymptotically free

N = 1 supersymmetric SU(Nc) gauge theories (at zero
temperature and chemical potential) with content con-
sisting of Nf copies of massless chiral superfields Φi and

Φ̃i, i = 1, ..., Nf , which transform according to repre-
sentations R and R̄, respectively, where R denotes the
representation of the gauge group. We will present vari-
ous results for arbitrary R and will analyze the following
specific representations: fundamental, adjoint, and rank-
2 symmetric and antisymmetric tensor, denoted F , Adj,
S2, and A2, respectively. Using two- and three-loop per-
turbative results, we study the evolution of the theory
from the deep UV to the IR and compare these pertur-
bative results with exact results [8]-[12]. We investigate
how the IR zero of the beta function, calculated to a
certain loop order, and the mass anomalous dimension,
γm, of the composite superfield operator product that
contains the component-field ψ̄ψ, evaluated at this IR
zero, calculated to the same loop order, compare with
exact results. If the theory evolves from the UV to a
conformally invariant IR phase (a non-Abelian Coulomb
phase), there is a rigorous upper bound on γm, namely
γm ≤ 1 [13]-[15]. We apply this to a scheme-independent
calculation of γm and to the two-loop and three-loop val-
ues of γm at the IR zeros of β, calculated to the same
order, to calculate perturbative estimates of the minimal
value of Nf , denoted Nf,cr, for which the IR behavior
of the theory is conformal. We carry out this analysis
in full detail for the case of Φi, Φ̃i in the F + F̄ repre-
sentation and give briefer analyses for higher representa-
tions. By comparing these perturbative predictions for
Nf,cr with exact results, we obtain a measure of the ac-
curacy of the perturbative analysis. A related way to
estimate Nf,cr is from an approximate solution of the
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Dyson-Schwinger equations for the relevant propagators.
The comparison of the resultant predictions with exact
results for the fundamental representation was given in
the important paper [16]. Our work complements Ref.
[16], since we analyze the perturbative γm rather than
approximate solutions to Dyson-Schwinger equations.
There are several motivations for this work. First, it

is always of fundamental field-theoretic interest to com-
pare how well a perturbative calculation reproduces an
exact result. This is especially true in a quantum field
theory in view of the fact that a pertubative expansion is
not a Taylor series expansion, with finite radius of con-
vergence, but instead, only asymptotic, with zero radius
of convergence [17]. This is to be contrasted, for exam-
ple, with high-temperature series expansions in statistical
mechanics and strong-bare-coupling expansions in lattice
gauge theory, which are true Taylor series with (at least)
finite radii of convergence. Secondly, given the great cur-
rent interest in the nature of the UV to IR evolution of
asymptotically free gauge theories, as a function of their
fermion content, it is valuable to have a quantitative mea-
sure of the accuracy of the (semi)perturbative approach
of calculating the IR zero of the beta function and eval-
uating the anomalous dimension evaluated at this zero
of β. We have previously carried out such a study for
non-supersymmetric SU(Nc) gauge theories with various
fermion contents [18] (see also [19], whose results are in
agreement with those in [18]). An advantage of mak-
ing this comparison in a supersymmetric gauge theory is
that, in contrast to the non-supersymmetric case, one can
compare the perturbative calculation with exact results
on the IR properties of the theory.
This paper is organized as follows. In Sect. II we de-

fine some notation and recall the relevant coefficients of
the beta function. Sect. III is devoted to a discussion
of the perturbative expression for γm. In Sect. IV we
review some exact results on the IR phase structure of
the theory. In Sect. V we give a general discussion of
perturbative estimates of Nf,cr. The subsequent sections
VI-XIII contain our results for the various representa-
tions considered here. Our conclusions are in Sect. IX.

II. BETA FUNCTION

A. General

The beta function of the theory is denoted β = dg/dt,
where dt = d lnµ. In terms of the variable

a ≡ g2

16π2
=

α

4π
, (2.1)

the beta function can be written equivalently as βα ≡
dα/dt = gβ/(2π), expressed as a series

dα

dt
= −2α

∞
∑

ℓ=1

bℓ a
ℓ = −2α

∞
∑

ℓ=1

b̄ℓ α
ℓ , (2.2)

where ℓ denotes the number of loops involved in the cal-
culation of bℓ and b̄ℓ = bℓ/(4π)

ℓ. The first two coefficients
in the expansion (2.2), which are scheme-independent,
are [20]

b1 = 3CA − 2TfNf (2.3)

and [21]-[23]

b2 = 6C2
A − 4(CA + 2Cf )TfNf . (2.4)

A commonly used regularization scheme for supersym-
metric theories is dimensional reduction with minimal
subtraction, denoted DR [24, 25] (a recent discussion is
[26]). In this regularization scheme, the coefficient of the
three-loop term in the beta function is [27]-[32]

b3 = 21C3
A + 4(−5C2

A − 13CACf + 4C2
f )TfNf

+ 4(CA + 6Cf )T
2
fN

2
f . (2.5)

Although the beta function coefficients bℓ with ℓ ≥ 3
are scheme-dependent, the use of three- and four-loop
coefficients in the comparison of the QCD beta function
with experimental data has shown the value in incorpo-
rating these higher-loop contributions [33]. The purpose
in our present work is different from that for QCD; there,
one wanted to obtain the most precise comparison pos-
sible with data, in order to extract the value of αs(µ).
Here, we would like to compare the predictions of a par-
ticular scheme, namely DR, with the exact results con-
cerning the infrared behavior of the theory for various
ranges of Nf , in order to obtain a measure of the accu-
racy and reliability of the perturbative calculations as a
guide to the infrared phase structure of the theory.
Before proceeding, it is appropriate to include several

cautionary remarks. First, as is well-known, expansions
such as (2.2) and (3.1) in powers of α are not Taylor
series, but instead, only asymptotic series, with zero ra-
dius of convergence. However, a wealth of experience in
particle physics has shown that if the effective expansion
parameter (here, (α/π) times various group invariants) is
not too large, then the first few terms can provide useful
information about the physics. Second, the expansions
for β and γm in Eqs. (2.2) and (3.1) are perturbative
and do not incorporate nonperturbative properties of the
physics, such as instantons. Instanton effects are absent
to any order of a perturbative expansion in α, but play
an important role in a non-Abelian Yang Mills gauge
theory. Terms arising from instanton effects character-
istically involve essential zeros of the form exp(−κπ/α),
where κ > 0 is a numerical constant. Indeed, instanton
effects play an important role in the derivation of exact
results on supersymmetric gauge theories [8],[34].
The requirement that the theory be asymptotically free

means that β < 0, which, with the overall minus sign in
Eq. (2.2), is true if and only if b1 > 0. Note that, a

priori, the condition β > 0 could be satisfied with b1 = 0
if b2 > 0, but this is actually not possible, because the
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value of Nf that renders b1 = 0, namely [36]

Nf,b1z =
3CA

2Tf
≡ Nf,max , (2.6)

yields a negative value of b2 for any representation R,
viz., −12CACf . Hence, the requirement of asymptotic
freedom implies

Nf < Nf,max . (2.7)

The number Nf,max depends on the representation R,
and, where necessary for clarity, we shall indicate this
by writing Nf,max,R. We shall assume Nf satisfies this
upper bound in our present study. Although one could
generalize the analysis to non-asymptotically free theo-
ries, the coupling α(µ) → 0 as the energy scale µ→ 0 in
such theories, so the infrared behavior would be that of
a free theory.

B. Zero of the Two-Loop Beta Function

Since only the two-loop beta function is scheme-
independent, at the perturbative level, if it does not have
an IR zero, then, even if such a zero were present at
the level of three or more loops, it could not be reliably
considered to be physical. Here we have an even more
stringent criterion, based on the exact results of Ref. [8],
which specify, as a function of Nc and the chiral fermion
content, whether the theory evolves from the UV to a
conformally invariant IR phase (a non-Abelian Coulomb
phase) . These results are equivalent to having an ex-
act beta function and knowing whether it has an exact
IR fixed point of the renormalization group. If the exact
analysis does not have an IR zero but the perturbative
2-loop beta function does have an IR zero, then even
though the latter is scheme-independent, one would still
have to reject its prediction, since it differs from the ex-
act result. In Ref. [37], a nonperturbative IR zero of
the beta function of a non-Abelian gauge theory has also
been discussed.
For zero and sufficiently small Nf , the coefficients b2

and b3 are both positive. As Nf increases, these coeffi-
cients both decrease. The coefficient b2 passes through
zero and reverses sign from positive to negative at the
value

Nf,b2z =
3C2

A

2Tf(CA + 2Cf )
. (2.8)

This value of Nf is less than Nf,b1z = Nf,max, as is clear
from the fact that

Nf,b2z =
Nf,b1z

1 +
2Cf

CA

< Nf,b1z . (2.9)

The two-loop (2ℓ) beta function has a zero away from
the origin at aIR,2ℓ = −b1/b2, i.e.,

αIR,2ℓ = −4πb1
b2

=
2π(3CA − 2TfNf)

2(CA + 2Cf )TfNf − 3C2
A

. (2.10)

Clearly, for Nf only slightly larger than Nf,b2z, αIR,2ℓ is
too large for this perturbative result to be trustworthy;
a necessary condition for it to be reliable is that Nf is
sufficiently far above Nf,b2z that αIR,2ℓ is not too large.
For our analysis below, it will be important whether the
formal divergence in αIR,2ℓ at b2 = 0, i.e., Nf = Nf,b2z,
occurs above or below the lower boundary of the IR con-
formal phase, which is given by Nf,cr in Eq. (4.5). The
difference is

Nf,b2z −Nf,cr =
3CA(CA − 2Cf )

4Tf(CA + 2Cf )
. (2.11)

We find that this can be positive or negative. For exam-
ple, for the fundamental representation,

Nf,b2z −Nf,cr =
3Nc

2(2N2
c − 1)

> 0 for fund. rep. ,

(2.12)
so that b2 = 0 and αIR,2ℓ diverges within the IR confor-
mal phase. In contrast, for the adjoint representation,

Nf,b2z −Nf,cr = −1

4
for Adj. rep. , (2.13)

so that in this case, b2 is nonzero (and negative) all
throughout the IR conformal phase. For the symmet-
ric and antisymmetric rank-2 tensor representations, we
find

Nf,b2z −Nf,cr = − 3Nc(N
2
c ± 2Nc − 4)

2(Nc ± 2)(3N2
c ± 2Nc − 4)

for S2, A2 rep. , (2.14)

where the upper and lower signs apply for the S2 and
A2 representations, respectively. For S2, the numerator
factor N2

c +2Nc − 4 vanishes at the unphysical, negative

value Nc = −(1 +
√
5 ) and at Nc = −1 +

√
5 ≃ 1.236,

which is less than the minimal non-Abelian value, Nc =
2. Hence, for the S2 representation, Nf,b2z < Nf,cr for all
non-Abelian Nc and b2 has fixed (negative) sign through-
out the IR conformal phase. For the A2 representation,
Nc is restricted to the nontrivial range Nc ≥ 3. In this
A2 case, the numerator factor N2

c − 2Nc − 4 vanishes at

Nc = 1 +
√
5 ≃ 3.236 (as well as at the negative, un-

physical value Nc = 1 −
√
5), so that Nf,b2z > Nf,cr for

the real interval 3 ≤ Nc < 1 +
√
5, while Nf,b2z < Nf,cr

for Nc > 1 +
√
5, i.e., the integer values Nc ≥ 4. Note

that the A2 representation with Nc = 3 is equivalent to
the conjugate fundamental representation. Hence, for all
representations R for which A2 is distinct from the fun-
damental, b2 has fixed (negative) sign throughout the IR
conformal phase.
Given that Nf < Nf,max to maintain the asymptotic

freedom of the theory, this αIR,2ℓ is positive and hence
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physical if and only if Nf lies in the range Nf,b2z < Nf <
Nf,b1z, i.e.,

3C2
A

2Tf(CA + 2Cf )
< Nf <

3CA

2Tf
. (2.15)

We will thus focus on this interval for Nf . The zero of the
two-loop beta function at α = αIR,2ℓ is either an approx-
imate or exact infrared (IR) fixed point (IRFP) of the
renormalization group. If the gauge interaction sponta-
neously breaks the global chiral symmetry of the theory
via the formation of a bilinear matter (chiral) superfield
condensate, then this IR zero is only approximate, since
in this case the matter superfield picks up a dynamically
generated mass Σ and as the scale µ decreases below Σ,
one integrates out the matter superfields in defining the
effective low-energy field theory. Consequently, as the
theory evolves further into the infrared, the beta function
becomes that of the pure supersymmetric gauge theory
without these matter superfields, and hence α(µ) evolves
away from the approximate IR fixed point.

C. Zeros of the Three-Loop Beta Function

To three-loop order, the beta function formally has
two zeros away from the origin, given by the equation
b1 + b2a+ b3a

2 = 0, where a was given in Eq. (2.1). The
solutions, in terms of α = 4πa, are

α =
2π

b3

[

− b2 ±
√

b22 − 4b1b3

]

. (2.16)

Only the physical, smaller one of these two solutions will
be relevant for our analysis, and we label it as αIR,3ℓ. As
discussed above, the requirement that the two-loop beta
function has an IR zero means that Nf is in the interval
(2.15) where b1 > 0 and b2 < 0.

III. ANOMALOUS DIMENSION γm

The anomalous dimension γm describes the scaling
properties of the quadratic superfield operator product
ΦiΦ̃i containing the bilinear product ψTCψ̃, or equiva-
lently, ψ̄ψ, of component fermion fields. If one has an
input mass m for ψ, then, with our definition, γm =
−d lnm/dt, where t = lnµ. Since we are studying the
evolution from the UV to the IR conformal phase, we
do not put in such a bare mass m here, since, if we did,
then as µ decreases below m, these fields would be inte-
grated out as the theory evolved deeper into the infrared
and the IR behavior would be that of a supersymmetric
SU(Nc) theory with just gluons and gluinos. For nota-
tional simplicity we will often suppress the subscript m.
This anomalous dimension can be expressed as a series
in a or equivalently, α:

γm =
∞
∑

ℓ=1

cℓ a
ℓ =

∞
∑

ℓ=1

c̄ℓ α
ℓ , (3.1)

where c̄ℓ = cℓ/(4π)
ℓ is the ℓ-loop series coefficient.

We denote γnℓ as the n-loop value of γm, i.e., γnℓ =
∑ℓ

n=1 cn a
n.

The coefficients cℓ have been calculated to three-loop
order. The one-loop coefficient c1 is scheme-independent:

c1 = 4Cf , (3.2)

The higher-loop coefficients cℓ with ℓ ≥ 2 are scheme-
dependent. In the DR scheme, c2 and c3 are [28, 32]

c2 = 4Cf (−2Cf + 3CA − 2TfNf ) , (3.3)

and

c3 = 8Cf

[

4C2
f + 3CA(CA − Cf ) + TfNf

[

(−8 + 12ζ(3))Cf + (1− 12ζ(3))CA

]

− 2T 2
fN

2
f

]

, (3.4)

where ζ(s) is the Riemann zeta function, with ζ(3) =
1.20205690..As Nf approaches Nf,max from below, b1 →
0 with nonzero b2 and hence αIR → 0; since the pertur-
bative calculation expresses γm in a power series in α, it
follows that γm → 0 as Nf → Nf,max.
The n-loop value of γm at the IR zero of β, calculated

to the same loop order (IR fixed point of the renormaliza-
tion group), is obtained by setting α = αIR,nℓ in γnℓ(α)
and is denoted

γIR,nℓ ≡ γnℓ(αIR,nℓ) . (3.5)

where the dependence on the chiral superfield represen-
tation R is implicit. Thus, at the two-loop level,

γIR,2ℓ = a(c1 + c2a)|a=aIR,2ℓ

=
b1(−c1b2 + c2b1)

b22
. (3.6)

Explicitly,
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γIR,2ℓ =
Cf (3CA − 2TfNf )(2TfNf − CA)(2TfNf − 3CA + 6Cf )

[2(CA + 2Cf )TfNf − 3C2
A]

2
. (3.7)

Thus, γIR,2ℓ has, formally, three zeros and one pole. One
of the zeros occurs at Nf = Nf,max, as given in Eq. (2.6).
The second zero occurs at

Nf =
CA

2Tf
=
Nf,max

3
=

2Nf,cr

3
. (3.8)

Because this lies below the exact Nf,cr, it is not directly
relevant for our current analysis. Furthermore, for the
representations of interest here, it also lies below Nf,b2z,
and hence is not present where the theory has a two-loop
zero in β. The third formal zero in γIR,2ℓ occurs at

Nf =
3(CA − 2Cf )

2Tf
= Nf,max −

3Cf

Tf
. (3.9)

This third zero occurs for Nf less than Nf,cr (and, for
some representations, at negative Nf), and hence also
will not be relevant for our analysis. The pole in γIR,2ℓ

occurs at Nf,b2z , and is a consequence of the pole in
αIR,2ℓ where b2 = 0. Clearly, the two-loop calculation
of γm ceases to be reliable for Nf values less than Nf,b2z,
so this pole is obviously an unphysical artifact. Thus,
over the range of interest here, γIR,2ℓ increases monoton-
ically above zero as Nf decreases below Nf,max.
In the procedure described above, one evaluates the n-

loop expression for γm at the IR zero of β, calculated to
the same n-loop order. For this procedure, one necessar-
ily uses the β function calculated at least to the two-loop
level, since an IR zero only appears at this loop level,
and also the two-loop or higher-loop expressions for γm.
Since the coefficients cℓ for ℓ ≥ 2 are scheme-dependent,
this process necessarily entails scheme-dependence. (At
an IR zero of the exact beta function, γm would be physi-
cal and scheme-independent, but, as noted above, we are
dealing only with a perturbative expansion of β, trun-
cated at a given loop order.) We thus also present an
alternate perturbative estimate for γm, which has the ad-
vantage of preserving scheme-independence but the dis-
advantage of mixing different orders of perturbation the-
ory. For this alternative estimate, we use only scheme-
independent (SI) inputs, and hence evaluate the one-loop
expression for γm at the two-loop IR zero of β, obtaining

γIR,SI = c1aIR,2ℓ = c̄1αIR,2ℓ = −c1b1
b2

=
2Cf(3CA − 2TfNf )

2(CA + 2Cf )TfNf − 3C2
A

. (3.10)

IV. REVIEW OF SOME EXACT RESULTS

Since we will compare our perturbative results with
certain exact results, a brief review of these is appropri-

ate. For a vectorlike SU(Nc) gauge theory with N = 1
supersymmetry and Nf copies of massless chiral super-

fields Φi and Φ̃i in the fundamental and conjugate funda-
mental representation, respectively, exact results on the
phase structure and corresponding properties of the the-
ory in the infrared were derived by Seiberg [8]. These
results were subsequently generalized to theories with
gauge groups SO(Nc) and Sp(Nc) in [9] and [10] (reviews
include [11]). A further generalization to arbitrary repre-
sentations was given in [12]. In our present work we will
focus on the comparison of perturbative estimates and
exact results concerning the minimal value of Nf (for a
given chiral superfield content), denoted Nf,cr such that,
for Nf > Nf,cr, the theory evolves from the UV to the
IR in a chirally symmetric manner, so that the IR theory
is a conformal, non-Abelian Coulomb phase. This value,
Nf,cr, is often called the lower end of the conformal phase
or conformal “window” (with the upper end, Nf,max, de-
termined by the requirement of asymptotic freedom). We
shall carry out this comparison at the two- and three-loop
level.
We recall how, for a given R, the conformal region in

Nf is determined. A crucial tool in determining Nf,cr,
the lower end, as a function of Nf , of the IR conformal
phase, is the existence of an exact relation between the
beta function and the mass anomalous dimension, γm.
This relation is embodied in the following form for the
beta function of the theory with a vectorlike massless
chiral superfield content consisting of Nf copies of the
representations R + R̄ of the gauge group [34, 35]:

βα =
dα

dt
= −α

2

2π

[

b1 − 2TfNfγm(α)

1− CA α
2π

]

. (4.1)

The IR zero of βα is determined by the condition

γm =
3CA − 2TfNf

2TfNf

=
Nf,max

Nf

− 1 . (4.2)

Let us assume that the theory flows to an exact IR fixed
point, i.e., that Nf is in the sub-interval of (2.15) in
which, as the theory evolves down from the UV to the
IR, no spontaneous chiral symmetry breaking takes place.
Given that the theory has evolved down to an (exact) in-
frared fixed point,the resultant theory at this IRFP is
conformally invariant.
It is a special property of a conformally invariant field

theory (whether supersymmetric or not) that the full di-
mension of a spinless operator (other than the identity)
must be larger than unity in order that the theory not
contain any negative-norm states, which would violate
unitarity [13–15]. Specifically, for the dimension Dm of
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the bilinear operator ΦiΦ̃i (with no sum on i) for any
i = 1, ..., Nf in the present theory, this is the inequality

Dm ≥ 1 . (4.3)

In terms of its component scalar and fermion fields φi
and ψi, the chiral superfield is expressed as Φi = φi +√
2 θψi+θθFi, where θ is a Grassmann variable and Fi is

an auxiliary field. Thus (for any i), the term ΦiΦ̃i yields,
as the (holomorphic) term bilinear in component fermion

fields, θθψiψ̃i. Taking into account that the dimension
of θ is −1/2, the free-field dimension of ψiψ̃i (for any
i) is 3, and using our definition of γm, it follows that
Dm = 2 − γm, so that the bound (4.3) is equivalent to
the following upper bound on γm:

γm ≤ 1 . (4.4)

This may be contrasted with the situation in a non-
supersymmetric SU(Nc) theory. There, the bound that
the full operator dimension of ψ̄iψi be larger than 1 im-
plies that γm ≤ 2, as we noted in Eq. (4.2) of [18] (equiv-
alent to the bound from Eq. (4.1) of [18]). The more
stringent upper bound (4.4) on γm in the supersymmet-
ric theory is due to the fact that the fermion field ψi is
part of a chiral superfield and the holomorphic fermion
bilinear resulting from the quadratic ΦiΦ̃i product car-
ries with it a θθ factor.
We next assume that, in the relevant range ofNf where

the theory evolves from the UV to an IR-conformal phase,
γm evaluated at the IR fixed point, α = αIR, increases
monotonically as Nf decreases below Nf,max. This as-
sumption is satisfied by γm as calculated in a scheme-
independent manner, as will be discussed further below.
The inequality (4.4) then implies that Nf,cr, the value
of Nf below which the theory cannot be conformally in-
variant, is bounded below as Nf,cr ≥ 3CA/(4Tf). The
application of duality relations provides strong evidence
that this inequality is saturated [8, 12] and hence that

Nf,cr =
3CA

4Tf
. (4.5)

We refer to this as an exact result, although, as we have
indicated, there are some nonrigorous steps in its deriva-
tion. Note that

Nf,cr =
Nf,max

2
. (4.6)

Thus, the theory evolves from the UV to an IR fixed
point in the conformal phase if and only if Nf,cr lies in
the interval

3CA

4Tf
< Nf <

3CA

2Tf
. (4.7)

(The marginal value Nf = 3CA/(4Tf) itself is not in this
conformal phase [8, 9].) For both Eqs. (4.5) and (4.7),
it is understood that, physically, Nf must be an integer
[36]. Thus, the actual values of Nf in the conformal
phase are understood to be the integers that satisfy the
inequality (4.7).

V. PERTURBATIVE ESTIMATES OF Nf,cr FOR
GENERAL R

As discussed above, although a perturbative calcula-
tion is not exact, one gains valuable information by com-
paring it with exact results. We carry out this com-
parison here for a general representation R, using per-
turbative estimates for Nf,cr, the lower boundary of the
IR conformal phase. For this purpose, we utilize γIR,SI

and γIR,2ℓ. With a monotonic increase in γm as Nf de-
creases below Nf,max, we can then calculate a perturba-
tive estimate for Nf,cr by assuming that γm saturates the
inequality (4.4) as Nf decreases through Nf,cr. (Here,
again, we are implicitly analytically continuing Nf from
physical integer values to real numbers.) Setting the per-
turbative γm = 1 and solving for the value ofNf at which
this happens yields the corresponding perturbative esti-
mate of Nf,cr. Since a perturbatively calculated expres-
sion for γm is not, in general, equal to the exact γm, one
does not expect these estimates to agree precisely with
the exactly known values for Nf,cr for the various repre-
sentations. However, this comparison gives quantitative
insight as to the accuracy of the perturbative calcula-
tions.

A. Estimate Using γIR,SI

The scheme-independent perturbative result for γm,
γIR,SI , increases monotonically as Nf decreases from
its maximal value (2.6) and reaches the rigorous upper
bound as Nf decreases through the value

Nf,cr,SI =
3CA(CA + 2Cf )

2Tf(CA + 4Cf )
. (5.1)

This is larger than the exact value of Nf,cr, as is evident
from the difference

Nf,cr,SI −Nf,cr =
3C2

A

4Tf(CA + 4Cf )
> 0 (5.2)

or the ratio

Nf,cr,SI

Nf,cr

= 2

(

CA + 2Cf

CA + 4Cf

)

> 1 . (5.3)

This difference between the scheme-independent pertur-
bative estimate of the lower boundary of the conformal
phase, Nf,cr,SI , and the exact lower boundary, Nf,cr,
provides one quantitative measure of the accuracy of
perturbation theory. Our conclusion from this compar-
ison is that perturbation theory slightly overestimates
the value of this lower boundary and hence underesti-
mates the size of the conformal phase as a function of
Nf . Related to this, as Nf decreases below Nf,cr,SI

toward the exact lower boundary of the IR conformal
phase at Nf,cr, γIR,SI continues to increase. In this
regime, its behavior is unphysical since it violates the
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rigorous bound (4.4). This happens for both represen-
tations where Nf,b2z > Nf,cr and representations where
Nf,b2z < Nf,cr. Formally,

γIR,SI =
2Cf

2Cf − CA

at Nf = Nf,cr . (5.4)

B. Estimate Using γIR,2ℓ

Setting the two-loop result for the anomalous dimen-
sion, γIR,2ℓ, equal to the rigorous upper bound, unity,
we derive the corresponding two-loop perturbative pre-
diction for Nf,cr. The equation γIR,2ℓ = 1 is a cubic
equation in Nf , which yields the resultant estimate for
Nf,cr, together with two other roots that are not of direct
relevance. Formally,

γIR,2ℓ =
Cf (4Cf − CA)

2(2Cf − CA)2
at Nf = Nf,cr , (5.5)

but as with γIR,SI , this is only formal, since this pertur-
bative result generically violates the upper bound (4.4).
We comment below on the situation at the three-loop
level. We proceed to present results for the various rep-
resentations of interest here.

VI. CHIRAL SUPERFIELDS IN THE
FUNDAMENTAL REPRESENTATION

A. IR Zeros of the Beta Function

1. Two-Loop Analysis

In this section we consider the case where the theory
has Nf copies of massless chiral superfields Φi and Φ̃i,
i = 1, ..., Nf , transforming according to

Φi : F ; Φ̃i : F̄ , i = 1, ..., Nf , (6.1)

i.e., the fundamental plus conjugate fundamental, repre-
sentation of the gauge group. The requirement of asymp-
totic freedom implies

Nf < 3Nc . (6.2)

For this case, the exact result (4.5) on the value of Nf at
the lower boundary of the conformal phase in the infrared
is

Nf,cr =
3Nc

2
, (6.3)

where it is understood that this is only formal if Nc is
odd, since Nf,cr must be an integer. Thus, the IR con-
formal phase is given, from Eq. (4.7), as

3Nc

2
< Nf < 3Nc . (6.4)

TABLE I: Values of Nf,b1z = Nf,max, Nf,b2z , and Nf,b3z for the

supersymmetric SU(Nc) theory with Nf chiral superfields Φi, Φ̃i

in the F and F̄ representations, respectively. We also list the exact
value of Nf,cr . These results are given for the illustrtive values
2 ≤ Nc ≤ 5.

Nc Nf,cr Nf,b2z Nf,b3z Nf,b1z

2 3 3.43 3.09 6

3 4.5 4.76 4.27 9

4 6 6.19 5.55 12

5 7.5 7.65 6.85 15

Physically, Nf must be a (non-negative) integer, so the
actual physical values of Nf in the IR conformal phase
for 2 ≤ Nc ≤ 5 are Nc = 2 : Nf = 4, 5; Nc = 3 :
Nf = 5, 6, 7, 8; Nc = 4 : Nf = 7, 8, 9, 10, 11;, and
Nc = 5 : Nf = 8, 9, 10, 11, 12, 13, 14.
Evaluating Eq. (2.8), we find that b2 reverses sign from

positive to negative asNf increases through the value [36]

Nf,b2z =
3Nc

2−N−2
c

. (6.5)

The interval of Nf values in Eq. (2.15) where the two-
loop beta function has an IR zero is therefore [36]

3Nc

2−N−2
c

< Nf < 3Nc . (6.6)

Numerical values of Nf,cr, Nf,b2z, Nf,b3z, and Nf,b1z =
Nf,max are listed in Table I for the illustrative values
2 ≤ Nc ≤ 5 [36]. As discussed before in connection with
Eq. (2.12), the value of Nf,cr in Eq. (6.5) is greater
(for all Nc) than the exactly known lower boundary of
the conformal phase in Eq. (6.3). As Nc → ∞, Nf,b2z

asymptotically approaches (3/2)Nc from above.
Since Nf,b2z > Nf,cr, it follows that the two-loop beta

function only has a (perturbative) infrared zero for Nf

values in the interval where the theory is conformally in-
variant. This is different from the non-supersymmetric
SU(Nc) gauge theory, in which the two-loop beta func-
tion may have an IR zero for values of Nf less than the
estimate, from the Dyson-Schwinger equation, of Nf,cr,
i.e., in the phase where the theory has spontaneous chiral
symmetry breaking. (Because of this SχSB, this IR zero
is only approximate.)
For our supersymmetric theory with the F + F̄ chiral

superfield content of Eq. (6.1), the general formula (2.10)
for the IR zero of the two-loop beta function reduces to

αIR,2ℓ =
2π(3Nc −Nf )

(2Nc −N−1
c )Nf − 3N2

c

(6.7)

This decreases monotonically from arbitrarily large val-
ues (where, of course, the perturbative beta function does
not apply reliably) to zero as Nf increases throughout
the interval (6.6). Numerical values of αIR,2ℓ are listed
in Table II for the illustrative cases 2 ≤ Nc ≤ 5.
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TABLE II: Values of the IR zero of the beta function in the super-
symmetric SU(Nc) gauge theory with Nf pairs of chiral superfields

in Φi, Φ̃i in the fundamental and conjugate fundamental repre-
sention, respectively, calculated at n-loop order, and denoted as
αIR,nℓ. Results are given for the illustrative values 2 ≤ Nc ≤ 5.
For each Nc, we only give results for the integral Nf values in
the interval (2.15) where the theory is asymptotically free and the
two-loop beta function has an infrared zero.

Nc Nf αIR,2ℓ αIR,3ℓ

2 4 6.28 2.65

2 5 1.14 0.898

3 5 18.85 3.05

3 6 2.69 1.40

3 7 0.992 0.734

3 8 0.343 0.308

4 7 5.03 1.64

4 8 1.795 0.984

4 9 0.867 0.615

4 10 0.426 0.357

4 11 0.169 0.158

5 8 12.94 1.90

5 9 2.86 1.13

5 10 1.37 0.765

5 11 0.766 0.528

5 12 0.442 0.353

5 13 0.240 0.212

5 14 0.101 0.0963

It is often of interest to consider the ’t Hooft limit
Nc → ∞ with g2Nc fixed and finite. For the present
F + F̄ superfield content it is also natural to consider
taking Nf → ∞ with the ratio

r ≡ Nf

Nc

(6.8)

fixed and finite (sometimes called the Veneziano limit).
In this limit, the relevant interval for r where the two-
loop beta function has an IR zero is thus

3

2
< r < 3 . (6.9)

Here,

αIR,2ℓNc =
2π(3− r)

2r − 3
, (6.10)

which decreases monotonically to 0 as r increases through
the interval 3/2 < r < 3.

2. Three-Loop Analysis

For the present case, Eq. (6.1), the general result in
Eq. (2.5) for the three-loop coefficient b3 takes the form

b3 = 21N3
c + (9− 21N2

c + 2N−2
c )Nf

+ (4Nc − 3N−1
c )N2

f . (6.11)

For small Nf , b3 is positive. As Nf increases, b3 passes
through zero and reverses sign from positive to negative.
To investigate this, one solves the equation b3 = 0 for Nf .
Since b3 is a quadratic function of Nf , there are formally
two solutions to this equation, namely

Nf,b3z,± = [2Nc(4N
2
c − 3)]−1

[

21N4
c − 9N2

c − 2

±
√

105N8
c − 126N6

c − 3N4
c + 36N2

c + 4

]

.

(6.12)

For Nc = 2, this gives Nf,b3z,− = 3.09 (to the indicated
accuracy), slightly above (3/2)Nc = 3, while for Nc ≥ 3,
we find that Nf,b3z < (3/2)Nc. As examples, for Nc = 3,
Nf,b3z,− = 4.27 < (3/2)Nc = 4.5, while for Nc = 4,
Nf,b3z,− = 5.55 < (3/2)Nc = 6, and so forth for higher
values of Nc. For large Nc,

Nf,b3z,−

(3/2)Nc

=
1

12

[

21−
√
105

]

+O

(

1

N2
c

)

. (6.13)

The numerical value of the first term is approximately
0.896. As Nf increases past the larger value Nf,b3z,+,
b3 vanishes and reverses sign again, becoming positive.
However, this larger zero is not relevant to our analysis,
since for all Nc ≥ 2, Nf,b3z,+ > 3Nc, i.e., this occurs for
Nf beyond the upper limit imposed by the constraint of
asymptotic freedom. For example, forNc = 2, Nf,b3z,+ ≃
8.38, which is greater than Nf,max = 6, and so forth for
larger values of Nc. For large Nc, we have

Nf,b3z,+

3Nc

=
1

24

[

21 +
√
105

]

+O

(

1

N2
c

)

. (6.14)

The numerical value of the first term is 1.30.
Since we restrict here to the interval (2.15) where the

two-loop beta function has an IR zero, we observe that
for physical, integral values of Nf in this interval, b3 is
always negative. Note that for Nc = 2, b3 vanishes and
changes sign from positive to negative as Nf increases
through Nf = 3.09, but this value of Nf is less than the
value Nf,b2z = 3.43 where the beta function first has an
IR zero for this Nc. Hence, for all Nc ≥ 2 and for integral
values of Nf in the interval (2.15) where there is an IR
zero at the two-loop level, b3 < 0.
We list values of αIR,3ℓ for 2 ≤ Nc ≤ 5 in Table II,

together with the values of αIR,2ℓ already given. As is
evident from this table,

αIR,3ℓ < αIR,2ℓ . (6.15)

This is the same trend that we found in [18] for a
non-supersymmetric SU(Nc) with Nf copies of massless
fermions in the fundamental representation.
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In the large-Nc, large-Nf limit with Nf = rNc, we
calculate

αIR,3ℓNc =
4π

[

3− 2r +
√
4r3 − 29r2 + 72r − 54

]

21(r − 1)− 4r2
.

(6.16)
The right-hand side of Eq. (6.16) decreases monotoni-
cally from 4π ≃ 12.57 to 0 as r increases from 3/2 to 3.
Note that the denominator in Eq. (6.16), 21(r−1)−4r2,
is positive-definite in the relevant interval 3/2 < r < 3;

it has zeros at r = (1/8)(21±
√
105), i.e., approximately

3.906 and 1.344. In the numerator, the first part, 3− 2r,
is negative-definite in this interval, but is smaller than
the square root.

B. Values of γm at IR Zero of β

1. Coefficients

Evaluating Eqs. (3.2)-(3.4) for our case (6.1), we have

c1 =
2(N2

c − 1)

Nc

, (6.17)

c2 = 2(N2
c − 1)N−2

c (2N2
c + 1−NcNf ) , (6.18)

and

c3 = 2(N2
c − 1)N−3

c

[

5N4
c −N2

c + 2 +Nc(−3N2
c + 4)Nf − 6ζ(3)Nc(N

2
c + 1)Nf −N2

cN
2
f

]

, (6.19)

where ζ(s) is the Riemann zeta function. As Nf ap-
proaches Nf,max from below, b1 → 0 with nonzero b2
and hence αIR → 0; since the perturbative calculation
expresses γm in a power series in α, it follows that as
γm → 0 as Nf → Nf,max.
To get an analytic understanding of the behavior of γm,

we study the signs of the coefficients cℓ with ℓ = 1, 2, 3.
Since the one-loop coefficient c1 is positive, γm increases
from zero as Nf decreases just below Nf,max. In the
conformal phase the two-loop coefficient c2 may be either
positive or negative, depending on Nf . This coefficient
c2 vanishes at

Nf = 2Nc +N−1
c ≡ Nf,c2z . (6.20)

and

c2 > 0 for Nf < Nf,c2z ,

c2 < 0 for Nf,c2z < Nf < Nf,max = 3Nc .(6.21)

The three-loop coefficient c3 is a quadratic function of
Nf and vanishes at two values of Nf = 0, namely

Nf,c3z,fund,± =
4− 3N2

c − 6(N2
c + 1)ζ(3)±√

Rc3z

2Nc

(6.22)
where

Rc3z = 29N4
c − 28N2

c + 24 + 12(N2
c + 1)(3N2

c − 4)ζ(3)

+ [6(N2
c + 1)]2ζ(3)2 . (6.23)

For Nc = 2, Nf,c3z,fund,− is equal to −22.88 and hence is
unphysical, while Nf,c3z,fund,+ = 0.8522, so that in the
physical range, c3 is negative for all positive integral val-
ues of Nf . For Nc = 3, Nf,c3z,fund,− is equal to −33.05

and hence is again unphysical, while Nf,c3z,fund,+ =
1.338, so that in the physical range, c3 is positive for
Nf = 1, but negative for Nf ≥ 2, including all of the
interval of interest here. This qualitative behavior con-
tinues to hold for higher values of Nc, as is evident from
the Taylor series expansion

Nf,c3z,fund,+

Nc

=
1

2

[

− 3(1 + 2ζ(3))

+
√

36ζ(3)(ζ(3) + 1) + 29

]

+O

(

1

N2
c

)

. (6.24)

The numerical value of the constant term is 0.468 to the
indicated accuracy. Thus, as Nc → ∞, Nf,c3z,fund,+ ∼
0.468Nc, which is less than the exact value of the lower
boundary of the conformal phase, Nf,cr = (3/2)Nc, given
in Eq. (6.3). Thus, a general characterization of the
three-loop γm is that c1 is positive for any representation
R, and for R = F ; c2 is positive in the lower part of
the conformal phase but negative in the upper part, as
specified by Eq. (6.21), and c3 is negative throughout
all of the Nf interval of interest, including the conformal
phase.

2. γIR,SI

For the chiral fermion content (6.1), we calculate

γIR,SI =
(N2

c − 1)(3Nc −Nf)

(2N2
c − 1)Nf − 3N3

c

. (6.25)

As Nf decreases below its maximal value, 3Nc, γIR,SI

increases monotonically. We list values of γIR,SI in Table
III for the illustrative values 2 ≤ Nc ≤ 5. For each Nc,
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TABLE III: Values of the anomalous dimension γm in the SU(Nc)
supersymmetric gauge theory with Nf copies of massless chiral

superfields Φi, Φ̃i in the F and F̄ representations, calculated to the
n-loop order in perturbation theory and evaluated at the IR zero of
the beta function calculated to this order, αIR,nℓ, for ℓ = 2, 3. We
denote these as γIR,nℓ ≡ γnℓ(αIR,nℓ). Results are given for the
illustrative values 2 ≤ Nc ≤ 5. For sufficiently small Nf > Nf,b2z

for each Nc, αIR,2ℓ is so large that the formal values of γIR,2ℓ

and/or γIR,3ℓ are either larger than unity or negative and hence are
unphysical. We indicate this by placing these values in parentheses.

Nc Nf γIR,SI γIR,2ℓ γIR,3ℓ

2 4 (1.500) (1.875) (−1.68)

2 5 0.273 0.260 0.0802

3 6 (1.14) (1.22) (−0.730)

3 7 0.421 0.399 0.0584

3 8 0.145 0.139 0.104

4 8 (1.07) (1.11) (−0.546)

4 9 0.517 0.490 0.0219

4 10 0.254 0.239 0.127

4 11 0.101 0.0970 0.0835

5 10 (1.04) (1.07) (−0.475)

5 11 0.585 0.557 (−0.0135)

5 12 0.338 0.317 0.120

5 13 0.183 0.173 0.121

5 14 0.0772 0.0748 0.0680

we omit values in the lower range of Nf that strongly
violate the bound (4.4). This violation is due to both the
inexactness of the perturbative calculation of γm and the
fact that the two-loop IR zero of the beta function, αIR,2ℓ

gets arbitrarily large as Nf decreases toward Nf,b2z. In
Figs. 1-3 we show plots of γIR,SI as a function of Nf for
the approximate respective subintervals of the conformal
phase where γIR,SI satisfies the upper bound (4.4). We
will discuss below the other curves on these plots.
Specializing Eq. (5.1) to the case of the fundamental

representation, we obtain the scheme-independent per-
turbative estimate of the lower boundary of the confor-
mal phase,

Nf,cr,SI =
3Nc(2N

2
c − 1)

3N2
c − 2

. (6.26)

As noted before, this estimate lies above the actual exact
lower boundary, which, in the present case, occurs at
Nf,cr = (3/2)Nc:

Nf,cr,SI

Nf,cr

=
2(2N2

c − 1)

3N2
c − 2

. (6.27)

This ratio decreases from the value 7/5 = 1.40 at Nc = 2
to 4/3 as Nc → ∞ and has the Taylor series expansion

Nf,cr,SI

Nf,cr

=
4

3
+

2

9N2
c

+O

(

1

N4
c

)

as Nc → ∞ . (6.28)

4.0 4.5 5.0 5.5 6.0
-2

-1

0

1

2

N f

Γ

FIG. 1: Plot of the n-loop fermion anomalous dimension, γnℓ,
evaluated at the respective n-loop value of the IR zero of β, αIR,nℓ,
and denoted as γIR,nℓ, for two-loop and three-loop order, in the

case of Nf chiral superfields Φi, Φ̃i in the F and F̄ representation
of SU(Nc) for Nc = 2. We use the generic label γ for the vertical
axis. At the lower end of the plot, from top to bottom, the curves
are for (i) γIR,2ℓ, (ii) γIR,SI , and (iii) γIR,3ℓ. The curves involve
an implicit analytic continuation of Nf from integer values to real
values; of course, only the integer values are physical. We only show
the region in Nf where γIR,2ℓ and γIR,SI approximately satisfy the
upper bound (4.4).

6.0 6.5 7.0 7.5 8.0 8.5 9.0

-0.5

0.0

0.5

1.0

N f

Γ

FIG. 2: Same as Fig. 1 for Nc = 3.

8 9 10 11 12

-0.5

0.0

0.5

1.0

N f

Γ

FIG. 3: Same as Fig. 1 for Nc = 4.
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We next proceed to two-loop and three-loop analyses.
As we have remarked above, these have the advantage
of using the same n-loop orders in calculating γm and
αIR,nℓ, but are subject to the standard caution that they
involve scheme-dependence.

3. Two-Loop Analysis

Evaluating γm calculated to two-loop order at the zero
of the beta function calculated to the same order for R =
F , we obtain

γIR,2ℓ =
(N2

c − 1)(3Nc −Nf )(Nf −Nc)(NcNf − 3)

2(−3N3
c + 2N2

cNf −Nf )2
.

(6.29)

We list values of γIR,2ℓ in Table III and plot curves of
γIR,2ℓ as a function of Nf (analytically continued from
integer to real values) in Figs. 1-3. One sees from these
results that over the range where the calculations are
reliable, γIR,2ℓ is rather close to γIR,SI . The anoma-
lous dimension γIR,2ℓ increases monotonically as Nf de-
creases from Nf,max = 3Nc in the interval (2.15). As
Nf decreases toward Nf,b2z (given in Eq. (6.5), αIR,2ℓ

gets arbitrarily large, and this perturbative expression
obviously ceases to be reliable. As Nf increases to-
ward Nf,max,fund = 3Nc, αIR,2ℓ → 0, and hence also
γIR,2ℓ → 0.
The condition that γIR,2ℓ = 1 is a cubic equation in

Nf , namely

Nc(N
2
c − 1)N3

f + (4N4
c − 7N2

c + 5)N2
f

+ 3Nc(−7N4
c + 7N2

c − 4)Nf + 9N2
c (2N

4
c −N2

c + 1) = 0 .

(6.30)

As Nf decreases from Nf,max,fund = 3Nc toward
Nf,b2z,fund, γm exceeds the rigorous upper bound γm < 1
at a value of Nf which is given as the relevant one among
the three roots of Eq. (6.30). For example, for Nc = 2,
this equation has the physical root Nf = 4.242, together
with two other roots which are not relevant, namely
Nf = 2.929 and Nf = −14.00 (to four significant fig-
ures). The first of these other roots is irrelevant since it
is below the lower boundary of the IR conformal phase,
Nf,cr given in Eq. (6.3), and the second is irrelevant
since it is negative and hence unphysical. Thus, insofar
as one can compare a perturbative 2-loop calculation of
γm with an upper bound on the exact γm, one finds that
this 2-loop prediction for the lower end of the conformal
phase in Nf for Nc = 2 is Nf = 4.242. The ratio of
this to the exact result Nf,cr, which is 3 for Nc = 2, is
approximately 1.414. Similarly, for Nc = 3, the physi-
cal root of Eq. (6.30) is Nf = 6.150. (The other two
roots are 3.983, and −21.22, which are again irrelevant).
The ratio of this to the (formal, half-integral) exact result

Nf,cr = 9/2 is 1.367. As Nc → ∞, we find that this ratio
of the physical root of the cubic for Nf,cr divided by the
exact value Nf,cr = (3/2)Nc approaches the same value,
4/3, as was true of the ratio of Nf,cr,SI divided by this
exact value, as given in Eqs. (6.27) and (6.28) above:

Nf,cr,γIR,2ℓ

Nf,cr

=
4

3
+O

(

1

N2
c

)

. (6.31)

We thus find that a 2-loop perturbative analysis of β and
γm overestimates the value of Nf,cr somewhat and hence
underestimates the size of the conformal phase in Nf for
this case (6.1). This is qualitatively the same as we found
for the estimate of Nf,cr using γIR,SI .
It is interesting to compare these estimates for Nf,cr

from the scheme-independent γIR,SI and the two-loop
γIR,2ℓ with the results obtained via the different method
of equating αIR,2ℓ with the critical value αcr for dynami-
cal mass generation calculated from the Dyson-Schwinger
equation for the fermion propagator in Ref. [16]. This
mass generation, associated with fermion condensation,
was found to occur at [16]

Nf,cr,DS =
3Nc(3N

2
c − 2)

4N2
c − 3

. (6.32)

The ratio of this to the exact value for Nf,cr in Eq. (6.3)
is

Nf,cr,DS

Nf,cr

=
3

2

(

1− (2/3)N−2
c

1− (3/4)N−2
c

)

, (6.33)

This ratio is equal to 1.54 and 1.515 for Nc = 2 and
Nc = 3 and decreases monotonically to 3/2 as Nc → ∞.
Thus, for a given Nc, our estimates of Nf,cr obtained
from equating γIR,SI and γIR,2ℓ to the upper bound of
unity are slightly closer to the exact result (6.3) than
the estimate from the analysis of the Dyson-Schwinger
equation, and all agree qualitatively, i.e., all are slight
overestimates of Nf,cr.
In the large-Nc, large-Nf limit, with Nf = rNc, γIR,2ℓ

has the Taylor series expansion

γIR,2ℓ =
r(r − 1)(3− r)

2(3− 2r)2
− 3(r − 1)(3− r)2

2(3− 2r)3N2
c

+O

(

1

N4
c

)

.

(6.34)

In this limit, the value of r, and hence Nf , where γIR,2ℓ =
1 is given as the relevant one among the three roots of
the cubic equation (r−2)(r2−6r−9) = 0, namely r = 2.

The other two roots are −3+3
√
2 and −3−3

√
2; the first

of these has the value 1.243 and hence is below the value
r = 3/2 (cf. Eq. (6.5)) where, for increasing r, an IR zero
of the beta function first appears (which coincides with
the exact value of the lower boundary of the IR conformal
phase in this limit), and the second is negative and hence
obviously unphysical. Thus, in this large-Nc limit, with
r = Nf/Nc fixed and finite, the 2-loop analysis predicts
that Nf,cr = 2Nc, which is 4/3 times the exact result of
Eq. (6.3), in agreement with our analysis in Eq. (6.31).
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4. Three-Loop Analysis

In the same manner, we evaluate the three-loop ex-
pression for γm at the 3-loop value of the IR zero of the
beta function αIR,3ℓ. Since the analytic formulas are
somewhat complicated, we will restrict ourselves to giv-
ing numerical results for Nc = 2 through Nc = 4 in Table
III and Figs. 1-3. In contrast to γIR,SI and γIR,2ℓ, we
find that γIR,3ℓ does not increase monotonically as Nf

decreases below Nf,max. Instead, it reaches a maximum
well below unity in the interior of the conformal phase
and then decreases, vanishing and becoming negative.
Because of this behavior, we cannot use our procedure
of setting the perturbative expression for γm equal to 1
and then solving for Nf for γIR,3ℓ. Since this behavior
of γIR,3ℓ clearly differs from the behavior of the scheme-
independent γIR,SI , it may reflect scheme-dependence.
It also shows that as Nf decreases toward the lower end
of the IR conformal phase and αIR increases to larger
values, a perturbative calculation becomes less reliable.
In general, a necessary condition for these perturbative
calculations to be reliable is that inclusion of the next
higher-loop order term should not drastically change the
qualitative behavior. Imposing this condition for the
comparison of γIR,2ℓ and γIR,3ℓ, we may obtain an es-
timate of the interval in Nf where the calculation could
be reasonably reliable. For Nc = 2, we find that this
interval plausibly includes Nf = 5 but does not include
Nf = 4. For Nc = 3, this interval includes Nf = 8
but not lower values of Nf . In view of this behavior of
γIR,3ℓ, one must view the three-loop results with appro-
priate caution, recognizing that perturbative calculations
become less reliable as the coupling becomes stronger.

VII. SUPERFIELDS IN THE ADJOINT
REPRESENTATION

A. Beta Function

The adjoint representation is self-conjugate, so here a
theory with Nf copies of a massless chiral superfield con-

tent consisting of Φi and Φ̃i, i = 1, ..., Nf , is equivalent
to a theory with N ′

f = 2Nf copies of Φi. We shall thus
consider half-integral values of Nf as physical here. The
beta function coefficients are

b1 = Nc(3 − 2Nf) , (7.1)

b2 = −6N2
c (2Nf − 1) (7.2)

and, in the DR scheme,

b3 = −7N3
c (2Nf − 1)(3− 2Nf ) . (7.3)

Note that b3 vanishes at the same (formal, non-integral)
value of Nf at which b1 vanishes, namely Nf = 3/2. The

condition that the theory be asymptotically free, i.e., that
b1 > 0, implies the upper bound Nf < 3/2.

Nf <
3

2
= Nf,max (7.4)

For the Φi, Φ̃i content, this only allows the choiceNf = 1,
while for the reduced content consisting only of Φi, this
allows N ′

f = 1 and N ′

f = 2. (Note that the N ′

f = 1

theory has been solved exactly [38].)
From Eq. (4.5), the lower boundary of the IR confor-

mal phase is given formally by

Nf,cr =
3

4
(7.5)

or equivalently, N ′

f,cr = 3/2. Since neither of these is an
integer, they must be regarded only as quantities defined
via a requisite analytic continuation of the theory in Nf

or N ′

f away from the integers to the real numbers. With
this understanding, the IR conformal phase is thus given
by

3

4
< Nf <

3

2
. (7.6)

Hence, with the Φi, Φ̃i superfield content, the only inte-
ger value of Nf allowed by the requirement of asymptotic
freedom, namely Nf = 1 yields an IR conformal phase.
For the theory with just the Φi superfield, Eq. (7.6) reads
3/2 < N ′

f < 3, so for N ′

f = 2 (N ′

f = 1) the theory evolves

into the infrared in a conformal (nonconformal) manner,
respectively.
In the theory with Φ, Φ̃ superfield content, the two-

loop β function coefficient b2 is negative for the only
relevant value of Nf , namely Nf = 1. In the reduced
theory, b2 = −6N2

c (N
′
f − 1), which is zero for N ′

f = 1

and negative for N ′

f = 2. Thus, at the two-loop level,
the IR zero of the β functions occurs at

αIR,2ℓ =
2π(3− 2Nf)

3Nc(2Nf − 1)
. (7.7)

At the three-loop level, β has two zeros away from the
origin, at

α

4π
=

−3±
√

2(14N2

f
−33Nf+27)

2Nf−1

7Nc(3 − 2Nf)
. (7.8)

The − sign choice yields an unphysical, negative result,
so the physical three-loop IR zero of the beta function is
given by Eq. (7.8) with the + sign. We denote this as
αIR,3ℓ (suppressing the Adj for simplicity). This αIR,3ℓ

exhibits unphysical behavior, vanishing at Nf = 9/8 and
becoming negative in the range 9/8 < Nf < Nf,max =
3/2. One could take the point of view that this precludes
a reliable three-loop perturbative analysis of this case.
However, we will at least give results for the one case for
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which the theory has an IR fixed point, namely Nf = 1.
For Nf = 1, we have

αIR,2ℓ,Nf=1 =
2π

3Nc

(7.9)

and

αIR,3ℓ,Nf=1 =
4π

7Nc

, (7.10)

so that, for this value of Nf ,

αIR,3ℓ

αIR,2ℓ
=

6

7
, (7.11)

independent of Nc. This is the same trend that we found
for the case of matter superfields in the F + F̄ repre-
sentation, i.e., the value of the IR fixed point calculated
to three-loop order is somewhat smaller than the value
calculated to two-loop order.

B. Anomalous Dimension

For this theory with chiral superfields in the adjoint
representation, the coefficients in Eq. (3.1) are

c1 = 4Nc , (7.12)

c2 = −4N2
c (2Nf − 1) , (7.13)

and

c3 = −8N3
c (Nf + 4)(2Nf − 1) . (7.14)

From our general result (3.10), we calculate the scheme-
independent anomalous dimension

γIR,SI =
2(3− 2Nf )

3(2Nf − 1)
. (7.15)

This increases monotonically as Nf decreases from its
maximal to its minimal value in the IR conformal phase.
γIR,SI increases through its upper limit of unity as Nf

decreases through the valueNf,cr,SI . Evaluating our gen-
eral formula in Eq. (5.1) for the present case of the ad-
joint representation, we obtain

Nf,cr,SI =
9

10
. (7.16)

As is true for general R, this is larger than the exact
result, which in the present case is Nf,cr = 3/4. (This
exact value is only formal, since it is non-integral.) The
ratio (5.3) here is 6/5 = 1.2. As Nf decreases from 9/10
to Nf,cr = 3/4, γIR,SI increases from 1 to 2, exhibiting
unphysical behavior.
Evaluating Eq. (3.6) for the present case of the adjoint

representation, we find

γIR,2ℓ =
(3 − 2Nf)(2Nf + 3)

9(2Nf − 1)
. (7.17)

Setting this equal to 1, we derive another perturbative
estimate ofNf,cr, which is the positive root of a quadratic
equation,

Nf =
3(−3 +

√
17 )

4
≃ 0.8423 . (7.18)

(The other root is negative). This is again slightly larger
than the formal exact Nf,cr = 3/4.
For the only physical value where there is an IR fixed

point, Nf = 1, we thus have

γIR,SI =
2

3
= 0.6666...

γIR,2ℓ =
5

9
= 0.5555...

γIR,3ℓ =
27

73
= 0.37317... for Nf = 1 . (7.19)

Again, we find the same trend as for Φi, Φ̃i in F + F̄ ,
namely that the value of the anomalous dimension γm
evaluated at the IR fixed point decreases somewhat when
one goes from two-loop order (or the scheme-independent
result) to three-loop order.

VIII. CHIRAL SUPERFIELDS IN THE
SYMMETRIC OR ANTISYMMETRIC RANK-2

TENSOR REPRESENTATION

In this section we analyze the UV to IR evolution of
the supersymmetric SU(Nc) theory with Φi, Φ̃i in the
R and R̄ representation, where R is a symmetric or anti-
symmetric rank-2 tensor representation, denoted S2, A2,
respectively. Since many formulas are closely related to
each other, it is convenient to treat these two cases to-
gether, as the T2 representation. In each of the combined
formulas involving a ± or ∓ sign, the upper and lower
signs apply to the S2 and A2 representations, respec-
tively. For Nc = 2, the S2 representation is the adjoint
representation, which has already been discussed. Thus,
for the S2 representation, the distinct cases begin with
Nc ≥ 3. For the A2 case, Nc is implicitly taken to be
Nc ≥ 3, since this representation is the singlet if Nc = 2.
Further, note that the A2 representation with Nc = 3 is
equivalent to the conjugate fundamental representation
so, with our vectorlike content of chiral superfields, this
reduces to the case Φi, Φ̃i in the F + F̄ representation al-
ready covered above. Thus, the A2 cases that are distinct
have Nc ≥ 4. We focus here on γIR,SI and γIR,2ℓ.

A. β Function

We have

b1 = 3Nc − (Nc ± 2)Nf , (8.1)
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and

b2 = 2
[

3N2
c (1−Nf )∓ 8(Nc −N−1

c )Nf

]

. (8.2)

The expression for b3 is similarly obtained in a straight-
forward manner from the general result (2.5). The re-
quirement of asymptotic freedom requires b1 > 0, i.e.,

Nf < Nf,b1z = Nf,max =
3Nc

Nc ± 2
. (8.3)

For the S2 representation, Nf,max increases monotoni-
cally from 3/2 for Nc = 2 to 3 as Nc → ∞, while for the
A2 representation, Nf,max decreases monotonically from
9 for Nc = 3 to 3 as Nc → ∞.
The exact result for the lower boundary of the IR con-

formal phase is

Nf,cr =
Nf,max

2
=

3Nc

2(Nc ± 2)
. (8.4)

For the S2 representation, Nf,cr increases monotonically
from 3/4 for Nc = 2 to 3/2 as Nc → ∞, while for the A2

representation, Nf,cr decreases monotonically from 9/2
for Nc = 3 to 3/2 as Nc → ∞. Thus, the IR conformal
phase exists for

3Nc

2(Nc ± 2)
< Nf <

3Nc

Nc ± 2
. (8.5)

The coefficient b2 = 0 for

Nf = Nf,b2z =
3N2

c

3N2
c ± 8(Nc −N−1

c )
. (8.6)

This is always smaller than Nf,cr for the S2 representa-
tion, so that b2 has fixed (negative) sign in the IR con-
formal phase in this case. For the A2 representation, if

Nf < 1 +
√
5 = 3.236.., then Nf,b2z > Nf,cr, while if

3.22 < Nf < Nf,max, then Nf,b2z < Nf,cr. Hence, the
only physical case where Nb2z > Nf,cr is for the inte-
ger value Nc = 3, where the A2 + Ā2 representation is
equivalent to the F + F̄ representation.

At the two-loop level, the IR zero of β occurs at
aIR,2ℓ = −b1/b2, i.e.,

αIR,2ℓ =
2π[3Nc − (Nc ± 2)Nf ]

3N2
c (Nf − 1)± 8(Nc −N−1

c )Nf

. (8.7)

B. γm

For this T2 case,

c1 =
4(Nc ± 2)(Nc ∓ 1)

Nc

, (8.8)

and

c2 =
4(Nc ± 2)(Nc ∓ 1)[N2

c ∓ 2Nc − 4 +Nc(Nc ± 2)Nf ]

N2
c

.

(8.9)
The expression for c3 is similarly obtained from the gen-
eral result (3.4).

Hence,

γIR,SI =
2(Nc ± 2)(Nc ∓ 1)[3Nc − (Nc ± 2)Nf ]

3N3
c (Nf − 1)± 8(N2

c − 1)Nc

.

(8.10)
and

γIR,2ℓ =
(Nc ± 2)(Nc ∓ 1)[3Nc − (Nc ± 2)Nf ][N

2
c (3 +Nf )± 2Nc(3 +Nf)− 12][Nc(Nf − 1)± 2Nf ]

[3N3
c (Nf − 1)± 8(N2

c − 1)Nf ]2
. (8.11)

One perturbative estimate of Nf,cr is obtained by set-
ting γIR,SI = 1 and solving for Nf . This gives

Nf,cr,SI =
3Nc(3N

2
c ± 2Nc − 4)

(Nc ± 2)(5N2
c ± 4Nc − 8)

. (8.12)

Comparing these with the respective exact expressions
for Nf,cr for S2 and A2, we find

Nf,cr,SI −Nf,cr =
3N3

c

(Nc ± 2)(5N2
c ± 4Nc − 8)

. (8.13)

This difference is positive for all Nc for both the S2 and
A2 cases. Thus, as with the fundamental and adjoint

representations, for these rank-2 tensor representations,
this perturbative approach overestimatesNf,cr and hence
underestimates the size of the IR conformal phase. A sec-
ond perturbative estimate of Nf,cr is obtained by setting
γIR,2ℓ = 1 and solving for Nf . The condition γIR,2ℓ = 1
is a cubic equation in Nf , from which we extract the
physically relevant root. This second method yields es-
timates of Nf,cr that are qualitatively similar to those
obtained with the first method with γIR,SI . This quali-
tative agreement between these two perturbative meth-
ods for these rank-2 tensor representations is the same
as what we found for the fundamental and adjoint repre-
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sentations.

IX. DISCUSSION AND COMPARISON WITH
NON-SUPERSYMMETRIC SU(Nc) GAUGE

THEORY

From our calculations on an SU(Nc) gauge theory with
N = 1 supersymmetry in this paper, we have found sev-
eral general results. Our most detailed analyses here were
for the cases R = F and R = Adj, with briefer studies
of the S2 and A2 cases. It is useful to compare our re-
sults with what we found in [18] (see also [19], whose
results were in agreement with those in [18]) for a non-
supersymmetric SU(Nc) gauge theory with Nf copies of
massless fermions in various representations. We believe
that our findings for the supersymmetric gauge theory,
besides being of interest in their own right, provide fur-
ther insight into the results that we obtained previously
for the non-supersymmetric theory.
First, for the IR zero of β, we find that αIR,3ℓ < αIR,2ℓ.

This is the same type of shift that we showed earlier for
the non-supersymmetric theory with the same R and sug-
gests that the lowest-order (two-loop) perturbative calcu-
lation of the IR fixed point gives a larger value than the
true value. Second, we find that when one goes from the
two-loop anomalous dimension evaluated at the two-loop
IR zero of β, γIR,2ℓ or the scheme-independent γIR,SI , to
the three-loop result γIR,3ℓ, the value decreases. Again,
this is the same trend that we found for the corresponding
non-supersymmetric theory in [18]. Thus, as with the IR
zero, this suggests that for both the non-supersymmetric
and the supersymmetric theory with corresponding mat-
ter field representation content, the lowest-order calcu-
lation of the value of γm at the IR fixed point gives a
larger value than the true value. The exact value of Nf,cr

is not known for the non-supersymmetric theory, and an
intensive research program has been underway for sev-
eral years, especially using lattice measurements, to de-
termine Nf,cr for a given Nc and R. Here we have taken
advantage of the fact that Nf,cr is known exactly (at
least with the level or rigor that is usual in physics) for
the supersymmetric SU(Nc) theory. We have used one
method for obtaining a perturbative estimate of Nf,cr

here, namely to set γm = 1 and solve for the value of
Nf where this occurs. With this method, we have found
that, for a given Nc and matter superfield content, the
perturbative calculation yields a slight overestimate of
Nf,cr as compared with the exactly known value. This
result agrees with and complements the different analysis
in Ref. [16], which was based on an analysis of an approx-
imate solution to the Dyson-Schwinger equation for the
fermion matter field propagator. Our calculation of γm
at the IR zero of the beta function provides some insight
into this. Since, at least at the scheme-independent and

two-loop level, γm increases throughout the IR conformal
phase as Nf decreases from Nf,max, and since the lowest-
order calculations yield a larger value of αIR and γm than
the true value, it would follow that setting γm = 1 to de-
termine the lower boundary of the IR conformal phase
would yield a value of Nf,cr that is larger than the true
value. One must, however, add the caveat that at the
four-loop level for the non-supersymmetric theory and
at the three-loop level for the corresponding supersym-
metric theory, we have found that γm does not increase
monotonically as Nf decreases from Nf,max, which com-
plicates the intepretation of the results. The deviation
of γIR,4ℓ from γIR,3ℓ in the non-supersymmetric theory
was relatively small throughout much of the Nf interval
of interest, but here we have found that the deviation
of γIR,3ℓ from γIR,2ℓ (or γIR,SI) is significant in the Nf

region of interest, which limits what one can infer from
calculations of γIR,3ℓ.

X. CONCLUSIONS

In this paper we have considered an asymptotically
free vectorial SU(Nc) gauge theory with N = 1 super-

symmetry and Nf pairs of chiral superfields Φi, Φ̃i,
i = 1, ..., Nf , transforming according to the represen-
tations R and R̄, respectively, where R includes funda-
mental, adjoint, and symmetric and antisymmetric rank-
2tensor representations. We have studied the evolution
of this theory from the ultraviolet to the infrared, taking
account of higher-loop corrections to the β function and
the anomalous dimension γm. We have compared the re-
sults obtained from the two- and three-loop calculations
of the beta function and anomalous dimension (in the
DR scheme) with exact results. In particular, we have
calculated perturbative estimates for the lower boundary
of the conformal phase, Nf,cr, by setting the scheme-
independent and two-loop perturbative expressions for
γm equal to the rigorous upper bound (4.4), taken to be
saturated at Nf,cr. We find that this perturbative calcu-
lation somewhat overestimates Nf,cr as compared with
the exact results, and thus underestimates the size of the
IR conformal phase. Keeping in mind the caution that
perturbative calculations become less reliable as the in-
frared fixed point αIR gets larger, our results provide a
measure of how closely perturbative calculations repro-
duce exact results for these theories.
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